

Supporting Groupware
in Mobile Environments

Nuno Preguiça, J. Legatheaux Martins
Henrique J. Domingos and Sérgio Duarte

Technical report 4-2002 DI-FCT-UNL

Departmento de Informática

Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Quinta da Torre, 2829-516 Caparica, Portugal

{nmp,jalm,hj,smd}@di.fct.unl.pt

 2

Supporting Groupware in Mobile Environments*

Nuno Preguiça, J. Legatheaux Martins, Henr ique Domingos, Sérgio Duarte
Departamento de Informática

Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa
Quinta da Torre, 2825-114 Monte da Caparica, Portugal

{ nmp, jalm, hj, smd} @di.fct.unl.pt

* This work has been partially support by FCT/MCT.

Abstract

This technical report describes a replicated object store designed to support typically asynchronous collabo-
rative activities in mobile environments. The system allows the definition of type-specific data management
solutions using an object framework that includes awareness management. High data availability is provided
in mobile environments relying on server replication and client caching and exploring ad hoc networks es-
tablished among clients. Partial caching allows operation on mobile devices with reduced resources. Blind
invocation allows users to produce new contributions on data that is not locally available, during discon-
nected operation. The system also supports the integration of synchronous sessions in the overall asynchro-
nous activity.

Keywords

Mobile computing, data management, asynchronous groupware, synchronous groupware, integration.

INTRODUCTION

The use of portable computers and wireless networks has increased dramatically in the last years. Portable
computers range from small personal digital assistants (PDAs) with limited resource to powerful notebooks
that can be used as desktop replacements. These devices can connect to a fixed network while docked or
using wireless networks. Furthermore, they can establish ad hoc wireless networks to communicate among
them directly (e.g. using Bluetooth [5] or Wireless Ethernet [25]).

In this technical report, we present a new version of the DAgora distributed storage system (named DOORS
[2]), focusing on the new mechanisms introduced to provide a better support for users working on mobile
computers. This system is designed to support typically asynchronous collaborative activities. However,
synchronous sessions can be integrated in the overall asynchronous activity. In the context of the DAgora
project [1] we have also addressed other aspects that are important for groupware, such as the coordination
of collaborative activities [3] and event dissemination [4] (e.g. to propagate awareness information).

In asynchronous groupware, users usually collaborate accessing and modifying information without imme-
diate knowledge about the actions of other users (either because users work at different times or simply be-
cause they do not have access to each other’s actions). Our overall approach to support these applications is
based on the combination of two elements. First, a highly available replicated object store that allows users
to produce their contribution without restrictions (besides coordination and access control restrictions).
These characteristics maximize the chance for collaboration. Second, an object framework that addresses
most aspects related with data sharing, including concurrency control and awareness management. New data
types, to be used in collaborative applications, can be easily created, according to this framework, reusing

 3

the pre-defined components with adequate characteristics (we call the data objects manipulated by the sys-
tem and structured according to this framework coobjects – from collaborative objects).

This technical report details several mechanisms introduced to improve the support for mobile computing:
partial caching; blind invocation to overcome cache misses; and the exploration of ad hoc networks among
mobile users. Additionally, we describe the support to integrate synchronous session in the overall asyn-
chronous activity.

Sometimes, users only need to access a subset of data to produce their contributions – e.g. in the collabora-
tive editing of a structured document, a user may only need to access some of the sections. The partial cach-
ing mechanism explores this property maintaining only partial copies of coobjects. This mechanism
improves the support for mobile computers with limited storage and/or bandwidth.

During periods of disconnection, data management systems usually prevent any access to data not locally
cached. However, users may still want to produce contributions that affect the unavailable data – e.g. a user
may submit a new version for some section in a shared document. These updates need to be merged with the
current data state. However, awareness information of groupware activities may allow good contribution.
We have implemented a blind invocation mechanism that allows the execution of operations over data not
locally cached (“ replacement” objects can be used to observe the expected result of operations).

Mobile clients may sometimes connect with each other using ad hoc wireless networks (or any other form of
communication). During these periods, clients may update their caches directly (without server interven-
tion). Furthermore, clients may establish synchronous sessions among them to modify coobjects that are be-
ing typically asynchronously manipulated. The new object framework supports the manipulation of
coobjects in synchronous sessions. This mechanism allows the combination of synchronous and asynchro-
nous work session using the DOORS system.

The remainder of this technical report is organized as follows. Section 2 discusses requirements and design
choices. Section 3 presents an overview of the system. Section 4 details the mechanisms implemented to
support groupware in mobile environments. Section 5 describes the support for synchronous sessions. Sec-
tion 6 discusses related work and section 7 concludes the technical report with some final remarks.

REQUIREMENTS AND DESIGN CHOICES

In this section we present the requirements and design choices that lead to DOORS. Some of these require-
ments have already been discussed in an earlier version of the system [2]. In this technical report, we briefly
outline the most important aspects already addressed, and focus on the new requirements. To illustrate some
of the requirements we will use examples from two applications: a group calendar and a multi-user editing
tool. Similar situations can be found in other typical asynchronous groupware applications.

In a group calendar, the appointments from a group of users are maintained in a shared calendar. Users
should be allowed to request the introduction of new appointments independently, even during disconnec-
tion. These new appointments should be considered tentative [8] until they are committed using some form
of automatic global agreement. It should also be possible for users to request a new appointment even if they
can not locally access the shared calendar. If requested, users should be notified when their requests are
committed or aborted.

