
Database Engines on Multicores Scale: A Practical
Approach

João Soares
NOVA-LINCS/DI-FCT

Universidade Nova de Lisboa

Nuno Preguiça
NOVA-LINCS/DI-FCT

Universidade Nova de Lisboa

ABSTRACT
Multicore processors are available for over a decade, being
the norm for current computer systems, but general pur-
pose database management systems (DBMS) still cannot
fully explore the computational resources of these platforms.
We focus on In-Memory DBMS since these are becoming
widely adopted, due to the increasing amount of memory
installed in today’s systems, and are expected to scale on
multicore machines, by not incurring in I/O bottlenecks.
This paper presents a practical study on In-Memory DBMS
and shows that contention imposed by concurrency control
mechanisms, such as locking, are limiting factors for both
performance and scalability of these systems on multicores.
Additionally, we discuss a simple database engine modifica-
tion that allows an almost 10 fold performance improvement,
over the original engine, also allowing databases to scale on
multicores.

1. INTRODUCTION
The current processor evolution, to multicore processors,

has forced software designers and developers to parallelize
code in order to improve application performance on multi-
core platforms. While multicore processors are now available
for over a decade, being the norm for current computer sys-
tems, these still pose challenges to the design of database
management systems (DBMS) [12, 17, 23, 5, 9]. Existing
studies show that current database engines can spend more
than 30% of time in synchronization-related operations (e.g.
locking and latching), even when only a single client thread
is running [13]. Additionally, running two concurrent data-
base operations in parallel can be slower than running them
in sequence [25], due to workload interference. This is a lim-
iting factor for the scalability of DBMS in current multicore
platforms [18].

Several research solutions have been proposed to improve
resource usage of multicore machines. Some of these solu-
tions aim at using multiple threads to execute query plans in
parallel, or using new algorithms to parallelize single steps
of the plan, or effectively parallelizing multiple steps [24, 25,
9, 8, 5]. Other solutions try to reuse part of the work done

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695793

during the execution of multiple queries [10], or using ad-
ditional threads to prefetch data that can be needed in the
future [17]. Although some of these solutions start to appear
in niche markets, general purpose DBMSs have been slower
to adopt them, since implementing such solutions requires
significant design modifications.

A widely used approach for improving DBMS performance
is weakening/relaxing the database isolation level. This aims
at improving throughput by preventing read only transac-
tions from aborting/delaying update ones, allowing more
transactions to execute concurrently. Although theoretically
sound, this relaxation does not translate into considerable
benefits, as presented latter.

In this paper we present a study on the performance and
scalability of In-Memory databases (IMDB). IMDBs provide
high performance by not incurring in disk I/O overhead,
when compared to disk backed DBMS. Also, the increasing
amount of main memory used in current computer systems,
in conjunction with the ease of embedding IMDBs in appli-
cations have made these systems increasingly popular, being
used by a large number of applications and high-performance
transaction processing systems, such as Sprint [6] and H-
Store [15].

Focusing on two open source IMDBs: HSQLDB [2] and
H2 [1], and using TPC-C, a well established OLTP bench-
mark, we show how both engines perform on a 16 core Sun
Fire X4600 with 32 GBytes of RAM. Additionally, we dis-
cuss and investigate how the different sub-components of
the database engine affect the performance of these systems.
We show that contention on the underlying data structures
is the main cause for their lack of scalability on single ma-
chines multicore systems. Additionally we propose a simple
modification that allows both database engines to scale on
multicore machines, achieving an almost 10 fold performance
improvement over their unmodified siblings.

The major contributions of this paper are: i) a prac-
tical performance study of in-memory database engines on
single multicore machines; ii) the identification and mea-
surement of the performance overhead imposed by the sub-
components of these engines; and iii) the proposal of a
simple modification that allows both in-memory database
engines to scale on multicores.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of DBMS sub-components, their
interactions and performance impact; Sections 3 and 4 present
a practical performance study, and propose some modifica-
tions for improving their performance on a single machine
multicores; Section 5 presents the evaluation results of our
proposal; Section 6 discusses the most relevant related work;
and Section 7 concludes this paper.

