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Abstract

A Commutative Replicated Data Type (CRDT) is one
where all concurrent operations commute. The replicas of a
CRDT converge automatically, without complex concurrency
control. This paper describes Treedoc, a novel CRDT design
for cooperative text editing. An essential property is that
the identifiers of Treedoc atoms are selected from a dense
space. We discuss practical alternatives for implementing
the identifier space based on an extended binary tree. We
also discuss storage alternatives for data and meta-data,
and mechanisms for compacting the tree. In the best case,
Treedoc incurs no overhead with respect to a linear text
buffer. We validate the results with traces from existing edit
histories.

1. Introduction

To share information, users located at several sites may in-
dependently update a common object, e.g., a text document.
Each user operates on a separate replica (i.e., local copy)
of the document. A well-studied example is co-operatively
editing a shared text.

As users make local modifications, replicas diverge from
one another. Operations initiated on some site propagate to
other sites and are integrated or replayed there. Eventually,
every site executes every action.

Despite this, replicas might not converge if they execute
operations in different orders. In order to guarantee conver-
gence, two basic approaches can be found in the literature.
First, serializing, i.e., enforcing a total order of operations
before execution [1]. The extra serialization delay is usually
unsuitable for cooperative editing systems. Second, oper-
ational transformation, i.e., modifying the parameters of
operations to make them run in different orders [2]. This
approach is complex and error-prone, as evidenced by the
errors found in published algorithms [3].

We suggest a different approach: to design replicated data
types such that concurrent operations commute with one
another. Let us call such a type a commutative replicated
data type or CRDT. If operations replay in happened-before
order, replicas of a CRDT converge automatically, without

complex concurrency control.1 The interested reader will
find a proof of this property in our technical report [4].

Hereafter, we study a CRDT for cooperative editing, i.e.,
a shared sequential buffer. Each buffer entry is identified by
a unique identifier. To provide the CRDT property requires
that identifiers be unique, stable, ordered (in the same order
as the buffer), and dense. This means that it is always
possible to create a new identifier between two existing ones.
The challenge studied in this paper is to keep identifiers short
and to minimize overhead.

Internally, we use an extended binary tree for identi-
fication and storage, hence the name Treedoc. We study
two identification alternatives: one is compact but uses
tombstones to keep track of deleted entries; the other allows
deleted entries to be discarded immediately. As tree unbal-
ance causes overhead, we suggest optimizations to avoid
unbalance.

Furthermore, we propose a compaction mechanism that
removes storage overhead and shortens the identifiers within
“cold” regions of the document. In the best case, a com-
pacted Treedoc reduces to a sequential array, with zero
overhead.

We validate our design with a benchmarking study, based
on traces from existing editing histories. We conclude that
the costs of Treedoc are reasonable, and better than compet-
ing CRDTs.

The contributions of this paper are the following:
• We propose the CRDT method for designing shared

replicated data types, ensuring convergence without
complex concurrency control. We illustrate the CDRT
method with a useful, concrete example: a shared
sequential edit buffer. We identify the requirements for
the edit-buffer, in particular, a dense identifier space.

• We propose a practical and efficient implementation of
a dense identifier space, based on an extended binary
tree.

• We propose a number of optimizations that compound
identifier and storage overhead.

• We propose a distributed compaction mechanism that
minimizes identifier size and removes storage overhead.

1. Our happened-before and concurrency relations are identical to the
formal definition of Lamport [1].
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The remainder of this paper proceeds as follows. Section 2
describes the generic shared buffer data type. Section 3
present Treedoc, a practical implementation of the previous
abstraction. Optimizations to the basic design are presented
in Section 4. Section 5 presents an evaluation of Treedoc.
Section 6 compares with previous work. Section 7 con-
cludes.

2. Requirements

In this section we consider the requirements and interface
of a CRDT data type for concurrent editing, independently
of implementation. Consider a shared, replicated document,
consisting of a linear sequence of elements called atoms. An
atom may be a character or some other non-editable element,
e.g., a graphics file inserted inside the document [5].