A multi-user editing tool allows a group of users to collaboratively edit some structured document. Concur-
rent asynchronous modifications should be adequately merged maintaining syntactic consistency [7]. Users
should be allowed to make their contributions independently. Cache misses should be reported but should
not prevent users from making their contributions. Users should be allowed to manipulate the document dur-
ing synchronous sessions. Awareness information about document evolution should be maintained with the
document to be presented to users.

 4

Basic requirements

We start our discussion reviewing some requirements that had already been discussed in [2]. However, as
they are fundamental in our approach to support asynchronous groupware they are briefly presented here.

From the previous brief descriptions, we note that users collaborate through the access and modification of
shared data. Therefore, one fundamental requirement to maximize the chance for collaboration is to allow
users to access and modify shared data without restrictions. In DOORS, data is replicated by groups of serv-
ers to mask networks failures/partitions and server failures. Mobile clients cache data to mask disconnec-
tions. High read and write availability is obtained through a “ read any/write any” model of data access that
allows all clients to modify data independently.

This optimistic approach leads to the need of handling divergent streams of activity (caused by independent
concurrent updates executed by different users). In most systems, concurrent updates are handled using a
single customizable strategy (e.g., in Bayou [8], the following strategy is always used: updates are executed
in the same order in all replicas; when a conflict is found – using the user-defined condition – a new update
is generated – using the user-defined conflict-resolution function – and executed). However, multiple strate-
gies have been proposed in literature (e.g. using of undo-redo techniques [14], operational transformations
[23,24], searching the best solution using semantic information [15]). It seems that no single strategy is ade-
quate for all situations. Instead, different groups of applications call for different strategies. In DOORS, we
allow the use of different strategies in different applications – coobjects define its own reconcilia-
tion/concurrency-control strategy.

Awareness has been identified as important for the success of collaborative activities because individual
contributions may be improved by the understanding of the activities of the whole group [6,21]. In DOORS,
we have designed an integrated mechanism for handling awareness information relative to the evolution of
the shared data. Each update can produce awareness information when it is processed in the server (and its
definite result is obtained). Each coobject may include support to present this awareness information using a
shared feedback style [6] (when awareness messages are maintained with the coobjects and presented in ap-
plications) and/or a notification style (where users receives these messages directly, for example, as short
messages in their mobile phones/pagers). Users can customize the awareness support specifying which mes-
sages they are interested on.

Another important requirement is to ease the development of new groupware applications with different
characteristics. To support flexible type-specific solutions, DOORS delegates on coobjects most of the as-
pects related with data sharing (including concurrency control and awareness management). We have de-
fined a data management object framework that decomposes each coobject in several components, each one
responsible for a different aspect of object “operation” . Using this framework, programmers can design a
new global solution reusing the most adequate solution (or implementing a new one) for each aspect identi-
fied in the framework. This approach allows programmers to use different strategies in different applica-
tions. Furthermore, complex distributed systems algorithms can be used in a simple way. A new version of
the object framework has been introduced in this new version of our system.

Partial caching

As it has been mentioned, high data availability is a fundamental requirement to maximize the chance for
collaboration in asynchronous groupware applications. Mobile computers need to rely on local data copies
to provide such availability. The granularity of caching may influence the ability to support small mobile
devices. Several approaches have been used in different distributed storage systems.

In Coda [16], as well as in other distributed file-systems, the unit of caching is the complete file. This ap-
proach allows a simple and clean file access semantics – as the file is the unit of caching, either it is possible
to access the whole file or nothing at all (in a cache miss). However, when files are very large this approach
may be a problem for mobile computers with limited storage resources. The users may also consider exces-
sive the time needed to obtain the full data copy from a server over slow wireless networks. As, in some

 5

situations, users only need to access a fraction of the data, partial caching can be used to adequately support
mobile computers with different resources.

In object-based systems, applications usually manipulate complex graphs of small objects ([10] mentions the
average size of 100 bytes). To support disconnected operation, it is possible to cache only a subset of all
objects. However, the determination of which objects must be cached is very complex because objects are
usually small and highly interconnected – even when objects are clustered in pages of objects this process
works at the level of objects [10].

In DOORS, we have introduced a strategy that can be seen as a tradeoff between those two. Programmers
should define a coobject as a set of interconnected sub-objects. Each sub-object can still be a complex ob-
ject and be implemented as a composition of many small objects. However, a sub-object is a unit by itself
for caching purposes – e.g., a section of a structured document can be a sub-object. Furthermore, it is possi-
ble to invoke operations on each sub-object independently. This approach enables the partial caching of a
coobject, while allowing users to continue to work in the cached parts – e.g., a user can cache only the sec-
tions she wants to modify and edit them while disconnected. We detail our partial caching approach in sec-
tion 4.

Blind invocation

In distributed storage systems, cache misses usually prevent users to continue using data. However, in some
situations, users may still produce useful work despite the unavailability of some data. For example, in a
shared calendar, a user may request the scheduling of new appointments even when he cannot access the
calendar. In a structured document where each section may have multiple versions, a user may want to cre-
ate a new version despite he cannot access the current versions. These updates must be integrated in the cur-
rent state of objects, in the severs.

In groupware applications, the coordination and awareness information associated with the collaborative
process may maximize the chance to produce new good-quality contributions in these situations. For exam-
ple, if the users had previous access to the awareness information related with data evolution, they should
have an (almost) up-to-date knowledge about the current data state (although the data is unavailable through
the data management system). If (formal or informal) coordination rules set the responsibility of creating
some section in a shared document to some user, he will tend to know which updates he should execute in
the context of this task, even when “cache misses” occur.

