
Blotter: Low Latency Transactions
for Geo-Replicated Storage

Henrique Moniz1∗ João Leitão2 Ricardo J. Dias3 Johannes Gehrke4

Nuno Preguiça2 Rodrigo Rodrigues5

1Google 2NOVA LINCS & FCT, Universidade NOVA de Lisboa 3NOVA LINCS & SUSE Linux GmbH
4Microsoft 5INESC-ID & Instituto Superior Técnico, Universidade de Lisboa

ABSTRACT
Most geo-replicated storage systems use weak consistency to avoid
the performance penalty of coordinating replicas in different data
centers. This departure from strong semantics poses problems to
application programmers, who need to address the anomalies en-
abled by weak consistency. In this paper we use a recently pro-
posed isolation level, called Non-Monotonic Snapshot Isolation,
to achieve ACID transactions with low latency. To this end, we
present Blotter, a geo-replicated system that leverages these seman-
tics in the design of a new concurrency control protocol that leaves
a small amount of local state during reads to make commits more
efficient, which is combined with a configuration of Paxos that is
tailored for good performance in wide area settings. Read opera-
tions always run on the local data center, and update transactions
complete in a small number of message steps to a subset of the
replicas. We implemented Blotter as an extension to Cassandra.
Our experimental evaluation shows that Blotter has a small over-
head at the data center scale, and performs better across data cen-
ters when compared with our implementations of the core Spanner
protocol and of Snapshot Isolation on the same codebase.

Keywords
Geo-replication; non-monotonic snapshot isolation; concurrency
control.

1. INTRODUCTION
Many Internet services are backed by geo-replicated storage sys-

tems, in order to keep data close to the end user. This decision is
supported by studies showing the negative impact of latency on user
engagement and, by extension, revenue [15]. While many of these
systems rely on weak consistency for better performance and avail-
ability [10], there is also a class of applications that require support
for strong consistency and transactions. For instance, many appli-
cations within Google are operating on top of Megastore [3], a sys-
tem that provides ACID semantics within the same shard, instead of

∗Work done while the author was at NOVA LINCS.

c©2017 International World Wide Web Conference Committee (IW3C2), published
under Creative Commons CC BY 4.0 License.

ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052603

Bigtable [7], which provides better performance but weaker seman-
tics. This trend also motivated the development of Spanner, which
provides general serializable transactions [9], and sparked other re-
cent efforts in the area of strongly consistent geo-replication [28,
24, 22, 30, 16, 23].

In this paper, we investigate whether it is possible to further cut
the latency penalty for ACID transactions in a geo-replicated sys-
tems, by leveraging a recent isolation proposal called Non-Mono-
tonic Snapshot Isolation (NMSI) [24]. We present the design and
implementation of Blotter, a transactional geo-replicated storage
system that achieves: (1) at most one round-trip across data cen-
ters (assuming a fault-free run and that clients are proxies in the
same data center as one of the replicas), and (2) read operations
that are always served by the local data center. Additionally, when
the client is either co-located with the Paxos leader or when that
leader is in the closest data center to the client, Blotter can operate
in a single round-trip to the closest data center.

To achieve these goals, Blotter combines a novel concurrency
control algorithm that executes at the data center level, with a care-
fully configured Paxos-based replicated state machine that repli-
cates the execution of the concurrency control algorithm across data
centers. Both of these components exploit several characteristics of
NMSI to reduce the amount of coordination between replicas. In
particular, the concurrency control algorithm leverages the fact that
NMSI does not require a total order on the start and commit times
of transactions. Such an ordering would require either synchro-
nized clocks, which are difficult to implement, even using expen-
sive hardware [9], or synchronization between replicas that do not
hold the objects accessed by a transaction [25], which hinders scal-
ability. In addition, NMSI allows us to use separate (concurrent)
Paxos-based state machines for different objects, on which we geo-
replicate the commit operation of the concurrency control protocol.

Compared to a previously proposed NMSI system (Jessy [24]),
instead of assuming partial replication we target full replication,
which is a common deployment scenario [3, 27, 5]. Our layer-
ing of Paxos on top of a concurrency control algorithm is akin to
the Replicated Commit system, which layers Paxos on top of Two-
Phase Locking [23]. However, by leveraging NMSI, we execute
reads exclusively locally, and run parallel instances of Paxos for
different objects, instead of having a single instance per shard.

We implemented Blotter as an extension to Cassandra [17]. Our
evaluation shows that, despite adding a small overhead in a single
data center, Blotter performs much better than Jessy and the proto-
cols used by Spanner, and outperforms in many metrics a replica-
tion protocol that ensures SI [12]. This shows that Blotter can be
a valid choice when several replicas are separated by high latency
links, performance is critical, and the semantic differences between
NMSI and SI are tolerated by the application.



2. SYSTEM MODEL
Blotter is designed to run on top of any distributed storage system

with nodes spread across one or multiple data centers. We assume
that each data object is replicated at all data centers. Within each
data center, data objects are replicated and partitioned across sev-
eral nodes. We make no restrictions on how this intra-data center
replication and partitioning takes place. We assume that nodes may
fail by crashing and recover from such faults. When a node crashes,
it loses its volatile state but all data that was written to stable stor-
age is accessible after recovery. We use an asynchronous system
model, i.e., we do not assume any known bounds on computation
and communication delays. We do not prescribe a fixed bound on
the number of faulty nodes within each data center. As we will
see, our modular design allows for plugging in different replication
protocols that run within each data center. As such, the bounds on
faulty nodes depend on the intra-data center replication protocol.

3. NON-MONOTONIC SI
This section specifies our target isolation level, NMSI, and dis-

cusses the advantages and drawbacks of this choice. The reason
for formalizing NMSI is twofold. First, our specification is sim-
pler than the previous definition [24], thus improving in clarity and
readability. Second, some of our key design choices follow natu-
rally from this specification.

