
Combining Mobile and Cloud Storage for
Providing Ubiquitous Data Access?

João Soares and Nuno Preguiça

CITI/DI-FCT-Univ. Nova de Lisboa
Quinta da Torre, Portugal

Abstract. Users increasingly own, and use, multiple computing devices.
To be able to access their personal data, at any time and in any device,
users usually need to create replicas in each device. Managing these mul-
tiple replicas becomes an important issue.
In this paper we present the FEW Phone File System, a data man-
agement system that combines mobile and cloud storage for providing
ubiquitous data access. To this end, our system takes advantage of the
characteristics of mobile phones for storing a replica of a user’s personal
data, thus allowing these devices to be used as personal and portable file
servers. As users tend to always carry their mobile phone with them at
all times, these replicas are the basis for providing high data availability,
and keeping replicas automatically synchronized.
Our system also uses other replicas located in web servers and cloud
storage systems, to reduce the volume of data stored, and transferred
to/from mobile phones, by maintaining only the information needed to
obtain them.

1 Introduction

Users increasingly own, and use, multiple computing devices, from desktop com-
puters, to laptops, tablets, consoles and mobile phones. In such an environment,
data availability is an important issue, as users want to access their personal
data everywhere, independently of their current machine or location.

To address this problem, users tend to rely on at least one of the following
available solutions: i) on-line storage services (e.g. Dropbox [1], Google Docs [3]),
and/or ii) portable storage devices (e.g. USB flash drives). While both solutions
aim at providing “ubiquitous” storage space, they also force users to deal with
additional problems. On-line storage services force users to trust third parties for
storing their personal data. Both solutions force users to maintain synchronized
replicas of the stored data, for minimizing losses due to possible device failure
or for guaranteeing access in case of network disconnection. In many solutions
(e.g. Google Docs, USB flash drives), synchronization is done manually, and only
strict discipline avoids replicas from diverging.

? This work was partially supported by CITI and FCT/MCTES project
POSC/EIA/59064/2004, with Feder funding. João Soares was partially supported
by CITI and FCT/MCTES research grant # SFRH/ BD/ 62306/ 2009.

2

In this paper, we present the FEW Phone File System (FEW), a data man-
agement system for providing high data availability to mobile users. While shar-
ing some of the goals and solutions with existing systems [19,9,12,2,16,15], FEW
provides a unique solution for offering users ubiquitous access to their personal
data, independently of their location, device and/or network connectivity. To
this end, FEW builds on the characteristics of current mobile phones, taking
advantage of their i) storage capacity; ii) wireless communication capabilities
(Wi-Fi and/or Bluetooth); iii) mobility of such devices.

In FEW, the mobile phone of a user acts as his personal and portable file
server, storing and maintaining replicas of his personal files. This allows our
system to provide ubiquitous access to these files, since users tend to carry their
mobile phones with them at all times. The Wi-Fi and Bluetooth communication
capabilities guarantee access to these replicas from any computer, in a location
independent manner, without the hurdles of needing extra cables. The system
includes an optimistic replication solution, allowing for replicas to be created
and accessed when needed, including a novel scalable update tracking solution,
and a reconciliation algorithm based on commutative operations.

As a large number of users’ files are currently stored, or are obtained from re-
mote web sources, FEW includes a data source verification mechanism to record
the alternative sources for each file. This allows the integration of online storage
systems as alternative data sources for each file, achieving both the reduction of
communications, as well as data that needs to be stored in the mobile phone,
while still providing high data availability. Additionally, FEW includes a data
transcoding mechanism for minimizing storage consumption due to multimedia
data that needs to be stored in the mobile phone - these two mechanisms allow,
for example, the mobile phone to store only thumbnails of photo collections,
while keeping information on how to obtain full fidelity photos from on-line
systems, like Flickr, Facebook, etc.

The remainder of this paper is organized as follows: Section 2 presents the
design of our systems; Section 3 details the advanced mechanisms to address
limitations of using mobile phones; Section 4 presents an evaluation of the sys-
tem; Section 5 discusses related work; and Section 6 concludes the paper with
some final remarks.