In DOORS, we have introduced the following mechanisms to allow users to continue their work in these
situations, thus minimizing the effects of cache misses. First, users can execute operations over sub-objects
that are not locally cached. These operations are logged in the clients and later propagated to the servers,
where they are integrated in the current data state using the reconciliation strategy defined for the coobject.
Second, a sub-object not locally available can be instantiated in “replacement” mode. Therefore, besides
being able to invoke operations, it is also possible to observe the expected results of the executed operations.
We detail these mechanisms in section 4.

Ad hoc communication and synchronous collaboration

Mobile computers may, sometimes, communicate with each other inexpensively using ad hoc peer-to-peer
wireless networks. Distributed data management systems may explore these communications to update the
caches in mobile computers: new objects or new versions of existing objects may be obtained directly from
their peers (i.e. without contacting any server). In DOORS, we have introduced this feature, allowing clients
to obtain new coobjects/sub-objects and/or new updates to coobjects from other mobile clients.

Mobile users can engage in synchronous collaborative sessions using these ad hoc wireless networks. Dur-
ing these synchronous sessions, users may want to update data objects that are being typically updated in an
asynchronous way. For example, a group of users may be producing a document asynchronously. However,
at some moments, they can engage in synchronous sessions to make some important modifications and co-

 6

ordinate their work – e.g., to decide the structure of the document or merge multiple versions of some sec-
tions. It should be noticed that users can also engage in this kind of interactions using their desktop com-
puters – mobile computers and wireless communications only add the (possible) convenience of allowing
(some) users to meet together in the same (physical) place without requiring any additional network infra-
structure.

In DOORS, we have introduced the possibility to manipulate coobjects in synchronous sessions. To this end,
the adaptation component of the object framework can be used to maintain the state of several local copies
of the same coobject (synchronously) synchronized. In section 5 we detail this mechanism and discuss the
integration of synchronous sessions in the overall asynchronous activity (a multi-synchronous editing tools
is presented).

SYSTEM OVERVIEW

In the previous section we have discussed the main requirements addressed in our system. In this section, we
present an overview of the system and of the associated object framework. The partial caching and the blind
invocation mechanisms and the integration of synchronous sessions will be detailed in the following sec-
tions.

Architecture and working model

DOORS is a distributed object store based on a “extended client/replicated server” architecture. It manages
coobjects – objects structured according to the DOORS object framework. A coobject represents a data type
designed to be shared by multiple users in an asynchronous way, such as a structured document, a shared
calendar or a shared spreadsheet. Unlike our previous version, a coobject is designed as a cluster of sub-
objects, each one representing part of the whole data type (e.g. a structured document can be composed by
one sub-object that maintains the structure of the document and one sub-object for each element of this
structure). It is important to notice that each sub-object may still represent a complex data structure and it
may be implemented as an arbitrary composition of common objects. Besides the cluster of sub-objects, a
coobject contains several components that manage the operational aspects of data sharing – figure 1 depicts
the approach (we detail each component and how they work together later). Sets of related coobjects are
grouped in volumes that represent collaborative workspaces and store the data associated with some work-
group and/or collaborative project.

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

A
w

ar
en

es
s

sub-objects sub-object proxies

A
pp

lic
at

io
n

System

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

Figure 1 – DOORS object framework.

The DOORS architecture is composed by servers and clients, as depicted in figure 2. Servers replicate vol-
umes of coobjects to mask network failures/partitions and server failures. Server replicas are synchronized
during pair-wise epidemic synchronization sessions. Clients partially cache key coobjects to allow users to
continue their work, even while disconnected. A partial copy of a coobject includes all the components nec-
essary to instantiate a coobject (the components that manage the operational aspects of data sharing) and a

 7

subset of the sub-objects included in the coobject. Clients can obtain these partial replicas directly from a
server or from other clients. They can also update their local copies directly from other clients, thus expos-
ing to users the recent contributions executed by other users.

Applications run on client machines and usually use a “get/modify locally/put changes” model of data ac-
cess. First, the application obtains a private copy of the coobject (from the DOORS client). Second, the ap-
plication invokes sub-objects’ methods to query and modify its state (as it would do with common objects).
The update operations are transparently logged (and compressed) in the coobject. Sub-objects are only
loaded (instantiated) when they are accessed – this process is transparent for the applications. Finally, if the
user chooses to save her changes, the logged sequence of operations is (asynchronously) propagated to a
server.

Key
 Server

 Client

Sub-objects

 Application

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

sub-objects

updates
� �
� �
� �
� �
� �
� �
� �
� �

epidemic
propagation �

� �
� �
� �
� �
� �
� �
� �
� �

sub-objects

updates

sub-objects
& updates sync sessions

Figure 2 – DOORS architecture composed by four computers with different configurations. Coobjects

are replicated by servers, partially cached by clients and manipulated by users’ applications.

When a server receives operations from a client, it delivers the operations to the local replica of the coob-
ject. It is up to the coobject replica to store and process these operations. During the epidemic synchroniza-
tion sessions, servers propagate sets of operations between coobjects’ replicas.

DOORS is fully built around the notion of operation-based update propagation, as the previous description
shows. The system core is almost restricted to propagate the sequences of updates and to maintain the client
cache, i.e., it only executes the minimal services that represent the common aspects of data management.
DOORS delegates on the coobjects most of the aspects related with the management of data sharing, such as
concurrency control and the handling of awareness information. The rationale behind this design is to allow
flexible type-specific solutions.

