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ABSTRACT 

In this paper we describe a flexible object storage system 
aimed at supporting collaborative applications in large-
scale environments that include mobile computers. We 
present an integrated solution to two major problems that 
arise in such environments: data availability and 
concurrency control. The first is tackled by the flexible 
combination of weakly consistent server replication and 
client caching. The second is tackled through an open 
object framework that enables easy object development 
using type specific conflict detection and resolution. This 
object storage serves as a supporting platform to produce 
new distributed and mobile collaborative applications. 

INTRODUCTION 

Mobile computing is characterized by some intrinsic 
constraints related with available connectivity, power and 
hardware resources [14]. Despite the impressive progress in 
hardware and communication technology [6], mobile hosts 
have to face lower and highly variable bandwidth 
capabilities when compared with those of stationary 
computers. Moreover, mobile computers incur in periods of 
complete disconnection. 

As users must be able to access data to perform useful 
work, the utility of any computer depends largely on the 
efficiency of the underlying storage system. In mobile 
environments, where periods of complete disconnection are 
frequent, data availability must be provided relying on local 
replicas of data. To support collaborative applications 
effectively, users must be allowed to perform their 
contributions in any mobile host without any restrictions, 
even when disconnected. These concurrent updates must be 
subsequently merged, and their intended effects taken into 
account, to produce the final state of the shared data. 

In this paper we present the DAgora storage system, which 
has been designed to support asynchronous collaborative 
applications in large-scale settings that include mobile 
computers. It uses server replication and client caching with 
a read any / write any model of data access to maximize 

availability. Log propagation has been adopted to promote 
type-specific concurrent updates merging. 

To simplify the development of mobile collaborative 
applications, DAgora also provides an object framework 
that allows new data types to be composed from reusable 
predefined components and regular object classes. This 
object framework hides from application programmers 
much of the complexity associated with data distribution 
and concurrency control issues related with the read 
any/write any model of data access. Different policies exist 
to apply concurrently made updates to different replicas 
and new ones may be defined as required by new 
applications.  

In the remainder of this paper we present: the DAgora 
requirements; a global overview of the system; the object 
framework; comparison with related work; and conclude 
with some final remarks. 

MOTIVATION 

Consider three different asynchronous collaborative 
applications that can be used in a mobile environment: a 
conferencing system, a multi-user editor and a group 
scheduler. All these applications require some sort of data 
repository to manage their shared data. In a conferencing 
system, any user should be allowed to reply to a previously 
existing statement. All concurrent replies should be 
displayed in a consistent way across different conferencing 
replicas. In a multi-user document editor, different users 
should be able to modify the same structured document. All 
modifications should be reflected in the final document. 
Multiple versions of each document element (e.g. chapter, 
sections) must be created if concurrent updates to the same 
element have been produced. In a group scheduler 
application, users should be allowed to enter new 
appointments, which must be considered tentative until 
being committed by some form of automatic global 
agreement. 

From the above scenarios we note that users cooperate by 
accessing and modifying (or applying operations to modify) 
some shared data. Moreover, all those applications allow 
different users to concurrently modify data without 
restrictions. To provide high availability, different users 
may have access to inconsistent data replicas. To support 
these properties, DAgora is based on weakly consistent data 



replication with a read any / write any model of data 
access. 

Our goal in designing DAgora was to provide system 
support to ease the development of asynchronous 
collaborative applications for mobile environments. To this 
end, providing data availability is just one of the problems 
involved. Another one, perhaps more difficult to solve, is 
the handling of concurrent updates in a weakly connected 
system based on weakly consistent replication. Several 
problems are involved: interpretation of results in user 
application; consistency among servers; respect by the 
user’s intentions when concurrent updates are merged. 

Distributed file systems, such as Coda [10] and Ficus [12], 
use system and user defined conflict resolution programs to 
merge divergent replicas. These systems work very well in 
environments with few conflicts and their strategy is quite 
effective for objects with simple semantics – e.g. file 
directories. They have proven the value of semantic conflict 
detection and resolution. However, experimental results 
(30% unsolved update/update file conflicts [12]) suggest 
that the resolution of conflicts based on simple state 
propagation may be very difficult for complex objects. 