2.1. Unique position identifiers

Each atom has an associated unique position identifier
(PosID), with the following properties: (i) Each atom in the
buffer has an identifier. (ii) No two different atoms have
equal identifiers. (iii) The identifier of a given atom remains
constant for the whole lifetime of the document. (iv) There is
a total order of identifiers, noted <, consistent with the order
of atoms in the buffer. (v) The identifier space is dense: given
any identifiers P and F , an identifier between P and F can
be found. Formally: ∀P, F : P < F ⇒ ∃N : P < N < F .

Later in this paper, we will relax requirements ii to allow
recycling unused identifiers, and iii to allow non-ambiguous
renaming.

A dense identifier space is infinite. We define an identifier
U to be used if the document contains an atom identified
by U , and unused otherwise.

To insert an atom between positions P and F requires
allocating a fresh identifier N , i.e., a previously-unused one,
with P < N < F . The density property ensures this is
always possible.

Rational or real numbers are dense, but they would require
infinite precision, which is not practical. In Section 3 we will
present a practical alternative, based on binary trees.

2.2. State and Operations

We define an abstract atom buffer data type whose state
T is a set of (atom,PosID) couples, where PosIDs are
unique. The contents of state T is the sequence of all atoms
in T ordered by PosID .

Each user can maintain a replica of the data type and
modify it locally by initiating one of the following edit
operations:

• insert(PosIDn,newatom), where PosIDn is a fresh
and unique identifier, inserts atom newatom into the
document state.

• delete(PosIDn) removes the atom with PosID PosIDn

from the document state. In the initiator’s state, there
must be an atom with PosID PosIDn.

Assuming PosIDs satisfy the requirements of Section 2.1,
this design ensures that any pair of concurrent operations
commute.

Indeed, two operations that refer to different PosIDs are
independent. As their effect on the data type is independent
of execution order, they commute. The requirement that
PosIDn be unique ensures that two concurrent inserts
commute. Consider now concurrent operations that refer to
the same unique identifier. An insert must happen-before a
delete with the same identifier, they can never be concur-
rent. Finally, the delete operation is idempotent; therefore
concurrent deletes of the same PosID have the same effect
in whatever order. This shows that the abstract buffer is a
CRDT.

Multiple users may edit a document concurrently. Updates
received from remote sites may be replayed as soon as
received, as long as happened-before order is satisfied. Since
the abstract document type described here is a CRDT,
convergence is guaranteed even though operations execute
in different orders at the different replicas.

3. Treedoc

In this section we present a practical implementation of
the abstraction, using a tree structure for atom identifiers.

In the following examples, we take an atom to be a
single character for illustrative purposes. (The evaluation of
Section 4 uses whole lines for atoms.)

3.1. Paths

In order to satisfy the density requirement of Section 2.1
in an efficient way, the basic idea is to use paths in
a binary tree. The total order of identifiers is given by
walking the tree in infix order. For example, Figure 1 is
one possible representation of a document containing the
characters "abcdef".

The figure shows data stored as nodes of the identification
tree. This is only one possible implementation. Alternatively,
storage may be decoupled from identification; for instance,
as a set of of (atom,PosID) pairs. In practice, an implemen-
tation can choose whichever is most efficient dynamically.
Later in this paper we will show how to switch between tree
and array storage in order to avoid overhead.

This binary tree identification structure is insufficient for
concurrent edits, as users might concurrently insert two
different atoms at the same position. To address this issue,
we extend the nodes of basic binary tree, to contain any
number of internal mini-nodes. A node containing mini-
nodes will be called a major node, or just node when there

396

Authorized licensed use limited to: UNIVERSIDADE NOVA DE LISBOA. Downloaded on July 15,2010 at 14:33:06 UTC from IEEE Xplore.  Restrictions apply. 



0 

0 
0 

1 

1 

c 

a 

b 

d 

e 

f 

 

 Figure 1. Identifiers in a shared text buffer, single-user
version
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Figure 2. Identifiers in a shared text buffer, multi-user
version of Figure 2

is no ambiguity. Figure 4 (node 100) illustrates a major node
with mini-nodes.

Inside a major node, mini-nodes are identified by a
disambiguator. Disambiguators must be unique and ordered.
(Section3.3 discusses alternatives for generating disambigua-
tors.)

Paths (PosIDs) include a disambiguator only when neces-
sary, i.e., (i) at the last element of the path; or (ii) whenever
the path follows a child of a mini-node explicitly. A path
element without a disambiguator refers to the children of
the corresponding major node.