Object framework

The outlined design imposes a heavy burden on the implementation of coobjects, which must handle several
aspects that are usually managed by the system. To alleviate programmers from much of this burden and to
allow the reuse of "good" solutions in multiple data types, we have defined an object framework that de-
composes a coobject in several components that handle different operational aspects (see figure 1). In this
section we outline the complete object framework, focusing on the elements (adaptation component and sub-
objects, sub-object proxies and the cluster manager) introduced to accommodate partial caching, blind invo-
cation and the integration of synchronous sessions. A deeper discussion about the other components, includ-
ing the implemented pre-defined solutions, can be found in [2].

Each coobject is composed by a set of sub-objects that may reference each other using sub-object proxies.
These sub-objects store the internal state and define the operations of the implemented data-type. The clus-
ter manager is responsible to manage the sub-objects that belong to the coobject, including: the instantiation
of sub-objects (when needed); and the control of sub-objects’ persistency. Sub-objects’ persistency can be

 8

achieved through garbage-collection or explicit creation/deletion instructions (leading to two different com-
ponent implementations).

Applications always manipulate coobjects’ data through sub-objects’ proxies. When an application invokes
a method on a sub-object proxy, the proxy encodes the method invocation (into a simple object) and hands it
over to the adaptation component1. The adaptation component is responsible to decide the interactions with
the exterior. The most common adaptation component executes operations locally. We have also defined a
remote-execution adaptation component that immediately propagates all operations to be executed in a
server (using a service provided by the system core). It is also possible to define adaptation components that
adapt to local or remote execution depending on the connectivity. In section 5 we will show how we have
used this component to enable coobjects to be manipulated during synchronous sessions.

Local execution is controlled by the capsule component. Query operations are executed immediately in the
respective sub-object and the result is returned to the application. Update operations are logged in the log
component, which adds to these operations the necessary information to order them and to trace their de-
pendencies.

The concurrency control/reconciliation component is responsible to execute the operations stored in the log.
In the client, an immediate tentative execution is usually done so that users can see the expected results of
their updates. However, an update only affects the “official” state of a sub-object when it is finally executed
in the servers. To guarantee that the multiple (server) replicas of the coobject evolve in a consistent way and
that users intentions are respected when the updates are executed in the servers, different concurrency con-
trol/reconciliation components implementing different strategies may be used in the server (we have dis-
cussed this problem extensively in [2]). During the execution of the operations some awareness information
may also be produced. This information is handed over to the awareness component that immediately proc-
esses it (storing it to be later present in applications and/or propagating it to the users using the services of
the system core).

Besides controlling the local execution of operations, the capsule component defines the coobject composi-
tion and aggregates its components. Although the presented composition represents a common coobject, it is
possible to define different compositions– for example, it is possible to maintain a tentative and a committed
version of the sub-objects relying on two different concurrency control components to execute the updates
stored in the log using an optimistic and a pessimistic total order strategy respectively. The capsule compo-
nent also defines the interface with the system (to exposing the logged operations and processing the opera-
tions received). Finally, the attributes component stores the system and type-specific properties of the
coobject.

To create a new data-type (coobject) the programmer must do the following. First, he must define the sub-
objects that will store the data state and define the operations (object methods) to be used to query and to
change its state. From the sub-objects code, a pre-processor generates the code of sub-object proxies and
factories to be used to create new sub-objects, handling the tedious details automatically.

Second, he must define the coobject composition used in the client and in the server selecting the adequate
pre-defined components (or defining new ones if necessary). It is important to notice that coobjects encode
most of the data-sharing semantics through these components, thus allowing the definition of different se-
mantics using different pre-defined components. Another important aspect is that the operational compo-
nents that are part of a coobject may be different in the server and in the client – for example, the
concurrency control/reconciliation component uses different algorithms in the server and in the client.

1 When an operation is invoked in a sub-object proxy as the result of the execution of other operation (note

that sub-objects reference each other using proxies), it is simply executed against the respective sub-
object.

 9

MECHANISMS FOR MOBILE COMPUTING

In this section we will detail the partial caching and the blind invocation mechanisms. These mechanisms
are very important to allow mobile users in disconnected mobile computers to participate in collaborative
activities. To illustrate the use of these mechanisms we use some applications that we have implemented –
however, due to space limitations, we can only describe more closely the multi-synchronous document edi-
tor (in [2] we present descriptions of the older versions of other applications).

Example: Multi-synchronous document editor

The multi-synchronous document editor allows users to produce structured documents collaboratively –
these documents are represented as coobjects. A document is a hierarchical composition of two types of
elements: containers and leaves. Containers are sequences of other containers and/or leaves. Leaves repre-
sent atomic units of data that may have multiple versions and that may be of different types. For example, a
LaTeX document has a root container that may contain a sequence of text leaves and/or scope containers. A
scope container may also contain a sequence of text leaves and/or scope containers. There is no direct asso-
ciation between these elements and LaTeX commands/elements. Users are expected to use scope elements
to encapsulate the document structure. For example, a paper can be represented as a sequence of scope ele-
ments, each one containing a different section (see figure 3). The file to be processed by LaTeX is generated
serializing the document structure – all text is contained in text leaves.

Figure 3 – Multi-synchronous document editor with a LaTeX document, while synchronously editing one section.