2 System Design

The FEW Phone File System (FEW) is a data management system designed to
provide high data availability to users, allowing them permanent access to their
personal data, across multiple computers, independently of location, ownership,
and network connectivity. In this section we present the system general design
and synchronization algorithms.

2.1 Architecture

FEW is based, primarily, on a client-server architecture, where mobile phones
act as personal, and portable, file servers, storing replicas of the personal data

3

Fig. 1: FEW Phone File System architecture.

of some user. A typical FEW configuration includes a set of computing devices,
called nodes, accessed by a common user, and, at least, one mobile phone, as
depicted in Figure 1. In the remainder of this paper, a mobile phone acting as a
file server will be addressed as a mobile server.

Each node is responsible for managing its replicas of the user’s files, which
are organized into collections named containers. Containers are collections of
files stored under the same common path name, and can be seen as subtrees
of a file system, similar to volumes in Coda [18]. FEW allows containers to be
created, in any client node, from any existing directory in the file system, or
when replicating an existing container on a new node.

Applications access these files as any other files, i.e., using the file system
interface. This allows FEW to provide data availability, without forcing appli-
cations to be modified. To this end, clients intercept and handle all file system
calls executed on the files managed by the system. In the current prototype,
we rely on Fuse [6] (and Fuse-J java-bindings) for implementing the client side.
Typically, mobile phones only include the server component, while computer
nodes run both the client and the server component of the system. This allows
computers to synchronize files with mobile servers, using a client-server model,
and also with other active client nodes, in a peer-to-peer fashion, as described
later.

FEW fully replicates a container’s complete namespace in every replica, thus
allowing users to have a coherent view of its contents in every node. File contents,
on the other hand, do not need to be fully replicated. As explained later, the
system includes several mechanisms that allow the system to use partial or full
replication policies. If necessary, file contents can be fetched on-demand when
applications access files not locally replicated.

For improved performance, we use optimistic replication techniques [5] to
allow replicas of the files to be created in any client computer that accesses them1.
This way, files can be modified in any computer without requiring immediate
server communication, thus addressing performance and energy limitations of
mobile phones. Data consistency is maintained by a periodic synchronization

1 Users can decide in which computer these replicas can be created, and in which
replicas can be long-lived, thus addressing privacy concerns.

4

process, used for propagating updates from clients to servers, and vice-versa.
This process includes a reconciliation mechanism for resolving possible conflicts
due to concurrent updates.

2.2 Synchronization Process

To preserve consistency, allowing users to always access the latest version of
their files, FEW relies on a periodic synchronization process for propagating
updates between replicas of a container. Replicas are synchronized using an
epidemic approach, by establishing pair-wise communication sessions. Although
any node can synchronize with any other node, mobile servers tend to function
as mediators for propagating updates between replicas.

This approach has several benefits. First, it allows our system to provide
eventual consistency, i.e., over time, an update executed in a node will be prop-
agated to all other nodes, even to nodes that have no network connectivity
(besides short range connectivity to the mobile phone). Second, since users are
expected to always carry their mobile phones with them at all times, maintaining
the most recent version of a container on a mobile server allows FEW to always
provide users access to the most recent version of their data.

A synchronization session is automatically initiated whenever a node detects
a nearby mobile server. During this session, local updates, i.e., updates performed
on a computer node, are propagated to the mobile server, while missed updates
are propagated from the server to that node. This process is re-executed peri-
odically while a mobile server is nearby. As a result, we expect a mobile server
to always store the most recent version of its containers.

The synchronization process also allows nodes to gain knowledge of other ex-
isting replicas. Whenever a container is replicated on a node, the node’s address
is stored on the server, thus creating additional sources for obtaining the data.
This information is exchanged during the synchronization process.

This allows the basic synchronization process to be extended using node-
to-node synchronization. This way replicas are kept synchronized, even if the
mobile server cannot be used to efficiently propagate updates among them. In
this case, a node uses this information to form an overlay network for exchanging
updates with existing replicas. Two situations for using such an approach have
been identified. First, when the user forgets his mobile phone, it is obvious that
synchronization must be performed using peer-to-peer communication. Second,
when files are too large it might be too costly to store them in the mobile phone.