The path to the root is the empty bitstring ε; the path
concatenation operator is noted �. We note [b1 . . . bn] for
b1 � . . .� bn when there is no ambiguity (we always omit
ε when representing paths).

Figure 2 presents the example of Figure 1 with the
extended tree structure. Here, user A with disambiguator dA
has inserted atom a; user B with disambiguator dB inserted
atom b; and so on.

The order on identifiers is defined by infix-order walk
of the whole tree. A major node is ordered by infix-order
walk: the major node’s left child is before any mini-node;
mini-nodes are ordered by disambiguator; and mini-nodes
are before the major node’s right child.

Formally, id1 < id2, iff:
• id1 = c1 � . . . � cn is a prefix of id2 = c1 � . . . �
cn � j1 � . . . � jm and j1 = 1 ∨ j1 = (1 : d),∀d, or

• id2 = c1 � . . . � cn is a prefix of id1 = c1 � . . . �
cn � i1 � . . . � im and i1 = 0 ∨ i1 = (0 : d),∀d, or

• id1 = c1 � . . . � cn � i1 � . . . � in has a common
prefix with id2 = c1 � . . . � cn � j1 � . . . � jm and
i1 < j1.
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Figure 3. Identifiers after concurrent inserts

Given i1 = pi ∈ {0, 1} and j1 = pj ∈ {0, 1}, we say
that i1 < j1, iff: pi < pj .
Given i1 = (pi : di) and j1 = (pj : dj), we say that
i1 < j1, iff: pi < pj ∨ (pi = pj ∧ di < dj).
Given i1 = 0 and j1 = (pj : dj), we say that i1 < j1.
Given i1 = (pi : di) and j1 = 1, we say that i1 < j1.

We define the ancestry of a node. Node u is the (direct)
parent of node v, noted u/v, iff id(v) = id(u)�p∨id(v) =
id(u)� (p : d),∀p, d; equivalently, v is a (direct) child of u.
Node u is an ancestor of v (or, equivalently, v is a descendant
of u), noted u/+v, if u is a parent of v, or recursively a
parent of an ancestor of v (i.e., a grand-parent, or great-
grand-parent, etc.).

Mini-node u is a mini-sibling of v, noted
MiniSibling(u, v), if they are mini-nodes of the same
major node.

3.2. Generating fresh PosIDs for insert

When inserting a new atom, we will create a new PosID
by adding a new node in the tree of unique identifiers. When
inserting between mini-siblings of a major node, a direct
descendant of the mini-node is created. Otherwise, a child
of a major node is created.

Algorithm 1 presents a simple approach for generating a
fresh new PosID for inserting between atoms with PosIDs
PosIDp < PosIDf . Without loss of generality, we assume
that in the shared buffer there is no used PosIDm such that
PosIDp < PosIDm < PosIDf . The algorithm allocates
a fresh identifier, by creating a new child to the right of
PosIDp or to the left of PosIDf , depending on which has
no descendant.

Let us consider again the example of Figure 2. When one
user inserts Y between c and d, the PosID of Y will be
[10(0 : dY )] (using rule in line 4 - PosIDc is an ancestor
of PosIDd, thus PosIDd has no left child). Thereafter, when
inserting Z between Y and d, the new PosID will be [100(1 :
dZ )] (using rule in line 5 - PosIDY is a descendant of

397

Authorized licensed use limited to: UNIVERSIDADE NOVA DE LISBOA. Downloaded on July 15,2010 at 14:33:06 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 New unique identifier for insert
1: function newPosID (PosIDp,PosIDf )
2: // d: new disambiguator.
3: Require: PosIDp < PosIDf∧ 6 ∃ atom x such that PosIDp < PosIDx < PosIDf

4: if PosIDp/
+PosIDf then Let PosIDf = c1 � . . .� (pn : un); return c1 � . . .� pn � (0 : d)

5: else if PosIDf/
+PosIDp then Let PosIDp = c1 � . . .� (pn : un); return c1 � . . .� pn � (1 : d)

6: else if MiniSibling(PosIDp,PosIDf ) ∨ ∃PosIDm > PosIDp : MiniSibling(PosIDp,PosIDm) ∧ PosIDm/
+PosIDf then return PosIDp � (1 : d)

