
APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 43

ANY COMPUTING SYSTEM can be described as executing
sequences of actions, with an action being any relevant
change in the state of the system. For example, reading
a file to memory, modifying the contents of the file
in memory, or writing the new contents to the file are
relevant actions for a text editor. In a distributed

system, actions execute in multiple
locations; in this context, actions
are often called events. Examples of
events in distributed systems include
sending or receiving messages, or
changing some state in a node. Not
all events are related, but some events
can cause and influence how other,
later events occur. For example, a re-
ply to a received email message is in-
fluenced by that message, and maybe
by prior messages received.

Events in a distributed system can
occur in a close location, with differ-
ent processes running in the same
machine, for example; or at nodes
inside a datacenter; or geographically
spread across the globe; or even at a
larger scale in the near future. The re-
lations of potential cause and effect
between events are fundamental to
the design of distributed algorithms.
These days hardly any service can
claim not to have some form of dis-

tributed algorithm at its core.
To make sense of these cause-

and-effect relations, it is necessary to
limit their scope to what can be per-
ceived inside the distributed system
itself—internal causality. Naturally, a
distributed system interacts with the
rest of the physical world outside of
it, and there are also cause-and-effect
relations in that world at large. For ex-
ample, consider a couple planning a
night out using a system that manag-
es reservations for dinner and a mov-
ie. One person makes a reservation
for dinner and lets the other person
know with a phone call. After receiv-
ing the phone call, the second person
goes to the system and reserves a mov-
ie. A distributed system has no way of
knowing the first reservation has ac-
tually caused the second one.

This external causality cannot be
detected by the system and can only
be approximated by physical time.

Why Logical
Clocks
Are Easy

DOI:10.1145/2890782

 �Article development led by
queue.acm.org

Sometimes all you need
is the right language.

BY CARLOS BAQUERO AND NUNO PREGUIÇA

http://dx.doi.org/10.1145/2890782

44 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

practice

other, then they are said to be con-
current.

Using the example of dinner and
movie reservations, Figure 1 shows a
distributed system with three nodes.
An arrow between nodes represents
a message sent and delivered. Both
Bob’s positive answer to the dinner
suggestion by Alice and Chris’s later
request to join the party are influ-
enced by Alice’s initial question about
plans for dinner.

In this distributed computation, a
simple way to check if an event c could
have caused another event e (c hap-
pened before e) is to find at least one
directed path linking c to e. If such a
connection is found, this partial order
relation is marked c → e to denote the
happened-before relation or potential
causality. Figure 1 has a1 → b2 and b2 →
c3 (and, yes, also a1 → c3, since causality
is transitive). Events a1 and c2 are con-
current (denoted a1  c2), because there
are no causal paths in either direction.
Note x  y if and only if x  y and y  x.
The fact Chris was bored neither influ-
enced Alice’s question about dinner,
not the other way around.

Thus, the three possible relations
between two events x and y are: (a) x
might have influenced y, if x → y; (b)
y might have influenced x, if y → x; (c)
there is no known influence between
x and y, as they occurred concurrently
x  y.

Causal Histories
Causality can be tracked in a very sim-
ple way by using causal histories.3,14
The system can locally assign unique
names to each event (for example,
node name and local increasing
counter) and collect and transmit sets
of events to capture the known past.

For a new event, the system creates
a new unique name, and the causal
history consists of the union of this
name and the causal history of the
previous event in the node. For ex-
ample, the second event in node C is
assigned the name c2, and its causal
history is Hc = {c1, c2} (shown in Figure
2). When a node sends a message, the
causal history of the send event is sent
with the message. When the message
is received, the remote causal history
is merged (by set union) with the lo-
cal history. For example, the delivery
of the first message from node A to B

(Time, however, totally orders all
events, even those unrelated—thus,
it is no substitute for causality—and
wall clocks are never perfectly syn-
chronized.11,16) This article focuses in-
stead on internal causality—the type
that can be tracked by the system.