We believe that the observed shortcomings can be 
overcome executing conflict resolution at the granularity of 
individual operations and further exploiting domain-
specific knowledge (thus extending the principles applied 
in Coda and Ficus). Several systems, such as Bayou [15], 
Rover [7] and Sync [11], use different approaches based on 
the above principles. In related work section we discuss the 
reasons why we believe our system is more suitable for the 
target environment. 

In the DAgora storage system, updates performed by users 
are propagated to a server and among all the servers as 
method invocations – log propagation model [4]. The effect 
of each update in each data replica is determined by the 
execution of the associated method in each server. Due to 
the availability of precise updates’  information, this model 
simplifies conflict detection and enables the 
implementation of different conflict resolution policies. 

From the applications that we have briefly described in the 
beginning of this section, we can see that distinct 
applications handle concurrent updates in different ways. 
To support this characteristic, DAgora allows each data 
type to define specific policies to handle concurrent 
updates.  

To face the complexity associated with the DAgora model, 
we have defined an open object framework. This object 
framework consists of several components that manage the 
inherent complexity associated with new data types 
(notably, the logging and ordering of updates). For each of 
these components several predefined semantics are 
available and others may be defined. Therefore, the 
development of a data type for a new application is greatly 
simplified through the reuse of available solutions. 

In the next sections we will present an overview of the 
DAgora storage system and detail the DAgora open object 
framework. 

SYSTEM OVERVIEW 

The DAgora distributed storage system manages objects, 
known as coobjects – from collaborative objects. These 
coobjects may be rather complex (such as documents or 
scheduler calendars) and be implemented as arbitrary 
compositions of regular objects. Sets of related coobjects 
are grouped in volumes representing collaborative 
workspaces and storing the data associated with a given 
workgroup and/or cooperative project. 

To provide high availability of data and support for 
workgroups that are distributed across several physically 
disjoint locations, volumes of coobjects are replicated by 
groups of servers. The location of servers must be selected 
to decrease users’  connectivity requirements and nothing 
prevents a powerful mobile computer from hosting a 
DAgora server. 

Since traditional replication schemes providing one copy 
serializability and strict consistency yield unacceptably low 
write availability in partitioned networks or in the presence 
of disconnected computers [1], weak consistency of 
replicated data is desirable. Consequently, DAgora has 
adopted a model in which clients can read and write to any 
replica independently – read any / write any model.  

Updates are propagated among servers during occasional, 
pair-wise communications known as anti-entropy sessions 
[4], thus taking into consideration the connectivity 
characteristics of mobile environments. This epidemic 
scheme guarantees that each server eventually receives all 
updates from every other, either directly or indirectly. 
Therefore, consistency among data replicas may be 
eventually achieved in a quiescent state when all updates 
have been propagated to all replicas. 

To increase data availability and system usefulness for 
mobile users, DAgora implements a caching mechanism in 
clients. Therefore, users that work on computers with 
reduced hardware resources, such as PDAs, may have 
access to data even while disconnected. To face the 
inherent heterogeneity of mobile environment, server 
replication and client caching mechanisms may be used and 
combined to implement different storage system 
configurations. In figure 1, we depict the DAgora storage 
system architecture with a configuration that presents a 
static computer, a laptop computer and a small PDA. 
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Figure 1 – DAgora architecture composed by three 

computers with different configurations. Coobjects are 
replicated by servers, cached by clients and 

manipulated by users’  applications. 

Applications employ a get / modify locally / put changes 
model of data access. Private copies of coobjects are 
obtained through the client component and they are 
modified by usual method invocations. Updates are 
exported to a server using a store-and-forward model: the 
client component stores the updates until incremental 
propagation is possible. 

The DAgora storage system is based on a clear division 
between system core and coobjects implementations. The 
system core is responsible to provide high availability of 
data and to guarantee that updates performed by users are 
propagated to all replicas. It is composed of server and 
client components as depicted in figure 1. Coobjects 
implementations are responsible to handle updates. In 
clients, they have to log executed updates. In servers, they 
must store updates delivered by the system core, expose 
them for server replication and apply them to the replica’s 
state. As all these actions are under programmer control, 
specific solutions may be developed for different data 
types. 