3.1 Snapshot isolation revisited
NMSI is an evolution of Snapshot Isolation (SI). Under SI, a

transaction (logically) executes in a database snapshot taken at the
transaction begin time, reflecting the writes of all transactions that
committed before that instant. Reads and writes execute against
this snapshot, and, at commit time, a transaction can commit if
there are no write-write conflicts with concurrent transactions. (In
this context, two transactions are concurrent if the intervals be-
tween their begin and commit times overlap.)

To define SI more precisely, we state that for any execution of
a system implementing SI, we must be able to create a partial or-
der among the transactions that were executed that (1) explains the
values observed by all transactions, with reads returning the value
written by the latest transaction, according to this partial order, that
wrote to that object; (2) totally orders transactions that write to the
same object; and (3) ensures that transactions see a snapshot that
reflects all operations that committed before the transaction started.
More precisely:

DEFINITION 3.1 (SNAPSHOT ISOLATION (SI)). An imple-
mentation of a transactional system obeys SI if, for any trace of
an execution of that system, there exists a partial order ≺ among
transactions that obeys the following rules, for any pair of transac-
tions ti and tj in that trace:

1. if tj reads a value for object x written by ti then ti ≺ tj∧@tk
writing to x : ti ≺ tk ≺ tj

2. if ti and tj write to the same object x then either ti ≺ tj or
tj ≺ ti.

3. ti ≺ tj if and only if ti commits before tj begins.

This definition captures the anomalies that are used in most defi-
nitions of SI. In particular, it prevents concurrent transactions from
writing to the same object. For example, consider the following
non-SI execution1:

1The notation b, r[xj], w[yl], c and a refers to the following op-
erations of a transaction: begin; read version j of object x; write
version l of object y; commit; and abort.

T1
b r[x0] w[x1] c

T2
b r[x0] w[x1] c

time

In the above example, transactions T1 and T2 write to the same
object x and both commit. Such execution is impossible under SI,
since two transactions that write to the same object must be ordered
according to point number 2 of Definition 3.1, and, for any ordered
pair of transactions, the first one must have committed before the
start of the second transaction, according to point number 3.

The write-skew anomaly is also captured by Definition 3.1, since
concurrent transactions with disjoint write-sets are not ordered. For
example, the following execution meets SI, but is not serializable.

T1
b r[x0] w[y1] c

T2
b r[y0] w[x1] c

time

3.2 Specification of NMSI
NMSI weakens the SI specification in two ways. First, the snap-

shots against which transactions execute do not have to reflect the
writes of a monotonically growing set of transactions. In other
words, it is possible to observe what is called a “long fork” anomaly,
where there can exist two concurrent transactions ta and tb that
commit, writing to different objects, and two other transactions that
start subsequently, where one sees the effects of ta but not tb, and
the other sees the effects of tb but not ta. The next figure exempli-
fies an execution that is admissible under NMSI but not under SI,
since under SI both T3 and T4 would see the effects of both T1 and
T2 because they started after the commit of T1 and T2.

T1
b w[x1] c

T2
b w[y1] c

T3
b r[x1] r[y0] c

T4
b r[x0] r[y1] c

time

This relaxation affects Definition 3.1 by turning the equivalence
in point 3 into an implication, i.e., it becomes:

3’ if ti ≺ tj then ti commits before tj begins.
Second, instead of forcing the snapshot to reflect a subset of the

transactions that committed at the transaction begin time, NMSI
gives the implementation the flexibility to reflect a more convenient
set of transactions in the snapshot, possibly including transactions
that committed after the transaction began. This property, also en-
abled by serializability, is called forward freshness [24].

Going back to Definition 3.1, we can completely remove point 3,
since it is now possible that the snapshot that t sees reflects writes
from transactions that commit after t started, as long as the resulting
snapshot is valid at some moment before the commit of t, i.e.:

DEFINITION 3.2 (NON-MON. SNAPSHOT ISOL. (NMSI)). An
implementation of a transactional system obeys NMSI if, for any
trace of the system execution, there exists a partial order ≺ among
transactions that obeys the following rules, for any pair of transac-
tions ti and tj in the trace:

1. if tj reads a value for object x written by ti then ti ≺ tj∧@tk
writing to x : ti ≺ tk ≺ tj

2. if ti and tj write to the same object x then either ti ≺ tj or
tj ≺ ti.

The example in Figure 1 obeys NMSI but not SI, as the depicted
partial order meets Definition 3.2, but it is not possible to create a
partial order obeying all three requirements of Definition 3.1.



T1
b r[y0] w[x1] c

T2
b r[y0] r[x1] w[x2] c

time

T0 ≺ T1 ≺ T2

Figure 1: Example execution obeying NMSI but not SI.

3.3 What is enabled by NMSI?
NMSI weakens the specification of SI through the two properties

we mentioned previously, which are individually leveraged by the
design of Blotter.

The possibility of having “long forks” allows, in a replicated
setting, for a single (local) replica to make a decision concerning
what data the snapshot should read. This is because, in any highly
available design for the commit protocol, there is necessarily the
possibility of some replicas not seeing a subset of the most recent
commits (since otherwise it would be impossible to provide avail-
ability when a data center is unreachable). As such, in a situation
where snapshots are based on local information, and a replica in
data center DC1 sees the writes of t1 but not t2, and conversely
a replica in DC2 sees the writes of t2 but not t1, then the two lo-
cal snapshots taken at each of these replicas can lead to the “long
fork” anomaly we mentioned, where two transactions proceed in-
dependently. Avoiding this situation would require a serialization
between all transaction begin and commit operations.

In the case of “forward freshness”, this allows for a transaction
to read (in most cases) the most recent version of a given replica,
without having to worry about the instant when the transaction be-
gan. This not only avoids the bookkeeping associated with keeping
track of transaction start times, but also avoids a conflict with trans-
actions that might have committed after the transaction began.