Happened-Before Relation
In 1978, Leslie Lamport defined a
partial order, referred to as happened

before, that connects events of a dis-
tributed system that are potentially
causally linked.8 An event c can be
the cause of an event e, or c happened
before e, iff (if and only if) both oc-
cur in the same node and c executed
first, or, being at different nodes, if e
could know about the occurrence of
c thanks to some message received
from some node that knows about c.
If neither event can know about the

Figure 1. Happened-before relation.

node A(lice)

node B(ob)

node C(hris)

time

Dinner?

a1

b1

c1 c2 c3

a2

b2 b3

a3

Yes, let’s do it

Bored... Can I join?

Figure 2. Causal histories.

node A

node B

node C

time

{a1}

{b1}

{c1}

{a1, a2}

{c1, c2}

{a1, a2, a3}

{a1, a2, b1, b2}

{a1, a2, b1, b2, b3}

{a1, a2, b1, b2, b3, c1, c2, c3}

Figure 3. Vector clocks.

node A

node B

node C

time

[1,0,0] [2,0,0] [3,0,0]

[0,1,0]

[2,2,0]

[2,3,0]

[0,0,1] [0,0,2] [2,3,3]

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 45

practice

merges the remote causal history {a1,
a2} with the local history {b1} and the
new unique name b2, leading to {a1,
a2, b1, b2}.

Checking causality between two
events x and y can be tested simply by
set inclusion: x → y iff Hx  Hy. This
follows from the definition of causal
histories, where the causal history of
an event will be included in the causal
history of the following event. Even
better, marking the last local event
added to the history (distinguished in
bold in the figure) allows the use of a
simpler test: x → y iff x ∈ Hy (for exam-
ple, a1 → b2, since a1 ∈ {a1, a2, b1, b2}).
This follows from the fact a causal
history includes all events that (caus-
ally) precede a given event.

Causality Tracking
It should be obvious by now that caus-
al histories work but are not very com-
pact. This problem can be addressed
by relying on the following observa-
tion: the mechanism of building the
causal history implies if an event b3
is present in Hy, then all preceding
events from that same node, b1 and b2,
are also present in Hy. Thus, it suffices
to store the most recent event from
each node. Causal history {a1, a2, b1,
b2, b3, c1, c2, c3} is compacted to {a 
2, b  3, c  3} or simply a vector [2,
3, 3].

Now the rules used with causal
histories can be translated to the new
compact vector representation.

Verifying that x → y requires check-
ing if Hx  Hy. This can be done, veri-
fying for each node, if the unique
names contained in Hx are also con-
tained in Hy and there is at least one
unique name in Hy that is not con-
tained in Hx. This is immediately
translated to checking if each entry in
the vector of x is smaller or equal to
the corresponding entry in the vector
of y and one is strictly smaller (such
as, ∀i : Vx[i] ≤ Vy [i] and ∃j : Vx[j] < Vy [j]).
This can be stated more compactly as
x → y iff Vx < Vy.

For a new event the creation of a
new unique name is equivalent to
incrementing the entry in the vector
for the node where the event is creat-
ed. For example, the second event in
node C has vector [0, 0, 2], which cor-
responds to the creation of event c2 of
the causal history.

Finally, creating the union of the
two causal histories Hx and Hy is
equivalent to taking the pointwise
maximum of the corresponding two
vectors Vx and Vy (such as, ∀i : V [i] =
max(Vx[i], Vy [i])). Logic tells us that,
for the unique names generated in
each node, only the one with the larg-
est counter needs to be kept.

When a message is received, in ad-
dition to merging the causal histories,
a new event is created. The vector rep-
resentation of these steps can be seen,
for example, when the first message
from a is received in b, where taking
the pointwise maximum leads to [2,
1, 0] and the new unique name finally
leads to [2, 2, 0], as shown in Figure 3.

This compact representation,
known as a vector clock, was intro-
duced around 1988.5,10 Vector com-
parison is an immediate translation
of set inclusion of causal histories.
This equivalence is often forgotten in
modern descriptions of vector clocks
and can turn what is a simple encod-
ing problem into an unnecessarily
complex and arcane set of rules, go-
ing against logic.