Log	 Manager	 Transac-on	
Manager	

Storage	 Manager	

Applica-ons	

DBMS	
JDBC	

Figure 1: IMBMDS architecture.

2. IN-MEMORY DBMS OVERVIEW
In this section we provide an overview on the compo-

nents of a DBMS, focusing on how these are implemented on
the studied systems and discussing their interactions during
transaction execution and performance implications.

Traditional relational DBMS design feature disk-based stor-
age system (indexing and heap files), a log-based transaction
manager, and a concurrency control mechanism. Most cur-
rent in-memory DBMS have evolved from this traditional
design, only abandoning the disk-based storage systems to
in-memory ones [21].

Applications interact with DBMSs by a well defined API,
such as ODBC/JDBC, as presented in Figure 1. Operations,
performed by each client, are grouped into transactions.
Transactions are a series of query and/or update operations
delimited by a commit or rollback operation. DBMS allow
concurrent transactions to execute in isolation from one an-
other, in accordance to the specified isolation level [4]. The
isolation level, defined by the application, is provided by a
Transaction Manager in conjunction with a Log Manager,
while data is maintained by a Storage Manager.

Transaction Manager.
The transaction manager provides transaction isolation.

Generally, it uses a locking scheme to allow concurrent ex-
ecution of non conflicting transactions, and preventing con-
flicting ones from executing. It offers different isolation level
to increase concurrency.

Log Manager.
The log manager is used to preserve and guarantee a con-

sistent database state, by logging operations. It also allows
databases to recover from possible faults by redoing unfin-
ished logged operations.

Storage Manager.
The storage manager maintains the data structures that

preserve the data of the database. Tables are commonly
mapped by one or more index structure, used to maintain
the respective table rows. B-Trees and Hash tables are com-
monly used to implement these indexes.

Although additional sub-components impact the overall
performance of DBMSs, such as parsers and query optimiz-
ers, they have been extensively covered by their respective
research community [11, 8, 16] and as such several propos-
als exist to improve their performance on multicore systems.
Additionally, since these cannot be simply turned off or
swapped, we have no means to study their impact on the

1 var global :
2 Transaction Manager tx mngr
3 Storage Manager storage mngr
4 Log Manager log mngr
5
6 var per cl ient :
7 Se s s i on s e s s i o n
8 Result r e s u l t
9 Command command

10
11 function executeCommon (statement)
12 i f (NOT v a l i d c o nne c t i o n (s e s s i o n))
13 throw DBError
14 i f (NOT va l i da t e syn tax (statement))
15 throw SyntaxError
16 va l i d s ta t ement = parse and compi l e (statement)
17 r e s u l t = c r e a t e r e s u l t s e t (va l i d s ta t ement)
18 command = opt imize (va l i d s ta t ement)
19 tx manager . a q u i r e t a b l e l o c k s (s e s s i on , command)
20
21 function executeQuery (statement)
22 executeCommon (statement)
23 storage mngr . read data (command , r e s u l t)
24 return r e s u l t
25
26 function executeUpdate (statement)
27 executeCommon (statement)
28 l o g p r e v i o u s d a t a (s e s s i on , command)
29 storage mngr . de l e t e row (s e s s i on , command)
30 storage mngr . i n s e r t r o w (s e s s i on , command)
31 storage mngr . v e r i f y i n t e g r i t y (s e s s i o n)
32 f i r e t a b l e t r i g g e r s ()
33 return r e s u l t ;
34
35 function commitCommon ()
36 tx manager . u n l o c k t a b l e s (s e s s i o n)
37 tx manager . awake awai t ing txs ()
38
39 function commitQuery ()
40 commitCommon ()
41
42 function commitUpdate ()
43 log mngr . l o g a c t i o n s (s e s s i o n)
44 log mngr . log commit (s e s s i o n)
45 commitCommon ()

Figure 2: Statement execution.

overall system performance, thus will not be addressed in
this discussion. Next we will detail how HSQLDB and H2
engines behave during client interaction.