7: else Let PosIDp = c1 � . . .� (pn : un); return c1 � . . .� pn � (1 : d)
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Figure 4. Identifiers after inserting atom between mini-
siblings

PosIDd, thus PosIDY has no right child). If concurrently
other user inserts atom W between c and d, it also creates
a left child [10(0 : dW )] under major node containing d.
This leads to a major nodes containing two mini-nodes, as
it is illustrated in Figure 3 (assuming dW < dY )

If, subsequently, some user wants to insert X between W
and Y, this creates a child under mini-node W, where id(X)
=[10(0 : dW )(1 : dX )] (rule in line 6, where PosID nodes
are siblings). This is illustrated in Figure 4.

3.3. Disambiguators

Several alternatives are possible for disambiguators. Here,
we discuss two.

3.3.1. Unique disambiguators (UDIS). A disambiguator
may be represented as a (counter , siteID) pair, where
siteID is a globally-unique site identifier (e.g., its MAC
address), and counter is a per-site persistent counter. Such
disambiguators are ordered as follows: (c1, s1) < (c2, s2),
iff: c1 < c2 ∨ (c1 = c2 ∧ s1 < s2). This approach ensures
that every disambiguator is unique; we note this approach
UDIS.

With UDIS, a leaf mini-node can be discarded as soon
as it is deleted. When a non-leaf mini-node is deleted, its

atom may be discarded immediately, but the node itself must
be kept. However, if all its descendants become deleted,
recursively this node is discarded too. If all the mini-nodes
of a major node are deleted, and all its descendants, then the
major node is discarded. Conversely, the replay version of
insert may find that ancestors of the new node have been
discarded concurrently, and must re-create empty nodes to
replace them.

3.3.2. Site disambiguators (SDIS). A simpler alternative
for disambiguators, noted SDIS, is to use a site identifier,
with no counter.

Furthermore, we consider two alternatives for site iden-
tifiers. (1) MAC addresses can be used, as above. Or, (2)
in a system with known membership, site identifiers can be
more compact: each site is assigned a short integer for the
duration of its membership.

SDIS has lower overhead than UDIS, but is not sufficient
to avoid having two atoms with the same PosID. Consider
for instance the following scenario. Site A inserts an atom
with PosID a. After this, site B inserts an atom a � 1.
Concurrently, site C deletes a; site A replays the delete.
If node a is discarded, A could again insert an atom with
PosID a.

To avoid this problem, a delete does not discard the node.
It does discard the node’s atom, and marks the node as a
tombstone. Later in this paper, we will study approaches to
garbage-collect such tombstones.

4. Optimizations

The approach presented so far has some limitations that
we address in this section.

4.1. Keeping the tree balanced

The simple algorithm for generating new PosIDs for new
atoms presented in section 3.2 makes no effort to keepi the
tree balanced. In some cases, for instance if a user always
appends to the end, the paths will grow with each new atom.
To address this problem, the key observation is that, when
generating a new PosID, it is not necessary to generate an
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Figure 5. Identifiers for balanced tree

immediate descendant of an existing node. Thus, we propose
an alternative heuristic that will grow the height, h, of the
tree by dlog2(h)e+1.2 The new PosID will be the smallest of
PosIDs in the grown tree. Thereafter, new PosIDs would be
generated by using empty position in the tree of identifiers.

From the example in Figure 2, when inserting atom g in
the end of the document, the tree would be grown by three
levels, leading to the new PosID [1110(0 : d)]. Thereafter,
the following atoms would consecutively use the PosIDs for
the empty nodes in the sub-tree, as numbered in Figure 5.

4.2. Minimizing structure overhead

The proposed approach imposes overhead for maintaining
PosIDs for each atom. When implementing Treedoc as a list
of (atom,PosID) couples, for each atom it is necessary to
maintain a PosID . When implementing Treedoc as a tree,
the PosID is the path in the tree being only necessary to
store one disambiguator for each atom. However, keeping
the tree structure imposes additional overhead that can be
even more costly, depending on how the tree is maintained.

This problem can be mitigated relying on garbage-
collection mechanisms. For instance, disambiguators could
be removed once it is clear they are not necessary, i.e., that
there is a single mini-node (note that sibling mini-node only
occur as a consequence of concurrent inserts). Deleted nodes
can be garbage-collected even when using site identifiers as
soon as it is clear that every site has already deleted the
atom and no operation refereing to it will be issued.