As shown thus far, when using
causal histories, knowing the last
event could simplify comparison by
simply checking if the last event is
included in the causal history. This
can still be done with vectors, if you
keep track of the node in which the
last event has been created. For ex-
ample, when questioning if x = [2, 0,
0] → y = [2, 3, 0], with boldface indi-
cating the last event in each vector,
you can simply test if x[0] ≤ y[0] (2 ≤ 2)
since you have marked the last event
in x was created in node A (that is, it
corresponds to the first entry of the
vector). Since marking numbers in
bold is not a practical implementa-
tion, however, the last event is usu-
ally stored outside the vector (and is
sometimes called a dot): for example,
[2, 2, 0] can be represented as [2, 1, 0]
b2. Notice that now the vector repre-
sents the causal past of b2, excluding
the event itself.

In an important class of applica-
tions there is no need to register cau-
sality for all the events in a distributed
computation. For example, to modify
replicas of data, it often suffices to

Figure 4. Causal histories with only some relevant events.

node A

node B

node C

time

{ } { }

{a1}

{b1}

{a1} {a1, a2}

{a1, b1, b2}

{a1, b1, b2}

{a1, b1, b2}

Figure 5. Version vectors with only some relevant events.

node A

node B

node C

time

[1,0,0] [1,0,0] [2,0,0]

[0,1,0]

[1,2,0]

[1,2,0]

[0,0,0] [0,0,0] [1,2,0]

46 COMMUNICATIONS OF THE ACM | APRIL 2016 | VOL. 59 | NO. 4

practice

rent updates have occurred, with his-
tories {a1} and {b1}, as neither a1 →
b1 nor b1 → a1. In this case, a new ver-
sion that merges the two updates is
created (merge is denoted by the join
symbol ), which requires creating a
new unique name, leading to {a1, b1,
b2}. When the state of replica b is later
propagated to replica c, as no concur-
rent update exists in replica c, no new
version is created.

Again, vectors can compact the
representation. The result, known as
a version vector, was created in 1983,12
five years before vector clocks. Fig-
ure 5 presents the same example as
before, represented with version vec-
tors.

In some cases when the state of
one replica is propagated to another
replica, the two versions are kept by
the system as conflicting versions. For
example, in Figure 6, when the mes-
sage from node A is received in node
B, the system keeps each causal his-
tory {a1} and {b1} associated with the
respective version. The causal history
associated with the node containing
both versions is {a1, b1}, the union of
the causal history of all versions. This
approach allows later checking for
causality relations between each ver-
sion and other versions when merg-
ing the states of additional nodes.
The conflicting versions could also be
merged, creating a new unique name,
as in the example.

One limitation of causality tracking
by vectors is that one entry is needed for
each source of concurrency.4 You can
expect a difference of several orders
of magnitude between the number of
nodes in a datacenter and the number
of clients they handle. Vectors with one
entry per client do not scale well when
millions of clients are accessing the
service.7 Again, a look at the founda-
tion of causal histories shows how to
overcome this limitation.

The basic requirement in causal
histories is each event be assigned
a unique identifier. There is no re-
quirement this unique identifier be
created locally or immediately. Thus,
in systems where nodes can be di-
vided into clients and servers and
where clients communicate only with
servers, it is possible both to delay
the creation of a new unique name
until the client communicates with

register only those events that change
replicas. In this case, when think-
ing about causal histories, you need
only to assign a new unique name to
these relevant events. Still, you need
to propagate the causal histories
when messages are propagated from
one site to another and the remaining
rules for comparing causal histories
remain unchanged.