3.4 Discussion: Limitations of NMSI
We analyze in turn the impact of “forward freshness” and “long

forks” on programmability. Forward freshness allows a transaction
x to observe the effects of another transaction y that committed
after x began (in real-time). In this case, the programmer must de-
cide whether this is a violation of the intended application seman-
tics, analogously to deciding whether serializability or strict serial-
izability is the most adequate isolation level for a given application.
Long forks allow two transactions to be executed against different
branches of a forked database state, provided there are no write-
write conflicts. In practice, the main implication of this fact is that
the updates made by users may not become instantly visible across
all replicas. For example, this could cause two users of a social net-
work to each think that they were the first to post a new promotion
on their own wall, since they do not see each other’s posts imme-
diately [28]. Again, the programmer must reason whether this is
admissible. In this case, a mitigating factor is that this anomaly
does not cause the consistency of the database to break. (This is in
contrast with the “write skew” anomaly, which is present in both SI
and NMSI.) Furthermore, in the particular case of our implementa-
tion of NMSI, the occurrence of anomalies is very rare: for a “long
fork” to occur, two transactions must commit in two different data
centers, form a quorum with a third data center, and both complete
before hearing from the other.

Finally, NMSI allows consecutive transactions from the same
client to observe a state that reflects a set of transactions that does
not grow monotonically (when consecutive transactions switch be-
tween two different branches of a long fork). However, in our algo-
rithms this is an unlikely occurrence, since it requires that a client
connects through different data centers in a very short time span.

4. ARCHITECTURE OF BLOTTER
The client library of Blotter exposes an API with the expected

operations: begin a new transaction, read an object given its
identifier, write an object given its identifier and new value, and
commit a transaction, which either returns commit or abort.

The set of protocols that comprise Blotter are organized into
three different components. This not only leads to a modular de-
sign, but also allows us to more clearly define the requirements and
design choices of each component.
Blotter intra-data center replication. At the lowest level, we run
an intra-data center replication protocol, to mask the unreliability
of individual machines within each data center. This level must
provide the protocols above it with the vision of a single logical
copy (per data center) of each data object and associated metadata,
which remains available despite individual node crashes. We do not
prescribe a specific protocol for this layer, since any of the existing
protocols that meet this specification can be used.
Blotter Concurrency Control. (Section 5.) These are the pro-
tocols that ensure transaction atomicity and NMSI isolation in a
single data center, and at the same time are extensible to multiple
data centers by serializing a single protocol step.
Paxos. (Section 6.) This completes the protocol stack by replicat-
ing a subset of the steps of the concurrency control protocol across
data centers. It implements state machine replication [26, 18] using
a careful parameterization of Paxos [19]. However, state machine
replication must be judiciously applied to the concurrency control
protocol, to avoid unnecessary coordination across data centers.

5. SINGLE DATA CENTER PROTOCOL

5.1 Overview
We start by explaining how we derive the concurrency control

protocol from the NMSI requirements.
Partial order ≺. We use a multi-version protocol, i.e., the system
maintains a list of versions for each object. This list is indexed by
an integer version number, which is incremented every time a new
version of the object is created (e.g., for a given object x, over-
writing x0 creates version x1, and so on). In a multi-versioned
storage, the ≺ relation can be defined by the version number that
transactions access, namely if ti writes xm and tj writes xn, then
ti ≺ tj ⇔ m < n; and if ti writes xm and tj reads xn, then
ti ≺ tj ⇔ m ≤ n.
NMSI rule number 1. Rule number 1 of the definition of NMSI
says that, for object x, transaction t must read the value written by
the “latest” transaction that updated x (according to ≺). To illus-
trate this, consider the example run in Figure 2. When a transac-
tion T1 issues its first read operation, it can read the most recently
committed version of the object, say xi written by T0 (leading to
T0 ≺ T ). If, subsequently, some other transaction T2 writes xi+1

(T0 ≺ T2), then the protocol must prevent T1 from either reading
or overwriting the values written by T2. Otherwise, we would have
T0 ≺ T2 ≺ T1, and T1 should have read the value for object x
written by T2 (i.e., xi+1) instead of that written by T0 (i.e., xi).
Next, we detail how this is achieved first for reads, then writes, and
then how to enforce the rule transitively.
Reading the latest preceding version. The key to enforcing this re-
quirement is to maintain state associated with each object, stating
the version a running transaction must read, in case such a restric-
tion exists. In the previous example, if T2 writes xi+1, this state
records that T1 must read xi.

To achieve this, our algorithm maintains a per-object dictionary
data structure (x.snapshot), mapping the identifier of a transaction t



b		r[xi]																																								r[yj]																											r[wk-1]	c

b	w[xi+1]	w[yj+1]	c

time

b	r[yj+1]	w[wk]		c

b				r[xi]																																					 r[yj]		w[y]	a

T1

T2

T3

T4

x:	T4→xi

y:	T1,T4→yj w:	T1,T4→wk-1

y:	T2→yj+1

x:	T1→xi

Figure 2: Example run.

to a particular version of x that t either must read or has read from.
Figure 2 depicts the changes to this data structure in the shaded
boxes at the bottom of the figure. When t issues a read for x, if
the dictionary has no information for t, the most recent version is
read and this information is stored in the dictionary. Otherwise, the
specified version is returned.

In the previous example, T1 must record the version it read in the
x.snapshot variable. Subsequently, when the commit of T2 over-
writes that version of x, we are establishing that T2 6≺ T1. As
such, if T2 writes to another object y, creating yj+1, then it must
also force T1 to read the preceding version yj . To do this, when
transaction T2 commits, for every transaction t that read (or must
read) an older version of object x (i.e., the transactions with entries
in the dictionary of x), the protocol will store in the dictionary of
every other object y written by T2 that t must read the previous
version of y (unless an even older version is already prescribed). In
this particular example, y.snapshot would record that T1 and T4
must read version yj , since, at commit time, x.snapshot indicates
that these transactions read xi.
Preventing illegal overwrites. In the previous example, we must
also guarantee that T1 does not overwrite any value written by T2.
To enforce this, it suffices to verify, at the time of the commit of
transaction t, for every object written by t, if T should read its most
recent version. If this is the case, then the transaction can commit,
since no version will be incorrectly overwritten; otherwise, it must
abort. In the example, T4 aborts, since y.snapshot records that
T4 must read yj and a more recent version exists (yj+1). Allowing
T4 to commit and overwrite yj+1 would lead to T2 ≺ T4. This
breaks rule number 1 of NMSI, since it would have required T1 to
read xi+1 written by T2, which did not occur.
Applying the rules transitively. Finally, for enforcing rule number 1
of the definition of NMSI in a transitive manner, it is also necessary
to guarantee the following: if T2 writes xi+1 and yj+1, and sub-
sequently another transaction T3 reads yj+1 and writes wk, then
the protocol must also prevent T1 from reading or overwriting the
values written by T3, otherwise we would have T0 ≺ T2 ≺ T3 ≺
T1, and thus T1 should also have read xi+1.

