
USENIX Association

Proceedings of MobiSys 2003:
The First International Conference on

Mobile Systems, Applications, and Services

San Francisco, CA, USA
May 5-8, 2003

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 43

Reservations for Conflict Avoidance in a Mobile Database System ∗

Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, Henrique Domingos
Departamento de Informática

FCT, Universidade Nova de Lisboa, Portugal

Abstract

Mobile computing characteristics demand data manage-
ment systems to support independent operation. How-
ever, the execution of updates in a mobile client usually
need to be considered tentative because uncoordinated
updates that conflict need to be reconciled. In this paper
we present a mechanism to independently guarantee that
updates can be executed in the server without conflicts.
To this end, clients obtain leased reservations upon the
database state. Updates are specified as common small
PL/SQL programs, dubbed mobile transactions, that ex-
ecute both in the mobile client and in the server. Using
the available reservations, the client transparently veri-
fies that a transaction can be executed in the same way
both in the mobile client and in the server, thus leading
to the same final result. Mobile transactions may specify
conflict detection and resolution rules to be used when
transactions cannot be locally guaranteed.

1 Introduction

Despite advances in hardware and communication tech-
nology, the connectivity in mobile devices is intermit-
tent because of physical, economical and energy factors.
These characteristics call for support of independent op-
eration, i.e., users must be allowed to read and mod-
ify a shared database with no remote synchronization.
Even when connectivity is available, independent oper-
ation may be used to overcome latency and bandwidth
problems, interference among multiple long interactive
transactions and to reduce load during service peaks.

Optimistic replication is used to support independent op-
eration [19, 14, 20, 11]. In such approaches, clients
maintain local data copies and modify them indepen-
dently. The uncoordinated updates are integrated in the
common database state solving any conflict caused by
concurrent modifications. As this reconciliation process
may lead to a different final result (or even to the abor-
tion of the transaction), the client can not independently
determine the final result of a transaction.

This paper presents the Mobisnap mobile database sys-

∗This work is partially supported by FCT/MCT. Nuno Preguiça is
partially supported by a FSE scholarship.

tem, focusing on support for independent operation. The
Mobisnap middleware extends a traditional client/server
SQL database system. The single server maintains the of-
ficial database state. Mobile clients cache database snap-
shots. Applications running on mobile devices update
the shared database submitting small PL/SQL [13] pro-
grams, dubbed mobile transactions. During independent
operation, mobile transactions are tentatively executed in
the mobile clients. Later, the clients propagate these mo-
bile transactions to the server, where the transaction pro-
grams are re-executed against the official database state.

Unlike transaction re-execution and validation based on
read and write sets, the execution of the mobile transac-
tion program in the server allows the definition of con-
flict detection and resolution rules that exploit the se-
mantics of the operation (a similar approach is used in
Bayou [20]).

Mobisnap combines this conflict resolution strategy with
a conflict avoidance mechanism based on reservations.
A reservation provides some kind of promise upon the
database state, depending on the type of reservation. Mo-
bile clients may obtain leased [5] reservations before dis-
connecting. When a mobile transaction is executed in the
client, the system transparently verifies if the available
reservations are sufficient to guarantee its final result in-
dependently. If the client holds enough reservations, the
local result can be considered definite because reserva-
tions guarantee that no conflict will arise when the trans-
action is re-executed in the server.

Our reservation mechanism presents the following con-
tributions. First, it includes several types of reservations
(unlike other proposals that define a single type, such as
escrow techniques [9]). As it is shown in section 4.5,
it is usually necessary to combine the use of different
types of reservations to guarantee the result of any trans-
action. Second, the system transparently verifies if the
available reservations can guarantee the result of a mo-
bile transaction written in unmodified PL/SQL (unlike
previous systems [12], no special function is used to ac-
cess the reserved data items). Third, it implements the
reservation model integrated with mobile transactions in
a SQL-based system.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association44

The Mobisnap implementation described in this paper
represents an interoperable and evolutionary middleware
approach towards mobility, instead of a “revolutionary”
one. Application that run in the Mobisnap system can use
the new mechanisms – mobile transactions and reserva-
tions. However, legacy clients are still allowed to access
the database server directly, without modifications.

This paper is organized as follows. Section 2 discusses
the design principles in the context of typical applica-
tions. Section 3 presents the overall Mobisnap system.
Section 4 details reservations. Section 5 describes the
current status of our work. Section 6 presents an evalua-
tion of reservations. Section 7 discusses related work and
section 8 concludes the paper with some final remarks.

2 Design principles

The main concepts of the Mobisnap system will be high-
lighted with the help of three typical scenarios — we will
come back to these examples throughout the paper. In the
first scenario, the user is a mobile salesman selling com-
modities (e.g., CD’s, shoes, etc.). The number of com-
modities can be large and the available stock for each
one is limited — all items of a given commodity are as-
sumed identical. The salesman receives orders from her
customers that must be satisfied with the current stock.

The second scenario is a variant of the first one, but the
commodity’s items are not identical (e.g., tickets for the
theater, train tickets, etc.).

In the third scenario, the database contains a datebook
with appointments. Several persons can change the same
datebook (e.g. a person and his secretary). The opera-
tions typically insert or remove an appointment.

In all the above scenarios, the mobile database system
must support independent operation to allow users to
continue their work while disconnected. During inde-
pendent operation the system can provide local access to
shared data using partial database snapshots. For exam-
ple, a salesman only needs to cache information about the
products he sells and the customers he intends to visit.

2.1 Mobile transactions, a tool for handling
concurrent updates

A transaction executed independently in a mobile de-
vice observes the cached database state. Later, when
the transaction is propagated to the server, other trans-
actions might have changed the database. In this case,
the transaction execution in the client, as defined by its
read and write sets, might no longer be valid. To solve
these situations it is necessary to rely on semantic infor-
mation [20, 11] to define appropriate conflict detection
and resolution rules that must be enforced when transac-
tions are integrated in the official database state.

In Mobisnap, operations that modify the database are ex-

pressed as mobile transactions (or simply transactions
where no confusion may arise). A mobile transaction is
a small program written in a subset of the PL/SQL [13]
language. The following changes to PL/SQL have been
introduced: (1) commit and rollback statements end the
execution of a mobile transaction, i.e., they act as a re-
turn; (2) when the result of a select into statement in-
cludes more than one (sub-)row, one row is returned (in-
stead of raising an exception); (3) the newid function was
added to return the same new unique identifier when the
transaction is executed in the client and in the server.

A mobile transaction is executed tentatively in the client,
and later propagated to the server. Its final result is only
obtained when the transaction is executed in the server.
A mobile transaction is always executed running its pro-
gram with a specially designed PL/SQL interpreter. Each
mobile transaction accesses the database in the context of
a distinct database transaction.

Programmers may reason about a mobile transaction as
a mobile program that will be executed in the server.
This approach allows programmers to express suitable
conflict detection and resolution rules for each situation.
The following examples, from the previous application
scenarios, show two possible approaches. The mobile
transaction of figure 1 inserts a new order received by a
mobile salesman. In this case, the conditions for accept-
ing the order are precisely expressed — stock availability
and price acceptability are checked (line 7) before insert-
ing the order (lines 8-11). The transaction is not aborted
if the values are different in the server, but only if the
specified conditions are violated. The mobile transaction
of figure 2 inserts a new appointment in a shared calen-
dar giving two alternative periods of time (lines 3-4 and
8-9 check the calendar availability for each alternative).
In this case, conflicts can be solved if, at least, one of the
expressed alternatives is possible.