Synchronization Algorithm FEW uses a two stage synchronization algo-
rithm. First stage synchronizes the name space, i.e., it propagates unknown
directory updates, while the second stage synchronizes data, i.e., files contents.

Object identifiers Internally, all objects handled by FEW are addressed by
unique identifiers (UID), assigned to each object (file or directory) when cre-
ated, or during the container creation process, remaining the same during the

5

lifetime of that object, independently of name changes. Other information (i.e.
meta-data) is also maintained for each object in a container. This information
includes common file system attributes, such as file names, access permissions,
etc., and system-specific attributes, such as information for tracking dependen-
cies among versions, a digest of its contents, a list of alternative file sources, etc.
This information is essential for the synchronization process.

Name Space Synchronization: For synchronizing the name space of a container,
FEW maintains a log with name space updates, and an associated version vec-
tor [10]. Each log entry includes all the necessary information for reproducing
the operation in other nodes, i.e., a time stamp of the operation, the type of op-
eration (create, delete, rename), the UID of the updated object, its version, and
the UID of the parent directory, while the version vector allows for recording the
number of updates performed on each replica of the container. During synchro-
nization, each node exchanges version vectors, thus allowing missed updates to
be determined. The respective log entries are then exchanged, and reproduced.

Concurrent updates are deterministically resolved using the principles of com-
mutative replicated data types [14]. Concurrent operations have been designed
in a way that a deterministic result is obtained independent of their execution
order, thus guaranteeing that all replicas converge to the same state.

Data Synchronization: For tracking data dependencies, FEW uses a novel ap-
proach. Updated files are initially signaled using an ’updated’ flag associated
with the file and all parent directories. During synchronization, each file marked
as updated is synchronized with the peer and only at this moment the version
vectors are modified. Unlike the traditional approach, if only one replica has been
modified and only one peer has an entry in the version vector, it is that entry
that is updated to record the new version, independently of the replica in which
the file has been changed. This approach allows the reduction of the number of
entries in version vectors. In our scenario, where we expect a node to synchronize
with a single (or a small number of) mobile servers, it is possible to keep the
number of entries in version vectors equal to the number of mobile servers, as
the updates performed in a node will always be reflected in the server’s entry.

Additionally, in FEW, version vectors of directories summarize the updates
in the subtree. Thus, during synchronization it is only necessary to propagate
the version vector of the root to be able to determine which files need to be
synchronized. This allows the volume of exchanged data, during synchronization,
to be proportional to the number of updated files, rather than the total number
of files in a container. Concurrent updates to the same file are automatically
resolved by deterministically selecting a predominant file version. Additional
details of the synchronization process can be found in [8,7].

3 Advanced Mechanism for Using Mobile Phones

Relying on mobile phones as file servers, imposes the following limitations that
need to be addressed: i) limited communication bandwidth, leading to higher

6

data access times, compared to local hard drives; ii) insufficient storage capacity;
iii) limited energy resources; and iv) low reliability of mobile phones [17]. Next
we briefly present some of the solutions used to address these problems.

3.1 Minimizing Communications

As in any distributed file system, accessing all files directly on the file server
proves impractical [11,18]. This results from limited bandwidth and high latency
limitations, which increase access times, when compared to local hard drives.
Also, since in our case the file server is a mobile phone, server communications
are highly energy consuming operations, thus minimizing them in essential.

As explained before, FEW addresses this problem by creating temporary
or long-lived replicas in the clients nodes. The system relies on periodic syn-
chronization to keep replicas up-to-date, exchanging, during these interactions,
information that is proportional to the number of updated replicas in the system
(as in Cimbiosys [15]). This approach helps minimizing communications with the
mobile phone, for both file access and synchronization, providing faster access
times to the users files, improving the user experience, while also minimizing
power consumption of due to communications.

3.2 Improving Storage Usage

Although mobile phones have increasingly larger amounts of storage capacity,
they offer reduced storage space when compared to the current capacity of hard
disks, and the amount of personal data users tend to store. This way, we expect
to be impossible storing replicas of all files kept by an user. FEW addresses this
limitation in different ways.

