
Published in Pr oceedi ngs of t he Thi r d Eur opean Resear ch Semi nar on Advances i n
Di st r i but ed Syst ems (ERSADS’ 99) , April 1999.

FLEXIBLE DATA STORAGE FOR MOBILE COLLABORATIVE
APPLICATIONS

Nuno Preguiça, J. Legatheaux Martins, Henrique J. Domingos
Department of Computer Science

Faculty of Sciences and Technology - New University of Lisbon
Quinta da Torre, 2825 Monte da Caparica, Portugal

{ nmp,jalm,hj} @di.fct.unl.pt

KEY WORDS

Mobile computing; asynchronous collaborative
applications; distributed data storage; object framework.

ABSTRACT

In this paper we describe a flexible object storage system
aimed at supporting collaborative applications in large-
scale environments that include mobile computers. We
present an integrated solution to two major problems that
arise in such environments: data availability and
concurrency control. The first is tackled by the flexible
combination of weakly consistent server replication and
client caching. The second is tackled through an open
object framework that enables easy object development
using type specific conflict detection and resolution. This
object storage serves as a supporting platform to produce
new distributed and mobile collaborative applications.

INTRODUCTION

Mobile computing is characterized by some intrinsic
constraints related with available connectivity, power and
hardware resources [14]. Despite the impressive progress in
hardware and communication technology [6], mobile hosts
have to face lower and highly variable bandwidth
capabilities when compared with those of stationary
computers. Moreover, mobile computers incur in periods of
complete disconnection.

As users must be able to access data to perform useful
work, the utility of any computer depends largely on the
efficiency of the underlying storage system. In mobile
environments, where periods of complete disconnection are
frequent, data availability must be provided relying on local
replicas of data. To support collaborative applications
effectively, users must be allowed to perform their
contributions in any mobile host without any restrictions,
even when disconnected. These concurrent updates must be
subsequently merged, and their intended effects taken into
account, to produce the final state of the shared data.

In this paper we present the DAgora storage system, which
has been designed to support asynchronous collaborative
applications in large-scale settings that include mobile
computers. It uses server replication and client caching with
a read any / write any model of data access to maximize

availability. Log propagation has been adopted to promote
type-specific concurrent updates merging.

To simplify the development of mobile collaborative
applications, DAgora also provides an object framework
that allows new data types to be composed from reusable
predefined components and regular object classes. This
object framework hides from application programmers
much of the complexity associated with data distribution
and concurrency control issues related with the read
any/write any model of data access. Different policies exist
to apply concurrently made updates to different replicas
and new ones may be defined as required by new
applications.

In the remainder of this paper we present: the DAgora
requirements; a global overview of the system; the object
framework; comparison with related work; and conclude
with some final remarks.

MOTIVATION

Consider three different asynchronous collaborative
applications that can be used in a mobile environment: a
conferencing system, a multi-user editor and a group
scheduler. All these applications require some sort of data
repository to manage their shared data. In a conferencing
system, any user should be allowed to reply to a previously
existing statement. All concurrent replies should be
displayed in a consistent way across different conferencing
replicas. In a multi-user document editor, different users
should be able to modify the same structured document. All
modifications should be reflected in the final document.
Multiple versions of each document element (e.g. chapter,
sections) must be created if concurrent updates to the same
element have been produced. In a group scheduler
application, users should be allowed to enter new
appointments, which must be considered tentative until
being committed by some form of automatic global
agreement.

From the above scenarios we note that users cooperate by
accessing and modifying (or applying operations to modify)
some shared data. Moreover, all those applications allow
different users to concurrently modify data without
restrictions. To provide high availability, different users
may have access to inconsistent data replicas. To support
these properties, DAgora is based on weakly consistent data

replication with a read any / write any model of data
access.

Our goal in designing DAgora was to provide system
support to ease the development of asynchronous
collaborative applications for mobile environments. To this
end, providing data availability is just one of the problems
involved. Another one, perhaps more difficult to solve, is
the handling of concurrent updates in a weakly connected
system based on weakly consistent replication. Several
problems are involved: interpretation of results in user
application; consistency among servers; respect by the
user’s intentions when concurrent updates are merged.

Distributed file systems, such as Coda [10] and Ficus [12],
use system and user defined conflict resolution programs to
merge divergent replicas. These systems work very well in
environments with few conflicts and their strategy is quite
effective for objects with simple semantics – e.g. file
directories. They have proven the value of semantic conflict
detection and resolution. However, experimental results
(30% unsolved update/update file conflicts [12]) suggest
that the resolution of conflicts based on simple state
propagation may be very difficult for complex objects.