2.2 Reservations, a tool for guaranteeing re-
sults independently

As it has been explained before, the independent execu-
tion of a transaction must be considered tentative. How-
ever, independently guaranteeing the result of a transac-
tion might be important. For example, a mobile salesman
could immediately guarantee that the orders received can
be satisfied. To this end, locks are the traditional so-
lution, but they must be adapted to be used in mobile
environments. As a mobile client must keep the locks
while it is disconnected, locks should affect as few data
items as possible. Sometimes locks are still unnecessar-
ily restrictive. For example, escrow techniques [9] can
guarantee concurrent updates to variables that represent
partitionable resources – the available resources are di-
vided among the mobile clients.

Any of these solutions alone is insufficient to guarantee

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 45

1 -------- ORDER PRODUCT: name = "BLUE THING"; quantity = 10; highest price = 50.00 ------
2 DECLARE
3 prd_price FLOAT;
4 prd_stock INTEGER;
5 BEGIN
6 SELECT price, stock INTO prd_price, prd_stock FROM products WHERE name = ’BLUE THING’;
7 IF prd_price <= 50.00 AND prd_stock >= 10 THEN -- checks price acceptability and stock availability
8 UPDATE products SET stock = prd_stock - 10 WHERE name = ’BLUE THING’;
9 INSERT INTO orders VALUES (newid,’Clt foo’,’BLUE THING’,10,prd_price); -- newid returns the same unique identifier

10 NOTIFY(’SMTP’, ’sal-07@thingco.pt’, ’Order accepted ...’); -- in the client and in the server
11 COMMIT prd_price; -- commits and returns the price used in transaction
12 ENDIF;
13 ROLLBACK; -- rollbacks and returns when customer’s preferences cannot be satisfied
14 ON ROLLBACK NOTIFY(’SMS’, ’351927435456’, ’Impossible order...’); -- sends notification to user on rollback
15 END;

Figure 1: Mobile transaction specifying a new order submitted by a mobile salesman.

1 -----------SCHEDULE MEETING: ’17-FEB-2002’ at 10:00 OR ’18-FEB-2002’ at 9:00 ---------------------------------
2 BEGIN
3 SELECT count(*) INTO cnt FROM datebook WHERE day=’17-FEB-2002’ AND hour=10; -- first alternative
4 IF (cnt = 0) THEN -- checks calendar availability for 17-FEB-2002 at 10:00
5 -- code omitted: update datebook, send notification if appropriate, ...
6 COMMIT (’17-FEB-2002’,10); -- commits and returns info on the committed alternative
7 ENDIF;
8 SELECT count(*) INTO cnt FROM datebook WHERE day=’18-FEB-2002’ AND hour=9; -- second alternative
9 IF (cnt = 0) THEN -- checks calendar availability for 18-FEB-2002 at 9:00

10 -- code omitted: update datebook, send notification if appropriate, ...
11 COMMIT (’18-FEB-2002’,9); -- commits and returns info on the committed alternative
12 ENDIF;
13 ROLLBACK; -- rollbacks and returns when no alternative is possible
14 ON ROLLBACK NOTIFY(’SMS’, ’351927435456’, ’Impossible to schedule... ’);
15 END;

Figure 2: Mobile transaction adding a new appointment to a shared calendar (declaration of variables is omitted).

the outcome of the mobile transactions presented in fig-
ures 1 and 2 (without being too restrictive). Consider the
example of figure 1. To guarantee that the order can be
accepted, it is necessary to guarantee that the conditions
expressed in line 7 are true when the transaction is ex-
ecuted in the server. Escrow techniques can guarantee
stock availability (prd stock ≥ 10), but they do not help
to guarantee price acceptability (prd price ≤ 50.00). In
this case, a lock can be used but it is too restrictive (a
reservation that allows to use a reserved value for a data
item, despite of its current value, can be used in our sys-
tem, as described in section 4). Application knowledge,
external to the system, can also be used to guarantee the
validity of some conditions by voluntarily limiting the
degree of concurrency (e.g. prices are only updated dur-
ing the night). This approach is not safe and it can be
easily broken in a large scale scenario. Therefore, the
system needs to combine different techniques in a single
framework to safely guarantee the outcome of a transac-
tion independently (see other examples in section 4.5).

In Mobisnap, the outcome of mobile transactions can be
guaranteed independently using an SQL-based reserva-
tion mechanism (detailed in section 4). A reservation is
similar to a semantic lock and it provides some promise
upon the database state. Mobisnap defines several types
of reservations, each one providing a different type of
promise. The different types of reservations were intro-
duced to support the typical scenarios described earlier.
Reservations are valid during a limited period of time

(thus preventing a client that becomes permanently dis-
connected from holding a reservation forever).

Mobile clients obtain reservations before disconnecting.
When a transaction is executed in the client, the system
transparently checks that the client holds enough reser-
vations to prevent other clients from making updates that
might later be found to conflict with the local transaction.
If enough reservations exist, the client can independently
guarantee the final result of the transaction because reser-
vation guarantee that the transaction program is executed
in the same way both in the client and in the server (given
that it is propagated to the server before the used reser-
vations expire).

Our reservation model transparently uses all available
reservations to guarantee mobile transactions (i.e., the
transaction do not need to specify which reservation
should be used). Thus, no special function is needed to
manipulate the reserved data items and programmers can
specify operations as normal PL/SQL programs.

Some ideas used in our reservation model had already
been proposed [5, 9, 7]. However, the integration of mul-
tiple types of reservations (including the introduction of
new ones) and their adaptation to mobile environments,
the transparent detection of their usage and its imple-
mentation in an SQL-based system are new contributions
that are important for the usability of these concepts. As
far as we know, its integration with mobile transactions
makes our system unique.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association46

RDBMS
primary
replica

Mobisnap server

DB
replica

DB
replica

legacy
client

mobile trx. interpreter

reservation subsystem

comm. subsystem

Mobisnap client

mobile trx. interpreter

pre-fetch subsystem

comm. subsystem

Mobisnap client

mobile trx. interpreter

pre-fetch subsystem

comm. subsystem

Figure 3: The Mobisnap system architecture.

3 Mobisnap system

The Mobisnap system manages information structured
according to the relational data model. Its architecture
is based on an extended client/server middleware archi-
tecture, as depicted in figure 3. Mobisnap server and
clients rely on unmodified relational database systems to
store data. The server holds the primary copy of all data
items in the central database. The server is expected to
be mostly available and well connected. Legacy clients
can access the central database directly (i.e., without ac-
cessing the Mobisnap server).

Mobisnap clients (or simply clients) can run on mobile
or stationary computers and be disconnected for long pe-
riods of time. Mobisnap clients do not access the central
database directly – they always communicate with the
Mobisnap server. Users access the database using appli-
cations that run on client machines. When connected,
the read and write operations executed by an application
may be immediately executed in the server.

We now describe independent operation (and the mech-
anisms to support it). A mobile client locally replicates
a subset of the database. This partial replica contains
a subset of the database tables; for each table a subset
of the columns; finally, only a subset of the records is
cached for each table. Currently, the user/application de-
fines the cache contents using a variant of the SQL select
statement. Other data accessed by the application is also
cached using a least recently used algorithm. The pre-
fetch subsystem in the client periodically updates cache
contents. This simple strategy could be improved using
more complex caching techniques (e.g. [3, 10]), but this
problem is outside of the scope of this paper.

The client maintains two copies of the database state: a
tentative and a committed one. The tentative version con-
tains the state after executing all disconnected transac-
tions. The committed version contains the state after ex-
ecuting transactions that are guaranteed by reservations.
This version is only maintained if enough resources exist.
Both versions are refreshed when a mobile clients con-
nects to the server by obtaining, at least, a new copy of
the modified records. Applications may read either ver-

sion using SQL queries — the application selects which
version should be used for each query.

Applications modify the database by submitting mobile
transactions. The client executes each mobile transaction
locally and returns a result. If the client holds enough
reservations to guarantee the outcome of the transaction,
the result can be considered definite. In this case, both
versions of the cache are updated. Otherwise, the result
is tentative – only the tentative version is updated.