Container Set: Since FEW is designed to manage a set of containers, we believe
users would assign, to different containers, different types of data. For instances,
one container would have personal documents, like word documents, text files,
spread sheets, etc., while others would contain video files, audio files, etc.. This
way users can select which containers should always be available, i.e., replicated
on the mobile server, and which are less important. This can be manually ad-
justed, thus allowing users to always keep relevant data “close by”.

Integrating Remote Storage Systems: Users tend to store significant number of
resources obtained from remote sites, or that have additional remote copies.
Among this data, we can include, not only, files downloaded from Web sites, for
example, ’pdf ’ files, but also data uploaded by the user to Internet workspaces,
or other remote storage systems, such as cloud storage services. Since these
files tend to be preserved for long periods of time, and, in some cases, remain
unchanged during this time, there is no reason why these remote sites cannot be
used as alternative data sources for obtaining data.

With this in mind, FEW includes a Data Source Verification (DSV) mecha-
nism that allows it to automatically keep track of additional sources for the files

7

managed by the system. DSV is a modular, plugin based component, allowing
different services to be used as alternative data sources, simply by choosing the
corresponding plugin, including Web servers, CVS servers, and Cloud storage
systems. For instance, the current HTTP generic plugin acts as a proxy, moni-
toring HTTP connections. For each HTTP operation, it computes the digest for
the obtained result, storing it, as well as the associated URL, for a short period
of time.

When a file is created or updated in a container, the system checks with the
DSV if the new contents were remotely obtained (by comparing its digest). If
those contents were obtained remotely, the source URL is added, as meta-data,
to the corresponding file. This information is used during the synchronization
process, allowing our system to retrieve remotely stored files directly from these
sources. This way, FEW prevents those contents from being stored on the mobile
server, storing only their meta-data. FEW can still provide high data availability
for these files, by leveraging on the alternative data sources associated with
those contents for retrieving them. Doing so allows our system to reduce storage
requirements.

Some DSV plug-ins require more complex solutions the one used in the HTTP
plugin. For example, a CVS plugin requires additional information to work cor-
rectly, since remote files have an associated version. Thus, the CVS plugin checks,
not only if a file’s pathname is under control of a CVS server, but also if the ver-
sion of the remote file is identical to the one stored locally. If so, the CVS server
can be used as an alternative source for retrieving the file. This information is
added as meta-data, thus allowing our system to retrieve these contents during
synchronization.

Currently we are developing a plugin for integrating FEW with Cloud stor-
age services, such as Dropbox [1]. As in the CVS plugin, this plugin requires
additional information from the user, such as login credentials. With this infor-
mation, the plugin can use the Dropbox API to create an authenticated session,
using it for browsing the contents remotely stored.

Maintaining Consistency of Remote Replicas: Our system also allows the auto-
matic update of remote replicas whenever a local replica is updated. To this end,
the DSV plugin includes methods to allow these updates to be performed. For
example, the HTTP plugin relies on using HTTP POST and PUT operations.

During synchronization, if remote replicas cannot be updated, either because
updates are not supported by some plugin or were unsuccessful, the mobile phone
is used to store the most recent version of the file. Our experience says, that
most resources downloaded from Web pages are kept unchanged by users. Only
personal data is regularly updated, and this information is normally stored on
services that allow remote update operations to be performed.

Multimedia data: Another mechanism designed to reduce storage requirements
relates to multimedia files. With the proliferation of digital cameras, and other
multimedia devices, users tend to store significant amounts of multimedia con-
tents. Since these files tend to consume considerable amounts of storage space,

8

it is unreasonable to store them on a mobile phone. Although some of these files
can be addressed using the previous mechanism, others can not.

For these files, FEW relies on data transcoding techniques [13]. These tech-
niques allow for multimedia contents to be adapted accordingly to the available
resources on mobile servers, storing only lower fidelity versions of multimedia
files. FEW automatically performs data transcoding during synchronization, im-
mediately before transferring multimedia data to the mobile server, allowing the
level of fidelity to be specified for each device.