2.1 H2 and HSQLDB behavior
Both engines interact with client applications through a

JDBC interface. Whenever a client establishes a new con-
nection to the database engine a new Session is created.
Sessions are used by the database engine for providing atom-
icity and isolation to the statements performed by different
clients. A simplified algorithm of statement execution is pre-
sented in Figure 2. We omit error and conflict verification
due to simplicity. During this discussion, we call transaction
to a series of statements, queries and/or updates, executed
in a session and delimited by a commit or rollback command.

Whenever a statement is executed by a client, both data-
base engines start by validating the state of the connection,
i.e., if it has not been previously closed by the client, and the
syntax of the statement. If no error occurs, then a new result
object for that statement is created. This object is used to
maintain the statement’s result and its respective metadata
(e.g. the information on the tables and columns being read,
the number of lines of the result and their respective data).
After this, an optimization stage selects an execution plan
suitable for the statement’s execution, as presented in lines

11-18 of Figure 2.
Sessions proceed by interacting with the transaction man-

ager for executing the statement in isolation (line 19 of Fig-
ure 2). Both engines provide different isolation levels, of-
fering lock based or multi-version schemes. For simplicity
reasons we will focus on lock-based ones.

For lock schemes, both engines implement standard two-
phase locking mechanism, using shared and exclusive locks
at a table level. Sessions are only allowed to execute each
operation after acquiring the necessary table locks. If a ses-
sion fails to acquire a table lock, due to a conflicting con-
current session, then it will wait until the necessary locks
are released. Each session maintains the set of table locks
acquired during its execution, while the transaction man-
ager maintains a global map of sessions and their associated
table locks to detect possible conflicts. All these steps are
common to both queries and update statements.

After acquiring table locks, sessions proceed by interact-
ing with the storage manager. For query statements, the
corresponding data is copied to the session’s result set and
is then returned to the client (lines 23 and 24 of Figure 2).
For update statements, the corresponding data is first read
and logged for state recovery purposes, i.e., in case the trans-
action aborts due to a conflict or a rollback is issued by the
client (line 28 of Figure 2), only then will the storage man-
ager update the necessary table indexes (lines 29-32 of Fig-
ure 2). In both engines sessions maintain logged data until
a commit or rollback operation. Also, both engines imple-
ment index using AVL-trees, and updates are executed as
an index delete followed by an insert operation.

All commit operations release acquired locks and awaken
existing waiting concurrent sessions. For update transac-
tions sessions first interact with the log manager, logging all
performed actions (lines 43 and 44 of Figure 2). It logs data
updated during the transaction execution, old and new val-
ues, followed by the commit operation it self. Rollback op-
erations undo the necessary changes before releasing locks.

Next we present a performance study of two different
IMDB engines, H2 [1] and HSQLDB [2], and discuss the
implications of the previously described components on the
performance of those DBMS on multicores, and propose a
simple, but effective improvement.

3. PERFORMANCE OF IMDB

Compared to disk based DBMS, IMDBs incur in no over-
head or contention in accessing I/O. Thus, one would expect
these systems to scale with the number of cores. To verify
the veracity of this assumption, we measured the throughput
obtained when running the TPC-C benchmark, on HSQLDB
and H2 IMDBs, with a read-only workload. This experiment
ran on a 16 core Sun Fire X4600 with 32 GBytes of RAM.
The results, presented in Figure 3, show that these engines
do not scale, even when transactions do not conflict with
each other.

For understanding if the lack of scalability was due to
the lack of computational resources, we ran an increasing
number of pairs client/DB engine concurrently, i.e., one DB
engine per client, on the same machine. The results of this
experiment, presented in Figure 3 as HSQLDB (aggr) and
H2 (aggr), show an increase in the aggregate throughput
near linear scalability up to 8 clients for both HSQLDB and
H2. These results show that the general lack of performance

 0

 50000

 100000

 150000

 200000

 250000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

HSQLDB
HSQLDB(aggr)

H2
H2(aggr)

Figure 3: Scalability of TPC-C read-only workload.

and scalability is related with the design of current IMDBs.
We further investigated the reasons for this in this section.