After being locally executed, a mobile transaction is
logged in the mobile device. When the mobile client re-
connects, it propagates logged transactions to the server.
On weakly-connected environments, propagation may be
incremental.

When the server receives a mobile transaction, it exe-
cutes the transaction program to obtain its final result.
If the transaction has been guaranteed in the client and
all used reservations are still valid, the reservation model
guarantees that the outcome of the transaction is the same
in the client and in the server. In the next section we de-
tail the reservation model and its interaction with trans-
action processing.

When a client obtains a reservation, the server must guar-
antee that no transaction from any other client violates
the promise provided by the reservation. For example, if
a client reserves one seat in a train (to guarantee transac-
tions independently), the server guarantees that, at least,
one seat remains available – any transaction that tries to
book the last available seat is aborted. If the reservation
is not used, some transactions may have been aborted un-
necessarily – in the end, one seat is available.

To handle these situations, Mobisnap includes a reevalu-
ation mechanism. Transactions that abort in the server
can be re-executed after relevant reservations are can-
celled or expire. In this sense, a reservation can be seen
as an option to modify the database first. When an appli-
cation submits a mobile transaction, it may specify that
the reevaluation mechanism should be used and set the
deadline to obtain the final result, i.e., the last time for
transaction re-execution in the server.

When the final result of a mobile transaction is obtained,
the user may no longer be connected to the system. In
Mobisnap, mobile transactions may use the notify func-
tion to immediately notify users of its final result (e.g.
using SMS or pager messages). The notify invocations
are handled in a special way: they are only executed dur-
ing the final execution of the transaction in the server.
The messages produced by the notify function are propa-
gated asynchronously by the Mobisnap server (that han-
dles temporary errors). A similar approach can be used
to defer other actions on the outside world until the defi-
nite execution of a transaction, thus avoiding the need to
undo the effects of tentative actions.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 47

4 Reservations

The goal of reservations is to independently guarantee
the final result of mobile transactions by guaranteeing
that no conflict will arise when the transaction program is
executed in the server. The Mobisnap reservation model
is designed to achieve this goal while applications con-
tinue to use traditional SQL statements.

4.1 Types of reservations

A reservation provides some kind of guarantee for the fu-
ture execution of a transaction in the server. In this sub-
section we present the types of reservations implemented
in Mobisnap (see section 4.5 for examples).

Value-change and slot reservations

A value-change reservation provides the exclusive right
to modify the state of an existing data item (i.e., a sub-
set of columns in some row). For example, a user may
reserve the right to change the description of a specific
seat in a train. This is like a traditional fine-grain write
lock [7].

A slot reservation provides the exclusive right to in-
sert/remove/modify rows with some given values. For
example, a user may reserve the right to schedule a meet-
ing in a given room in some defined period. This is like
a predicate lock [7], and includes rows that exist and that
do not exist.

The granularity and lease time of these reservations must
be selected carefully because they prevent other trans-
actions from modifying the selected data. In this sense,
these reservations can be seen as a mechanism to move
the primary copy of a data item to a mobile device.

Value-use reservation

A value-use reservation provides the right to use a given
value for some data item (despite its current value). The
need for this kind of guarantee is common in real life –
e.g. a mobile salesman can guarantee a price for an order
despite concurrent changes. This reservation implements
this idea, allowing transactions to guarantee the value of
a data item without unnecessarily restricting concurrent
changes. Transactions that use this reservation observe
the reserved value of the data item (select statements re-
turn the reserved value instead of the current value).

Escrow reservation

An escrow reservation provides the exclusive right to use
a share of a partitionable resource represented by a nu-
merical data item. For example, the stock of some prod-
uct may be split among several salesmen. This reserva-
tion is based on the escrow model [12, 9].

The escrow model is applied to numerical data items
that represent partitionable resources, where all items are
identical — e.g. the number of CDs in the stock, x (in

section 4.5, we show how reservations can address prob-
lems with non-identical resources – e.g. seats in a train).
The following properties usually hold for this type of
data items. First, they are updated by adding/subtracting
a constant value — e.g. when k CDs are sold, we do
x ← x−k. Second, some constraints must be maintained
— e.g. the stock must be larger than min, i.e., x ≥ min.

For such data items (called escrowable data items), it is
possible to partition the resources among several inde-
pendent replicas — e.g. let x be partitioned in n parts
xi,1 ≤ i ≤ n, such that x = ∑xi. Each replica has an asso-
ciated local constraint that guarantees the validity of the
global constraint, xi ≥ mini : min = ∑mini. Each replica
may independently guarantee the result of transactions
that comply with the local constraints, i.e., it is possi-
ble to guarantee the result of transactions that subtract
up to xi −mini (aggregated value over all transactions in
replica i) to xi.

Example: Let the current stock of CDs be ten (x = 10)
and the minimum stock be two (x ≥ 2). Using the escrow
model, the current stock can be partitioned between two
replicas – e.g. the first replica gets six CDs (x1 = 6) and
the second replica gets four CDs (x2 = 4). The global
constraint must also be partitioned between the replicas
– e.g. the stock must be greater or equal to one in both
replicas (x1 ≥ 1∧x2 ≥ 1). The first (resp. second) replica
can guarantee transactions that subtract up to five (resp.
three) CDs from the stock (x1 −min1 = 6− 1 = 5 and
x2 −min2 = 4−1 = 3).

We now discuss the Mobisnap implementation of the es-
crow model. To recognize the aspects involved, consider
the example of figure 1. In this mobile transaction, es-
crow techniques can be used to guarantee the stock avail-
ability. The following steps are taken to subtract a con-
stant to the stock (these steps represent a pattern to access
escrowable data items): (1) the current value is read and
the validity of the operation is checked (lines 6–7); (2)
the value of the data item is updated to reflect the exe-
cuted operation (line 8).

The first aspect to address is to guarantee the validity of
the operation (step 1). To this end, it is usual to use an
if statement that verifies if the update violates the local
constraints or not. To use the same condition without
any special function, the same local constraints must be
defined in the server and in the client. The escrow model,
as defined before, cannot be implemented immediately
as it uses different constraints in different replicas.

In Mobisnap,we have introduced the following change to
the model presented before: x : x ≥ min is partitioned in
n parts xi : xi ≥ min∧ x−min = ∑(xi −min). As before,
each replica may independently guarantee the result of
transactions that comply with the the local constraints.
However, the same constraints should be enforced in all

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association48

replicas, thus allowing mobile transactions to verify the
validity of an update using the well-known global con-
straints (or, even, using more restrictive constraints).

Example: To obtain the same guarantees as in the previ-
ous example, the following values are used: x1 = 7,x1 ≥
2 and x2 = 5,x2 ≥ 2. The first (resp. second) replica
can guarantee transactions that subtract up to five (resp.
three) CDs from the stock (x1 − min = 7 − 2 = 5 and
x2 −min = 5−2 = 3).

Let x1 be the server replica and x2 be the mobile client
replica. x2 = 5,x2 ≥ 2 means that the mobile client has
reserved the right to subtract 3 to x (i.e., to guarantee
orders for 3 CDs). We say that the mobile client has ob-
tained an escrow reservation for three instances of x. In
the server, the value of x is updated (x1 = 10− 3 = 7)
to reflect the guarantees obtained by the client. Thus,
no transaction from any other client can use the reserved
resources. Alternatively, the value of x2 can be seen as
the minimum value of x when the transactions from the
mobile client are executed in the server (i.e., x ≥ x2).
Therefore, the value of x2 can only be used to guaran-
tee conditions that use similar relational operators – e.g.
the condition x ≤ 10 can not be guaranteed by the escrow
reservation x2 = 5,x2 ≥ 2. The value of x1 can be seen as
the value of resources not reserved by any mobile client
(and thus available, for example, to legacy clients).

