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ANY COMPUTING SYSTEM can be described as executing 
sequences of actions, with an action being any relevant 
change in the state of the system. For example, reading 
a file to memory, modifying the contents of the file 
in memory, or writing the new contents to the file are 
relevant actions for a text editor. In a distributed 

system, actions execute in multiple 
locations; in this context, actions 
are often called events. Examples of 
events in distributed systems include 
sending or receiving messages, or 
changing some state in a node. Not 
all events are related, but some events 
can cause and influence how other, 
later events occur. For example, a re-
ply to a received email message is in-
fluenced by that message, and maybe 
by prior messages received.

Events in a distributed system can 
occur in a close location, with differ-
ent processes running in the same 
machine, for example; or at nodes 
inside a datacenter; or geographically 
spread across the globe; or even at a 
larger scale in the near future. The re-
lations of potential cause and effect 
between events are fundamental to 
the design of distributed algorithms. 
These days hardly any service can 
claim not to have some form of dis-

tributed algorithm at its core.
To make sense of these cause-

and-effect relations, it is necessary to 
limit their scope to what can be per-
ceived inside the distributed system 
itself—internal causality. Naturally, a 
distributed system interacts with the 
rest of the physical world outside of 
it, and there are also cause-and-effect 
relations in that world at large. For ex-
ample, consider a couple planning a 
night out using a system that manag-
es reservations for dinner and a mov-
ie. One person makes a reservation 
for dinner and lets the other person 
know with a phone call. After receiv-
ing the phone call, the second person 
goes to the system and reserves a mov-
ie. A distributed system has no way of 
knowing the first reservation has ac-
tually caused the second one.

This external causality cannot be 
detected by the system and can only 
be approximated by physical time. 
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other, then they are said to be con-
current.

Using the example of dinner and 
movie reservations, Figure 1 shows a 
distributed system with three nodes. 
An arrow between nodes represents 
a message sent and delivered. Both 
Bob’s positive answer to the dinner 
suggestion by Alice and Chris’s later 
request to join the party are influ-
enced by Alice’s initial question about 
plans for dinner.

In this distributed computation, a 
simple way to check if an event c could 
have caused another event e (c hap-
pened before e) is to find at least one 
directed path linking c to e. If such a 
connection is found, this partial order 
relation is marked c → e to denote the 
happened-before relation or potential 
causality. Figure 1 has a1 → b2 and b2 → 
c3 (and, yes, also a1 → c3, since causality 
is transitive). Events a1 and c2 are con-
current (denoted a1  c2), because there 
are no causal paths in either direction. 
Note x  y if and only if x  y and y  x. 
The fact Chris was bored neither influ-
enced Alice’s question about dinner, 
not the other way around.

Thus, the three possible relations 
between two events x and y are: (a) x 
might have influenced y, if x → y; (b) 
y might have influenced x, if y → x; (c) 
there is no known influence between 
x and y, as they occurred concurrently 
x  y.

Causal Histories
Causality can be tracked in a very sim-
ple way by using causal histories.3,14 
The system can locally assign unique 
names to each event (for example, 
node name and local increasing 
counter) and collect and transmit sets 
of events to capture the known past.

For a new event, the system creates 
a new unique name, and the causal 
history consists of the union of this 
name and the causal history of the 
previous event in the node. For ex-
ample, the second event in node C is 
assigned the name c2, and its causal 
history is Hc = {c1, c2} (shown in Figure 
2). When a node sends a message, the 
causal history of the send event is sent 
with the message. When the message 
is received, the remote causal history 
is merged (by set union) with the lo-
cal history. For example, the delivery 
of the first message from node A to B 

(Time, however, totally orders all 
events, even those unrelated—thus, 
it is no substitute for causality—and 
wall clocks are never perfectly syn-
chronized.11,16) This article focuses in-
stead on internal causality—the type 
that can be tracked by the system.

Happened-Before Relation
In 1978, Leslie Lamport defined a 
partial order, referred to as happened 

before, that connects events of a dis-
tributed system that are potentially 
causally linked.8 An event c can be 
the cause of an event e, or c happened 
before e, iff (if and only if) both oc-
cur in the same node and c executed 
first, or, being at different nodes, if e 
could know about the occurrence of 
c thanks to some message received 
from some node that knows about c. 
If neither event can know about the 

Figure 1. Happened-before relation.
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Figure 2. Causal histories.
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Figure 3. Vector clocks.
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merges the remote causal history {a1, 
a2} with the local history {b1} and the 
new unique name b2, leading to {a1, 
a2, b1, b2}.