When editing the document asynchronously, users are allowed to change the same elements independently.
The coobject manages concurrent modifications automatically, maintaining syntactic consistency, as fol-
lows. Concurrent modifications to the same text leaf are merged using the pre-defined strategy implemented
in the multi-version sub-object (text leaves are defined as a sub-type of this sub-object) – two versions are
created if the same version is concurrently modified; a remove version is ignored if that version has been
concurrently modified; otherwise, both updates are considered. Users should merge multiple versions into a
single version later. Concurrent modifications to the same container are merged executing all updates in a
consistent way in all replicas (to this end, an adequate total order reconciliation component is used in the
servers).

Awareness information is maintained with the document to show data evolution using a shared-feedback [6]
style. Unlike the previous version, this information is maintained separately for each sub-object (to support
partial caching).

During synchronous edition, users can observe immediately the modification executed by other users. Addi-
tionally, they can synchronously edit the same text leaves.

 10

Partial caching

As it has already been outlined, the partial caching solution implemented in out system is based on the divi-
sion of the coobject’s data in smaller elements: the sub-objects. Each sub-object is composed internally by a
composition of small objects and it can only reference other sub-objects through sub-object proxies. Appli-
cations modify the cobjects’ state executing operations on these sub-objects. When a client caches some
coobject it may cache only a subset of all sub-objects contained in the coobject.

The rationale for this approach is the following: the programmer that designs the coobject is the person that
knows better which small objects should be cached together (based on the internal organization and opera-
tions defined in the coobject). Therefore, if she can makes this information explicit to the system, the system
will be able to do a better job on partial caching. Thus, sub-objects are used to group the small objects that
should be cached together.

Consider the LaTeX structured document used in our multi-synchronous document editor. Sub-objects are
identified immediately in consequence of the internal organization of the coobject: containers and text
leaves are sub-objects. Each client may cache only the sub-objects (containers and text leaves) that contain
the part of the document the user is interested on. The editor shows that some document elements are not
locally available in the interface using a different color to represent those elements – see figure 3.

In other applications, sub-objects can also be identified easily. In a conferencing system, each thread of mes-
sages can be a sub-object. In a calendar, the appointments for each day can be grouped together in a single
sub-object. These examples seem to confirm the idea that, in many applications, programmers can easily
identify the units for partial caching from the data organization.

DOORS also defines an advanced mechanism that allows to indicate, for each sub-object, the set of other
sub-objects that should be cached with it: the system uses this information when a sub-object is cached. The
cluster manager is responsible to manage this information. Our pre-defined cluster manager components
only keep track of relations specified when sub-objects are created, but more complex policies using auto-
matic and dynamic grouping of sub-objects could be implemented.

In the LaTeX document, we have used this mechanism in a simple way. When a text leaf/container is cre-
ated it specifies the container where it is going to be inserted as a “must also be cached” element. Thus, it is
possible to guarantee that the relevant document structure elements will be available when accessing some
sub-object2.

In a calendar, where appointments are to be accessed either by date or by user, this feature can also be use-
ful. A possible approach would be to define each appointment as a single sub-object and the indexing struc-
tures also as sub-objects (e.g. a sub-object maintains references for the appointments scheduled for a given
day). Each indexing structure should force included appointments to be cached with it – the necessary rela-
tions can be set easily when appointments are created/changed. Therefore, a client can cache the appoint-
ments for a given day or a given user, depending on the information the user is interested on (our calendar
application always presents information by date, therefore we have used the organization mentioned earlier).

Blind invocation

The blind execution mechanism allows users to execute new contributions, while disconnected, even during
cache misses. We expect that the coordination and awareness information associated with the collaborative
process allow users in collaborative tasks to produce good-quality contributions (exploiting blind invoca-
tion).

2 An efficient caching algorithm should be able to provide the same guarantees (e.g.[17]), but this problem is

out of the scope of our work. In our current prototype, we have implemented a simple least-recently-used
algorithm.

 11

As we have presented, sub-objects reference other sub-objects using sub-object proxies. Due to partial cach-
ing, it is possible that some sub-object reference other sub-objects that are not locally available (e.g. in a
LaTeX document, a scope container may have references to text leaves that are not available locally). The
blind invocation allows users to execute operations on these sub-object proxies.

When an operation is executed on a sub-object proxy and the sub-object is not (and can not currently be)
cached, the processing of the invocation proceeds as usually until the execution of the operation (e.g., an
update operation is marshaled by the proxy, handled by the adaptation component, logged in the log compo-
nent and scheduled for local execution). In this moment, if the sub-object (or any other sub-object used dur-
ing operation execution) is not available, an exception is thrown notifying the application that a cache miss
has occurred. However, as the update operations have been logged, they will be propagated to a server,
where they will be executed as usually (under control of the defined reconciliation component). The only
difference is that, in the client, the user cannot immediately observe the expected result of the operation.
Some users/applications may find this blind execution model inconvenient. In this case, the application may
disable it.

This mechanism is used in a calendar coobject to allow user to schedule appointments for locally unavail-
able dates. To this end, the coobject has a root sub-object with an interface to schedule appointments for
every date. The operations defined in this sub-object will insert/remove the appointments in the appropriate
sub-objects. Therefore, as the reference to this sub-object is always available (because it is a root sub-
object), users can request appointments for every date, even when no sub-object is locally cached (if the
coobject can be instantiated).

For some applications, the fact that users cannot observe the effects of their blind invocations may be a
problem. For example, in the document editor, if some user writes a new version of some uncached text leaf,
he expects to be able to observe this new version (and change it during the current editing session). If the
private copy of the coobject manipulated by the application does not maintain this new version, the editor
has to implement this functionality using some ah hoc mechanism.

