
Mobile Transaction Management in Mobisnap?

Nuno Preguiça1, Carlos Baquero2, J. Legatheaux Martins1, Francisco Moura2,
Henrique Domingos1, Rui Oliveira2, J. Orlando Pereira2, and Śergio Duarte1

1 Departamento de Inforḿatica, FCT, Universidade Nova de Lisboa,
Quinta da Torre, 2845 Monte da Caparica, Portugal,

{nmp,jalm,hj,smd }@di.fct.unl.pt
2 Departamento de Inforḿatica, Universidade do Minho,

Largo do Paço, 4700 Braga, Portugal,
{cbm,fsm,rco,jop }@di.uminho.pt

Abstract. In this paper we describe a transaction management system designed
to face the inherent characteristics of mobile environments. Mobile clients cache
subsets of the database state and allow disconnected users to perform transac-
tions independently. Transactions are specified as mobile transactional programs
that are propagated and executed in the server, thus allowing the validation of
transactions based on application-specific semantics. In the proposed model (as
in others previously presented in literature) the final result of a transaction is only
determined when the transaction is processed in the central server. Users may be
notified of the results of their transactions using system support (even when they
are no longer using the same application or even the same computer). Addition-
ally, the system implements a reservation mechanism in order to guarantee the
results of transactions performed in disconnected computers.

1 Introduction

Database systems designed for mobile computing must handle the inherent characteris-
tics of those environments [10]. In particular, mobile applications have to face periods
of disconnection that may arise due to economical factors, unavailable connectivity or
application model. To allow mobile users to continue their work even in these periods, it
is common to rely on optimistic replication techniques. In such approaches, shared data
is replicated on mobile computers and users are allowed to continue their work while
disconnected. Updates performed by disconnected users are logged and later propagated
to servers. Several problems arise from such approaches: (1) updates performed by dif-
ferent disconnected users may conflict among them; (2) due to the previous problem,
it is usually impossible to determine the result of an update in the mobile device; (3)
mobile users may wish to perform operations over data that is not locally replicated. In
this paper we present the Mobisnap [6] approach to tackle these problems in a relational
database system.

The Mobisnap system is based on a central database server that holds the primary
replica of all data items. Mobile clients replicate subsets of the database information
and mobile users are allowed to update database information through the submission of

? This work was supported in part by Praxis XXI

c©Springer-Verlag. Published in the Proceedings of ADBIS-DASFAA 2000,
September 2000 (LNCS 1884).

“mobile transactions”. These “mobile transactions” are specified in an extended subset
of the PL/SQL language [8], allowing programmers to clearly state the intended se-
mantics of each operation - pre-conditions, post- conditions and different alternatives
may be defined for each transaction. The final result of a “mobile transaction” is only
determined when the transaction is performed in the central database. The Mobisnap
system provides linguistic and system support to allow mobile users to be notified of
this final result (even when they are no longer using the same application or even the
same computer).

“Mobile transactions” submitted while disconnected are tentatively applied to the
local database state. The result of this local execution represents the expected final re-
sult of the transaction. However, concurrent updates performed by other users may lead
to a different result when the transaction is performed in the master database. To allevi-
ate this problem, we have designed a reservation mechanism that allows mobile clients
to make reservations upon database information. Therefore, mobile clients are able to
determine the result of mobile transactions that only depend on reserved information.
This mechanism combines leasing [1] with an extension of, previously proposed, es-
crow techniques [5].

The remainder of this paper is organized as follows: Section 2 discusses the mo-
tivation and design principles; Section 3 describes the Mobisnap transactional model;
Section 4 discusses related work and Section 5 concludes the paper with some final
remarks.

2 Motivation and Design Principles

In this section we present the ideas that lead to the Mobisnap approach to mobile trans-
action processing. We illustrate the proposed mechanisms with a system intended to
support salespeople. The system manages not only information about the products but
also the personal datebooks of sellers where demonstrations can be scheduled by the
salesman or by the sales department. Although the presented database is very simpli-
fied, we believe that this example illustrates the proposed ideas. Furthermore, similar
problems can be found in different applications for mobile environments. Details about
the outlined mechanisms will be described in the next section.