We believe that the observed shortcomings can be
overcome executing conflict resolution at the granularity of
individual operations and further exploiting domain-
specific knowledge (thus extending the principles applied
in Coda and Ficus). Several systems, such as Bayou [15],
Rover [7] and Sync [11], use different approaches based on
the above principles. In related work section we discuss the
reasons why we believe our system is more suitable for the
target environment.

In the DAgora storage system, updates performed by users
are propagated to a server and among all the servers as
method invocations – log propagation model [4]. The effect
of each update in each data replica is determined by the
execution of the associated method in each server. Due to
the availability of precise updates’ information, this model
simplifies conflict detection and enables the
implementation of different conflict resolution policies.

From the applications that we have briefly described in the
beginning of this section, we can see that distinct
applications handle concurrent updates in different ways.
To support this characteristic, DAgora allows each data
type to define specific policies to handle concurrent
updates.

To face the complexity associated with the DAgora model,
we have defined an open object framework. This object
framework consists of several components that manage the
inherent complexity associated with new data types
(notably, the logging and ordering of updates). For each of
these components several predefined semantics are
available and others may be defined. Therefore, the
development of a data type for a new application is greatly
simplified through the reuse of available solutions.

In the next sections we will present an overview of the
DAgora storage system and detail the DAgora open object
framework.

SYSTEM OVERVIEW

The DAgora distributed storage system manages objects,
known as coobjects – from collaborative objects. These
coobjects may be rather complex (such as documents or
scheduler calendars) and be implemented as arbitrary
compositions of regular objects. Sets of related coobjects
are grouped in volumes representing collaborative
workspaces and storing the data associated with a given
workgroup and/or cooperative project.

To provide high availability of data and support for
workgroups that are distributed across several physically
disjoint locations, volumes of coobjects are replicated by
groups of servers. The location of servers must be selected
to decrease users’ connectivity requirements and nothing
prevents a powerful mobile computer from hosting a
DAgora server.

Since traditional replication schemes providing one copy
serializability and strict consistency yield unacceptably low
write availability in partitioned networks or in the presence
of disconnected computers [1], weak consistency of
replicated data is desirable. Consequently, DAgora has
adopted a model in which clients can read and write to any
replica independently – read any / write any model.

Updates are propagated among servers during occasional,
pair-wise communications known as anti-entropy sessions
[4], thus taking into consideration the connectivity
characteristics of mobile environments. This epidemic
scheme guarantees that each server eventually receives all
updates from every other, either directly or indirectly.
Therefore, consistency among data replicas may be
eventually achieved in a quiescent state when all updates
have been propagated to all replicas.

To increase data availability and system usefulness for
mobile users, DAgora implements a caching mechanism in
clients. Therefore, users that work on computers with
reduced hardware resources, such as PDAs, may have
access to data even while disconnected. To face the
inherent heterogeneity of mobile environment, server
replication and client caching mechanisms may be used and
combined to implement different storage system
configurations. In figure 1, we depict the DAgora storage
system architecture with a configuration that presents a
static computer, a laptop computer and a small PDA.

anti-entropy

Static
computer

Mobile
computer

PDA

Key
 Server

 Client

 Coobject

Application

coobjects

updates

Figure 1 – DAgora architecture composed by three

computers with different configurations. Coobjects are
replicated by servers, cached by clients and

manipulated by users’ applications.

Applications employ a get / modify locally / put changes
model of data access. Private copies of coobjects are
obtained through the client component and they are
modified by usual method invocations. Updates are
exported to a server using a store-and-forward model: the
client component stores the updates until incremental
propagation is possible.

The DAgora storage system is based on a clear division
between system core and coobjects implementations. The
system core is responsible to provide high availability of
data and to guarantee that updates performed by users are
propagated to all replicas. It is composed of server and
client components as depicted in figure 1. Coobjects
implementations are responsible to handle updates. In
clients, they have to log executed updates. In servers, they
must store updates delivered by the system core, expose
them for server replication and apply them to the replica’s
state. As all these actions are under programmer control,
specific solutions may be developed for different data
types.

OBJECT FRAMEWORK

The management of updates imposes a heavy burden on the
coobjects. To alleviate programmers from much of the
associated complexity we have defined an object
framework. The DAgora object framework structures each
coobject in five disjoint components (objects), each with a
well-defined interface. These components are: capsule,
data, attributes, log, and log-ordering (figure 2).

Capsule

Attributes
Log

Log-ordering

Data (specific for
each data type)

Figure 2 –The DAgora open object framework.