The second aspect to address is the real update of the es-
crowable data item (step 2). Usually, mobile transactions
update these data items using the update statement. In
Mobisnap, the system automatically infers the amount of
reserved resources used from the update statements. As
expected, the used resources are consumed from the es-
crow reservation, i.e., the following transactions can only
be guaranteed by the remaining reserved resources.

As described, our approach is completely transparent for
programmers. Programmers write mobile transactions
with no reference to reservations. If the client holds some
reservations, the system automatically uses them to guar-
antee the result of transactions. The system also keeps
track of used reservation automatically.

Our current prototype has a limitation: it only allows a
single constraint over each escrowable data item (either
x≥min or x≤max) — we anticipate this to be the typical
scenario.

Shared value-change and shared slot reservations

A shared value-change reservation provides the guaran-
tee that it is possible to modify the state of an existing
data item (i.e., a subset of columns in some row). For
example, this reservation can be used to guarantee incre-
ment operations to a shared counter.

A shared slot reservation provides the guarantee that it is
possible to insert/remove/modify rows with some given

vc s vu e shvc shs
value-change (vc) no no yes no no no

slot (s) no no yes no no no
value-use (vu) yes yes yes yes yes yes

escrow (e) no no yes yes∗ no no
shared value-change (shvc) no no yes no yes yes

shared slot (shs) no no yes no yes yes
∗ Yes, while aggregate reservations do not violate global constraint

Table 1: Reservation compatibility table.

values. For example, this reservation can be used to guar-
antee operations in append-only tables.

These reservations do not provide any promise about the
future state of the database. Instead, they prevent other
clients from setting exclusive reservations that forbid the
execution of the operations. As the examples of sec-
tion 4.5 show, these reservations are important to fully
guarantee the result of a transaction.

4.2 Granting and enforcing reservations

We now describe how reservations are granted and what
is done to guarantee that no transaction violates those
reservations (including transactions executed directly in
the database by legacy clients). In the next subsections,
we present the mobile transaction processing in the client
and in the server when reservations are used.

A mobile client requests a set of reservations from the
server before disconnecting. This set must be defined
based on the operations the user is expected to execute
until the next interaction with the server. The deduction
of good values for this problem can be seen as an exten-
sion of the cache hoarding problem [10] (where clients
must pre-fetch the data that will be accessed by users)
and it is out of the scope of this paper. To solve this
problem, forecasting techniques [4] can be used.

In the experiments presented in section 6 we use simple
strategies that lead to good results in a mobile sales appli-
cation. The GUI of our sales application allows to mod-
ify the reservations to obtain using a simple form. Inter-
nally, reservation requests are submitted using variants of
the SQL select statement (e.g. get value-use reservation
price from products where id=’5’ requests a value-use
reservation for the price of product with id=’5’).

When a reservation is requested, the server checks if it
is possible to grant the reservation. First, it verifies if
there is no other granted reservation that conflicts with
the request. Table 1 presents the compatibility of two
reservations that overlap, where yes means that it is pos-
sible to grant a reservation of a certain type even if other
reservations of the other type already exist for the same
data item. If data items do not overlap, reservations do
not conflict. Second, it verifies if the user of the mobile
client can obtain the requested reservations. This verifi-
cation is based on authorization rules, set by the database
administrator, that specify which reservations each user
can obtain and for how long.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 49

When a reservation is granted, the Mobisnap system has
to guarantee that its underlying promise is not broken by
other transactions. To enforce the promises, while allow-
ing legacy clients to directly access the central database,
the following actions are executed on the database (note
that these actions are reversed to allow the execution of
mobile transactions that use the given reservation):

• For each value-change reservation, a trigger is set
to prevent transactions from modifying the reserved
data item. A trigger prevents an update by throwing
an error. We say that the update was blocked.

• For each slot reservation, a trigger is set to pre-
vent transactions from inserting/deleting/modifying
rows with the given values.

• For escrow reservations, the value of the escrowable
data item is updated as explained earlier.

• For value-use, shared slot and shared value-change
reservations, no action in the database is needed.

For value-change and slot reservations there is an addi-
tional option that can be used: the reservation request
may specify a temporary update to reflect the impossibil-
ity to change the reserved data item while the reservation
is valid. For example, assume that a row represents a seat
in a train. When a mobile client obtains a value-change
reservation over that row, the reservation may temporar-
ily set the column that indicates if the seat is occupied to
true in the server. This change indicates that no unguar-
anteed transaction should use that seat. If they do, the
trigger aborts them, as in the normal case.

The Mobisnap system keeps track of all granted reser-
vations to check conflicting reservation requests and va-
lidity of reservation usage. When reservations expire or
are cancelled explicitly by the mobile client, the actions
executed to enforce reservations are undone.

As it has been said, a reservation is leased [5], i.e., it is
only valid for a limited period of time. This property
guarantees that restrictions imposed to other transactions
to enforce the promises associated with a reservation do
not last forever, even if the mobile client that holds the
reservation is destroyed or becomes permanently discon-
nected. On the other hand, the guarantee provided in a
mobile client respecting some mobile transaction is only
valid if the transaction is propagated to the server before
the used reservations expire.

4.3 Transaction processing in the client

The mobile client executes a mobile transaction in, at
most, two steps. In the first step, the system executes the
transaction program verifying if its outcome can be guar-
anteed by the available reservations (see details next). If
it can, the committed and the tentative database versions
are updated. If not, the system rollbacks any change to
the database and proceeds to the second step.

In the second step, the system executes the transaction
program against the tentative database version. The re-
sult of this execution is considered tentative. If the pro-
gram runs until a commit statement, the result is tentative
commit. If the program runs until a rollback statement,
the result is tentative abort.

If during transaction processing (in both steps) some
non-cached data item is needed to proceed (e.g., an if
statement uses the value of a non-cached column), the
execution is aborted, and the result is unknown.

Verifying if a transaction can be guaranteed

Now, we outline how the client interpreter verifies if a
mobile transaction can be guaranteed. The basic idea
consists in running the transaction program and verify
every statement in the execution flow.

For each variable, the interpreter maintains not only its
current value but also the information if the value is guar-
anteed and the reservations that guarantee it (if any). The
value of a variable is guaranteed if it was set in a guaran-
teed SQL read statement, or in an assignment statement
that does not include any unguaranteed variable.

An SQL statement can be guaranteed if: (1) the variables
used in the SQL statement (as inputs), if any, are guaran-
teed; (2) there is a reservation that is compatible with
the condition expressed and includes the read/written
columns. This second prerequisite is verified comparing
the semantic description of the reservation with the con-
ditions expressed in the SQL statement (a similar idea
is used in semantic caching [3]). The following addi-
tional restrictions apply. A value-use reservation can-
not guarantee an SQL write statement (update, insert or
delete). A shared reservation can not guarantee an SQL
read statement (select).

When an SQL write statement is executed, both database
versions are updated. A guaranteed SQL read statement
returns the reserved value. An unguaranteed SQL read
statement returns the value of the tentative database ver-
sion.

An if statement is guaranteed if all variables involved in
the if condition are guaranteed (the restrictions explained
in section 4.1 apply to variables guaranteed by escrow
reservations). If the condition cannot be guaranteed, its
value is assumed false, by default. Thus, it is possible to
guarantee an alternative update (in a sequence of alterna-
tive updates guarded by if statements) when the preferred
one cannot be guaranteed. For example, in the transac-
tion of figure 2, if the client only holds reservations for
the day “18-FEB”, it is impossible to guarantee the first
alternative (day “17-FEB”) but it is possible to guarantee
the second one (day “18-FEB”). When the transaction is
re-executed in the server, the preferred alternative may be
possible. By default, the server executes the same execu-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association50

tion path, despite the current value of the database. The
application may override the default options and request
either to abort client execution if a condition cannot be
guaranteed or to execute the first possible alternative in
the server, instead of the guaranteed one.