2.1 Mobile transactions should be conceptually simple

In mobile computing, it is often necessary to rely on optimistic replication techniques
to face disconnection: transactions are tentatively executed in mobile units and they are
later validated and integrated in the master database. In Mobisnap, mobile transactions
are defined in an imperative language based on PL/SQL [8], thus allowing programmers
to specify the intended semantics for each transaction, testing pre and post-conditions
and defining possible alternatives. In the example of Figure 1 we present two mobile
transactions. In the “new order” transaction the precise preconditions are tested - the
customer wants to order some product if the price is less than a given value and there
are enough products in stock. There is no need that the values in the server are the same
that have been seen in the mobile unit. In the “new demo” tranaction two alternative

------------------------------------- NEW ORDER -------------------------------------
BEGIN

SELECT price, stock INTO prd_price, prd_cnt FROM products WHERE name = ’BLUE THING’;
IF prd_price <= 10.00 AND prd_cnt >= 50 THEN

-- update orders, current stock, ...
NOTIFY(’SMTP’, ’sal-07@thingco.pt’, rder completed ...’);
COMMIT;

ENDIF;
ROLLBACK;

ON ROLLBACK NOTIFY(’SMS’, ’351927435456’, mpossible order ...’);
END;
------------------------------------- NEW DEMO --------------------------------------
BEGIN

SELECT count(*) INTO cnt FROM demo WHERE day=’17-FEB-2000’ AND hour=10;
IF (cnt = 0) THEN

-- update demos, send notification if appropriate, ...
COMMIT;

ENDIF;
SELECT count(*) INTO cnt FROM demo WHERE day=’18-FEB-2000’ AND hour=9;
IF (cnt = 0) THEN

-- update demos, send notification if appropriate, ...
COMMIT;

END IF;
ROLLBACK;

ON ROLLBACK NOTIFY(’SMS’, ’351927435456’, mpossible demo ... ’);
END;

Fig. 1. Definition of two mobile transactions (declaration of variables is ommitted).

schedules are checked for the request of a new demo. These mobile transaction should
be instanciated from predefined templates using the values selected by the users.

The result of a mobile transaction is completely and safely determined by the ex-
ecution of the transaction program in the server. Instead of integrating mobile updates
in the server relying on read/write and write/write conflicts to validate transactions, this
approach allows the use of semantic information associated with the operations per-
formed. Therefore, conflict detection and resolution can be specified in a precise and
simple way in the code of the mobile transaction. The programmer can reason about
the mobile transaction as a mobile program sent from the client to the server holding
the primary copy and executing later on that server. We believe that this approach of-
fers a conceptually simple model, allowing simple and powerfull operation definition.
We also believe that this model allows a high degree of concurrency and scalability
since the asynchronous nature of the client/server interaction and the semantics of mo-
bile transactions only require short lasting locks in the database (no “long transaction”
processing is required).

2.2 Awareness should be a first-class citizen

The common client/server approach to transaction processing assumes that the user
that issues a transaction is connected to the system when its execution is completed.
Therefore, users can be immediately notified of the results of their transactions and
may perform alternative actions if necessary - a typical example is the flight reserva-
tion system. The proposed mobile transaction model differs from this approach in a
fundamental way: usually, users will not be connected to the system when the results

of their transactions are determined. Therefore, the propagation of transactions’ results
to the client machines is not sufficient (and it will be sometimes impossible due to the
disconnection of those devices). The system should integrate a simple and clean mech-
anism that allows the active notification of users, to be used when it is appropriate,
using the users preferred transport mechanisms – electronic mail,SMS/pager messages,
. . . (additionally, a pull-based mechanism should also be provided). In the examples of
Figure 1 it is possible to observe the use of this mechanism in different situations and
using alternative transports depending on the importance of the messages.

2.3 Guarantees are valuable

In the proposed mobile transaction model, as in others previously proposed in literature
[11, 4, 2, 9], the result of a transaction submitted in a mobile unit is only determined
when the transaction is finally executed in the database server. However, the transac-
tion is tentatively performed in the mobile unit to provide a hint of its final result. In
some applications, the ability to provide a stronger hint about the results of transactions
would be very valuable - for example, salespersons would like to immediately guarantee
that they could meet customers requests. To this end, we have integrated a reservation
mechanism in the Mobisnap system.

This reservation mechanism combines and extends ideas used previously in [5] (es-
crow techniques) and [1] (leases). We have defined four types of reservations:

Escrow It is used to divide a partitionable resource. For example, different subsets of
the available instances of a given product can be reserved by different salespersons.

Slot It is used to reserve the right to insert a record with pre-defined values. For exam-
ple, someone may want to reserve the right to schedule a meeting in a room in a
defined period.

Value-change It is used to reserve the right to change some values in the database. For
example, someone may reserve the right to change the description of some product.

Value-use It is used to reserve the right to perform transactions that use a given value
for some fields. For example, a salesperson may reserve the right to sell some prod-
uct for a given price, even if the price is updated.