To support these situations, sub-objects can be instantiated in “replacement” mode. When some operation is
executed in a sub-object that is not locally available, a “replacement” sub-object is created and the operation
is locally executed in the newly created sub-object. It is important to notice that, besides this tentative exe-
cution, the operation is processed as before, being propagated to the server where it is integrated in the cur-
rent coobject’s state.

When a coobject is defined, the programmer specifies the sub-objects that can be instantiated in “replace-
ment” mode and the initial state of these copies (proxies are responsible to create these copies). The applica-
tion may disable this default mechanism if the user does not want to use it.

In the LaTeX document coobject, users can observe the results of operations executed in sub-objects that are
not locally available using this mechanism. For example, the new versions of text leaves can be observed
and modified in the document editor – the editor exposes this situation to users using a different color to
represent the elements.

We have implemented an additional mechanism to allow the execution of operations over coobjects that are
not locally cached. The applications may submit small pieces of generic code that are executed in the server.
This code is propagated to a server where it is executed in a controlled environment (it is only possible to
invoke operations in the sub-objects of the target coobject). This mechanism can be used to insert appoint-
ments in a shared calendar coobject that is completely unavailable.

INTEGRATING SYNCHRONOUS COLLABORATION

In this section we describe the support to manipulate coobjects during synchronous sessions. To this end, it
is necessary to be able to maintain several copies of coobjects synchronously synchronized. To achieve this
property, we use a synchronous adaptation component that relies on a group communication subsystem im-

 12

plemented on top of the DAgora event-dissemination service (Deeds) [4] (due to space limitation, we do not
present any implementation details of group communication, but all used features are common in similar
systems).

An application/user may start a synchronous session with the private copy of the coobject that it is being
currently manipulated. The synchronous session is started replacing the current adaptation component of the
coobject by a new instance of the synchronous adaptation component. This component creates a new group
(in the group communication subsystem) for the synchronous session. When a new user wants to join this
synchronous session, the application has to join the group for the synchronous session (using the name of
the session and the name of one computer participating in the session) and obtains the current state of the
coobject from a designated primary in the group (including all instantiated sub-objects and an handle to lo-
cally instantiate other sub-objects in a coherent way). Any user is allowed to leave the synchronous session
at any moment.

Applications manipulate coobjects as usually, i.e., executing operations in sub-objects proxies. When an
update operation is invoked, the adaptation component propagates the invocation to all elements of the syn-
chronous session. Currently, we have implemented a simple strategy to guarantee that all replicas are kept
synchronized. The adaptation component only forwards operations to be processed locally after being re-
ceived (and ordered) from the group communication sub-system. Therefore, the concurrency control com-
ponent (in the client) just has to execute all operations in the order they are received.

However, during synchronous sessions, it is possible to use concurrency control/reconciliation components
that use optimistic approaches and are specially designed to solve synchronous conflicts (e.g. based on op-
erational transformations [23,24]) – in this case, the adaptation component immediately forwards the opera-
tions for optimistic local execution (besides propagating them to the group).

Applications may register callbacks in the adaptation component to be notified when sub-objects are modi-
fied due to operations executed by other users – to reflect the changes of other users in the GUI of the appli-
cation.

The updates executed during the synchronous session can only be saved by the designated primary. In re-
spect to the overall evolution of the coobject, the updates executed during synchronous sessions are handled
in the same way as the updates executed asynchronously by a single user. Thus, the sequence of executed
operations is propagated to the servers, where it is integrated according to the reconciliation policy defined
for the coobject.

In the multi-synchronous document editor, we have used the described approach to allow documents to be
synchronously edited. However, in this case, this approach is not sufficient: the operations defined to ma-
nipulate a document during asynchronous editing are not sufficient for synchronous editing. In particular,
synchronous editing calls for operations with small granularity (e.g., insert/remove a single character in
some piece of text – represented in the LaTeX coobject as a version in a text leaf, or simply, text version),
while asynchronous collaboration tends to use operations with higher granularity (e.g., set a new value to a
text version). Two approaches can be used to address this problem.

First, it is possible to extend the current interfaces of sub-objects to include these new operations. This
solves the problem for synchronous sessions. However, having to consider all these small operations during
asynchronous reconciliation would be a nuisance (not only for reconciliation, but also for operation man-
agement and propagation). Fortunately, the log component implements a log-compression algorithm that
compresses operations executed in clients. Therefore, groups of small operations used for synchronous edit-
ing can be compressed into a single big operation (e.g. the insert/remove operations executed in a given text
version are compressed into a single operation that sets the correspondent new value to that text version).
However, to use this compression mechanism the programmer needs to write the adequate compression
functions for the small operations.

 13

A second approach to handle operations with small granularities is to do it outside of the coobject’s control.
In the document editor example, this means that the editor should include a synchronous tool to allow sub-
groups of users to edit the text version – starting with its current value. In the end of the synchronous edi-
tion, the correspondent operation that sets a new value to the text version is executed in the coobject (thus
updating all synchronous replicas of the coobject). These synchronous tools can be implemented relying on
the group communication sub-system used to manage the coobject’s synchronous session. This approach
also allows the use of third-party tools to manage these synchronous interactions – the updates executed in
these tools are integrated in the state of the coobject using one (or more) operation that summarizes all
modifications. In our multi-synchronous document editor we have decided to use this approach to allow
multiple users to synchronously edit the same text versions.