In this subsection, we propose a more radical solution:
structural clean-up operations that switch between the ef-
ficient sequential buffer representation with no additional
metadata, and the more expensive edit-oriented representa-
tion with PosIDs. The specification of these operations is as
follows.

2. When inserting a known sequence of atoms, we could just create the
smallest sub-tree that could store all new atoms.

Algorithm 2 explode and flatten
1: procedure explode (atomarray) // atomarray : se-

quence of atoms
2: depth = dlog2(length(atomarray) + 1)e
3: T = Allocate a complete binary tree of depth depth
4: Assign identifiers for T nodes in infix order to the

atoms of atomarray
5: Remove any remaining nodes
6: Return T

• explode(atomarray). Returns a tree-storage Treedoc
whose contents is identical to atomarray .

• flatten(path) Returns an atom array whose contents is
identical to the sub-tree rooted at path .

The initiator and replay versions of these operations must
have identical effect. In particular, explode must return
exactly the same structure at all sites.

Observing that the capacity of a complete binary tree
with depth levels is 2depth − 1, we suggest for explode the
simple implementation of Algorithm 2. Observe that after
explode, a path of an atom is a simple bitstring, with no
disambiguators.

These internal clean-up operations do not genuinely com-
mute with edit operations. We address this issue next.

4.2.1. Commuting clean-up with edits. A first observation
is that the explode operation is just a mapping of an array to
a canonical tree representation. Array storage is converted
to tree storage when necessary, e.g., when applying a path
to an array. Therefore we can eliminate explicit explode
operations, and commutativity is not an issue.

A second observation is that flatten is not an essential
operation. When flatten is concurrent with an edit operation
in the same subtree, then the edit should have higher prece-
dence. More precisely, a conflicting edit causes a flatten to
abort, leaving no side-effects (and causing no harm).

Therefore flatten executes a distributed commitment pro-
cedure. When executing flatten at some site, if this site
observes the execution of a insert , delete or flatten within
the sub-tree to be flattened, that site votes “No” to com-
mitment, otherwise it votes “Yes.” The operation succeeds
only if all sites vote “Yes,” otherwise it has no effect. Any
distributed commitment protocol from the literature will
do, for instance two-phase commit, three-phase commit, or
Gray and Lamport’s fault-tolerant protocol [6]. (We have
designed a protocol that allows flatten to succeed even when
some replicas are disconnected and to allow users to make
contributions while disconnected, but this is out of scope of
the current paper.)

We may now envisage a mixed tree, where parts that are
currently being edited are in Treedoc representation, and
parts that are currently quiescent are represented as arrays,
with no associated metadata.
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PosID Nodes On-disk overhead
Document Flatten Max Avg Number bytes Mem ovhd % non-Tomb bytes % doc

Distributed Computing no 237 76.09 2766 72,916 3.70 6.18 2405 12.21
(wiki, 171 paras, 1 167 27.73 816 21,216 1.08 20.96

19,686 bytes, 870 revisions) 2 236 74.48 2757 71,682 3.64 6.20
IBM POWER no 190 82.52 1112 28,912 1.17 16.55 914 3.71

(wiki, 184 paras 1 14 9.32 338 8,788 0.36 54.44
24,651 bytes, 401 revisions) 2 190 82.52 1112 28,912 1.17 16.55

Grey Owl no 113 51.61 866 22,516 1.82 12.70 760 6.13
(wiki, 110 paras, 1 86 32.20 416 10,816 0.87 26.44

12,388 bytes, 242 revisions) 2 108 50.46 798 20,748 1.67 13.78
acf.tex no 170 66.10 1853 48,178 3.43 17.92 1527 10.86

(latex, 332 lines, 2 20 7.86 461 11,986 0.85 72.02
14,048 bytes, 51 revisions) 8 170 67.70 1800 46,800 3.33 18.44

algorithms.tex no 91 27.98 1973 51,298 3.38 20.07 1581 10.41
(latex, 396 lines, 2 20 7.87 567 14,742 0.97 72.02

15,186 bytes, 58 revisions) 8 170 67.70 1783 46,358 3.05 18.44
propagation.tex no 245 72.11 2484 64,584 2.91 19.36 1917 8.64

(latex, 481 lines, 2 12 7.39 495 12,870 0.58 97.17
22,170 bytes, 68 revisions) 8 245 90.19 1538 39,988 1.80 31.27

Table 1. Measurements. Document: name, type, size in paragraphs or lines, size in bytes, revisions. Flatten: no
flattening, or number of revisions between flatten heuristics. PosID: maximum and average PosID length (in bits).
Nodes: number, memory occupied (in bytes), overhead relative to document size, percentage of non-tombstone.