Transactional semantics.
We started by investigating how different transactional

semantics, i.e., isolation levels, impact the performance of
these systems. The main purpose of weaker isolation lev-
els is to achieve higher concurrency among transactions -
e.g. the relaxation from serializability to snapshot isolation
should increase throughput of read-only transactions since
these can execute on a different database snapshot from up-
date transactions, thus are not aborted nor delayed by con-
current updates.

We measured the throughput of different workload mixes
of TPC-C transactions on both HSQLDB and H2 under dif-
ferent isolation levels: i) serializable, relying on two-phase
locking; ii) read committed, relying on two-phase locking
with early release of read locks; and iii) snapshot isolation,
relying on a multi-version concurrency control solution. The
workloads varied from update intensive ones: standard with
92% updates and 50-50 with 50% updates; to read intensive
ones: 80-20 with 20% updates and 100-0 with 0%updates.

The results, presented in figure 4, show that, while both
engines show performance variations between the different
isolation semantics (more considerable for H2 and very small
for HSQL), they do not scale on multicores, even for read-
only workloads. As expected, the higher the ratio of up-
dates the lower the performance. The results for snapshot
isolation show no benefit over serializability in read inten-
sive workloads, while for update intensive workloads there
is a performance improvement on H2. Overall, these results
show that although different transactional semantics may
lead to different result, there is no significative impact on
scalability.

Logging impact.
While both IMDBs log transaction updates for recovery,

results do not suggest that this is the main bottleneck for
scalability. If this were the case, read-only workloads would
scale much better, as they log no information. Unlike tra-
ditional databases, these two IMDBs implement transaction
concurrency control by relying on table-level locks. This is a
pragmatic approach that allows to avoid the complexity and
overhead of fine-grain and semantic locks. Again, if this was
the main reason for the lack of scalability, read-only trans-
actions would have to scale better, especially for the read-
committed and SI isolation levels. Next, we investigate the
impact of the storage manager component.

Storage contention.

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

STD
50-50
80-20
100-0

(a) HSQLDB serializable

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

STD
50-50
80-20
100-0

(b) HSQLDB read committed

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

STD
50-50
80-20
100-0

(c) HSQLDB SI

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

STD
50-50
80-20
100-0

(d) H2 serializable

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 6 8 10 12 14 16 18
Th

ro
ug

hp
ut

 (t
ra

sn
/m

in
)

Clients

STD
50-50
80-20
100-0

(e) H2 read committed

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

STD
50-50
80-20
100-0

(f) H2 SI

Figure 4: Database Performance for TPC-C.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (t

ra
sn

/m
in

)

Clients

HSQLDB
Mod HSQLDB

H2
Mod H2

Figure 5: Modified engines for TPC-C read-only workload.

From the previous result, we believe IMDB performance
is compromised due to contention, created by concurrency
control mechanisms, in the storage manager component. To
understand this impact, we removed all locks from index
data structures on both engines. Figure 5 presents the re-
sults of the original and modified version of HSQLDB and
H2, presented as Mod HSQLDB and Mod H2 respectively,
with a read-only workload under the read committed isola-
tion level.

The results show the significative benefits of removing all
index locks. With this modification we were able to ob-
tain an almost 10 fold performance increase compared to
the unmodified engines. Moreover, both engines were able
to scale almost up to the number of cores. Thus, one can
conclude that scalability of DBMS on multicores is greatly
restricted due to the concurrency control implemented in the
data structures of the storage manager. Next we will discuss
how to leverage this insight for improving the performance
of IMDBs on multicore machines.

4. UNLOCKING SCALABILITY
As put in evidence by the results presented in the previ-

ous section, performance wise there is no real advantage for
in-memory databases to offer relaxed isolation levels. The
increase in concurrency, attained from relaxing isolation lev-
els, increases contention on the data structures, and does
not translate into performance benefits. This has been con-

firmed by removing concurrency control (CC) mechanisms
used at the storage level, which allowed both modified en-
gines to scale with the number of cores.