OBJECT FRAMEWORK 

The management of updates imposes a heavy burden on the 
coobjects. To alleviate programmers from much of the 
associated complexity we have defined an object 
framework. The DAgora object framework structures each 
coobject in five disjoint components (objects), each with a 
well-defined interface. These components are: capsule, 
data, attributes, log, and log-ordering (figure 2). 
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Figure 2 –The DAgora open object framework. 

This framework allows inexperienced programmers to 
create coobjects by relying on predefined components to 

impose consistency among replicas. New components, with 
different semantics, may be implemented as required for 
new applications. 

Attr ibutes 

The component “attributes”  is used to store general-purpose 
information relative to the coobject and meta-information 
relative to the replication process. Two implementations are 
available: a simple and an extended one. The extended 
implementation should be used with sequencer-based 
orderings (see “ log-ordering”  section). It stores information 
about sequencer identity and defines methods for its 
management. The simple implementation should be used 
otherwise. These classes may be extended to defined type-
specific attributes.  

Log 

The component “ log”  is used to log and store updates 
performed by users. It has a dual function: in clients, it logs 
updates temporarily; in servers, it stores updates received 
directly from clients and/or from anti-entropy sessions. For 
each sequence of updates logged or stored, the log adds 
additional information – a version vector and a timestamp – 
necessary to order updates. With this information it is 
possible to trace the update precedence graph. 

Similar to the component “attributes” , two implementations 
are available: a simple and an extended one. The extended 
one should be used with sequencer-based orderings (see 
“ log-ordering”  section). Both log implementations execute 
compression while logging updates if update properties – 
commute and mask [8] – are available (masked updates are 
discarded). 

Log-order ing 

The component “ log-ordering”  is used to determine the 
order by which updates should be applied to the coobject. It 
has a dual function: in clients, it determines if updates 
should be applied immediately to coobject’s private copy 
(usually, updates are applied immediately to allow users to 
observe the expected results from their actions); in servers, 
it orders the application of stored updates. The component 
“ log-ordering”  uses the information added by the “ log”  to 
establish an order among updates. 

Currently, several implementations are available, namely: 
no order, causal order, total order based on a sequencer 
replica, total causal order based on stability tests, total 
causal order using undo/redo [8], and total causal order 
based on a sequencer replica. No order  and causal order  
impose almost no delay on update application, thus 
enabling immediate commitment of updates in servers. 
However, as it is often hard to guarantee replica 
consistency using these orderings, total order  is often 
required. Several techniques were implemented to 
guarantee total order. 

When no sequencer is used to commit updates (stability-
based techniques), each server must gather enough 



information about other servers to establish the total order. 
This information is propagated during anti-entropy 
sessions. Unfortunately, as it requires feedback from all 
replicas, one simple disconnected replica may prevent any 
update from being committed. To mitigate this problem, an 
optimistic undo/redo implementation is available, where 
all updates are applied immediately, being undone and 
redone later, if a new update is received that should have 
been ordered prior to an already executed one. 

Alternatively, a sequencer-based order ing is available, 
allowing updates to be committed provided that the 
sequencer replica is reachable (even in presence of multiple 
disconnected replicas). With this implementation, a 
coobject replica is responsible for defining the official 
commit order for all received updates (which are 
propagated as usual, during normal anti-entropy sessions). 

Capsule 

The component “capsule”  aggregates the components of a 
coobject and determines its composition. It servers as 
interface between system core and coobjects. Usually, a 
“capsule”  just coordinates and redirects invocations to the 
appropriate components. A common “capsule”  is 
implemented and aggregates one instance of each 
component. 

Previous research has concluded that the definition of two 
states for an update, committed and tentative, is very useful 
in mobile environments [7,15]. For instance, in a scheduler 
application, reservations executed by users must be 
considered tentative until they are committed. Users should 
be allowed to see tentative data to avoid possible conflicts 
(tentative data represent a foresight of the coobject’s state). 
In the DAgora system, a programmer may easily create a 
coobject that stores a tentative and a committed version of 
the data, relying on simple data objects and using the 
extended “capsule”  implementation. This “capsule”  is 
composed by two instances of the components “ log-
ordering”  and “data”  and transparently maintains both 
states – committed data results from the execution of stored 
updates using a pessimistic total order, while tentative data 
results from the execution of unstable updates to the 
committed state using causal order. 

