
SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client
Machine

Nuno Preguiça†

joint work with:

Marek Zawirski∗, Annette Bieniusa‡, Sérgio Duarte†, Valter Balegas†, Carlos Baquero§, Marc Shapiro∗
∗Inria & UPMC-LIP6

†NOVA-LINCS/CITI/U. Nova de Lisboa
‡U. Kaiserslautern

§INESC Tec & U. Minho

Abstract—Client-side logic and storage are increasingly used
in web and mobile applications to improve response time and
availability. Current approaches tend to be ad-hoc and poorly
integrated with the server-side logic. We present a principled
approach to integrate client- and server-side storage. We
support both mergeable and strongly consistent transactions
that target either client or server replicas and provide access
to causally-consistent snapshots efficiently. In the presence of
infrastructure faults, a client-assisted failover solution allows
client execution to resume immediately and seamlessly access
consistent snapshots without waiting. We implement this ap-
proach in SwiftCloud, the first transactional system to bring
geo-replication all the way to the client machine.

Example applications show that our programming model is
useful across a range of application areas. Our experimental
evaluation shows that SwiftCloud provides better fault tol-
erance and at the same time can improve both latency and
throughput by up to an order of magnitude, compared to
classical geo-replication techniques.

I. INTRODUCTION

Cloud computing infrastructures support a wide range of

services, from social networks and games to collaborative

spaces and online shops. Cloud platforms improve avail-

ability and latency by geo-replicating data in several data

centers (DCs) across the world [1], [2], [3], [4], [5], [6].

Nevertheless, the closest DC is often still too far away for

an optimal user experience. For instance, round-trip times

to the closest Facebook DC range from several tens to

several hundreds of milliseconds, and several round trips

per operation are often necessary [7]. Furthermore, mobile

clients may be completely disconnected from any DC for an

unpredictable period of minutes, hours or days.

Caching data at client machines can improve latency and

availability for many applications, and even allow for a tem-

porary disconnection. While increasingly used, this approach

often leads to ad-hoc implementations that integrate poorly

with server-side storage and tend to degrade data consistency

guarantees. To address this issue, we present SwiftCloud, the

first system to bring geo-replication all the way to the client

machine and to propose a principled approach to access data

replicas at client machines and cloud servers.

Although extending geo-replication to the client machine

seems natural, it raises two big challenges. The first one

is to provide programming guarantees for applications run-

ning on client machines, at a reasonable cost at scale and

under churn. Recent DC-centric storage systems [5], [6],

[4] provide transactions, and combine support for causal

consistency with mergeable objects [8]. Extending these

guarantees to the clients is problematic for a number of

reasons: standard approaches to support causality in client

nodes require vector clocks entries proportional to the

number of replicas; seamless access to client and server

replicas require careful maintenance of object versions; fast

execution in the client requires asynchronous commit. We

developed protocols that efficiently address these issues

despite failures, by combining a set of novel techniques.

Client-side execution is not always beneficial. For in-

stance, computations that access a lot of data, such as

search or recommendations, or running strongly consistent

transactions, is best done in the DC. SwiftCloud supports

server-side execution, without breaking the guarantees of

client-side in-cache execution.

The second challenge is to maintain these guarantees

when the client-DC connection breaks. Upon reconnection,

possibly to a different DC, the outcome of the client’s in-

flight transactions is unknown, and state of the DC might

miss the causal dependencies of the client. Previous cloud

storage systems either retract consistency guarantees in

similar cases [5], [6], [9], or avoid the issue by waiting for

writes to finish at a quorum of servers [4], which incurs high

latency and may affect availability.

SwiftCloud provides a novel client-assisted failover pro-

tocol that preserves causality cheaply. The insight is that,

in addition to its own updates, a client observes a causally-

consistent view of stable (i.e., stored at multiple servers)

updates from other users. This approach ensures that a client

always observes his previous updates and that it can safely

2014 IEEE 33rd International Symposium on Reliable Distributed Systems Workshops

1060-9857/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDSW.2014.33

30

2014 IEEE 33rd International Symposium on Reliable Distributed Systems Workshops

978-1-4799-7361-3/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDSW.2014.33

30

�������

	
�
�
����

	
�
�
�����

	
�
��
�����

��������

10
V 7
22

���������

	�

��

���������

���������

7
V 11
25

8
V 7
29

��
��

6
V* 7
23
5

 �
������

4
V* 4
12
8

!�����

8
V* 6
29
4

"�����

6
V* 7
24
3

Figure 1. SwiftCloud system structure.

reconnect to other DC, as it can replay its own updates and

other observed updates being stable, are already in other

DCs.