Checking causality between two 
events x and y can be tested simply by 
set inclusion: x → y iff Hx  Hy. This 
follows from the definition of causal 
histories, where the causal history of 
an event will be included in the causal 
history of the following event. Even 
better, marking the last local event 
added to the history (distinguished in 
bold in the figure) allows the use of a 
simpler test: x → y iff x ∈ Hy (for exam-
ple, a1 → b2, since a1 ∈ {a1, a2, b1, b2}). 
This follows from the fact a causal 
history includes all events that (caus-
ally) precede a given event.

Causality Tracking
It should be obvious by now that caus-
al histories work but are not very com-
pact. This problem can be addressed 
by relying on the following observa-
tion: the mechanism of building the 
causal history implies if an event b3 
is present in Hy, then all preceding 
events from that same node, b1 and b2, 
are also present in Hy. Thus, it suffices 
to store the most recent event from 
each node. Causal history {a1, a2, b1, 
b2, b3, c1, c2, c3} is compacted to {a  
2, b  3, c  3} or simply a vector [2, 
3, 3].

Now the rules used with causal 
histories can be translated to the new 
compact vector representation.

Verifying that x → y requires check-
ing if Hx  Hy. This can be done, veri-
fying for each node, if the unique 
names contained in Hx are also con-
tained in Hy and there is at least one 
unique name in Hy that is not con-
tained in Hx. This is immediately 
translated to checking if each entry in 
the vector of x is smaller or equal to 
the corresponding entry in the vector 
of y and one is strictly smaller (such 
as, ∀i : Vx[i] ≤ Vy [i] and ∃j : Vx[j] < Vy [j]). 
This can be stated more compactly as 
x → y iff Vx < Vy. 

For a new event the creation of a 
new unique name is equivalent to 
incrementing the entry in the vector 
for the node where the event is creat-
ed. For example, the second event in 
node C has vector [0, 0, 2], which cor-
responds to the creation of event c2 of 
the causal history.

Finally, creating the union of the 
two causal histories Hx and Hy is 
equivalent to taking the pointwise 
maximum of the corresponding two 
vectors Vx and Vy (such as, ∀i : V [i] = 
max(Vx[i], Vy [i])). Logic tells us that, 
for the unique names generated in 
each node, only the one with the larg-
est counter needs to be kept.

When a message is received, in ad-
dition to merging the causal histories, 
a new event is created. The vector rep-
resentation of these steps can be seen, 
for example, when the first message 
from a is received in b, where taking 
the pointwise maximum leads to [2, 
1, 0] and the new unique name finally 
leads to [2, 2, 0], as shown in Figure 3.

This compact representation, 
known as a vector clock, was intro-
duced around 1988.5,10 Vector com-
parison is an immediate translation 
of set inclusion of causal histories. 
This equivalence is often forgotten in 
modern descriptions of vector clocks 
and can turn what is a simple encod-
ing problem into an unnecessarily 
complex and arcane set of rules, go-
ing against logic.

As shown thus far, when using 
causal histories, knowing the last 
event could simplify comparison by 
simply checking if the last event is 
included in the causal history. This 
can still be done with vectors, if you 
keep track of the node in which the 
last event has been created. For ex-
ample, when questioning if x = [2, 0, 
0] → y = [2, 3, 0], with boldface indi-
cating the last event in each vector, 
you can simply test if x[0] ≤ y[0] (2 ≤ 2) 
since you have marked the last event 
in x was created in node A (that is, it 
corresponds to the first entry of the 
vector). Since marking numbers in 
bold is not a practical implementa-
tion, however, the last event is usu-
ally stored outside the vector (and is 
sometimes called a dot): for example, 
[2, 2, 0] can be represented as [2, 1, 0]
b2. Notice that now the vector repre-
sents the causal past of b2, excluding 
the event itself.

In an important class of applica-
tions there is no need to register cau-
sality for all the events in a distributed 
computation. For example, to modify 
replicas of data, it often suffices to 

Figure 4. Causal histories with only some relevant events.
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Figure 5. Version vectors with only some relevant events.

node A

node B

node C

time

[1,0,0] [1,0,0] [2,0,0]

[0,1,0]

[1,2,0]

[1,2,0]

[0,0,0] [0,0,0] [1,2,0]



46    COMMUNICATIONS OF THE ACM    |   APRIL 2016  |   VOL.  59  |   NO.  4

practice

rent updates have occurred, with his-
tories {a1} and {b1}, as neither a1 → 
b1 nor b1 → a1. In this case, a new ver-
sion that merges the two updates is 
created (merge is denoted by the join 
symbol ), which requires creating a 
new unique name, leading to {a1, b1, 
b2}. When the state of replica b is later 
propagated to replica c, as no concur-
rent update exists in replica c, no new 
version is created.

Again, vectors can compact the 
representation. The result, known as 
a version vector, was created in 1983,12 
five years before vector clocks. Fig-
ure 5 presents the same example as 
before, represented with version vec-
tors.