To achieve this, when transaction T3 (which read yj+1) com-
mits, for every transaction t that must read version yl with l < j+1
(i.e., the transactions that had entries in the dictionary of y when to
read y), the protocol will store in the dictionary of every other ob-
ject w written by T3 that t must read the previous version of w
(if an older version is not already specified). In the example, since
the state for y.snapshot after T2 commits specifies that T1 must
read version yj , then, when T3 commits, w.snapshot is updated
to state that T1 and T4 must read version wk−1.
NMSI rule number 2. Rule number 2 of the NMSI definition says
that any pair of transactions that write the same object x must have
a relative order, i.e., either ti ≺ tj or tj ≺ ti. This order is defined
by the version number of x created by each transaction.

Therefore, it remains to ensure that this is a partial order (i.e., no
cycles). A cycle could appear if two or more transactions concur-
rently committed a chain of objects in a different order, e.g., if tm
wrote both xi and yj+1 and tn wrote both xi+1 and yj . To prevent
this, it suffices to use a two-phase commit protocol where, for each
object, a single accepted prepare can be outstanding at any time.
Waiving SI rule number 3. The fact that NMSI does not have to
enforce rule number 3 (which is present only in SI) already allows
for some performance gains in the single data center protocol, even
though other, more impactful advantages will only become clear
when we extend the protocol to multiple data centers in Section 6.
In particular, if we consider the example in Figure 1, transaction T2

is bound to abort in SI after it read version 0 of y concurrently with
T1 creating version 1 of x. This is true of any concurrency control
scheme that implements SI because, when T2 subsequently reads
x, SI requires it to return the version corresponding to the snapshot
taken when the transaction started (i.e., x0), and the subsequent
write to x would generate a write-write conflict. In contrast, in
our NMSI design, the commit of T1 records in x.snapshot that T2

should read version 1, which avoids this situation.

5.2 Protocol design
The single data center concurrency control module consists of

the following three components: the client library and the transac-
tion managers (TM), which are non-replicated components that act
as a front end providing the system interface and implementing the
client side of the transaction processing protocol, respectively; and
the data managers (DM), which are the replicated components that
manage the information associated with data objects.

Client Library. This provides the interface of Blotter, namely
begin, read, write, and commit. The begin, and write operations
are local to the client. Read operations are relayed to the TM, who
returns the values and metadata for the objects that were read. The
written values are buffered by the client library and only sent to the
TM at commit time, together with the accumulated metadata for the
objects that were read. This metadata is used to set the versions that
running transactions must access, as explained next.

Transaction Manager (TM). The TM handles the two opera-
tions received from the clients: read and commit. For reads, it
merely relays the request and reply to or from the Data Manager
(DM) responsible for the object being read. Upon receiving a com-
mit request, the TM acts as a coordinator of a two-phase commit
(2PC) protocol to enforce the all-or-nothing atomicity property.
The first phase sends a dm-prewrite-request, with the newly writ-
ten values, to all DMs storing written objects. Each DM verifies
if the write complies with NMSI. If none of the DMs identifies a
violation, the TM sends the DMs a dm-write message containing
the metadata with snapshot information aggregated from all replies
to the first phase; otherwise it sends a dm-abort.

Data Manager (DM). The core of the concurrency control logic
is implemented by the DM. Algorithm 1 describes its handlers for
the three types of requests.

(i) Read operation. The handler for a read of object x by trans-
action T returns either the version of x stored in x.snapshot for T ,
if the information is present, or the most recent version and then
sets x.snapshot[T ] to that version, so that a subsequent read to the
same variable reads from the same snapshot (and also, as we will
see, for propagating snapshot information to enforce NMSI).

Before returning, the read operation must wait in case a con-
current transaction is trying to commit a new value for x (a stan-
dard 2PC check, which is done by inspecting x.prewrite). However,
blocking is not needed when the snapshot variable forces a transac-
tion to read a prior version.



Algorithm 1: Single data center DM protocols
// read operation

1 upon 〈 dm-read, T, x 〉 from TM do
2 processRead 〈 T, x, TM 〉;
// prewrite operation

3 upon 〈 dm-prewrite, T, x, value 〉 from TM do
4 if x.prewrite 6= ⊥ then

// another prewrite is pending
5 x.pending← x.pending ∪ {(T, x, value, TM)};
6 else
7 processPrewrite 〈 T, x, value, TM 〉;

// write operation
8 upon 〈 dm-write, T, x, agg-startd-before 〉 from TM do
9 for each T’ in agg-startd-before do

10 if T’ not in x.snapshot then
11 x.snapshot[T’]← x.last;

12 x.last← x.last + 1;
13 x.value[x.last]← x.nextvalue;
14 finishWrite 〈 T, x, TM 〉;

// abort operation
15 upon 〈 dm-abort, T, x 〉 from TM do
16 finishWrite 〈 T, x, TM 〉;

// process read operation
17 processRead 〈 T, x, TM 〉
18 if T /∈ x.snapshot then
19 if x.prewrite 6= ⊥ then
20 x.buffered← x.buffered ∪ {(T, TM)};
21 return
22 else
23 x.snapshot[T]← x.last;

24 version← x.snapshot[T];
25 value← x.value[version];
26 send 〈 read-response, T, value, {T ′|x.snapshot[T ′] < version} 〉 to