This framework allows inexperienced programmers to
create coobjects by relying on predefined components to

impose consistency among replicas. New components, with
different semantics, may be implemented as required for
new applications.

Attr ibutes

The component “attributes” is used to store general-purpose
information relative to the coobject and meta-information
relative to the replication process. Two implementations are
available: a simple and an extended one. The extended
implementation should be used with sequencer-based
orderings (see “ log-ordering” section). It stores information
about sequencer identity and defines methods for its
management. The simple implementation should be used
otherwise. These classes may be extended to defined type-
specific attributes.

Log

The component “ log” is used to log and store updates
performed by users. It has a dual function: in clients, it logs
updates temporarily; in servers, it stores updates received
directly from clients and/or from anti-entropy sessions. For
each sequence of updates logged or stored, the log adds
additional information – a version vector and a timestamp –
necessary to order updates. With this information it is
possible to trace the update precedence graph.

Similar to the component “attributes” , two implementations
are available: a simple and an extended one. The extended
one should be used with sequencer-based orderings (see
“ log-ordering” section). Both log implementations execute
compression while logging updates if update properties –
commute and mask [8] – are available (masked updates are
discarded).

Log-order ing

The component “ log-ordering” is used to determine the
order by which updates should be applied to the coobject. It
has a dual function: in clients, it determines if updates
should be applied immediately to coobject’s private copy
(usually, updates are applied immediately to allow users to
observe the expected results from their actions); in servers,
it orders the application of stored updates. The component
“ log-ordering” uses the information added by the “ log” to
establish an order among updates.

Currently, several implementations are available, namely:
no order, causal order, total order based on a sequencer
replica, total causal order based on stability tests, total
causal order using undo/redo [8], and total causal order
based on a sequencer replica. No order and causal order
impose almost no delay on update application, thus
enabling immediate commitment of updates in servers.
However, as it is often hard to guarantee replica
consistency using these orderings, total order is often
required. Several techniques were implemented to
guarantee total order.

When no sequencer is used to commit updates (stability-
based techniques), each server must gather enough

information about other servers to establish the total order.
This information is propagated during anti-entropy
sessions. Unfortunately, as it requires feedback from all
replicas, one simple disconnected replica may prevent any
update from being committed. To mitigate this problem, an
optimistic undo/redo implementation is available, where
all updates are applied immediately, being undone and
redone later, if a new update is received that should have
been ordered prior to an already executed one.

Alternatively, a sequencer-based order ing is available,
allowing updates to be committed provided that the
sequencer replica is reachable (even in presence of multiple
disconnected replicas). With this implementation, a
coobject replica is responsible for defining the official
commit order for all received updates (which are
propagated as usual, during normal anti-entropy sessions).

Capsule

The component “capsule” aggregates the components of a
coobject and determines its composition. It servers as
interface between system core and coobjects. Usually, a
“capsule” just coordinates and redirects invocations to the
appropriate components. A common “capsule” is
implemented and aggregates one instance of each
component.

Previous research has concluded that the definition of two
states for an update, committed and tentative, is very useful
in mobile environments [7,15]. For instance, in a scheduler
application, reservations executed by users must be
considered tentative until they are committed. Users should
be allowed to see tentative data to avoid possible conflicts
(tentative data represent a foresight of the coobject’s state).
In the DAgora system, a programmer may easily create a
coobject that stores a tentative and a committed version of
the data, relying on simple data objects and using the
extended “capsule” implementation. This “capsule” is
composed by two instances of the components “ log-
ordering” and “data” and transparently maintains both
states – committed data results from the execution of stored
updates using a pessimistic total order, while tentative data
results from the execution of unstable updates to the
committed state using causal order.

Data

The component “data” implements the real data type being
created, with its associated state and operations. With
current log implementations, which are based simply on
update ordering, the code of each operation is responsible
for detecting and solving conflicts among concurrent
updates.

For some applications, it is impossible to solve conflicts
automatically. For instance, if a base element (e.g. section)
of a structured document is modified concurrently by two
users, the system usually can neither decide which
modification is the best, nor merge both modifications. In
such cases, two versions of the conflicting element must be
created and resolution must be left to users. In DAgora, we

have created a component “data” that implements a set of
generic objects with multiple versions. Concurrent
modifications of the same object are detected and solved
automatically creating multiple versions. Programmers may
extend this component and define automatic merging
procedures or leave this work to users. Another component
implements a generic tree-structured organization on top of
the above set of objects and can also be extended by
programmers. These base components have been used for
implementing several structured documents manipulated by
a collaborative editor [13].