Discussion

For some applications, there are some inherent differences between synchronous and asynchronous collabo-
ration that lead to differences in the support required. In synchronous collaboration, the contributions exe-
cuted at each step tend to be very small (e.g. insert/remove a character). Furthermore, these contributions are
propagated to other users quickly, allowing them to influence the contribution executed by the other users –
the users in a synchronous session have strong awareness information about the contributions that are being
executed. These properties allow the concurrency control mechanism used during synchronous sessions to
be very aggressive, trying to merge all contributions that have been executed (e.g. concurrent insert/removes
in the same piece of text are usually merged). In the worst case (where concurrency control fails to have the
desired result), it is possible for the user to immediately solve the problem because he can immediately ob-
serve the result and the contributions involved are small (although this situation should not occur).

On the other hand, in asynchronous collaboration, the contributions executed tend to be large (e.g. the
change of a section in a document). Furthermore, the users have no fine-grain awareness information about
the contribution of the other users (e.g. one user may know that other user will change some section in the
document, but he does not know the exact changes she will produce). Therefore, the concurrency con-
trol/reconciliation strategy used has to be much less aggressive when solving concurrent update and work at
a higher granularity (e.g. merging the changes executed asynchronously to the same piece of text by two us-
ers at the level of character insertion/removal would usually lead to a result that would not satisfy anyone).
Moreover, as contributions tend to be large, it is not usually acceptable for some user to loose their contribu-
tions (this is the reason to create multiple versions in the document editor).

Although it is possible to draw a continuum between the two extremes of synchronous and asynchronous
work, based on how quickly the users are informed about other users’ contributions, we believe that there
will always be a point beyond which it is necessary to use different techniques for concurrency control. The
support for awareness information also has to be adapted – while in synchronous session most awareness
information can be obtained from the observation of changes executed synchronously, in asynchronous col-
laboration, the users usually have to be informed of the changes that have been made in the past.

In DOORS, it is possible to address the integration of synchronous sessions in the overall asynchronous ac-
tivity using the approach discussed earlier (when different operations must be used in the two settings). The
multi-synchronous document editor that we have implemented demonstrates the use of this approach.

When the same operations can be used adequately for synchronous and asynchronous collaboration, the ba-
sic approach described (that includes only the use of the synchronous adaptation component to maintain
several coobjects synchronously synchronized) solves the problem of integrating coobejcts in synchronous
session.

RELATED WORK

Several systems have been designed to manage data in large-scale distributed environments. While some of
these systems are typical distributed storage system (e.g. Coda [16], Thor [10]), others have been designed

 14

or used to support groupware applications (e.g. Lotus Notes [18], Bayou [8], BSCW [12], Prospero [7],
Sync [19]). Although our system shares goals and approaches with some of these systems, it presents two
distinctive characteristics. First, the object framework not only helps programmers in the creation of new
applications but it also allows them to use different data-management strategies in different applications
(while most of those systems only allow the customization of a single strategy). Second, most of those sys-
tems (excluding BSCW) concentrate their attention on the reconciliation problem and do not address aware-
ness support.

Partial caching has been identified as important to support mobile computing in several systems. Oracle Lite
[20] (and other database systems) allows users to cache the subset of the database they are interested on (us-
ing database queries). Some OODBs (e.g. Thor [10]) also allow users to cache only a subset of objects. Our
partial caching mechanism has similar objectives. However, instead of working at the level of basic objects
as it is usual in those systems, it works at the level of sets of objects grouped together using semantic infor-
mation (sub-objects). Therefore, the complexity involved in the selection of objects to cache is reduced (and
consequently the likelihood of incomplete caching).

Data management systems usually prevent any data access over data that is not cached. To our knowledge,
the blind invocation mechanism that includes the instantiation of “replacement” objects is unique to our sys-
tem. The most similar mechanism we are aware of is the deferred RPC mechanism in Rover [13]. It allows
disconnected users to submit operations that will be propagated to the object server when connectivity is
available. However, this system only allows the invocation of operations on objects that have been previ-
ously imported (cached).

Several groupware systems have presented solutions to integrate synchronous and asynchronous cooperative
work. In [9] the authors define the notion of a room, where users can store objects persistently. Applications
also run inside the room. A user may connect to the central server that stores the room to observe and mod-
ify the room state (using the applications that run inside the room). Users can work in a synchronous mode if
they are inside the room at the same time. Otherwise, they work asynchronously. In [11] the authors present
a hypertext authoring system that allows users to work synchronously and asynchronously. A tightly cou-
pled synchronous session, with shared views, should be established to allow more than one user to modify
the same node or link simultaneously (a locking mechanism prevents any other concurrent modification of
those elements). In [22], the authors describe a distance-learning environment that combines synchronous
and asynchronous work. Data manipulated during synchronous sessions is obtained from the asynchronous
repository, using a simple locking or check-in/check-out model.

The previous systems do not support disconnected operation (as they all require access to a central server
while using the system). Furthermore, either they do not support divergent streams of activity to occur (be-
sides very short-time divergence during synchronous sessions) or they solve the problem through versioning.
Our approach allows to integrate the updates executed during synchronous sessions in the overall asynchro-
nous activity composed by several divergent streams of activity that are (eventually) reconciled using type-
specific solutions (instead of simple versioning).

In Prospero [7], it is possible to use the concept of streams (that log the sequence of operations executed) to
implement synchronous and asynchronous applications (depending on how often streams are synchronized).
This mechanism can be used to implement the integration of synchronous and asynchronous sessions when
the same operations can be used in both styles of cooperation. However, the authors do not address the prob-
lem of applications that need to use different operations.