On-disk overhead: absolute, relative to document size. The numbers relate to the final state of each document (i.e.,
after all revisions are applied). Empty cells were not measured.

5. Evaluation

In this section, we evaluate experimentally the behaviour
of Treedoc. Our goal is to measure the overheads of Treedoc,
and to evaluate the effects of some design alternatives:
granularity of atoms, disambiguator design (UDIS vs. SDIS),
and flatten heuristics.

To ensure a realistic evaluation, we replay co-operative
edit sessions extracted from existing repositories. We anal-
ysed a large number of different workloads: edits of C++
source files from the open-source KDE project SVN repos-
itory; of Java and Latex source files from a private SVN
repository; and of Wikipedia pages. However, we only
present a small number of representative results. The char-
acteristics of the documents studied here are summarised in
Table 2.

Our experiments start by creating an initial Treedoc docu-
ment containing the text of the initial version in the version
control repository. Thereafter, for each revision, we compute
the differences from the previous version, and execute an
equivalent sequence of insert and delete operations to the
Treedoc document.

Modifying an atom is modeled as deleting the original and
inserting the modified atom. This results in an unexpectedly
large number of deletes. This effect is especially noticeable
for Wikipedia documents, since the atom granularity is
large. Furthermore Wikipedia documents suffer vandalism
episodes, in which large portions of text are repeatedly
defaced, then restored by an administrator. This further

Table 2. Summary of documents studied

Number of Number of lines
revisions initial final

average 312 103 279
less active 51 99 332
most active 870 9 171

Table 3. Fraction of tombstones (LaTeX documents)

no balancing balancing
no-flatten 77.5% 77.5%
flatten-8 67.8% 62.9%
flatten-2 15.8% 14.2%

increases the amount of deleted information.
We use 6 bytes for site identifiers in both UDIS and SDIS,

and 4 bytes for the UDIS counter. The granularity of an atom
for Latex, C++ and Java files is a text line, usually under 80
characters; the Wikipedia granularity is a whole paragraph.

5.1. Garbage-collection and balancing efficiency

Our implementation of flatten heuristically attempts to
identify “cold” areas of the document, i.e., subtrees that have
not been recently modified. We tested different scenarios:
without flattening, or selecting flattening some cold area
every 1, 2 or 8 revisions. We evaluate its effectiveness in
the SDIS variant. The “% non-Tomb” column of Table 1
shows the fraction of non-tombstones over the total nodes.
When flattening is not used, up to 95% of nodes are tomb-

400

Authorized licensed use limited to: UNIVERSIDADE NOVA DE LISBOA. Downloaded on July 15,2010 at 14:33:06 UTC from IEEE Xplore.  Restrictions apply. 



 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50

N
o
d
e
s

Revision number

Number of nodes

Number of non-T nodes

Figure 6. Variation of number of nodes for acf.tex

Table 4. SDIS vs. UDIS (LaTeX documents)

no balancing balancing
SDIS UDIS SDIS UDIS

no-flatten overhead/atom 570 140 377 107
avg PosID size 108 140 74 107

flatten-8 overhead/atom 459 121 197 67
avg PosID size 103 121 55 67

flatten-2 overhead/atom 34 24 32 25
avg PosID size 27 24 24 25

stones. Flattening effectively garbage-collects tombstones,
and this process generally improves when flattening more
aggressively.

Figure 6 shows the evolution of the total number of
nodes, as well as the number of non-tombstone nodes, over
the lifetime of an example document (acf.tex in this case).
Flattening appears as drastic reduction to the total number
of nodes (upper curve). In some cases flattening succeeds
in reducing the total number of nodes by 50%. However,
this is lower than our expectations; we believe the heuristic
choice of the sub-tree to flatten is to blame.