When the multi-version “data” components are not used,
the programmer must take into consideration the DAgora
model of operation, when implementing the component
“data” . However, to guarantee that users’ intentions are
respected when updates are applied in each server and
eventual conflicts are detected and solved, some simple
techniques must be followed and DAgora provides the
necessary support for their implementation. First, the
existence of concurrent updates may be tested using the
timevector associated with each operation. Second, the
defined preconditions for the execution of an update may
be checked. Third, the definition of alternative actions to be
executed dependent on the coobject’s state is possible.
Fourth, the definition of state-independent operations is
also possible. More complex techniques, such as updates’
transformations [3], may also be implemented using the
updates stored in the “ log” component.

Our experience with some implemented applications [13]
suggests that most applications will use one or two simple
techniques (e.g., a careful operation definition associated
with a regular precondition checking has been used in a
scheduler application, while our multi-version components
rely uniquely on the information associated with each
update).

Using The Object Framework–Scheduler example

The scheduler application enables users to reserve
resources, such as meeting rooms, projectors, etc. Users
interact with a graphical interface, presented in figure 3,
observing which periods are already reserved. Two kinds of
reservations exist: committed and tentative. While for
committed reservations displayed times are unchangeable
(unless reservation is deleted), for tentative reservations
displayed times are dependent on the existence of other
reservations, yet unknown, that reserve the same times. To
enter a new reservation users must indicate the set of
alternative times for which they intend to reserve the
resource and give a brief description of the reason.

Figure 3 – Scheduler application. Main window presents
known reservations. Reservation window is used to set a

new appointment.

To implement this application we have developed a
coobject based on an extended capsule – thus, transparently
providing a tentative and a committed version of each
calendar. To guarantee that appointments are committed as
soon as possible in a consistent way across different
replicas, even in the presence of disconnected replicas,
updates are applied using a causal total order algorithm
based on a primary replica.

In figure 4, we present the code needed to implement the
scheduler coobject, which is preprocessed to generate
standard Java code. As it can be seen, to create a new
coobject type, a programmer only has to define the
component “data” and to select the desired component
implementations. This simplifies data-type construction,
through massive code reuse.

public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

{
 public SchedulerCapsule() {
 attrib = new dagora.dscs.AttribSeq();
 logcore = new dagora.dscs.LogCoreSeqImpl();
 commitData = new SchedulerData();
 commitlogorder = new dagora.dscs.LogTotalSeqCausal(false);
 tentativeData = new SchedulerData();
 tentativelogorder = new dagora.dscs.LogNoOrder(true);
 }
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

{
 public Vector appointments(int year, int month, int day) {
 /* method code here * /
 }
 public loggable void insertReservation(ReservationEntry[] altRes) {
 /* method code here * /
 }
 public loggable void removeReservation(ReservationEntry res) {
 /* method code here * /
 }
}

 Figure 4 – Scheduler coobject implementation.
SchedulerCapsule defines the components used in the

coobject, and extends the selected capsule. SchedulerData
implements a simple scheduler object, as it would usually

be implemented (besides defining which invocations should
be logged).

RELATED WORK

Several systems have been developed to manage data in
large-scale environments including mobile computers.
Notably, some mobile database systems [2,5] are based on
“mobile” transactions. However, as these systems have
been implemented for different purposes they usually
define a model of concurrency control that is too restrictive
for collaborative applications (discarding executed
contributions is usually unacceptable).

Coda [10] is a replicated file system with support for
disconnected clients. It also supports low bandwidth
networks and intermittent communication. While
disconnected, clients log all updates to the file system,
which are replayed on reconnection. System executes
automatic update conflict resolution for directories.
Application-specific programs can be provided for
automatic resolution of file update conflicts. Ficus
distributed file system [12], although presenting a different
architecture, relies on similar conflict detection and
resolution mechanisms. As we have already referred,
although these systems work very well for its intended
environment, experimental results suggest that the
resolution of conflicts based on simple state propagation
may be very difficult for complex objects. Odyssey, Coda’s
successor, presents a model for application-aware
adaptation in presence of mobility based on collaboration
between system and applications. It is particularly

interesting to support multimedia applications, where data
fidelity may be selected according to available
connectivity.

Bayou [15] is a replicated database system to support data-
sharing among mobile users, with an architecture similar to
Notes. Bayou updates (writes) include information to allow
generic automatic conflict detection and resolution through
dependency checks and merge procedures. Bayou data
presents two values: tentative and committed. A primary-
replica scheme is used to perform update commitment. The
combination of these features reveals itself quite adequate
for large-scale mobile system. The DAgora system may
present Bayou’s main characteristics through adequate
coobject definition. However, DAgora enables different
concurrency control schemes and specific data types
definition – it does not require data to fit the available
relational model. Therefore, in some circumstances,
DAgora enables the implementation of more flexible and
suitable solutions.