Multi-version support.
Data structures use CC mechanisms to guarantee data

consistency when accessed concurrently. Removing such
mechanisms may result in state corruption due to concur-
rent write/write operations, or may expose data inconsisten-
cies under concurrent read/write operations. While data-
base transaction managers prevent conflicting update trans-
actions from concurrently executing, thus preventing con-
current updates on the data structures, multi-version con-
currency control, such as SI, allow read transactions to exe-
cute concurrently with update ones without any concurrency
control. These phenomena also occur when using the read
uncommitted isolation level. Since, under these isolation lev-
els, read and write operations may execute concurrently at
the storage level, data structures must use CC mechanisms
to provide data integrity.

Locking and 2PL benefits.
Isolation levels based on locking schemes acquire read or

write locks, i.e., shared or exclusive locks, before reading or
updating a table, respectively. This prevents read transac-
tions from concurrently executing with conflicting update
ones. Compared to the previous protocols, locking not only
prevents concurrent execution of write/write operations at
the storage level, but also prevents read operations on the
data structures to be executed concurrently with updates.
Since locking schemes only allow read operations to execute
concurrently with other read operations, at the storage level,
it prevents both scenarios that may cause data structure
corruption (assuming that data structures are not modified
on reads). This way, locking schemes provide healthy data
structure states even when using data structures without
CC mechanisms. As a particular case of a locking scheme,
2PL divides locking into 2 separate phases: lock acquiring
and lock releasing, with the restriction that no new lock is
acquired after the release of a lock. This allows 2PL to offer

the same benefits as general locking, adding higher isolation
levels, such as serializability. Thus, 2PL prevents concurrent
read/write and write/write conflicts from executing at the
storage level, while offering serializable transaction isolation
levels.

4.1 Proposed Solution
As previously stated, the use of 2PL schemes prevents

conflicting operations, i.e., read/write and write/write op-
erations, from concurrently executing at the storage level,
while offering serializable isolation level. This allows remov-
ing all concurrency control from the data structures.

Thus, our proposal is removing support for multi-version
isolation schemes and row level locking, in favor of 2PL
schemes at the table level, also removing support for the read
uncommitted isolation level, and combine these restrictions
with the removal of all CC mechanisms used at the storage
level.

Assuming that the DBMS implement table level locking,
which most IMDB implementations do, and write locks are
kept until the end of each transaction, then there is no need
for concurrency control at the storage level. Using table level
locking enforces that read operations only execute concur-
rently with each other, while maintaining write locks until
the end of the transaction enforces that update transactions
execute in mutual exclusion and prevent inconsistent states
from being exposed, thus providing data consistency.

Although this is a simple modification the achieved per-
formance improvements are considerable, allowing IMDB to
scale on multicores, as put in evidence next.

5. EVALUATION
In this section we evaluate the proposed modifications

to the IMDB engines, and compare them to their unmodi-
fied siblings, by measuring throughput gains and scalability,
compared to the unmodified engines.

Setup.
All experiments were performed on a Sun Fire X4600 M2

x86-64 server machine, with eight dual-core AMD Opteron
Model 8220 processors and 32GByte of RAM, running De-
bian 5 (Lenny) operating system, H2 database engine ver-
sion 1.3.169 and HSQL engine version 2.3.1, and OpenJDK
version 1.6. All IMDB used a read committed isolation level
and table level locking.

For this evaluation we used the TPC-C benchmark, vary-
ing the number of clients, form 1 to 18, and workloads: stan-
dard (8% reads and 92% writes); 50-50 (50% reads and 50%
writes); 80-20 (80% reads and 20%writes); and 100-0 (100%
reads). The benchmark ran for 2 minutes, and a 4 gigabyte
database was used. The presented results are the average of
5 runs, performed on a fresh database, disregarding the best
and the worst results, and were obtained from the unmod-
ified versions of HSQLDB and H2 engines, and the respec-
tive modified versions, named Mod HSQLDB and Mod H2
respectively.