Experimental evaluation shows that under sufficient ac-

cess locality, SwiftCloud enjoys order-of-magnitude im-

provements in both response time and throughput over the

classical approach. This is because, not only reads (if they

hit in the cache), but also updates commit at the client side

without delay; servers only need to store and forward up-

dates asynchronously. Although our fault tolerance approach

delays propagation, the proportion of stale reads remains

under 1%.

In the remaining of this paper, we briefly overview the

key solutions developed in the context of SwiftCloud [10].

II. SYSTEM OVERVIEW

SwiftCloud is a data storage systems for cloud platforms

that spans both client nodes and data center servers (DCs),

as illustrated in Figure 1. The core of the system consists

of a set of data centers (DCs) that replicate every object.

At the periphery, applications running in client nodes access

the system through a local module called scout. A scout

caches a subset of the objects. If the appropriate objects

are in cache, responsiveness is improved and a client node

supports disconnected operation.

SwiftCloud provides a straightforward transactional key-

object API. An application executes transactions by interac-

tively executing sequences of reads and updates, concluded

by either a commit or rollback.

Our transactional model, Transactional Causal+ Consis-

tency, offers the following guarantees: every transaction

reads a causally consistent snapshot; updates of a transac-

tion are atomic (all-or-nothing) and isolated (no concurrent

transaction observes an intermediate state); and concurrently

committed updates do not conflict.

This transactional model allows different clients to ob-

serve the same set of concurrent updates applied in different

orders, which poses a risk of yielding different operation

outcomes on different replicas or at different times. We ad-

dress this problem by disallowing non-commutative (order-

dependent) concurrent updates. Practically, we enforce this

property with two different types of transactions: Mergeable
and Classical, non-mergeable transaction, akin to the model

of Walter [4] or Red-Blue [9]:

Mergeable transactions commute with each other and

with non-mergeable transactions, which allows to execute

them immediately in the cache, commit asynchronously in

the background, and remain available in failure scenarios.

Mergeable transaction are either read-only transaction or

update transactions that modify Conflict-free Replicated

Data Types (CRDT)[8], [11]. CRDTs encapsulate the logic

to merge concurrent updates deterministically, independently

of the order of execution of updates.

Classical transactions provide the traditional strongly-

consistent transaction model, in which non-commuting con-

current updates conflict (as determined by an oracle on pairs

of updates) and cannot both commit. These transactions

execute completely in the data centers.

III. ALGORITHMS FOR MERGEABLE TRANSACTIONS

We now present the key ideas of the algorithms for

executing mergeable transactions in a failure-free case. In

the next section we address the problems posed by failures.

An application issues a mergeable transaction iteratively

through the scout. Reads are served from the local scout;

on a cache miss, the scout fetches the data from the DC

it is connected to. Updates execute in a local copy. When

a mergeable transaction terminates, it is locally committed

and updates are applied to the scout cache. Updates are

also propagated to a data center (DC) for being globally

committed. The DC eventually propagates the effects of

transactions to other DCs and other scouts scouts as needed.

Atomicity and Isolation: For supporting atomicity and

isolation, a transaction reads from a database snapshot. Each

transaction is assigned a DC timestamp by the DC that

received it from the client. Each DC maintains a vector clock

with the summary of all transactions that have been executed

in that DC, which is updated whenever a transaction com-

pletes its execution in that DC. This vector has as n entries,

with n the number of DCs. Each scout maintains a vector

clock with the version of the objects in the local cache.

When a transaction starts in the client, the current version

of the cache is selected as the transaction snapshot. If the

transaction accesses an object that is not present in the cache,

the appropriate version is fetched from the DC - to this end,

DCs maintain recent versions of each object.

3131

Read your writes: When a transaction commits in the

client, the local cache is updated. The following transactions

access a snapshot that includes these locally committed

transactions. To this end, each transaction executed in the

client is assigned a scout timestamp. The vector that sum-

marizes the transactions reflected in the local cache has n+1
entries, with the additional entry being used to summarize

locally submitted transactions. This approach guarantees

that a client always reads a state that reflects his previous

transactions.