Rover [7] combines relocatable dynamic objects (RDO)
and queued remote procedure calls (QRPC) to provide
information access for mobile clients. Each RDO has a
home server and may be imported by clients. While
imported, updates are logged and performed locally. When
the RDO is exported, logged updates are applied to the
replica at the home server. Resolution of detected conflicts
is achieved at servers by calling type-specific methods.
RDOs are also used to export computations to servers.
QRPCs are used to execute all communications between
clients and servers, allowing non-blocking RPCs even
while disconnected. We believe that our system is more
suitable for large-scale settings due to server replication (in
conjugation with client caching). The object framework
also eases the creation of new data types.

Several distributed object systems have been previously
developed and present some form of concurrent update
handling. Some of them [9] even provide object
frameworks decomposing object operation. However, these
systems are usually real-time, designed for low granularity
objects with different requirements, and present solutions
unsuitable for mobile large-scale settings.

Sync [11], a framework for mobile collaborative
applications, presents an interesting model to handle
concurrent updates and to create new object. However, we
believe that lack of server replication makes it less suitable
for large-scale asynchronous settings.

FINAL REMARKS

The DAgora data storage presents an architecture that
allows adaptation to specific environments using a range of
system configurations. We believe that it provides a
suitable solution for data availability in setting with mobile
computers.

The associated DAgora open object framework allows
programmers to develop specific solutions for their
problems. As there is no single solution that solves all
problems, we believe that the flexibility that is provided by

this open object framework is fundamental to support
different types of applications. Moreover, the object
framework simplifies the task of programmers allowing
them to reuse several predefined components that handle
most of the complexity associated with data distribution.

REFERENCES

[1] Coan B., Oki B., Kolodner E. Limitations on database
availability when networks partition. In Proceedings 5th
ACM Symposium on Principles of Distributed Computing,
August 1986.

[2] M. Dunham, A. Helal, S. Balakrishnan. A mobile
transaction model that captures both the data and
movement behavior. Mobile Networks and Applications, 2,
1997.

[3] Ellis C., Gibbs S. Concurrency Control in Groupware
Systems. In Proceedings of the ACM SIGMOD Conference
on the Management of Data, June 1989.

[4] R. Golding. A weak-consistency architecture for
distributed information services. Computing Systems, 5(4),
1992.

[5] R. Gruber, F. Kaashoek, B. Liskov, L. Shrira.
Disconnected Operation in the Thor Object-Oriented
Database System. In Proceedings of the IEEE Workshop on
Mobile Computing Systems and Applications, December,
1994.

[6] Imielinski T., Korth H. Introduction to Mobile
Computing. Mobile Computing, ed. T. Imielinski and H.
Korth, Kluwer Academic Publisher, 1996.

[7] Joseph A., DeLespinasse A., Tauber J., Gifford D.,
Kaashoek M. Rover: A Toolkit for Mobile Information
Access. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

[8] Karsenty A., Beaudouin-Lafon M. An algorithm for
distributed groupware applications. In Proceedings of the
13th International Conference on Distributed Computing
Systems, May 1993.

[9] A. Kermarrec, I. Kuz, M. Steen, A. Tanenbaum. A
Framework for Consistent, Replicated Web Objects. In
Proceedings of the 18th International Conference on
Distributed Computing Systems, May 1998.

[10] Mummert L., Ebling M., Satyanarayanan M.
Exploiting Weak Connectivity for Mobile File Access. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.

[11] Munson J., Dewan P. Sync: A Java Framework for
Mobile Collaborative Applications. IEEE Computer, June
1997.

[12] Page Jr. T., Guy R., Heidemann J., Ratner D., Reiher
P., Goel A., Kuenning G., Popek G. Perspectives on
Optimistically Replicated, Peer-to-Peer Filing. Software-
Practice and Experience, vol. 28(2), February 1998.

[13] Preguiça N., Martins J., Domingos H., Simão J.
System Support for Large-Scale Collaborative
Applications. Technical Report, TR-01-98 DI-FCT-UNL,
Dep. Computer Science, New University of Lisbon,1998.

[14] Satyanarayanan M. Fundamental Challenges in Mobile
Computing. In Proceedings of the 15th ACM Symposia on
Principles of Distributed Computing, 1996.

[15] Terry D., Theimer M., Petersen K., Demers A.,
Spreitzer M., Hauser C. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.