FINAL REMARKS

The DOORS replicated object store provides data management support for typically asynchronous group-
ware in mobile environments. The system core provides high data availability relying on server replication
and client caching. The system explores ad hoc networks established among clients to update local caches.
The system delegates on coobjects most of the aspects related with data sharing, including concurrency con-

 15

trol, the management of awareness information and adaptation to variable network connectivity (allowing
operations to be executed in servers if good connectivity is available). The DOORS object framework al-
lows the definition of new data types with adequate data sharing semantics composing several pre-defined
solutions to the problems identified in the framework.

The system also presents other mechanisms to maximize the chance for new contributions to be produced in
mobile environments. First, it implements partial caching based on the definition of coobjects as a set of
sub-objects. This allows each client to cache only a subset of all sub-objects, thus reducing the storage (and
communication) requirements. Second, the blind invocation mechanism allows disconnected users to pro-
duce contributions in data not locally cached. Replacement sub-objects may be instantiated to allow users to
observe the tentative results of these contributions. To our knowledge, this feature is unique to our system
and we expect that the awareness information associated with the collaborative process allow users to pro-
duce good-quality contributions.

We have also addressed the integration of synchronous sessions in the overall asynchronous activity. To this
end, several copies of coobjects can be maintained synchronously synchronized using a synchronous adapta-
tion component. The problem of using operations with different granularities for synchronous and asynchro-
nous collaboration is discussed and our solution is presented.

We have implemented a prototype of the DOORS system in Java 2 (the pre-processor is implemented using
JavaCC). Currently, we are addressing some problems that need further research. In particular, we are inves-
tigating the use of a component-oriented programming language, ComponentJ, to support the definition of
coobjects.

More information about the DAgora project (including DOORS) is available from [1].

REFERENCES

1. http://dagora.di.fct.unl.pt
2. Preguiça, N., Legatheaux Martins, J., Domingos, H., Duarte, S. Data management support for asynchro-

nous groupware. In Proc.of CSCW’2000, Dec. 2000.
3. Domingos, H., Preguiça, N., Legatheaux Martins, J. Coordination and Awareness Support for Adaptive

CSCW Sessions. In Proceedings of CRIWG’98, 1998.
4. Duarte, S., Legatheaux Martins, J., Domingos, H., Preguiça, N. DEEDS - A Distributed and Extensible

Event Dissemination Service. In Proc.s 4rd European Research Seminar on Advances in Distributed Sys-
tems, 2001.

5. Bluetooth. www.bluetooth.com
6. P. Dourish, V. Bellori. Awareness and Coordination in Shared Workspaces. In Proc. of CSCW'92, 1992.
7. Dourish, P. Using Metalevel Techniques in a Flexible Toolkit for CSCW Applications. ACM Transac-

tions on Computer-Human Interaction, June 1998.
8. Edwards, W., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D., Theimer, M. Designing and Implement-

ing Asynchronous Collaborative Applications with Bayou. In Proceedings of UIST'97, Oct. 1997.
9. Greenberg, S., Roseman, M. Using a room metaphor to ease transitions in groupware. Research rep.

98/611/02, Dep. Computer Science, Univ. Calgary, 1998.
10.R. Gruber, F. Kaashoek, B. Liskov, L. Shrira. Disconnected operation in the Thor Object-Oriented Data-

base System. In Proc. IEEE Workshop on Mobile Computing Systems and Applications, Dec.1994.
11.Haake, J., Wilson, B. Supporting Collaborative Writing of Hyperdocuments in SEPIA. In Proceedings of

CSCW’92, 1992.
12.Horstmann, T., Bentley, R. Distributed Authoring on the Web with the BSCW Shared Workspace Sys-

tem. ACM Standards View, Mar. 1997.

 16

13.Joseph, A., Tauber, J., Kaashoek, M., Mobile computing with the Rover toolkit. IEEE Trans. Computers,
Mar. 1997.

14.Karsenty, A., Beaudouin-Lafon, M. An Algorithm for Distributed Groupware Applications. In Proceed-
ings of 13th ICDCS, May 1993.

15.Kermarrec, A., Rowstron, A., Shapiro, M., Druschel, P. The IceCube approach to the reconciliation of
diverging replicas. In Proceedings of 20th PODC, 2001.

16.Kistler, J., Satyanarayanan, M. Disconnected Operation in the Coda File System. ACM Trans. on Com-
puter Systems, Feb. 1992.

17.G. Kuenning, G. Popek. Automated Hoarding for Mobile Computers. In the Proc. of 16th SOSP, 1997.
18.Lotus Notes. http://www.lotus.com
19.Munson, J., Dewan, P. Sync: A Java Framework for Mobile Collaborative Applications. IEEE Computer,

June 1997.
20.Oracle Lite. http://www.oracle.com
21.Pankoke-Babatz, U., Syri, A. Collaborative Worspaces for Time Deferred Electronic Cooperation. In

Proceedings of GROUP'97, 1997.
22.Qu, C., Nejdl, W. Constructing a web-based asynchronous and synchronous collaboration environment

using WebDAV and Lotus Sametime. In Proceedings on University and College Computing Services,
2001.

23.Sun, C., Ellis, C. Operational Transformation in Real-time Group Editors: Issues, Algorithms, and
Achievements. In Prooceedings of CSCW'98, 1998.

24.Vidot, N., Cart, M, Ferrié, J., Suleiman, M. Copies convergence in a distributed real-time collaborative
environment. In Proceedings of CSCW’2000, 2000.

25.IEEE 802.11. http://grouper.ieee.org/groups/802/11