If the program runs until a commit statement, its result
is reservation commit. In this case, the transaction re-
sult is said locally guaranteed. However, depending on
the statements that have been guaranteed, the following
levels of guarantees are provided.

• Full, if all statements in the execution path are
guaranteed by reservations. Note that even in this
case, it is incorrect to apply, in the server, the
write set obtained during the client execution be-
cause escrowable data items have to be updated us-
ing add/remove operations.

• Read, if all statements but write statements are guar-
anteed by reservations. When the transaction is ex-
ecuted in the server, non-guaranteed writes may be
blocked by slot or value-change reservations.

• Pre-condition, if all executed conditions (if state-
ments) are guaranteed. In this case, the system only
guarantees that the execution of the transaction pro-
gram in the server will follow the same execution
path.

• Alternative pre-condition, if, at least, one condition
(if statements) could not be guaranteed. In this case,
the application has the option to force the same ex-
ecution path or not (as explained earlier).

As exemplified in section 4.5, an application should use
additional domain-knowledge to interpret the meaning of
these levels of guarantees (e.g. the read and full levels
are identical if it is known that no reservation will be
granted that block the transaction’s writes) and to present
the result of transactions to users.

If the mobile transaction runs until an rollback statement,
the system rollbacks the execution and proceeds transac-
tion processing in the second step described in the begin-
ning of this subsection.

When the result of a transaction is reservation commit,
the mobile client automatically associates the informa-
tion about program execution (reservations used and the
execution path) with the transaction. The client prop-
agates this information to the server. The server uses
this information when it executes the transaction, as ex-
plained in the next subsection.

4.4 Transaction processing in the server

The execution of a mobile transaction in the server con-
sists in the execution of the transaction program against
the central database. If the transaction was not guar-
anteed in the client, user’s intents must be enforced by

the conflict detection and resolution rules specified in the
code of the transaction. Blocked write statements can be
handled by trapping the thrown error in the code of the
transaction. Otherwise, the transaction is aborted and the
application may check the cause. Aborted transactions
may be re-executed using the reevaluation mechanism.

If the transaction has been guaranteed in the client and it
has associated reservations, the interpreter that runs the
mobile transaction must execute the following additional
actions. Before starting to run the program, the system
undoes the actions that enforce the used reservations (see
section 4.2). For each value-use reservation, the current
value of the data item is replaced by the reserved value
– when the execution of the transaction ends, the current
value is restored in the database.

During the execution of the transaction, for any read
statement that was guaranteed in the client by a value-
change or slot reservation, the interpreter returns the
same value read in the client. This property guarantees
that the same rows are read when the solution for a read
statement is a set of rows (i.e. it establishes an order on
the result set).

The execution of a mobile transaction partially consumes
escrow reservations (e.g. if the client had the right to sub-
tract 3 to x, and this transaction subtracts 1 to x, the client
remains with the right to subtract 2 to x). All other reser-
vations remain valid. After the execution of the transac-
tion, the system redoes the actions that enforce the used
reservations that remain valid.

4.5 Examples

The mobile transaction presented in figure 1 represents
a typical transaction executed by a mobile salesman: the
insertion of a new order. In figure 4 we present the reser-
vations obtained by the mobile salesman. The following
information is maintained for each reservation: a unique
identifier; the type of reservation; the columns that are
reserved in the rows identified by the table and condi-
tion; the value of the reserved data item; and additional
reservation-specific information.

When the transaction is executed in the client, it is ob-
vious that both reservations are necessary to guarantee
that the condition expressed in the if statement (line 7) is
true. The escrow reservation guarantees that prd stock ≥
10 will be true when the transaction is executed in the
server (prd stockclt = 15, thus prd stock ≥ 10 evaluates
to 15 ≥ 10 ≡ true). In fact, the reservation is more gen-
eral and it gives the right to subtract 15 to the value of
prd stock with the global constraint prd stock ≥ 0 (or
the promise that when the transaction is executed in the
server, prd stock ≥ 15). The value-use reservation guar-
antees that the price is acceptable. The update of the
stock (line 8) is guaranteed by the escrow reservation.

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 51

id type table column condition value info
45-1 escrow products stock name=’BLUE THING’ 15 ≥ 0
45-2 value-use products price name=’BLUE THING’ 44.99 -

Figure 4: Reservations obtained by a mobile salesman.

This statement is used to infer the escrowable resources
consumed by the transaction — 10 in this case (the num-
ber of resources still available after the execution of this
transaction is 5 — this is the new value of the reserved
data item (products,stock)). The insert statement (line
9) is not guaranteed by any reservation. Thus, the trans-
action will have the read level of reservation commit. If
the application knows that no slot reservation will block
the insert in the “orders” table, it can be sure that the
transaction will succeed in the server.

It is also possible to get additional reservations that guar-
antee the success of the insert statement. First, a shared
slot reservation could be obtained for the orders table
(uniqueness of identifier in the table is assured by the
properties of the newid function). Second, an additional
column could be added to the orders table specifying the
salesman responsible for the order. In this case, the sales-
man could obtain a slot reservation for his orders.

The mobile transaction presented in figure 5 represents
a typical scenario for using non-identical resources. In
this example each seat is unique. Therefore, after ver-
ifying that there is, at least, one seat left (line 5), it is
necessary to obtain the identifier of the seat (lines 7-8)
and update the seat information with the name of the
new passenger (lines 9-10). Assume that two seat are
reserved: the correspondent reservations are presented in
figure 6. Up to the need of obtaining the identifier of
the seat, the transaction processing can be guaranteed as
in the previous example. The select statement (lines 7-
8) that obtains the seat returns one of the reserved seats
(e.g. “4A”). The update statement (lines 9-10) updates
the seat information with the name of the passenger and
the price of the ticket. These statements are guaranteed
by the value-change reservation obtained over the seat
(remember that, in the client, read statements return re-
served data items, if any exists). When the transaction
is executed in the server, Mobisnap guarantees that the
select statement returns the same record (i.e. seat “4A”).
These reservations guarantee the full level of reservation
commit (all statements are guaranteed).

If the value-change reservation was not available, it
would be impossible to guarantee the read and write
statements of lines 7-10. In this case the transaction
would have the pre-condition level of reservation com-
mit. For this transaction, this result means it is possible to
guarantee the availability of one ticket but, in the client, it
is impossible to know which seat will be assigned to the
passenger (the select statement of line 7-8 would return
a tentative result based on the tentative cache version).

The mobile transaction presented in figure 2 represents
a typical transaction executed in a shared calendar. The
client may obtain a slot reservation to schedule appoint-
ments during the morning of day ’17-FEB-2002’, as
shown in figure 7. This reservation guarantees the result
of the condition of line 4. The variable cnt is guaranteed
by the slot reservation because the records selected in
line 3 are a subset of the records associated with the slot
reservation. The code omitted in line 5 would typically
insert a record in the datebook for the given time – this
operation can also be guaranteed by the slot reservation.
Thus, the result of the transaction would be the full level
of reservation commit.

These examples show that the combination of multiple
reservations is fundamental to guarantee the result of a
mobile transaction independently. Note that not even the
example that uses anonymous resources (figure 1) can be
guaranteed by escrow reservations alone.