Reservations held by mobile units are leased, i.e., limited in time, thus guaranteeing
that the system will be able to use the reserved values after a limited period of time even
if the mobile unit becomes permanently disconnected. However, while reservations are
valid, the reserved values can not be used by any other transaction. Due to this reser-
vation mechanism, the result of a transaction can be correctly established in the mobile
unit if it only depends on reserved values (assuming that the mobile transaction can be
propagated to the server before the expiration of involved reservations).

In the example presented in Figure 1, a salesman may request several reservations
to be able to guarantee his decisions even while disconnected. First, he may request
escrow and value-use reservations over some products to be able to guarantee orders -
using both reservations he can guarantee not only that the product is available but also a
given price. Second, he may request slot reservations to be able to schedule new demos
with the visited clients, without the danger of having multiple demos scheduled for

the same periods of time (remember that the sales department may also schedule new
demos). In the next section we detail the outlined mechanism and describe the global
model for transaction processing in Mobisnap.

3 System Model

The Mobisnap system manages information structured according to the relational data
model. Its architecture is based on the extended client-server model [3]. The server
component is composed by a mostly connected server that holds the primary copy of
all data items. The clients are devices that locally replicate a subset of the database state.
They are allowed to continue their normal operation even while disconnected from the
server. Clients can be mobile or stationary computers. In most situations the server will
be a stationary computer but nothing prevents the server from being mobile, as long as
the mostly connected assumption holds.

Clients maintain two copies of the replicated data: committed and tentative. The
committed version contains data received directly from the server and it reflects a pos-
sibly outdated database state. The tentative version is based on the committed one
and it reflects the execution of previously submitted mobile transactions in the client
unit. While disconnected, applications may access both database versions. Applications
should reflect the possible weak consistency of data to users, and they should use the
tentative data version to present the expected data evolution.

When clients interact with the server to fetch data copies, they can also request
data reservations. In the previous section we have already defined the different types
of reservations that the Mobisnap system can handle. For each specific database, the
database designer should specify the associated reservation script. This script specifies
the data elements that can be reserved. For each data element, it defines the type of
reservations available. In escrow reservations, it also defines the number of instances
that can be reserved by each client. Finally, the reservation script specifies to whom
and for how long can a reservation be granted. It should be noted that the efficiency
of the reservation mechanism depends highly on the adequate definition of the above
parameters for each specific system. It is also important that clients request the adequate
reservations for their operation.

As usual, users manipulate the database information using applications that run
on client units. These applications display data and provide operations to modify the
database state through a graphical user interface. In consequence of each performed
operation that modifies the database state, the application creates a mobile transaction
instantiating a previously defined template with the values specified by the user. This
mobile transaction program is submitted for evaluation.

If the client can communicate with the server, the mobile transaction is synchronously
propagated to the server and the final result of its execution is returned to the applica-
tion. If the client is disconnected, the mobile transaction is immediately executed in the
client unit. The result of this execution can be one of the following:

Reservation commit This result means that the mobile transaction code has executed
successfully until a commit instruction and that all tests performed during its exe-

cution are backed up by granted reservations. This result guarantees that the trans-
action will commit when it is finally executed in the central server if it correctly
tests all dependencies and if it is propagated to the server before the expiration of
the involved reservations.

Tentative commit This result means that the mobile transaction code has executed suc-
cessfully until a commit instruction using the tentative database state. However,
there is not enough reservations to guarantee that the transaction will commit when
it is executed in the server.

Tentative abort This result means that the mobile transaction code has executed until
an abort instruction using the tentative database state.

Unknown This result means that the currently cached data is not sufficient to evaluate
the result of the transaction (e.g. a field or record that is referenced is not cached).

Mobile transactions are also stored by the system for later propagation to the server.
By default, transactions that have been “tentatively aborted” are not propagated to the
server. However, applications may request the propagation of all transactions. Trans-
actions that have returned the result “reservation commit” are propagated to the server
associated with references to the reservations used to guarantee them.

When the server receives a mobile transaction, it executes its transactional program.
This execution may lead to the final commit or abort of the transaction. Besides prop-
agating to users any messages defined in the mobile transaction, the server maintains
a log recording the result of all executed transactions. Clients may access this log, if
needed, to verify the result of any transaction. It should be noted that reserved values
are not considered when transactions are processed (e.g. if for some product there are
10 instances in stock and some mobile client has reserved 4 instances, only 6 instances
are available for usage by other transactions). Two exceptions exist. First, the reserved
values used by a “reservation committed” transaction are used and consumed when it
is executed in the server — this situation guarantees that the transaction will commit.
Second, when a client synchronously submits a mobile transaction for execution, this
transaction may consume any reservation held by that client.