Standard Workload.
Under update intensive workloads the modified engines of-

fer some performance benefits over their unmodified siblings,
as presented in Figures 6 and 7. Although our modified
solutions are able to offer a 15% and 25% performance im-

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

 1 2 4 6 8 10 12 14 16 18

G
ai

n
(%

)

Clients

STD
50-50
80-20

Figure 6: Mod HSQLDB TPC-C performance gain.

 0

 50

 100

 150

 200

 250

 300

 1 2 4 6 8 10 12 14 16 18

G
ai

n
(%

)

Clients

STD
50-50
80-20

Figure 7: Mod H2 TPC-C performance gain.

provement, compared to the unmodified HSQLDB and H2
engines respectively, these are still unable to scale. This is
an expected situation, since all TPC-C update transactions
interfere, thus restricting concurrency.

50-50 Workload.
In moderate update workloads, our modified versions of

both HSQL and H2 are able to achieve higher throughput
than the standalone versions. As presented in Figures 6 and
7, these offer up to 20% and 90% performance improvements
over the unmodified HSQL and H2 database engines respec-
tively. Once again, the conflicting nature of the TPC-C
workload has a considerable impact on scalability on both
modified engines.

80-20 and 100-0 Workloads.
The nature of read intensive workloads is favorable to the

proposed modifications, with both modified versions achiev-
ing higher throughput than their unmodified siblings. The
modifications offer an increase in performance of approxi-
mately 50% and 300%, over the unmodified HSQL and H2
engines respectively, for the 80-20 workload (Figures 6 and
7). And an approximately 400% and 550% performance in-
crease over the unmodified HSQL and H2 engines respec-
tively, for the 100% read workload, as presented in Figure 8.

Additionally, read intensive workloads allow both modi-
fied database engines to scale on multicore machines. Above
all, for read-only workloads, we can see that the obtained
results for both modified engines are fairly close to their
aggregate maximum achievable by the same machine, pre-
sented in Figures 8 as HSQLDB(aggr) and H2(aggr), respec-
tively. These workloads also allow the modified versions to
scale near linearly with the number of cores, thus taking ad-
vantage of the computational resources offered by current
multicore systems.

6. RELATED WORK

 0
 100
 200
 300
 400
 500
 600
 700

 1 2 4 6 8 10 12 14 16 18

G
ai

n
(%

)

Clients

Mod HSQLDB
HSQLDB (aggr)

Mod H2
H2 (aggr)

Figure 8: TPC-C performance gain for 100-0 Workload.

While several works have addressed database scalability
on multicores, many approaches follow the path of distribut-
ing the database engine [7, 3, 18, 20, 19]. These works are
complementary to ours, since these rely on replication tech-
niques for reducing contention and improving database per-
formance and scalability.

In Shore [13] and Shore MT [14], the authors also focus
on the sub-component of database engine and their impact
on performance. While isolating database components, the
authors focus on traditional disk based database engines.
Thus, since these systems differ from in-memory databases
most of the proposed solutions are inadequate for such sys-
tems.

In Silo [22], the authors propose the use of concurrent
data structures in conjunction with optimistic concurrency
control to provide scalability. Contrarily to our solution,
Silo requires applications to be re-written to take advantage
of their system, since clients issue single-shot requests to the
database instead of variable length transactions.

To our knowledge this is the first practical performance
study for in-memory database systems that focus on the dif-
ferent subcomponents of the systems and their performance
implications.

7. FINAL REMARKS
In this paper we presented a study on the performance and

scalability of two in-memory DBMS on multicore machines,
HSQLDB [2] and H2 [1].

While IMDBs are expected to provide high performance,
since these do not incur in disk I/O overhead when com-
pared to traditional databases, our tests showed that both
implementations are unable to scale on multicores. We also
investigated the performance impact of the different sub-
components of these systems, and concluded that contention
on the underlying data structures are the main bottleneck
for their lack of scalability.