Data 

The component “data”  implements the real data type being 
created, with its associated state and operations. With 
current log implementations, which are based simply on 
update ordering, the code of each operation is responsible 
for detecting and solving conflicts among concurrent 
updates. 

For some applications, it is impossible to solve conflicts 
automatically. For instance, if a base element (e.g. section) 
of a structured document is modified concurrently by two 
users, the system usually can neither decide which 
modification is the best, nor merge both modifications. In 
such cases, two versions of the conflicting element must be 
created and resolution must be left to users. In DAgora, we 

have created a component “data”  that implements a set of 
generic objects with multiple versions. Concurrent 
modifications of the same object are detected and solved 
automatically creating multiple versions. Programmers may 
extend this component and define automatic merging 
procedures or leave this work to users. Another component 
implements a generic tree-structured organization on top of 
the above set of objects and can also be extended by 
programmers. These base components have been used for 
implementing several structured documents manipulated by 
a collaborative editor [13]. 

When the multi-version “data”  components are not used, 
the programmer must take into consideration the DAgora 
model of operation, when implementing the component 
“data” . However, to guarantee that users’  intentions are 
respected when updates are applied in each server and 
eventual conflicts are detected and solved, some simple 
techniques must be followed and DAgora provides the 
necessary support for their implementation. First, the 
existence of concurrent updates may be tested using the 
timevector associated with each operation. Second, the 
defined preconditions for the execution of an update may 
be checked. Third, the definition of alternative actions to be 
executed dependent on the coobject’s state is possible. 
Fourth, the definition of state-independent operations is 
also possible. More complex techniques, such as updates’  
transformations [3], may also be implemented using the 
updates stored in the “ log”  component. 

Our experience with some implemented applications [13] 
suggests that most applications will use one or two simple 
techniques (e.g., a careful operation definition associated 
with a regular precondition checking has been used in a 
scheduler application, while our multi-version components 
rely uniquely on the information associated with each 
update).  

Using The Object Framework–Scheduler  example 

The scheduler application enables users to reserve 
resources, such as meeting rooms, projectors, etc. Users 
interact with a graphical interface, presented in figure 3, 
observing which periods are already reserved. Two kinds of 
reservations exist: committed and tentative. While for 
committed reservations displayed times are unchangeable 
(unless reservation is deleted), for tentative reservations 
displayed times are dependent on the existence of other 
reservations, yet unknown, that reserve the same times. To 
enter a new reservation users must indicate the set of 
alternative times for which they intend to reserve the 
resource and give a brief description of the reason. 



 
Figure 3 – Scheduler application. Main window presents 
known reservations. Reservation window is used to set a 

new appointment. 

To implement this application we have developed a 
coobject based on an extended capsule – thus, transparently 
providing a tentative and a committed version of each 
calendar. To guarantee that appointments are committed as 
soon as possible in a consistent way across different 
replicas, even in the presence of disconnected replicas, 
updates are applied using a causal total order algorithm 
based on a primary replica. 

In figure 4, we present the code needed to implement the 
scheduler coobject, which is preprocessed to generate 
standard Java code. As it can be seen, to create a new 
coobject type, a programmer only has to define the 
component “data”  and to select the desired component 
implementations. This simplifies data-type construction, 
through massive code reuse. 

public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

{
      public SchedulerCapsule() {
            attrib = new dagora.dscs.AttribSeq();
            logcore = new dagora.dscs.LogCoreSeqImpl();
            commitData = new SchedulerData();
            commitlogorder = new dagora.dscs.LogTotalSeqCausal( false);
            tentativeData = new SchedulerData();
            tentativelogorder = new dagora.dscs.LogNoOrder( true);
      }
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

{
      public Vector appointments( int year, int month, int day) {
            /*  method code here * /
      }
      public loggable void insertReservation( ReservationEntry[] altRes) {
            /*  method code here * /
      }
      public loggable void removeReservation( ReservationEntry res) {
            /*  method code here * /
      }
}

 Figure 4 – Scheduler coobject implementation. 
SchedulerCapsule defines the components used in the 

coobject, and extends the selected capsule. SchedulerData 
implements a simple scheduler object, as it would usually 

be implemented (besides defining which invocations should 
be logged). 