TM;
// process dm-prewrite request

27 processPrewrite 〈 T, x, value, TM 〉
28 if x.snapshot[T] 6=⊥ ∧ x.snapshot[T] < x.last then

// there is a write-write conflict
29 send 〈 prewrite-response, reject,⊥ 〉 to TM;
30 else
31 x.prewrite← T;
32 x.nextvalue← value;
33 send 〈 prewrite-response, accept, {T ′|T ′ ∈ x.snapshot} 〉 to TM;

// clean prewrite information and serve buffered
reads and pending prewrites

34 finishWrite 〈 T, x, TM〉
35 if x.prewrite = T then
36 x.nextvalue←⊥; x.prewrite←⊥;

37 for each (T, TM) in x.buffered do
38 processRead 〈 T, x, TM 〉;
39 if x.pending 6=⊥ then
40 (T, x, value, TM)← removeFirst(x.pending);
41 processPrewrite 〈 T, x, value, TM 〉;

Finally, the metadata returned to the TM are the identifiers of all
transactions present in x.snapshot that must read from a version
prior to the one returned, i.e., all T ′ that must obey T 6≺ T ′ due to
T reading x. This information is aggregated by the client library,
and propagated to DMs in phase 2 of the commit, to ensure that
those T ′ read a state prior to T . As explained in Section 5.1, this
enforces point 1 of the NMSI definition transitively.

(ii) Prewrite operation. This first phase for the commit of T
has two goals: detect write-write conflicts, and collect informa-
tion about concurrent transactions, which is subsequently added to
their snapshot variables. After checking (and if needed blocking)
if there is a concurrent prewrite for an object written by T , the DM
detects write-write conflicts by checking if T has to read an older
version for any written object x (i.e., by checking x.snapshot[T ]).

If so, then T is writing to an object that was written by a concurrent
transaction (i.e., a write-write conflict would violate Rule 1 of the
NMSI Definition), and a reject is replied. Otherwise, prewrite and
nextvalue are set, in order to block concurrent accesses to x, and an
accept is returned, including as metadata the identifiers of all trans-
actions in x.snapshot. These are the transactions that cannot be
serialized after T according to ≺, since T is overwriting data they
either read or must read. This information is aggregated by the TM
and used in the next phase.

(iii) Write and abort operations. If any of the participating
DMs detects a write-write conflict, then the TM sends abort mes-
sages to all DMs involved in T , who then remove T from prewrite
and nextvalue, thus unblocking pending transactions. Otherwise,
the TM sends a write to all DMs in T , containing the aggregated
metadata, comprising the set of identifiers of all transactions present
in the snapshot variable for any object read or written by T . Upon
receiving a write request, the DM responsible for x will first set
x.snapshot[T ′] to the current version of x, for any transaction T ′

in the previous set, thus enforcing that T 6≺ T ′. After this step, the
DM will create a new version of x by incrementing its version num-
ber, and the new version is made visible to other transactions by
updating x.last and x.value[x.last]. Finally, reads pending on that
transaction commit are executed, followed by pending prewrites.

5.3 Garbage Collection
The per-object x.snapshot data structure needs a garbage col-

lection mechanism to prevent the number of entries from growing
without bound. This is particularly important since these entries are
propagated from one data object to another at the time of commit.

An entry x.snapshot[T ] guarantees that T reads a version of x
that will not break NMSI rules and also enables the detection of
write-write conflicts between T and other committed transactions
when T attempts to commit. This means that an entry for T in
the snapshot data structure only needs to be maintained while T
is executing. When T terminates, the entry should be removed as
soon as possible to avoid a needless propagation to the snapshot
structure of other objects. We take advantage of this observation to
implement a simple garbage collection scheme, where each trans-
action T is created with a time to live (TTL), which reflects the
maximum time the transaction is allowed to run. After the TTL of
T expires, any entries for T are automatically garbage collected.
We analyze the efficiency of this mechanism in Section 7.5.

This mechanism also enables us to garbage collect old versions
of data objects: any version of an object x, other than the most re-
cent one, with no entries in the x.snapshot data structure pointing
to it can be safely garbage collected.

6. GEO-REPLICATION
Blotter implements geo-replication, with each object replicated

in all data centers, using Paxos-based state machine replication [19,
26]. In this model, all replicas execute a set of client-issued com-
mands according to a total order, thus following the same sequence
of states and producing the same sequence of responses. We view
each data center as a state machine replica. The state is com-
posed by the database (i.e., all data objects and associated meta-
data), and the state machine commands are the tm-read and the
tm-commit of the TM-DM interface.

Despite being correct, this approach has three drawbacks: (1)
read operations in our concurrency control protocol are state ma-
chine commands that mutate the state, thus requiring an expensive
consensus round; (2) the total order of the state machine precludes
the concurrent execution of two commits, even for transactions that
do not conflict; and (3) each Paxos-based state machine command



requires several cross-data center message delays (depending on
the variant of Paxos used). We next refine our design by addressing
each of these concerns, including a discussion on deadlocks.
(1) Local read operations. Read operations modify the snapshot
variable state and need to be executed in the state machine, incur-
ring in the cross-data center latency of the replication protocol.

To avoid this overhead, we propose to remove the contents of
the snapshot variable from the state machine. The replicas still
maintain their view of the snapshot variable, but the information
is independently maintained by each replica. This is feasible under
NMSI since the snapshot information is used for only two purposes.

The first one is to determine whether write-write conflicts exist.
This happens if, at commit time of transaction T , for some modi-
fied object x, the snapshot information for T is not the most recent
version of x. Since the snapshot information is now updated out-
side of the state machine, only the replica in the data center where
T is initiated records the information for snapshot[T ]. To allow all
data centers to deterministically check for write-write conflicts, we
include, as a parameter of the commit state machine command, the
snapshot information present at the data center where T executed,
for each object x modified by T . While this works seamlessly for
objects that are both read and written by T , this does not handle the
case of a blind write to x, since x.snapshot[T ] was not defined in
this case. This can be handled by forcing blind writes to perform
an artificial read to define x.snapshot[T ], right before T commits.