The Data Transcoding (DTC) module includes a set of plug-ins for transcod-
ing different types of data. In our current prototype, we include support only for
transcoding a very limited number of multimedia formats, using existing appli-
cations. We also include support for transcoding generic files to an empty file.
This provides support for implementing partial replication of a container. Addi-
tionally, users can configure the transcoding parameters for each supported file
type. allowing these parameters to be changed according to the available storage
space. For example, users can define a “more aggressive” level of transcoding
when the available storage space is low.

Combining this mechanism with the previously described DSV mechanism,
allows lower-fidelity versions to be used only when they are satisfactory, or when
no connectivity to an alternative source is available, since the full fidelity versions
can be downloaded from the alternative sources, whenever needed.

4 Evaluation

In this section we present an evaluation of the FEW Phone File System, focusing
on the advanced modules: DSV and DTC. We evaluate both the importance of
the modules and their performance.

4.1 Importance of DSV and DTC

For evaluating the importance of DSV and DTC modules, we have studied the
percentage of user files obtained from remote web sources, which can be handled
by DSV; and the percentage and relative volume of multimedia files, which can
be addressed by DTC.

As we could not run our system for a long enough period and with a large
enough number of users to obtain relevant statistics, we have obtained statistics
analyzing the personal data of 5 users. For determining which files had been
obtained from a remote source, we have used the application-specific attributes
with the URL added by the Safari web browser in Mac OS X. Obviously, this
is a lower-bound estimation of the files obtained remotely, as some of these
users reported that they also use other browsers that do not add this attribute.
Additionally, files obtained using other programs are also not computed.

Table 1 shows the type and the relative volume of data stored by users (office
data includes, not only word documents, spreadsheets and presentations, but
also digital documents such as “pdf” files). As we expected, users tend to store

9

Data Relative Data Source
Type Volume Locally Created Web Transferred

Multimedia 56% 98% 2%
Archives 17% 68% 32%

Office 6% 53% 47%
Sources 0% 95% 5%
Other 21% 79% 21%

Table 1: Statistics on personal files.

considerable amounts of multimedia data. In average we found that more than
50% of the files stored by current users are multimedia data. Since these files
tend to be large, the use of the Data Transcoding module is essential for allowing
FEW to achieve its goals.

Table 1 also presents the data obtained from the Internet using Safari. From
these results, it is possible to observe that approximately 14% of the personal
data has been obtained from remote sites. The largest amount of downloaded files
are office and archive files, which results from the fact that users tend to store
large numbers of digital documents, such as “pdf” files, and that archives are
largely used to enclose other resources, such as source files. The low percentage
for multimedia files can be justified by the fact that most of these files are: (1)
copies of data users own(e.g. CDs) or have created (e.g. photos from cameras);
(2) obtained using applications other than browsers - e.g. iTunes and peer-to-peer
applications. For source files, we know that some users have a large percentage of
their files in version control systems, but we could not quantify the percentage.
For some multimedia files - e.g. photos, it is common for users to store them in
remote sites. Thus, the files that could be handled by DSV is expected to be
much higher.

These results show that keeping track of alternative sources can reduce the
need for storing the contents of files, thus showing that the DSV module can
be a good solution for minimizing the data that needs to be stored on a mobile
server. Additionally, as multimedia files seem to be the category that has less
additional sources, DTC seems a good complement to DSV.

4.2 Performance Impact of the DSV and DTC

In this section we present performance results obtained when synchronizing
nodes using the DSV and the DTC modules. The results were obtained using
our Java/Android prototype. The mobile server runs on an HTC Magic mobile
phone running Android 1.5, while the client nodes are desktop computers with
an Intel Core 2 Duo T8300 @ 2.4 GHz process, running Linux Ubuntu 9.10.
Devices communicate using a Wi-fi network.

To determine the impact of the DSV module, we measured the time for syn-
chronizing a new node with a mobile server, and those obtained performing the
same operation using a third node as an additional source for transferring data.

10

Num. Total Sync. time
files Size w/ DSV wo/ DSV

83 450 KB 5.984s 6.502s
97 2 MB 7.806s 9.171s
357 5 MB 25.467s 35.689s

Table 2: Synchronization times with DSV.