RELATED WORK 

Several systems have been developed to manage data in 
large-scale environments including mobile computers. 
Notably, some mobile database systems [2,5] are based on 
“mobile”  transactions. However, as these systems have 
been implemented for different purposes they usually 
define a model of concurrency control that is too restrictive 
for collaborative applications (discarding executed 
contributions is usually unacceptable). 

Coda [10] is a replicated file system with support for 
disconnected clients. It also supports low bandwidth 
networks and intermittent communication. While 
disconnected, clients log all updates to the file system, 
which are replayed on reconnection. System executes 
automatic update conflict resolution for directories. 
Application-specific programs can be provided for 
automatic resolution of file update conflicts. Ficus 
distributed file system [12], although presenting a different 
architecture, relies on similar conflict detection and 
resolution mechanisms. As we have already referred, 
although these systems work very well for its intended 
environment, experimental results suggest that the 
resolution of conflicts based on simple state propagation 
may be very difficult for complex objects. Odyssey, Coda’s 
successor, presents a model for application-aware 
adaptation in presence of mobility based on collaboration 
between system and applications. It is particularly 



interesting to support multimedia applications, where data 
fidelity may be selected according to available 
connectivity.  

Bayou [15] is a replicated database system to support data-
sharing among mobile users, with an architecture similar to 
Notes. Bayou updates (writes) include information to allow 
generic automatic conflict detection and resolution through 
dependency checks and merge procedures. Bayou data 
presents two values: tentative and committed. A primary-
replica scheme is used to perform update commitment. The 
combination of these features reveals itself quite adequate 
for large-scale mobile system. The DAgora system may 
present Bayou’s main characteristics through adequate 
coobject definition. However, DAgora enables different 
concurrency control schemes and specific data types 
definition – it does not require data to fit the available 
relational model. Therefore, in some circumstances, 
DAgora enables the implementation of more flexible and 
suitable solutions. 

Rover [7] combines relocatable dynamic objects (RDO) 
and queued remote procedure calls (QRPC) to provide 
information access for mobile clients. Each RDO has a 
home server and may be imported by clients. While 
imported, updates are logged and performed locally. When 
the RDO is exported, logged updates are applied to the 
replica at the home server. Resolution of detected conflicts 
is achieved at servers by calling type-specific methods. 
RDOs are also used to export computations to servers. 
QRPCs are used to execute all communications between 
clients and servers, allowing non-blocking RPCs even 
while disconnected. We believe that our system is more 
suitable for large-scale settings due to server replication (in 
conjugation with client caching). The object framework 
also eases the creation of new data types. 

Several distributed object systems have been previously 
developed and present some form of concurrent update 
handling. Some of them [9] even provide object 
frameworks decomposing object operation. However, these 
systems are usually real-time, designed for low granularity 
objects with different requirements, and present solutions 
unsuitable for mobile large-scale settings.  

Sync [11], a framework for mobile collaborative 
applications, presents an interesting model to handle 
concurrent updates and to create new object. However, we 
believe that lack of server replication makes it less suitable 
for large-scale asynchronous settings. 

FINAL REMARKS 

The DAgora data storage presents an architecture that 
allows adaptation to specific environments using a range of 
system configurations. We believe that it provides a 
suitable solution for data availability in setting with mobile 
computers. 

The associated DAgora open object framework allows 
programmers to develop specific solutions for their 
problems. As there is no single solution that solves all 
problems, we believe that the flexibility that is provided by 

this open object framework is fundamental to support 
different types of applications. Moreover, the object 
framework simplifies the task of programmers allowing 
them to reuse several predefined components that handle 
most of the complexity associated with data distribution. 
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