5 Status and future work
We have implemented a prototype of the Mobisnap sys-
tem as a middleware layer in Java. In the server, an Or-
acle 8 database stores the primary copy of the data, but
any database that supports triggers could be used. In the
client, we use the Java-based Hypersonic SQL database
engine to store the local data copies. Therefore, Mobis-
nap clients should run in any mobile device that supports
Java 2. Until now, we have tested the clients in PCs run-
ning Windows and Linux and in Compaq iPAQ hand-
held computers running SavaJe OS. The Mobisnap mid-
dleware runs on top of the RDBMSs to implement the
system specific functions, including, reservation man-
agement and mobile transaction processing (the database
engines are used only to process SQL statements).

In our current prototype, the PL/SQL interpreters have
several limitations, mainly the client interpreter that ver-
ifies if a transaction can be guaranteed. For example,
although sub-queries can be processed, if they are used
in a transaction, the transaction cannot be guaranteed.
A complete implementation of an PL/SQL interpreter
should allow to verify if any deterministic transaction can
be guaranteed or not. Non-deterministic functions, such
as querying the local time, can be handled by saving the
value returned in the client and returning the same value
in the server (similar to the newid function).

Other issues of the prototype are still being worked out,
namely security, some reservation options such as reser-
vation delegation between clients and improved caching
management. In the future we intend to evaluate the im-

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association52

1 ------------- BUY 1 TICKET: train = "London-Paris 10:00"; day = ’18-FEB-2002’; price <= 100.00 -------------
2 BEGIN
3 SELECT price, available INTO tkt_price, tkt_avail FROM trains
4 WHERE train = ’London-Paris 10:00’ AND day = ’18-FEB-2002’;
5 IF tkt_price <= 100.00 AND tkt_avail >= 1 THEN -- checks seat availability
6 UPDATE trains SET available = tkt_avail - 1 WHERE train = ’London-Paris 10:00’ AND day = ’18-FEB-2002’;
7 SELECT seat INTO tkt_seat FROM tickets
8 WHERE train = ’London-Paris 10:00’ AND day = ’18-FEB-2002’ AND used = FALSE; -- get one available seat
9 UPDATE tickets SET used = TRUE, passenger = ’Mr. John Smith’, price = tkt_price

10 WHERE train = ’London-Paris 10:00’ AND day = ’18-FEB-2002’ AND seat = tkt_seat;
11 COMMIT (tkt_seat,tkt_price); -- commits and returns thicket information
12 ENDIF;
13 ROLLBACK; -- rollbacks when there is no seat available
14 END;

Figure 5: Mobile transaction reserving a new ticket in a train reservation system (declaration of variables is omitted).

id type table column condition value info
37-8 escrow trains available train=’London-Paris 10:00’ AND day=’18-FEB-2002’ 2 ≥ 0
37-9 value-use trains price train=’London-Paris 10:00’ AND day=’18-FEB-2002’ 95.00 -

37-10 value-change tickets * train=’London-Paris 10:00’ AND day=’18-FEB-2002’ (4A, f alse, . . .) -
37-11 value-change tickets * train=’London-Paris 10:00’ AND day=’18-FEB-2002’ (4B, f alse, . . .) -

Figure 6: Reservations obtained in the train reservation system example: two seats are reserved.

Name small large
Duration (t) 12 hours

Link failure interarrival mean Exp(120 min)
Link failure duration Exp(36 min)

Message latency Exp(400 ms)
Server failure interarrival mean Exp(6 hours)

Server failure duration Exp(1 min)
Number of clients 8 50

Initial stock (stockinit) 300 30000
Order quantity of each round(0.5 + round(0.5 +

request (value of request) + Exp(1.5)) + Exp(19.5))

Name good bad
Expected usage rate (eu) variable

Prediction reliability (sigmabase) 0.04 0.64
Predicted vs. real ≈ 10% in small

conformance ≈ 5% in large ≈ 55%

Table 2: Experimental parameters.

pact of reservations (and associated triggers) on the per-
formance of the database server.

6 Evaluation
In this section we evaluate the effectiveness of reserva-
tions to support a mobile sales application through sim-
ulation. Due to space limitation we can only present a
small part of the studied scenarios [17].

The mobile sales application maintains information
about a set of products, including for each product, its
current stock and price. A mobile salesperson uses a mo-
bile device to submit requests from her customers. In
the experiments presented in this paper, a single type of
request is used: place a new order. Each new order is
submitted as a mobile transaction identical to figure 1.
To guarantee the result of these mobile transactions in-
dependently, mobile devices obtain reservations.

The experiments simulate the execution of the Mobis-
nap system, including the single server, a set of mobile
clients and the network according to the parameters pre-
sented in table 2. Server failure parameters lead to 99.7%
availability.

A network module simulates the communications be-

tween the server and the clients. We have modelled a
simple mobile environment scenario where clients re-
main disconnected for long periods of time. End-to-end
unavailability is 30%. We simulate end-to-end partitions
using (client-server) link failures. However, we make no
assumption on the cause (e.g. voluntary disconnection,
energy restrictions, etc.) of each failure. Message la-
tency has an exponential distribution to (roughly) model
variable message delay. Latencies over 1 second are con-
sidered as message losses.

Our experiments model two deployment scenarios: a
small and a large scale deployment of the mobile sales
application (see table 2). The large scale scenario is used
mainly to evaluate the influence of scale. We now explain
the parameters for the small scale scenario.

In the small scenario, there are only eight salespersons
(or mobile clients). For simplicity (and without loss of
generality), we consider that there is just one product
available, the initial stock is 300 and its price is 1. The
quantity involved in each order is variable and based on
an exponential distribution, as described in table 2 – this
approach leads to generally small orders and rare large
orders (overall average quantity is approximately 2). As
the price of one instance of the product is 1, the value of
each request is equal to the quantity in each order.

The requests are generated in mobile devices as fol-
lows. First, for each experiment, the expected usage rate,
eu, controls the expected value of all received requests,
exptotal : exptotal = eu × stockinit . In our experiments, eu

varies from 55% to 175% modelling from weak to very
strong demands.

Second, for each mobile client, we generate an individual
predicted value of received requests, expi. expi is created
randomly, such that exptotal = ∑expi. In practice, this
value can be obtained from the history of clients using
forecasting techniques [4].

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 53

id type table column condition value info
18-3 slot datebook * day=’17-FEB-2002’ AND all records that -

hour ≥ 8 AND hour ≤ 13 satisfy the condition

Figure 7: Reservations obtained in the calendar example.

Third, we generate, based on the prediction reliability
factor, sigmabase, the (expected) real value of requests
received in each client, demi. demi is computed us-
ing a random variable with normal distribution (with
mean = expi and sigma = sigmabase × expi). We evalu-
ate two scenarios: one with good predictions (good) and
one with bad predictions (bad). In table 2, we show, for
each scenario, the average difference between the value
of the requests created in our experiments and the pre-
dicted values (expi).

Finally, during each experiment, the submission of each
request is controlled by a random variable with exponen-
tial distribution, as usual. The inter-arrival rate is equal
to t × reqavg/demi, with reqavg the average quantity of
each request.

Our experiments evaluate two strategies to obtain reser-
vations. In both, mobile devices obtain reservations that
expire only in the end of the experiment. In the first, stat
X, mobile devices obtain reservations only once, in the
beginning of the experiment. X is the percentage of the
stock the server reserves for itself (i.e., that clients can-
not reserve). The remaining is reserved by mobile de-
vices, proportionally to expi (in combination with value-
use reservations). The second strategy, dyn X, extends
the first by allowing mobile devices to request additional
reservations when they cannot guarantee an order with
the average order quantity. A request for additional reser-
vations is serviced using the unreserved stock. To each
user, the server concedes reservations proportional to the
reservations he has obtained before (so that all mobile
devices can get additional reservations).

In our experiments, reservations are always obtained
from the server. This approach differs from other
works [2], where multiple servers can be involved in
the redistribution of escrowable resources. These ap-
proaches seem more appropriate for distributed settings
where connectivity among servers is reliable and fast,
and hosts do not have power restrictions that advise to
disconnect them for some periods.