The second use of the information in the snapshot data structure
is during transaction execution (i.e., before the commit) to deter-
mine which version of an object should be observed by a transac-
tion T , so that a consistent snapshot for T is read. However, this
is a local use of the information, and therefore it does not have to
be maintained by the state machine. (This forces clients to restart
ongoing transactions when failing over to another data center.)

By having consistent reads outside the state machine, read-only
transactions can run locally in the data center where the TM runs.
Connection to NMSI. These modifications are possible because,
unlike SI, NMSI allows for independence between the state re-
flected by transactions and the real-time instant when transactions
begin and commit. Otherwise, the local snapshot variable might
not be up-to-date as other transactions commit (see point (3)).
(2) Concurrent execution of database operations. Enforcing a
state machine total order on database operations and executing them
serially ensures consistency, but defeats the purpose of concurrency
control, which is to enable transactions to execute concurrently.

To address this, we observe that the partial order required by the
NMSI definition can be built by serializing the dm-prewrite opera-
tion on a per-object basis, instead of serializing tm-commits across
all objects. This is because a per-object serialization of the first
phase of the two-phase commit suffices to ensure that the trans-
action outcome is the same at all data centers and that the state
transformation of each object involved in the tm-commit operation
is also the same at all replicas, and therefore the database evolves
consistently and obeying NMSI across all data centers.

As such, instead of having one large state machine whose state is
defined by the entire database, we can have one state machine per
object, with the state being the object (including its metadata), and
supporting only the dm-prewrite operation. The data center where
the transaction executes is the one to issue the dm-prewrites for the
objects involved in the transaction, and, since the outcome is the
same at all data centers, each data center can subsequently commit
or abort the transaction independently, without coordination.
Connection to NMSI. This important optimization is made possi-
ble by the NMSI semantics, namely the possibility of having long
forks. The intersection property between read and write quorums is

only required for quorums of the same instance. As such, a commit
to an object x may not be reflected in the state read by the Paxos
instance for object y and vice-versa, thus leading to a long fork.
Deadlock Resolution. As presented so far, Blotter can incur in
deadlocks when more than one transaction writes to the same set of
objects, and the Paxos instances for these objects serialize the trans-
actions in a different order. The possibility of deadlock is common
across any two-phase commit-based system [28, 9, 23], and, since
it has been addressed in the literature, we consider it orthogonal
to our contribution. In particular, due to the use of Blotter Paxos,
deadlocks are replicated across different data centers, and there-
fore any deterministic deadlock resolution scheme, such as edge-
chasing [11], can be employed.
(3) Paxos with a single cross-data center round-trip. We ad-
justed the configuration of Paxos to reduce the cross data center
steps to a single round-trip (from the client of the protocol, i.e., the
TM) for update transactions. We leverage two techniques.

The first is to use a variant called Multi-Paxos [19], which al-
lows, in the normal case, for command execution to proceed as fol-
lows: client (i.e., TM) to Paxos leader; Paxos leader to all replicas;
all replicas to client. The second technique leverages the observa-
tion that data center outages are rare, and given that we are using
a lower layer of replication protocols to make each Paxos replica
fault-tolerant, it is sensible to configure Paxos to only tolerate one
unplanned outage of a data center. In fact, this configuration is
common in existing deployed systems [2, 9]. (Planned outages are
handled by reconfiguring the Paxos membership [20].) Given this
observation, we can parameterize Paxos to use read quorums of
N−1 and write quorums of 2 processes (where N is the number of
data centers). This allows the following optimization: upon receiv-
ing an operation from the leader, a replica knows that the operation
is decided, since it gathered a quorum of two processes between
itself and the leader. This allows a TM to commit a transaction
incurring in a single cross-data center round trip for each object,
irrespectively of the TM being co-located with the Paxos leaders.
Connection to NMSI. This optimization could be applied to other
systems that use Paxos in the context of replicated transactions,
although, as stated previously, a design that uses different repli-
cas groups for different objects would require quorum intersection
across replica groups in SI but not in NMSI. Such quorum intersec-
tion would be possible if all groups used the same quorums (e.g.,
majorities), whereas in NMSI we can use asymmetric quorums and
optimize the location of the Paxos leader per-object.

7. EVALUATION
We evaluated Blotter on EC2, by comparing it to Cassandra,

an implementation of Spanner’s Two-Phase Locking (2PL), a full
replication SI protocol [12], and Jessy.

Our evaluation uses various benchmarks and workloads, namely:
microbenchmarks for latency and throughput (§7.2); an adaptation
of the RUBiS benchmark to key-value stores (§7.3); and a social
networking workload (§7.4). We also evaluate the garbage collec-
tion mechanism (§7.5); and conduct a separate comparison to Jessy,
the other system that offers NMSI (§7.6).

7.1 Experimental Setup
We conducted the experiments on EC2 using data centers from

three availability regions: Ireland (EU), Virginia (US-E), and Cal-
ifornia (US-W). The following table shows the roundtrip latencies
between these data centers.

Ireland Virginia
Virginia 97 -

California 167 79



A server cluster composed of four virtual machines was setup in
each data center. Four additional virtual machines per data center
were used as clients. Each virtual machine is an extra large instance
with a 64-bit processor architecture, 4 virtual cores, and 15 GB of
RAM. Within each data center, keys are mapped to servers using
consistent hashing.