Figure 4 presents the same exam-
ple as before, but now with events that
are not registered for causality track-
ing denoted with . If the run repre-
sents the updates to replicas of a data
object, then after nodes A and B are
concurrently modified, the state of
replica a is sent to replica b (in a mes-
sage). When the message is received
in node B, it is detected two concur-

Figure 6. Causal histories with versions not immediately merged.

node A

node B

node C

time

{ } { }

{a1}

{b1}

{a1}

{a1},{b1}

{a1, a2}

{a1, b1, b2} {a1, b1, b2}

{a1, b1, b2}

Figure 7. Causal histories in a distributed storage system.

client B

client A

Server S

Server T

time

{ } { }

put

{ } { }

{ } { }

put

{s1}

{s1},{s2}

{t1, t2} {t1, t2, t3} {t1, t2, t3},{s1}

Figure 8. Dotted version vectors in distributed storage system.

client B

client A

Server S

Server T

time

[0,0]

[0,0]

put

[0,0]

[0,0][0,0]

[0,0]

put

[0,0]s1 [0,0]s1,[0,0]s2

[0,2]t3 [0,2]t2,[0,0]s1[0,1]t2

APRIL 2016 | VOL. 59 | NO. 4 | COMMUNICATIONS OF THE ACM 47

practice

the server and to use a unique name
generated in the server. The causal
history associated with the new ver-
sion is the union of the causal history
of the client and the newly assigned
unique name.

Figure 7 shows an example where
clients A and B concurrently update
server S. When client B first writes its
version, a new unique name, s1, is cre-
ated (in the figure this action is denot-
ed by the symbol ) and merged with
the causal history read by the client
{}, leading to the causal history {s1}.
When client A later writes its version,
the causal history assigned to this ver-
sion is the causal history at the client,
{}, merged with the new unique name
s2, leading to {s2}. Using the normal
rules for checking for concurrent
updates, these two versions are con-
current. In the example, the system
keeps both concurrent updates. For
simplicity, the interactions of server T
with its own clients were omitted, but
as shown in the figure, before receiv-
ing data from server S, server T had a
single version that depicted three up-
dates it managed—causal history {t1,
t2, t3}—and after that it holds two con-
current versions.

One important observation is that
in each node, the union of the causal
histories of all versions includes all
generated unique names until the last
known one: for example, in server S,
after both clients send their new ver-
sions, all unique names generated in
S are known. Thus, the causal past of
any update can always be represented
using a compact vector representa-
tion, as it is the union of all versions
known at some server when the client
read the object. The combination of
the causal past represented as a vec-
tor and the last event, kept outside the
vector, is known as a dotted version
vector.2,13 Figure 8 shows the previous
example using this representation,
which, as the system keeps running,
eventually becomes much more com-
pact than causal histories.

In the condition expressed before
(clients communicate only with serv-
ers and a new update overwrites all
versions previously read), which is
common in key-value stores where
multiple clients interact with storage
nodes via a get/put interface, the dot-
ted version vectors allow causality to

be tracked between the written ver-
sions with vectors of the size of the
number of servers.

Final Remarks
Tracking causality should not be ig-
nored. It is important in the design
of many distributed algorithms. And
not respecting causality can lead to
strange behaviors for users, as report-
ed by multiple authors.1,9

The mechanisms for tracking
causality and the rules used in these
mechanisms are often seen as com-
plex,6,15 and their presentation is not
always intuitive. The most commonly
used mechanisms for tracking cau-
sality—vector clocks and version vec-
tors—are simply optimized represen-
tations of causal histories, which are
easy to understand.

By building on the notion of causal
histories, you can begin to see the log-
ic behind these mechanisms, to iden-
tify how they differ, and even consider
possible optimizations. When con-
fronted with an unfamiliar causality-
tracking mechanism, or when trying
to design a new system that requires
it, readers should ask two simple
questions: Which events need track-
ing? How does the mechanism trans-
late back to a simple causal history?

Without a simple mental image for
guidance, errors and misconceptions
become more common. Sometimes,
all you need is the right language.

Acknowledgments
We would like to thank Rodrigo Ro-
drigues, Marc Shapiro, Russell Brown,
Sean Cribbs, and Justin Sheehy for
their feedback. This work was par-
tially supported by EU FP7 SyncFree
project (609551) and FCT/MCT proj-
ects UID/CEC/04516/2013 and UID/
EEA/50014/2013.	