We have obtained the following results. First, the value
of requests that can be locally committed, i.e., transac-
tions that can be guaranteed independently in the mobile
devices. Second, the value of requests that can be imme-
diately committed, i.e., transactions that can be guaran-
teed either in the mobile device or synchronously con-
tacting the server (if connectivity is available). As the
maximum value (and percentage) of transactions that can
succeed depends on the usage rate, we have also com-

86

88

90

92

94

96

98

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

stat 0
stat 10
dyn 10
dyn 35
dyn 60

Figure 8: Locally committed transactions (good predic-
tion).

puted the maximum value of transactions that could be
committed in a system without failures. All results are
presented as a percentage of this maximum value. Note
that using the reevaluation mechanism, it is always pos-
sible to reach the maximum value of requests after the
reservations expire.

Each experiment simulates a period of 12 hours. All re-
sults are the average of 10 runs. Different approaches are
compared using the same request generation events.

6.1 Good prediction

In the first set of experiments, the difference between the
actual and the expected demand is 5%, on average.

Figure 8 shows the transactions that can be locally com-
mitted. The results show that more than 85% of the max-
imum value of transactions can be guaranteed locally. As
expected, the results are better as the usage rate deviates
from 100%. For smaller usage rates, the excess of stock
accommodates the unexpected requests. For bigger us-
age rates, as each mobile device could only obtain reser-
vations for a fraction of the expected demand, expi, even
if the actual demand is smaller than the expected one, all
reservations tend to be consumed. Based on this ratio-
nale, we expected our results to get closer to 100% faster
as usage rate deviates from 100%. Analyzing the exper-
iments, we have discovered that the small scale of our
example was introducing larger relative distortions than
expected (results from the larger scale scenario confirm
this conclusion – see figure 9).

Figure 10 shows the transactions that can be imme-
diately committed. The results show that more than
95% of transactions can be immediately committed us-
ing reservations. The figure also show that a tradi-
tional client/server system (clt/srv) that tries to commit
all transactions in the server immediately behaves much
worse in this environment (where mobile devices do not
have connectivity for large periods of time).

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association54

88

90

92

94

96

98

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

stat 0
stat 10
dyn 10
dyn 35
dyn 60

Figure 9: Locally committed transactions (good predic-
tion, large scale scenario).

70

75

80

85

90

95

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

clt/srv
stat 0

stat 10
dyn 10
dyn 35
dyn 60

Figure 10: Immediately committed transactions (good
prediction).

6.2 Bad prediction

In the second set of experiments, we investigate if reser-
vations can also be used successfully when predictions
are bad (the difference between the actual and the pre-
dicted demand is 55%, on average).

Figure 11 shows the transactions that can be locally com-
mitted. As expected, the results are worse than the ob-
tained when the prediction is good. In this case, ob-
taining reservations dynamically is much better than ob-
taining reservations just once. For example, in the dyn
60 scenario, the system can commit locally more than
85% of the maximum transactions that can be commit-
ted. However, dynamic strategies requires that mobile
devices communicate with the server. These communi-
cation costs increase with the usage rate (until it is close
to 110%) and with the increase of the stock reserved by
the server [17]. However, these costs are small – e.g. in
the dyn 60 (resp. dyn 30) scenario with the usage rate
of 110% (resp. 90%), clients contact the server once
for each 6.25 (resp. 13.6) requests locally committed (in
large scale scenarios, these values are much bigger).

Figure 12 shows the transactions that can be immediately
committed. The values for the dynamic strategy are dis-
appointing as they slightly improve the results of transac-
tions locally committed. Analyzing the experiments, we
found out that the problem was due to the reservations
obtained initially. To solve this problem, we have used
our dynamic strategy without obtaining any reservation
initially, i.e., ignoring the predicted demand (this situ-
ation is equivalent to the unavailability of predictions).

65

70

75

80

85

90

95

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

stat 0
stat 10
dyn 10
dyn 35
dyn 60

Figure 11: Locally committed transactions (bad predic-
tion).

70

75

80

85

90

95

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

clt/srv
stat 0

stat 10
dyn 10
dyn 35
dyn 60

Figure 12: Immediately committed transactions (bad
prediction).

The results obtained were the following.

Figure 13 shows that more than 80% of the maximum
transactions can be locally committed. As the system
adapts to demand dynamically, it is impossible to locally
commit some of the early transactions. This explains
the increase of transactions committed locally with the
increase of the usage rate – when there are more trans-
actions, the influence of these early steps tends to be
smaller (results from the large scale scenario, figure 14,
also corroborate this hypothesis and show a very good
adaptation of the dynamic approach).

Figure 15 shows the transactions that can be immediately
committed. As expected, these results are much better
than those obtained when clients obtain reservations ini-
tially. In this case, more than 95% of the maximum num-
ber of transactions can be committed immediately.

The results presented show that reservations can support
a mobile sales application when it is possible to estimate
the demand and even when such estimation is unknown.

7 Related work
Mobile data management has been addressed in several
research projects and some solutions have even been in-
tegrated in commercial products. Some of the proposed
approaches are presented in [1, 16, 19].

In Oracle Lite [14], mobile clients cache database snap-
shots. Transactions executed in clients are integrated in
the master database using the new/old write sets and de-
tecting write/write, uniqueness and delete conflicts. Con-
flict resolution rules can be associated with the database

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 55

80
81
82
83
84
85
86
87
88
89

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

dyn 10
dyn 35
dyn 60

Figure 13: Locally committed transactions (bad predic-
tion, unknown estimation).

90
91
92
93
94
95
96
97
98
99

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

dyn 10
dyn 35
dyn 60

Figure 14: Locally committed transactions (bad predic-
tion, unknown estimation, large scale scenario).

tables (and table fields). This state-based conflict reso-
lution approach (as others [11]) is limited because the
semantics of updates has been lost and it is impossible to
specify any transaction-specific conflict resolution rule.

In the two-tier replication model [6], mobile nodes may
propose tentative update transactions. These transactions
are reapplied to the object master copy, verifying its va-
lidity using a specified acceptance rule. Invalid transac-
tions are aborted and diagnostic messages are returned
to the mobile nodes. In Bayou [20], data is replicated
in a group of servers that synchronize epidemically. A
primary server sets the commit order. Bayou updates al-
low generic conflict detection and resolution using de-
pendency checks and merge procedures. The Mobis-
nap mobile transactions can be seen as an PL/SQL im-
plementation of the updates proposed in these systems.
However, unlike these systems, Mobisnap integrates mo-
bile transactions with the reservation model to guarantee
the results of transactions in the mobile devices.

70

75

80

85

90

95

100

55 70 85 100 115 130 145 160 175

C
o

m
m

it
 (

%
 m

ax
)

Usage rate (%)

clt/srv
dyn 10
dyn 35
dyn 60

Figure 15: Immediately committed transactions (bad
prediction, unknown estimation, small scale scenario).

IceCube [8] presents a reconciliation engine that tries to
create an optimal single schedule, combining the maxi-
mum number of tentative actions executed in mobile de-
vices – some action may be discarded to allow a larger
set of actions to be executed. The IceCube reconciliation
approach could be used in Mobisnap during the reinte-
gration of mobile transactions received from the server
and during the re-execution of transactions. In the mul-
tiversion reconciliation model [15], the server maintains
multiple versions of the database history. The system
tries to serialize each client transaction into one of these
versions using a conflict resolution and a cost function
specified with each transaction. Exploiting multiple data
versions may lead to better results than the simple exe-
cution of mobile transactions in Mobisnap. However, it
also imposes additional complexity in the server. Unlike
Mobisnap, these systems do not include any mechanism
to guarantee the results of transactions in mobile devices.