We compared the following geo-replicated systems. (In all sys-
tems, centralized components, namely lock servers for 2PL and
Paxos leaders, ran in Ireland.)
Blotter. We implemented Blotter on top of Cassandra. In particu-
lar, we extended Cassandra and its Thrift API with the TM and DM
logic of Blotter and implemented a client library supporting the be-
gin, read, write, commit interface. For intra-data center replication,
Blotter uses Cassandra replication with N = 2 replicas, with write
quorums of two replicas and read quorums of one replica.
Cassandra. Cassandra is a popular open source NoSQL key-value
store [17]. Cassandra does not support transactions, and the consis-
tency of individual operations is defined by the clients, who specify
the number of replicas that are contacted in the foreground, before
the operation returns. We used two different configurations, both
with N = 3 replicas (one per data center): (1) the local quorum
configuration uses read and write quorums of a single replica, thus
providing weak consistency; and (2) the ’each’ quorum configura-
tion, where a read operation completes after contacting exactly one
replica (at the local data center), and a write operation completes af-
ter contacting all three replicas, thus providing strong consistency.
Although Cassandra does not support transactions, we compare it
against the other systems by clustering its operations into logical
groups (which we simply call transactions), each containing zero
or more read operations and optionally terminated by an aggregated
set of write operations.
Spanner’s 2PL. We chose Spanner [9] as one of the comparison
points because of its relevance, since it is a production system de-
ployed at Google. Update transactions in Spanner are an implemen-
tation of the two-phase locking/two-phase commit (2PL/2PC) tech-
nique for serializable transactions [4], on top of a Paxos-replicated
log. By further leveraging the TrueTime API, Spanner also pro-
vides external consistency, or linearizability. (Conversely, Blotter
uses Paxos to replicate the atomic commit operation across data
centers instead of the log.) We extended Cassandra with transac-
tions using the 2PL/2PC approach of Spanner, with a centralized
lock server, on top of a Paxos-replicated log. We left out True-
Time, thus providing serializability, and favoring the performance
of our implementation of Spanner’s 2PL/2PC.
Generalized SI. Generalized SI (GSI) [12] is an extension of SI
suitable for replicated databases. GSI allows transactions to read
from older snapshots, whereas SI requires transactions to read from
the most recent snapshot. The GSI algorithm assumes a full repli-
cation scenario where each replica contains the full copy of the
database. Read operations can read from any replica, and commit
operations must be serialized either using either a centralized trans-
action certifier or a state-machine approach. (We reused the Paxos
implementation of Blotter.) We implemented GSI as an extension
of Cassandra, with a replica of each data item per data center, and
therefore local reads do not contact remote data centers.

7.2 Microbenchmarks
We measured latency and throughput under a simple workload,

which parameterizes the number of read and write operations in
each transaction. For this set of experiments, we loaded the database
with 10 million random keys and random 256-byte values.
Latency. We first studied how the operations that comprise a trans-
action affect its latency. In this experiment, each transaction was

composed of a single read operation and by either one or five write
operations applied at commit time. For each run, the load consisted
of a single client machine with a single thread executing 10,000
transactions serially. We used both a single data center in Ireland,
and a configuration using all data centers.

The results in Table 1 show the latency (median and 99th per-
centile) for individual read and commit operations with both one
and five write operations (W=1 and W=5).

The single data center configuration evaluates the protocol over-
heads when the latency between nodes is small. The results show
that reads in Blotter incur a slight overhead with respect to the base-
line Cassandra implementation (less than half a millisecond) due
to the extra steps of writing snapshot information and acquiring
locks. For commits, the differences are more pronounced, due the
fact that Cassandra only requires two message exchanges, while
Blotter, GSI, and 2PL require four because of 2PC.

For the multi-data center configuration, the previous overheads
are dwarfed by the inter-data center latency. The Cassandra local
quorum configuration is the only one that does not require cross-
data center communication, and thus performs similarly in both
configurations. Compared to the remaining systems, Blotter and
GSI perform better because they only require a response from a
single remote data center, in most cases the closest one. Cassandra
(’each’ quorum) requires replies from all data centers, so the com-
mit latency reflects the latency between the client and the farthest
data center. The latency of 2PL is higher than the other protocols
because it requires more cross-data center round-trips for commits,
and it also has to contact the data center responsible for the read
and write locks for both types of transactions.

The results also show that GSI has a slightly lower latency than
Blotter, which is likely due to the performance variance of the vir-
tualized, wide-area environment.
Throughput. For measuring throughput, we used transactions with
different combinations of read and write operations, including read-
only, write-only, and mixed transactions. Each transaction executes
R read operations serially followed by a commit with W write op-
erations. We varied the number of concurrent client threads from
12 to 360, equally split across all data centers, where each client
thread executes its transactions in a serial order. Figure 3 presents
the maximum observed throughput for a configuration spanning all
three data centers.

For read-only workloads, 2PL has a much lower throughput due
to the fact that is does not necessarily read from the local data cen-
ter. The overhead due to the extra processing in Blotter compared
to Cassandra is also visible, particularly for R=5. For the write-
only and mixed workloads, and focusing on the systems that require
cross-data center coordination, Blotter has the highest throughput
due to its more efficient cross-data center communication pattern
and, compared to GSI, because of the increased parallelism, which,
as we explained, is fundamentally tied to the use of NMSI.

7.3 Auction Site
We also evaluated Blotter using the RUBiS benchmark, which

models an auction site similar to eBay. We ported the benchmark
from using a relational database as the storage backend to using
a key-value store. Each row of the relational database is stored
with a key formed by the name of the table and the value of the
primary key. We additionally store data for supporting efficient
queries (namely indexes and foreign keys).

The workload consists of a mix with 85% of the interactions
containing only read-only transactions, and 15% of the interactions
containing read-write transactions. We initially load the key-value
store with 10,000 users, 1,000 old items, and 32,667 active items.