In some cases when the state of 
one replica is propagated to another 
replica, the two versions are kept by 
the system as conflicting versions. For 
example, in Figure 6, when the mes-
sage from node A is received in node 
B, the system keeps each causal his-
tory {a1} and {b1} associated with the 
respective version. The causal history 
associated with the node containing 
both versions is {a1, b1}, the union of 
the causal history of all versions. This 
approach allows later checking for 
causality relations between each ver-
sion and other versions when merg-
ing the states of additional nodes. 
The conflicting versions could also be 
merged, creating a new unique name, 
as in the example.

One limitation of causality tracking 
by vectors is that one entry is needed for 
each source of concurrency.4 You can 
expect a difference of several orders 
of magnitude between the number of 
nodes in a datacenter and the number 
of clients they handle. Vectors with one 
entry per client do not scale well when 
millions of clients are accessing the 
service.7 Again, a look at the founda-
tion of causal histories shows how to 
overcome this limitation.

The basic requirement in causal 
histories is each event be assigned 
a unique identifier. There is no re-
quirement this unique identifier be 
created locally or immediately. Thus, 
in systems where nodes can be di-
vided into clients and servers and 
where clients communicate only with 
servers, it is possible both to delay 
the creation of a new unique name 
until the client communicates with 

register only those events that change 
replicas. In this case, when think-
ing about causal histories, you need 
only to assign a new unique name to 
these relevant events. Still, you need 
to propagate the causal histories 
when messages are propagated from 
one site to another and the remaining 
rules for comparing causal histories 
remain unchanged.

Figure 4 presents the same exam-
ple as before, but now with events that 
are not registered for causality track-
ing denoted with . If the run repre-
sents the updates to replicas of a data 
object, then after nodes A and B are 
concurrently modified, the state of 
replica a is sent to replica b (in a mes-
sage). When the message is received 
in node B, it is detected two concur-

Figure 6. Causal histories with versions not immediately merged.
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Figure 7. Causal histories in a distributed storage system.
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the server and to use a unique name 
generated in the server. The causal 
history associated with the new ver-
sion is the union of the causal history 
of the client and the newly assigned 
unique name.

Figure 7 shows an example where 
clients A and B concurrently update 
server S. When client B first writes its 
version, a new unique name, s1, is cre-
ated (in the figure this action is denot-
ed by the symbol ) and merged with 
the causal history read by the client 
{}, leading to the causal history {s1}. 
When client A later writes its version, 
the causal history assigned to this ver-
sion is the causal history at the client, 
{}, merged with the new unique name 
s2, leading to {s2}. Using the normal 
rules for checking for concurrent 
updates, these two versions are con-
current. In the example, the system 
keeps both concurrent updates. For 
simplicity, the interactions of server T 
with its own clients were omitted, but 
as shown in the figure, before receiv-
ing data from server S, server T had a 
single version that depicted three up-
dates it managed—causal history {t1, 
t2, t3}—and after that it holds two con-
current versions.

One important observation is that 
in each node, the union of the causal 
histories of all versions includes all 
generated unique names until the last 
known one: for example, in server S, 
after both clients send their new ver-
sions, all unique names generated in 
S are known. Thus, the causal past of 
any update can always be represented 
using a compact vector representa-
tion, as it is the union of all versions 
known at some server when the client 
read the object. The combination of 
the causal past represented as a vec-
tor and the last event, kept outside the 
vector, is known as a dotted version 
vector.2,13 Figure 8 shows the previous 
example using this representation, 
which, as the system keeps running, 
eventually becomes much more com-
pact than causal histories.

In the condition expressed before 
(clients communicate only with serv-
ers and a new update overwrites all 
versions previously read), which is 
common in key-value stores where 
multiple clients interact with storage 
nodes via a get/put interface, the dot-
ted version vectors allow causality to 

be tracked between the written ver-
sions with vectors of the size of the 
number of servers.

Final Remarks
Tracking causality should not be ig-
nored. It is important in the design 
of many distributed algorithms. And 
not respecting causality can lead to 
strange behaviors for users, as report-
ed by multiple authors.1,9 

The mechanisms for tracking 
causality and the rules used in these 
mechanisms are often seen as com-
plex,6,15 and their presentation is not 
always intuitive. The most commonly 
used mechanisms for tracking cau-
sality—vector clocks and version vec-
tors—are simply optimized represen-
tations of causal histories, which are 
easy to understand.

By building on the notion of causal 
histories, you can begin to see the log-
ic behind these mechanisms, to iden-
tify how they differ, and even consider 
possible optimizations. When con-
fronted with an unfamiliar causality-
tracking mechanism, or when trying 
to design a new system that requires 
it, readers should ask two simple 
questions: Which events need track-
ing? How does the mechanism trans-
late back to a simple causal history?

Without a simple mental image for 
guidance, errors and misconceptions 
become more common. Sometimes, 
all you need is the right language.
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