4 Related Work

In this section we will briefly overview some of the previously proposed transaction
management solutions designed for mobile environments.

In Oracle Lite [7], mobile units cache database snapshots. Transactions performed
in mobile units are propagated as sets of modified values (write set/old write set val-
ues) that must be integrated in the master database. Validity of transactions is checked
through conflict detection — write/write, uniqueness and delete conflicts are detected.
Conflict resolution functions can be associated with different database tables (or table
fields). This approach has some limitation in the use of semantic information to solve
conflicts — semantic information associated with updates can not be used.

In Bayou [11], data is replicated in a group of servers that synchronize their state us-
ing epidemic techniques. Bayou updates include information to allow generic automatic
conflict detection and resolution through dependency checks and merge procedures. In

[2], mobile nodes may propose tentative update transactions. These transactions are
propagated to base nodes, where they are reapplied to the object master copy. An ac-
ceptance rule can be specified to verify the validity of transaction execution. Invalid
transactions are aborted and diagnostic messages are returned to the mobile nodes. In
[9], for each transaction executed in a mobile unit, the read and write sets are stored.
Additionally, each transaction must specify two functions: a conflict resolution and a
cost function. These functions are used to serialize transactions in the server. The con-
flict resolution function is always executed in the server and it can capture not only the
actions of client transactions but can extend them to capture additional semantics on the
server.

As in Mobisnap, the above approaches allow the use of semantic information as-
sociated with updates to solve conflicts. However, they can not guarantee the result of
updates in mobile units. To solve this problem, it has been proposed the use of escrow
techniques — the idea is to divide the total number of available instances of an item
among different sites and/or transactions. In [5] the authors use this idea to allow mo-
bile units to independently guarantee the results of mobile transactions. The reservation
mechanism proposed in this paper includes and extends these ideas. In [12] the authors
generalize the usage of escrow techniques by exploiting object semantics. However, the
proposed approach can be used only with some data types and it is more adequate to
object oriented databases.

5 Final Remarks

In this paper, we have presented the Mobisnap mobile transaction management model.
In this model, mobile transactions performed by applications are defined in a lan-
guage based in PL/SQL. These “transaction programs” are propagated and executed in
the server, thus allowing the validation of transaction execution based on application-
specific semantics. As mobile users are not usually connected to the system when the
final result of a transaction is determined and therefore they can not immediately per-
form alternative actions if it aborts, these programs may contain a set of alternative
actions to be executed depending on the database state. Moreover, our model provides
explicit mechanisms to provide awareness information to mobile users.

One important aspect of our model is the reservation mechanism. It allows mobile
units to guarantee the commitment of mobile transaction in some circumstances. We
propose the definition of several types of reservations. The interested reader can obtain
more information about the Mobisnap project, including an extended version of this
paper that includes the system design used to implement the proposed model, from [6].

References

[1] Gray, C., Cheriton, D.: Leases: an efficient fault-tolerant mechanism for distributed file cache
consistency. InProceedings of the 12th ACM Symposium on Operating Systems Principles,
1989.

[2] Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In
Proceedings of the ACM SIGMOD’96, 1996.

[3] Jing, J., Helal, A., Elmagarmid, A.: Client-server computing in mobile environments. ACM
Computing Surveys, 1999.

[4] Joseph, A., DeLespinasse, A., Tauber, J., Gifford, D., Kaashoek, M.: Rover: A Toolkit for
Mobile Information Access. InProceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, 1995.

[5] Krishnakumar, N., Jain, R.: Escrow techniques for mobile sales and inventory applications.
Wireless Networks, 3, 1997.

[6] http://asc.di.fct.unl.pt/mobisnap
[7] Oracle.: Oracle8i Lite replication Guide - release 4.0. 1999.
[8] Oracle.: PL/SQL User’s guide and reference - release 8.0. June 1997.
[9] Phatak, S., Badrinath, B.: Multiversion reconciliation for mobile databases. InProceedings

of ICDE’99, 1999.
[10] Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. InProceedings of the

15th ACM Symposia on Principles of Distributed Computing, 1996.
[11] Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., Hauser, C.: Managing Up-

date Conflicts in Bayou, a Weakly Connected Replicated Storage System. InProceedings of
the 15th ACM Symposium on Operating Systems Principles, 1995.

[12] Walborn, G., Chrysanthis, P.: Supporting semantics-based transaction processing in mobile
database systems. InProceedings of the 14th Symposium on Reliable Distributed Systems,
1995.