The escrow model [12] can be used to guarantee the re-
sult of some transactions in mobile devices [9]. The ba-
sic idea is to divide the available items of a commod-
ity among several mobile sites – transactions that only
use local items can be independently guaranteed. As
explained, the Mobisnap escrow reservations implement
and adapt this idea to an SQL-based system where reser-
vations are used transparently. Therefore, any transac-
tion can explore all reservations instead of only those it
has been designed to. Moreover, the examples of sec-
tion 4.5 show that additional reservations are necessary
to guarantee the results of most transactions.

The use of escrow techniques can be generalized by ex-
ploiting object semantics [21]. The idea is to split large
and complex objects into smaller fragments with certain
constraints. If these constraints are honored, the mod-
ified fragments can be later merged using the semantic
information available. This approach can be used only
with some data types and it is more appropriate to object
oriented databases.

TACT [22] defines a framework to control the divergence
among several replicas integrating several metrics previ-
ously proposed. Although this approach can be used to
increase the likelihood of reintegration success, it cannot
guarantee the results locally. TACT demands applica-
tions to inform the system how each update affects the
existent logical consistency units. This approach forces
updates to know consistency units and it is error-prone,
as any incorrect adjustment in any update leads to in-
valid divergence values. We believe that an automatic
and transparent approach, as used in Mobisnap to check
if mobile transactions can be guaranteed, is preferable.

A preliminary and incomplete version of Mobisnap was
presented elsewhere [18]. Since then, important modifi-
cations have been introduced in the system, such as, the

MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association56

introduction of new reservations and the modification of
the transaction processing.

8 Final remarks
The Mobisnap database middleware system is designed
to support applications that run on mobile computing en-
vironments. It supports independent operation combin-
ing mobile transactions and reservations.

A mobile transaction is a small PL/SQL program submit-
ted by an application to modify the database state. As the
final result of a mobile transaction is obtained running
its program in the server, it can include conflict detection
and resolution rules that exploit the semantic information
associated with the operations.

A reservation provides some promise upon the database
state, thus guaranteeing that no conflict will arise when a
mobile transaction is executed in the server. Therefore, if
a mobile client holds enough reservations, it can guaran-
tee the final result of a mobile transaction independently.

Besides implementing this conflict avoidance mecha-
nism in a middleware SQL-based system that allows
legacy clients to continue to access the database, our
reservation model presents the following new contribu-
tions. First, it includes several types of reservations. The
examples presented in section 4.5 show that this feature
is necessary to guarantee the result of most transactions.
Second, the client transparently verifies if it can guaran-
tee the result of any mobile transaction. Besides allow-
ing mobile transactions to be written as usual PL/SQL
programs, this property allows any mobile transaction to
explore all available reservations. Finally, it is integrated
with mobile transactions that allow the definition of con-
flict resolution rules. To our knowledge, this integration
makes our system unique.

This paper has focused on the description of the Mo-
bisnap reservation model and its integration with mobile
transactions. The examples presented throughout the pa-
per exemplify the use of the model with realistic applica-
tions. The system design and implementation described
demonstrate the feasibility of the model. The evaluation
of the reservation model shows that reservations can be
used to support independent operation in a mobile sales
applications even when it is impossible to estimate the
expected demand. In the future, we expect to study the
use of reservations in different settings and to evaluate
the impact of reservations (triggers) in the performance
of the database server.

More information on the Mobisnap system can be ob-
tained from http://asc.di.fct.unl.pt/mobisnap.

Acknowledgements
We would like to thank our paper shepherd, Douglas
Terry, the anonymous reviewers and Marc Shapiro for

their helpful comments on earlier versions of this paper.

References
[1] BARBARÁ, D. Mobile computing and databases - a survey. Knowledge

and Data Engineering 11, 1 (1999), 108–117.

[2] CETINTEMEL, U., ÖZDEN, B., FRANKLIN, M., AND SILBERSCHATZ, A.
Design and evaluation of redistribution strategies for wide-area commodity
distribution. In Proc. of the 21st International Conference on Distributed
Computing Systems (Apr. 2001), pp. 154–164.

[3] DAR, S., FRANKLIN, M. J., JÓNSSON, B., SRIVASTAVA, D., AND TAN,
M. Semantic data caching and replacement. In Proc. VLDB’96 (Sept.
1996), pp. 330–341.

[4] FRANK, T., AND VORNBERGER, M. Sales forecasting using neural net-
works. In Proc. ICNN’97 (1997), vol. 4, pp. 2125–2128.

[5] GRAY, C., AND CHERITON, D. Leases: an efficient fault-tolerant mecha-
nism for distributed file cache consistency. In Proc. of the 12th ACM Sym-
posium on Operating systems principles (1989), pp. 202–210.

[6] GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. The dangers of
replication and a solution. In Proc. of the 1996 ACM SIGMOD interna-
tional conference on Management of data (1996), pp. 173–182.

[7] GRAY, J., AND REUTER, A. Transction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 1993.

[8] KERMARREC, A.-M., ROWSTRON, A., SHAPIRO, M., AND DRUSCHEL,
P. The icecube approach to the reconciliation of divergent replicas. In
Proc. of the 20th ACM Symposium on Principles of Distributed Computing
(2001), pp. 210–218.

[9] KRISHNAKUMAR, N., AND JAIN, R. Escrow techniques for mobile sales
and inventory applications. Wireless Networks 3, 3 (1997), 235–246.

[10] KUENNING, G. H., AND POPEK, G. J. Automated hoarding for mobile
computers. In Proc. of the 16th ACM Symposium on Operating Systems
Principles (1997), pp. 264–275.

[11] KUMAR, P., AND SATYANARAYANAN, M. Flexible and safe resolution of
file conflicts. In Proc. USENIX Winter Technical Conference (New Orleans,
LA, USA, Jan. 1995), pp. 95–106.

[12] O’NEIL, P. E. The escrow transactional method. ACM Transactions on
Database Systems (TODS) 11, 4 (1986), 405–430.

[13] ORACLE. Pl/sql user’s guide and reference - release 8.0, June 1997.

[14] ORACLE. Oracle8i lite replication guide - release 4.0, 1999.

[15] PHATAK, S., AND BADRINATH, B. R. Multiversion reconciliation for
mobile databases. In Proc. 15th Int. Conference on Data Engineering (Mar.
1999), pp. 582–589.

[16] PITOURA, E., AND SAMARAS, G. Data Management for Mobile Comput-
ing, vol. 10. Kluwer Academic Publishers, 1998.

[17] PREGUIÇA, N. Data Management for collaborative mobile computing (in
portuguese). PhD thesis, Dep. Informática, FCT, Universidade Nova de
Lisboa, 2003 (expected).

[18] PREGUIÇA, N., ET AL. Mobile transaction management in mobisnap. In
Proc. of ADBIS-DASFAA 2000 (2000), vol. 1884 of Lecture Notes in Com-
puter Science, pp. 379–386.

[19] SAITO, Y., AND SHAPIRO, M. Replication: Optimistic approaches. Tech.
Rep. HPL-2002-33, Hewlett-Packard Laboratories, Mar. 2002.

[20] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPRE-
ITZER, M. J., AND HAUSER, C. H. Managing update conflicts in bayou,
a weakly connected replicated storage system. In Proc. of the 15th ACM
Symposium on Operating systems principles (1995), pp. 172–182.

[21] WALBORN, G. D., AND CHRYSANTHIS, P. K. Supporting semantics-
based transaction processing in mobile database applications. In Proc. Sym-
posium on Reliable Distributed Systems (1995), pp. 31–40.

[22] YU, H., AND VAHDAT, A. Design and evaluation of a continuous consis-
tency model for replicated services. In Proc 4th Symposium on Operating
System Design and Implementation (OSDI 2000) (Oct. 2000), pp. 305–318.