Num. Total Sync. time
files Size w/ DTC wo/ DTC

1 9 MB 5.211s 8.775s
2 8 MB 9.216s 18.556s

Table 3: Synchronization times with DTC.

The results, presented in Table 2, show performance gains when using the DSV
modules, even for small data volumes. The actual impact on performance is di-
rectly related with the bandwidth and latency of the connection with the server.
Besides the performance improvement, this module allows for a considerable re-
duction of the volume of data transferred from the mobile phone to the node,
also reducing power consumption of the mobile device.

For evaluating the impact of the DTC module, we measured the time for
synchronizing a container with one and two 14 mega-pixels (4672x3104 pixels)
digital photos from a node to a mobile server. Table 3 compares the values
when propagating the full fidelity photos and when using the DTC module (the
two photos were transcoded to a resolution of 1024x680 pixels, and color depth
from 32 to 24 bits per pixel, for a size reduction from 9 MBytes to 63 kBytes).
Results show a significant performance improvement and, above all, present a
significant reduction in the volume of data that is transferred to and from the
server. Combining these two modules allows users to access their full-fidelity
data, while reducing the volume of data transferred and stored on the mobile
phone, thus improving performance while reducing power consumption.

5 Related Work

Some distributed file systems (e.g. Ficus [4], Coda [18]) include support for mo-
bile computing environments. However, the complexity associated with setting
up a new server and using it in a network with private networks and firewalls
lead most users to prefer using portable storage devices to transport their data.

Other solutions for addressing similar problems have been proposed recently
in the literature. PersonalRAID [19] allows a portable storage devices to be
used for propagating updates among several personal replicas. However, this ap-
proach makes it impossible for a user to access all his data in a new computer.
Footloose [9] introduces the concept of physical eventual consistency, allowing
portable devices to be used to automatically propagate updates amongst repli-
cas. FEW extends the approach of Footloose by allowing clients to obtain data
contents from other replicas (even outside the system), thus minimizing the
requirements of the mobile devices. Also, we allow multimedia data to be trans-
ported efficiently.

EnsemBlue [12] supports the integration of data created in consumer devices
into a common namespace, transcoding data based on application needs, using
what the authors describe as persistent queries. FEW uses a similar approach

11

during the synchronization process for adapting multimedia contents based on
the specifications of the user.

Unmanaged Internet Architecture [2] allows users to provide personal names
to their devices and data, providing users access this data, from any device, using
these names. Perspective [16] and Cimbiosys [15] provide replication solutions,
allowing users to keep data replicas in multiple devices, based on the semantic
description of that data. Contrarily to our system, these have no mechanism to
efficiently store data in mobile devices, other than partial replication.

New cloud storage services (e.g. Dropbox) offer functionalities similar to tra-
ditional distributed file systems. While these minimize the complexity of setting
up file servers, their use is not fully transparent (since data needs to be stored
under specific directories), also requiring users to trust on third-party organiza-
tions. Additionally, these services are usually only used to store a small subset
of users’ files. Our system can integrate these services for improving data avail-
ability.

6 Final remarks

FEW is a data management system designed to allow users access their per-
sonal data in any machine, independently of location and network connectivity.
To this end, FEW has been designed to take advantage the storage capacity
and wireless communication capabilities of current mobile phones, for main-
taining replicas of the users data (the most up-to-date version). The optimistic
replication approach allows for long lived replicas to be created, and accessed,
whenever and wherever needed. For guaranteeing consistency, we have proposed
novel techniques for tracking dependencies among replicas that can improve the
scalability of commonly used version vectors.

FEW addresses the limitations of mobile devices, in particular of the storage
capacity of mobile phones. A Data Transcoding module allows FEW to deal
with the volume of multimedia data stored by current users, reducing storage
requirements by storing lower fidelity versions of these files. A Data Source Ver-
ification module allows the system to record alternative sources for the files
stored in a container. This approach explores the common case where the files
stored were obtained from the Web, or are stored in some remote server. To
our knowledge, FEW is the first system to combine mobile and cloud storage
to provide high availability while reducing the volume of data that needs to be
stored and still offering an single view of a container in all devices the users uses.
This mechanism help improving the performance of the system, while reducing
power consumption by reducing communications with the mobile phone.