Additionally we proposed a simple and effective modifica-
tion that allowed both engines to scale on multicore systems.
Our evaluations showed that the modified engines out per-
form their siblings up to 300% to 500% when running the
TPC-C benchmark with read-intensive workloads.

Acknowledgments
This research was partially supported by FCT/MCT projects
PEst-OE/EEI/UI0527/2014 and PTDC/EEI-SCR/1837/2012
and EU FP7 project SyncFree (grant no 609551). João
Soares was partially supported by FCT/MCTES research
grant # SFRH/BD/62306/2009.

8. REFERENCES
[1] H2 database engine, http://www.h2database.com, (2012).

[2] HyperSQLDB, http://hsqldb.org, (2012).

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania: The
multikernel: a new os architecture for scalable multicore
systems. In Proc. SOSP’09 (2009).

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil: A critique of ansi sql isolation levels. In Proc.
SIGMOD’95 (1995).

[5] S. Blanas, Y. Li, and J. M. Patel: Design and evaluation of
main memory hash join algorithms for multi-core cpus. In Proc.
SIGMOD’11, (2011).

[6] L. Camargos, F. Pedone, and M. Wieloch: Sprint: a
middleware for high-performance transaction processing. In
Proc. EuroSys’07 (2007).

[7] E. Cecchet, G. Candea, and A. Ailamaki: Middleware-based
database replication: the gaps between theory and practice. In
Proc. SIGMOD’08 (2008).

[8] C. Chekuri, W. Hasan, and R. Motwani: Scheduling problems
in parallel query optimization. In Proc. PODS’95 (1995).

[9] J. Cieslewicz, K. A. Ross, K. Satsumi, and Y. Ye: Automatic
contention detection and amelioration for data-intensive
operations. In Proc. SIGMOD’10 (2010).

[10] G. Giannikis, G. Alonso, and D. Kossmann: Shareddb: killing
one thousand queries with one stone. In Proc. VLDB’12 (2012).

[11] W.-S. Han and J. Lee: Dependency-aware reordering for
parallelizing query optimization in multi-core cpus: In Proc.
SIGMOD’09 (2009).

[12] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril,
A. Ailamaki, and B. Falsafi: Database servers on chip
multiprocessors: Limitations and opportunities. In CIDR’07
(2007).

[13] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker:
OLTP through the looking glass, and what we found there. In
Proc. SIGMOD’08 (2008).

[14] R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki: A
new look at the roles of spinning and blocking. In Proc.
DaMoN’09 (2009).

[15] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi: H-store: a
high-performance, distributed main memory transaction
processing system. Proc. VLDB’08 (2008).

[16] K. Krikellas, M. Cintra, and S. Viglas: Multithreaded query
execution on multicore processors. Technical report, The
University of Edinburgh School of Informatics, (2009).

[17] K. Papadopoulos, K. Stavrou, and P. Trancoso: HelperCoreDB:
Exploiting multicore technology for databases. In Proc.
PACT’07 (2007).

[18] T.-I. Salomie, I. E. Subasu, J. Giceva, and G. Alonso: Database
engines on multicores, why parallelize when you can distribute?
In Proc. EuroSys’11 (2011).

[19] J. Soares, J. Lourenço, and N. Preguiça: MacroDB: Scaling
database engines on multicores. In Proc. Euro-Par’13 (2013).

[20] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang: A case for
scaling applications to many-core with os clustering. In Proc.
EuroSys’11 (2011).

[21] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland: The end of an architectural era:
(it’s time for a complete rewrite). In Proc. VLDB’07 (2007).

[22] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden: Speedy
transactions in multicore in-memory databases. In Proc.
SOSP’13 (2013).

[23] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann: Predictable performance for unpredictable
workloads. Proc. VLDB’09 (2009).

[24] Y. Ye, K. A. Ross, and N. Vesdapunt: Scalable aggregation on
multicore processors. In Proc. DaMoN’11 (2011).

[25] J. Zhou, J. Cieslewicz, K. A. Ross, and M. Shah: Improving
database performance on simultaneous multithreading
processors. In Proc. VLDB’05 (2005).