Causality: The system ensures the invariant that every

node (DC or scout) maintains a causally-consistent set of

object versions. To this end, a transaction only executes in

a DC after its dependencies are satisfied - the dependencies

of a transaction, summarized in the transaction snapshot, are

propagated both from the client to the initial DC and from

one DC to other DCs.

When a scout caches some object, the DC it is connected

to becomes responsible of notifying it with updates to those

cached objects. SwiftCloud includes a notification subsystem

that guarantees that updates from a committed transaction

are propagated atomically and respecting causality. As a

result, the cache in the scout is also causally consistent.

IV. FAULT-TOLERANT SESSION AND DURABILITY

We discuss now how SwiftCloud handles network, DC

and client faults, focusing on client-side mergeable transac-

tions. When a scout loses communication with its current

DC, due to network or DC failure, the scout may need to

switch over to a different DC. The latter’s state is likely to be

different, and it might have not processed some transactions

observed or indirectly observed (via transitive causality) by

the scout. In this case, ensuring that the clients’ execution

satisfies the consistency model and the system remains live

is more complex. As we will see, this also creates problems

with durability and exactly-once execution.

A. Causal dependency issue

When a scout switches to a different DC, the state of the

new DC may be unsafe, because some of the scout’s causal

dependencies are missing. Some geo-replication systems

avoid creating dangling causal dependencies by making

synchronous writes to multiple data centers, at the cost of

high update latency [1]. Others remain asynchronous or rely

on a single DC, but after failover clients are either blocked

or they violate causal consistency [5], [6], [9]. The former

systems trade consistency for latency, the latter trade latency

for consistency or availability.

An alternative approach would be to store the dependen-

cies on the scout. However, since causal dependencies are

transitive, this might include a large part of the causal history

and a substantial part of the database.

Our approach is to make scouts co-responsible for the

recovery of missing session causal dependencies at the

new DC. Since, as explained earlier, a scout cannot keep

track of all transitive dependencies, we restrict the set of

dependencies. We define a transaction to be K-durable [12]

at a DC, if it is known to be durable in at least K DCs,

where K is a configurable threshold. Our protocols let a

scout observe only the union of: (i) its own updates, in order

to ensure the “read-your-writes” session guarantee [13], and

(ii) the K-durable updates made by other scouts, to ensure

other session guarantees, hence causal consistency. In other

words, the client depends only on updates that the scout

itself can send to the new DC, or on ones that are likely

to be found in a new DC. When failing over to a new

DC, the scout helps out by checking whether the new DC

has received its recent updates, and if not, by repeating the

commit protocol with the new DC.

SwiftCloud prefers to serve a slightly old but K-durable

version, instead of a more recent but more risky version.

Instead of the consistency and availability vs. latency trade-

off of previous systems, SwiftCloud trades availability for

staleness.

B. Durability and exactly-once execution issue

A scout sends each transaction to its DC to be globally-

committed. The DC assigns a DC timestamp to the trans-

action, and eventually transmits it to every replica. If the

scout does not receive an acknowledgment, it must retry the

global-commit, either with the same or with a different DC.

However, the outcome of the initial global-commit remains

unknown. If it happens that the global commit succeeded

with the first DC, and the second DC assigns a second DC

timestamp, the danger is that the transaction’s effects could

be applied twice under the two identities.

For some data types, this is not a problem, because their

updates are idempotent, for instance put(key,value) in

a last-writer-wins map. For other mergeable data types, how-

ever, this is not true: think of executing increment(10)
on a counter. Systems restricted to idempotent updates

can be much simpler [6], but in order to support general

mergeable objects with rich merge semantics, SwiftCloud

must ensure exactly-once execution.

Our approach separates the concerns of tracking causality

and of uniqueness, following by the insight of [14]. Recall

that a transaction has both a scout timestamp and a DC

timestamp. The scout timestamp identifies a transaction

uniquely, whereas the DC timestamp is used when a sum-

mary of a set of transactions is needed. Whenever a scout

globally-commits a transaction at a DC, and the DC does

not have a record of this transaction already, the DC assigns

it a new DC timestamp. This approach makes the system

available, but may assign several DC timestamp aliases for

the same transaction. All alias DC timestamps are equivalent

in the sense that, if updates of T ′ depend on T , then T ′

comes after T in the causality order, no matter what DC

timestamp T ′ uses to refer to T .