By combining both modules, FEW allows clients to always access full-fidelity
contents. This is a new feature when compared with previous solutions that use
data transcoding. The obtained evaluation results suggest that the combination
of DTC and DSV are important for achieving the goals of the system, since
considerable percentages of files, stored by the users, are multimedia files and/or
have additional Web sources.

12

References

1. Dropbox: Dropbox (2011), http://www.dropbox.com/
2. Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., Morris, R.:

Persistent personal names for globally connected mobile devices. In: Proc. of the
7th Symp. on Operating systems design and implementation. pp. 233–248 (2006)

3. Google: Google docs (2009), http://docs.google.com/, http://docs.google.com/
4. Guy, R.G., Heidemann, J.S., Mak, W., Popek, G.J., Rothmeier, D.: Implemen-

tation of the Ficus Replicated File System. In: USENIX Conf. Proc. pp. 63–71
(1990)

5. Hac, A., Jin, X., Soo, J.H.: Algorithms for file replication in a distributed system.
J. Syst. Softw. 14(3), 173–181 (1991)

6. Henk, C., Szeredi, M., Pavlinusic, D., Dawe, R., Delafond, S.: Filesystem in
Userspace (FUSE) (Dec 2008), http://fuse.sourceforge.net/

7. João Soares: FEW Phone File System. Master’s thesis, Faculdade de Ciências e
Tecnologia (April 2009)

8. João Soares and Nuno Preguiça: Proving Ubiquitous Access to the User’s Data
Combining Mobile and Cloud Storage. Tech. Rep. 04/2011, CITI / DI-FCT-Univ.
Nova de Lisboa (May 2011)

9. Paluska, J., Saff, D., Yeh, T., Chen, K.: Footloose: a case for physical eventual
consistency and selective conflict resolution. Mobile Computing Systems and Ap-
plications, 2003. Proc.. Fifth IEEE Workshop on pp. 170–179 (Oct 2003)

10. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E.,
Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of Mutual Inconsistency
in Distributed Systems. IEEE Trans. Softw. Eng. 9(3), 240–247 (1983)

11. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS
version 3 design and implementation. In: Proc. of the Summer USENIX Conf. pp.
137–152 (1994)

12. Peek, D., Flinn, J.: Ensemblue: integrating distributed storage and consumer elec-
tronics. In: Proc. of the 7th Symp. on Operating systems design and implementa-
tion. pp. 219–232 (2006)

13. Phan, T., Zorpas, G., Bagrodia, R.: Middleware support for reconciling client up-
dates and data transcoding. In: Proc. Int. Conf. on Mobile Systems, Applications,
and Services (MobiSys) (2004)

14. Preguiça, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: Proc. of the 2009 IEEE Int. Conf. on Dis-
tributed Computing Systems. pp. 395–403 (2009)

15. Ramasubramanian, V., Rodeheffer, T.L., Terry, D.B., Walraed-Sullivan, M., Wob-
ber, T., Marshall, C.C., Vahdat, A.: Cimbiosys: a platform for content-based partial
replication. In: NSDI’09: Proc. of the 6th USENIX Symp. on Networked systems
design and implementation. pp. 261–276 (2009)

16. Salmon, B., Schlosser, S.W., Cranor, L.F., Ganger, G.R.: Perspective: semantic
data management for the home. In: FAST ’09: Proccedings of the 7th Conf. on
File and storage technologies. pp. 167–182 (2009)

17. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proc. of the
ACM Symp. on Principles of distributed computing. pp. 1–7 (1996)

18. Satyanarayanan, M.: The evolution of coda. ACM Trans. Comput. Syst. 20, 85–124
(May 2002), http://doi.acm.org/10.1145/507052.507053

19. Sobti, S., Garg, N., Zhang, C., Yu, X., R, A.K., Wang, O.Y.: PersonalRAID: Mobile
Storage for Distributed and Disconnected Computers. In: Proc. First Conf. on File
and Storage Technologies. pp. 159–174 (2002)