We also study a variant of the balancing strategy of
Section 4.1, where we group all the consecutive inserts of
a given revision into a minimal sub-tree. Table 3 shows
some results combining our balancing heuristic, coupled
with flattening, for LaTeX documents (results are similar
for the other types of documents). It shows that balancing is
effective and augments the effect of flattening. It confirms
that, in the common case, it is best to flatten aggressively.

5.2. Costs

We distinguish several costs: CPU, in-memory storage,
on-disk storage, and network. While we have not measured
CPU time precisely, we know it to be negligible in the
absence of flattening, as our simulations run very quickly,
e.g., less than 1.44 seconds for the “Distributed Computing”
Wikipedia entry.

When maintaining the document as a sequence of

(atom,PosID) couples, in-memory overhead is equal to the
total size of identifiers of all nodes, including tombstones
(only when SDIS are used). In this case, the in-memory
overhead is the number of Treedoc nodes multiplied by the
average size of an PosID.

When maintaining the document in a tree structure, in-
memory overhead is equal to the total size of Treedoc nodes,
including tombstones. A standard node includes the number
of non-tombstone nodes in its subtree, pointers to its left
and right children, a disambiguator, and a pointer to the
atom, which comes to 26 bytes (plus Java overhead) on
a 32-bit machine. Various optimisations are possible, e.g.,
a flattened node contains an array of atom pointers; we
do not consider these optimisations hereafter. A node with
mini-nodes replaces the disambiguator by an array of {node,
disambiguator} pairs, but this case does not occur in our
tests, since SVN and Wikipedia serialise their edits. Thus
an upper bound on in-memory overhead is the number of
Treedoc nodes without flattening, multiplied by 26 bytes.
Table 1, under “Nodes/Mem ovhd,” shows that the in-
memory overhead remains reasonable (between 0.36 and 3.7
times the file size). Figure 6 shows the variation over the
lifetime of document acf.tex. It is apparent that our current
flattening heuristics are not effective; flattening the final
version would bring overhead down to zero.

To compare the SDIS vs. UDIS approach to disambigua-
tors, refer to Table 4. It shows that, although the overhead of
UDIS is larger per node, the total overhead is lower. This is
because UDIS lowers the number of nodes significantly, by
eliminating tombstones early. Therefore, the UDIS approach
is better in the common case.

In order to store a Treedoc on disk, we use a modified
version of the well-known technique that represents a binary
heap of depth i as an array of size 2i. Nodes are stored
from top to bottom, line by line, and nodes on the same
line are stored left to right. Each array entry contains a
disambiguator and a reference to the corresponding atom
(stored in a separate file). For every node that has only a
single descendant or no descendants, we fill the places with
a special marker. To save space, we compress sequences of
markers with run-length encoding. Table 1, column “On-disk
overhead” measures the on-disk size of the final revision of
several documents.

We cannot yet evaluate the cost of a distributed flatten,
as it is not currently implemented. The network cost of an
edit operation is sending a PosID and, when inserting, the
corresponding atom. An upper bound on the total network
cost of building a document from scratch can be estimated
by adding the size of PosIDs for all atoms. An estimate of
average network cost is the average PosID size, found in
Table 1, under “PosID/Avg.”
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Table 5. Comparing Treedoc vs. Logoot: PosID sizes

PosID size ratio
(Logoot/Treedoc)

Distributed Computing 2.4
IBM POWER 1.8

Grey Owl 1.9
acf.tex 3.2

algorithms.tex 3.9
propagation.tex 3.6

5.3. Comparison with Logoot

We offer a brief comparison with Logoot, a recent CRDT
for co-operative editing [7]. A Logoot position identifier
is a sequence of fixed-sized unique identifiers. Position
identifiers are ordered in lexicographical order of their
components. Logoot allocates position identifiers sparsely
in order to facilitate insertions. To insert, Logoot allocates
a free unique identifier ordered between the left and right
position identifiers, if one exists; otherwise it extends the
identifier of the left position with an additional layer. A
deleted atom can be removed immediately, but Logoot does
not flatten the tree. Even without flattening, we expect
Logoot to have larger overhead than Treedoc, since its
position identifiers are larger than Treedoc’s.