 Related articles
 on queue.acm.org

The Inevitability of Reconfigurable Systems
Nick Tredennick, Brion Shimamoto
http://queue.acm.org/detail.cfm?id=957767

Abstraction in Hardware System Design
Rishiyur S. Nikhil
http://queue.acm.org/detail.cfm?id=2020861

Eventually Consistent: Not What You Were
Expecting?
Wojciech Golab, et al.
http://queue.acm.org/detail.cfm?id=2582994

References
1.	 Ajoux, P., Bronson, N., Kumar, S., Lloyd, W.,

Veeraraghavan, K. Challenges to adopting stronger
consistency at scale. In Proceedings of the 15th
Workshop on Hot Topics in Operating Systems, Kartause
Ittingen, Switzerland. Usenix Association, 2015.

2.	 Almeida, P.S., Baquero, C., Gonçalves, R., Preguiça,
N.M., Fonte, V. Scalable and accurate causality tracking
for eventually consistent stores. In Proceedings of the
Distributed Applications and Interoperable Systems,
held as part of the Ninth International Federated
Conference on Distributed Computing Techniques
(Berlin, Germany, 2014), 67–81.

3.	 Birman, K.P., Joseph, T.A. Reliable communication
in the presence of failures. ACM Transactions on
Computer Systems 5, 1 (1987), 47–76.

4.	 Charron-Bost, B. Concerning the size of logical clocks
in distributed systems. Information Processing Letters
39, 1 (1991), 11–16.

5.	 Fidge, C.J. Timestamps in message-passing systems
that preserve the partial ordering. Proceedings of the
11th Australian Computer Science Conference 10, 1
(1988), 56–66.

6.	 Fink, B. Why vector clocks are easy. Basho Blog, 2010;
http://basho.com/posts/ technical/why-vector-clocks-
are-easy/.

7.	 Hoff, T. How League of Legends scaled chat
to 70 million players—it takes lots of minions.
High Scalability; http://highscalability.com/
blog/2014/10/13/how-league-of-legends-scaled-chat-
to-70-million-players-it-t.html.

8.	 Lamport, L. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM 21,
7 (1978), 558–565.

9.	 Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen,
D.G. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (New York, NY, 2011), 401–416.

10.	 Mattern, F. Virtual time and global states in distributed
systems. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms
(Gers, France, 1988), 215– 226.

11.	 Neville-Neil, G. Time is an illusion. acmqueue 13, 9
(2015). 57–72

12.	 Parker, D.S. et al. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software
Engineering 9, 3 (1983), 240–247.

13.	 Preguiça, N.M., Baquero, C., Almeida, P.S., Fonte, V.,
Gonçalves, R. Brief announcement: Efficient causality
tracking in distributed storage systems with dotted
version vectors. In ACM Symposium on Principles of
Distributed Computing. D. Kowalski and A. Panconesi,
Eds. (2012), 335–336.

14.	 Schwarz, R., Mattern, F. Detecting causal relationships
in distributed computations: in search of the Holy
Grail. Distributed Computing 7, 3 (1994), 149–174.

15.	 Sheehy, J. Why vector clocks are hard. Basho Blog,
2010; http://basho.com/posts/ technical/why-vector-
clocks-are-hard/.

16.	 Sheehy, J. There is no now. acmqueue 13, 3 (2015),
20–27.

Carlos Baquero (cbm@di.uminho.pt) is assistant
professor of computer science and senior researcher at
the High-Assurance Software Laboratory, Universidade
do Minho and INESC Tec. His research interests are
focused on distributed systems, in particular causality
tracking, data types for eventual consistency, and
distributed data aggregation.

Nuno Preguiça (nuno.preguica@fct.unl.pt) is associate
professor in the Department of Computer Science,
Faculty of Science and Technology, Universidade NOVA
de Lisboa, and leads the computer systems group at
NOVA Laboratory for Computer Science and Informatics.
His research interests are focused on the problems of
replicated data management and processing of large
amounts of information in distributed systems and mobile
computing settings.

Copyright held by authors.
Publication rights licensed to ACM. $15.00