3232

When a DC processes a commit record for an already-

known transaction with a different DC timestamp, it adds

the alias DC timestamp to its commit record on durable

storage.

To provide a reliable test whether a transaction is already

known, each DC maintains durably a map of the last scout

timestamp received from each scout. Thanks to causal con-

sistency, this value is monotonically non-decreasing. Thus,

a DC knows that a transaction being received for global-

commit from a scout has already been processed if the

recorded value for that scout is greater or equal to the scout

timestamp of the received transaction.

V. FINAL REMARKS

We overview the design of SwiftCloud, the first system

that brings geo-replication to the client machine, providing a

principled approach for using client and data center replicas.

SwiftCloud allows applications to run transactions in the

client machine, for common operations that access a limited

set of objects, or in the DC, for transactions that require

strong consistency or accessing a large number of objects.

Our evaluation of the system [10] shows that the latency

and throughput benefit can be huge when compared with

traditional cloud deployments for scenarios that exhibit good

locality, a property verified in real workloads [15].

SwiftCloud also proposes a novel client-assisted failover

mechanism that trades latency by a small increase in stale-

ness. Our evaluation shows that our approach helps reducing

latency while increasing stale reads by less than 1%.

ACKNOWLEDGMENT

This research was supported in part by EU FP7

project SyncFreee (grant agreement no 609551), ANR

project ConcoRDanT (ANR-10-BLAN 0208), by the

Google Europe Fellowship in Distributed Computing

awarded to Marek Zawirski, and by Portuguese FCT/MCT

projects PEst-OE/EEI/UI0527/2014 and PTDC/EEI-

SCR/1837/2012 and Phd scholarship awarded to Valter

Balegas (SFRH/BD/87540/2012).

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in OSDI. Hollywood, CA, USA:
Usenix, Oct. 2012, pp. 251–264.

[2] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi, “Calvin: fast distributed transactions for
partitioned database systems,” in SIGMOD, Scottsdale, AZ,
USA, May 2012, pp. 1–12.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage for
interactive services,” in CIDR, Asilomar, CA, USA, Jan.
2011, pp. 229–240.

[4] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional
storage for geo-replicated systems,” in SOSP. Cascais,
Portugal: Assoc. for Comp. Mach., Oct. 2011, pp. 385–400.

[5] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen, “Don’t settle for eventual: scalable causal consistency for
wide-area storage with COPS,” in SOSP. Cascais, Portugal:
Assoc. for Comp. Mach., Oct. 2011, pp. 401–416.

[6] ——, “Stronger semantics for low-latency geo-replicated
storage,” in NSDI, Lombard, IL, USA, Apr. 2013, pp.
313–328.

[7] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and
B. Y. Zhao, “Exploiting locality of interest in online social
networks.” Philadelphia, PA, USA: Assoc. for Comp.
Mach., Dec. 2010, pp. 25:1–25:12.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in SSS, ser. LNCS,
X. Défago, F. Petit, and V. Villain, Eds., vol. 6976.
Grenoble, France: Springer Verlag, Oct. 2011, pp. 386–400.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues, “Making geo-replicated systems fast as possi-
ble, consistent when necessary,” in OSDI, Hollywood, CA,
USA, Oct. 2012, pp. 265–278.

[10] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça, “SwiftCloud: Fault-tolerant
geo-replication integrated all the way to the client machine,”
INRIA, Rapp. Rech. RR-8347, Aug. 2013.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Convergent and commutative replicated data types,” Bulletin
of the European Association for Theoretical Computer
Science (EATCS), no. 104, pp. 67–88, Jun. 2011.

[12] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,”
TOCS, vol. 29, no. 4, pp. 12:1–12:38, Dec. 2011. [Online].
Available: http://doi.acm.org/10.1145/2063509.2063512

[13] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch, “Session guarantees for weakly
consistent replicated data,” in PDIS, Austin, Texas, USA, Sep.
1994, pp. 140–149.

[14] P. S. Almeida, C. Baquero, R. Gonçalves, N. M. Preguiça, and
V. Fonte, “Scalable and accurate causality tracking for even-
tually consistent stores,” in Proc. 14th Int. Conf. Distributed
Applications and Interoperable Systems (LNCS 8460), 2014,
pp. 67–81.

[15] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida,
“Characterizing user behavior in online social networks,”
in Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, ser. IMC ’09, 2009, pp.
49–62.

3333