This is confirmed by our measurements in Table 5,
comparing the total PosID size of Logoot and Treedoc/
UDIS, without flattening. We use the same size for UDIS
and Logoot unique identifiers (10 bytes). With flattening, the
comparison would be even stronger in favour of Treedoc.

6. Related work

A comparison of several approaches to the problem of
collaboratively editing a shared text was written by Ignat et
al. [8].

Operational transformation (OT) [2, 9–12] considers col-
laborative editing based on non-commutative operations. To
this end, OT transforms the arguments of remote operations
to take into account the effects of concurrent executions. OT
requires two correctness conditions [13]: the transformation
should enable concurrent operations to execute in either
order, and furthermore, transformation functions themselves
must commute. The former is relatively easy. The latter is
more complex, and Oster et al. [3] prove that all previously
proposed transformations violate it. Later solutions [14–16]
are complex, and their correctness is hard to verify.

OT attempts to make non-commuting operations commute
after the fact. We believe that a better approach is to design
operations to commute in the first place. This is more
elegant, and avoids the complexities of OT.

A number of papers study the advantages of commuta-
tivity for concurrency and consistency control [17, 18, for

instance]. Systems such as Psync [19], Generalized Paxos
[20], Generic Broadcast [21] and IceCube [22] make use of
commutativity information to relax consistency or schedul-
ing requirements. However, these works do not address the
issue of achieving commutativity.

Weihl [18] distinguishes between forward and backward
commutativity. They differ only when operations fail their
pre-condition. In this work, we consider only operations that
succeed at the submission site, and ensure by design that
they won’t fail at replay sites.

Roh et al. [23] independently proposed the CRDT ap-
proach. They give the example of an array with a slot
assignment operation. To make concurrent assignments com-
mute, they propose a deterministic procedure (based on
vector clocks) whereby one takes precedence over the other.
This approach (similar to the Last-Writer Wins algorithm
of shared file systems) is destructive and loses work. Roh
does not consider the case of co-operative editing, where
concurrent updates should be merged, not lost.

Oster et al. propose the WOOT algorithm for managing
cooperative editing, supporting insert and delete operations
[24]. Although not identified as such by the authors, WOOT
is also a CRDT. In WOOT, each character has a unique
identifier, and maintains the identifiers of the previous and
following characters at the initial execution time. Further-
more, the data structure grows indefinitely, because there is
no garbage collection or restructuring.

More recently, Weiss et al. proposed the Logoot CRDT
[7]. Logoot uses a sparse n-ary tree rather than Treedoc’s
dense binary tree. A position identifier is a list of (long)
unique identifiers, and Logoot does not flatten. As we show
above, Logoot has a high overhead compared to Treedoc.

An alternative approach to consistency is executing opera-
tions in the same order at all replicas [1]. However, to ensure
that an edit position has the same meaning at all replicas
requires either operating replicas in lock-step, or operational
transformation [2]. In the Treedoc design, common edit
operations execute optimistically, with no latency; replicas
synchronise only in the background.

7. Conclusions

It was known previously that commutativity simplifies
consistency maintenance, but the issue of designing systems
for commutativity was neglected. This paper suggested a
new paradigm for replication: the Commutative Replicated
Data Type or CRDT, designed such that concurrent oper-
ations commute. If operations replay in happened-before
order, replicas of a CRDT converge automatically, without
complex concurrency control. This makes the implementa-
tion of replicated systems much simpler than before.

However, designing a CRDT with the desirable property
that no work is lost (genuine commutativity) is not easy. We
have presented Treedoc, a genuine CRDT solution to the
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problem of a shared edit buffer, that relies on an extended
binary tree as the base for building unique identifier with
the needed properties.

We have proposed two identification alternatives: one is
compact but uses tombstones to keep track of deleted entries;
the other allows deleted entries to be discarded immediately.
As a tree that is badly unbalanced causes overhead, we
suggest optimizations to avoid unbalance.

We performed a performance analysis using traces from
existing editing histories. It shows that Treedoc has smaller
overhead than the Logoot alternative, and a reasonable one
in absolute terms.

Our next step in this research will be to enable peer-to-
peer co-operative editing at a large scale, by implementing
Treedoc within an existing text editor or wiki system.
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