Single Data Center Multi Data Center
System Read Latency Commit Latency Read Latency Commit Latency

W = 1 W = 5 W = 1 W = 5
Cassandra (local quorum) 0.61 / 4.2 0.62 / 3.3 0.62 / 3.3 1.02 / 6.7 3.41 / 6.3 3.07 / 6.0
Cassandra (’each’ quorum) 0.65 / 4.2 1.55 / 3.3 1.51 / 3.3 1.12 / 6.0 180.75 / 189.7 171.49 / 181.7
Blotter 0.98 / 5.0 1.46 / 4.3 1.45 / 4.3 1.60 / 7.5 85.47 / 150.0 87.09 / 128.7
GSI 0.71 / 4.3 1.75 / 5.3 1.76 / 5.3 1.21 / 79.0 79.21 / 82.7 78.89 / 82.3
2PL 0.62 / 4.0 0.61 / 4.0 0.60 / 4.0 1.72 (local), 247.32 / 321.7 246.17 / 310.0

85.19 (remote) / 150.7

Table 1: Latency of microbenchmarks in milliseconds (median / 99th percentile)

R=1
W=0

R=5
W=0

Read-only workloads

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
on

d)

R=0
W=1

R=0
W=5

Write-only workloads

0

1000

2000

3000

4000

5000

6000

7000

8000

R=1
W=1

R=1
W=5

R=5
W=1

R=5
W=5

Mixed workloads

0

1000

2000

3000

4000

5000

6000

7000
Cassandra (local quorum)
Cassandra (each)
Blotter
GSI
2PL

R = 0
W = 1

R = 0
W = 5

R = 1
W = 0

R = 5
W = 0

R = 1
W = 1

R = 1
W = 5

R = 5
W = 1

R = 5
W = 5

Figure 3: Throughput of multi-data center microbenchmarks

Figure 4 depicts our experimental results for the RUBiS work-
load. The results show that, consistently with the microbenchmark
results, Blotter outperforms 2PL in terms of throughput for both
read-only and read-write operations, since the design of Blotter
minimizes the need for communication and coordination across
data centers.

7.4 Microblogging
This experiment evaluates a mockup implementation of Twit-

ter, supporting three different user interactions, modeled after [30]:
Post-tweet appends a tweet to the wall of a user and its followers,
which results in a transaction with many reads and writes. Follow-
user appends new information about the set of followers to the pro-
files of the follower and the followee, which results in a transaction
with two reads and two writes. Finally, read-timeline reads the wall
of the user, resulting in a single read operation.

The workload consists of the following mix of interactions: 85%
read-timeline, 10% post-tweet, and 5% follow-user. The database
contains 100,000 users and each has an average of 6 followers. For
each system, we varied the number of client threads from 120 to
720 and measured the maximum observed throughput.

The results in Figure 5 show a similar pattern to the through-
put microbenchmarks. For the read-timeline (read-only) opera-
tion, Cassandra achieves the best throughput (60K tx/s), followed
by Blotter (50K tx/s), and 2PL (10K tx/s). For the post-tweet
and follow-user operations, which contain updates, Blotter has the
highest throughput, followed by Cassandra, and then 2PL.

7.5 Garbage Collection
The garbage collection mechanism of Blotter is required to pre-

vent the number of entries in the snapshot data structure of objects
from growing without bound, which is important since this impacts
the protocol message size.

To analyze the overhead of garbage collection, we deploy Blot-
ter with one server and one client, and set the TTL to 1 second.

The client executes a workload parameterized by (1) the number of
objects in the database, and (2) the number of read and write op-
erations per transaction. Both directly affect the contention and,
consequently, the rate of propagation of snapshot entries in the
database. As a metric of the efficiency of the garbage collection
mechanism we use the number of snapshot entries returned with
each read operation, as this reflects the size of the snapshot data
structure at the time of the operation.

Figure 6 shows the average number of snapshot entries per read
as a function of how far into the trace we are, for two database
configurations: with 1000 objects (less contention) and 100 objects
(more contention). For every tested combination of parameters, the
GC mechanism stabilizes the size of the snapshot data structures to
a very reasonable level of at most a few tens of entries. We also
observed a peak in the size of the state that is returned, which hap-
pens because the high contention eventually saturates the system,
thus increasing the latency of the transactions and lowering the rate
at which snapshot entries are propagated.

7.6 Comparison to Jessy
We compared Blotter to the Jessy implementation of NMSI pro-

vided by its authors [25]. Jessy was the first system to explore
NMSI as the isolation level for transactions in a geo-replicated set-
ting. In contrast to Blotter, it focuses on partial replication settings
(i.e., a given data center may not replicate the entire data set). For
building consistent snapshots, Jessy uses a data structure called de-
pendence vector, which contains either one entry per data item or
per set of data items, depending on the configuration. This data
structure is stored with data objects in the database, and must be
read by clients and propagated within write operations. The propa-
gation of transactions across machines uses total order multicast.

We first ran experiments in a single data center (EC2 in Ire-
land), where both systems were deployed across four servers, us-
ing both dependence vector configurations above. In these exper-
iments we set a replication factor of two and a total of 50, 000



Figure 4: Average user interaction
throughput for RUBiS

Figure 5: Microblogging throughput
Figure 6: Garbage collection

keys. Each object in this deployment has a size of 256 Bytes. We
used YCSB [8] to execute a total of 4, 000 transactions (evenly dis-
tributed across 20 client threads). Both configurations of Jessy ex-
hibited a throughput below 100 transactions per second, while the
throughput of Blotter was above 300 transactions per second. Even
though the performance numbers are not directly comparable, since
the code bases are very different, there are several factors that neg-
atively affect the performance of Jessy. In particular, the size of its
dependence vectors when using one entry per object grows to an
average size of 200 entries only a few seconds into the experiment,
which leads to significant memory and communication overheads.
In turn, the other configuration of Jessy uses dependence vectors
with a constant size of two entries. However, this alternative leads
to a significant number of spurious conflicts.

We also deployed Jessy with geo-replication. However, both
configurations of Jessy had very low throughput, which is a result
using of total order multicast across data centers.

8. RELATED WORK
The closest related proposals are systems that also aim at sup-

porting a non-monotonic version of snapshot isolation transactions
in a geo-replicated setting. Jessy [25] was the first system to ex-
plore NMSI as the isolation level for transactions in a geo-replicated
setting, where objects can be partitioned across different sites. For
building consistent snapshots, Jessy uses a data structure called de-
pendence vector, with one entry either per object or per set of ob-
jects. The former case has scalability issues, showed by our exper-
iments, since the vector is O(n), where n is the number of objects
in the database, whereas in the latter case the algorithm restricts
concurrency, leading to spurious conflicts. By focusing on the case
where data is fully replicated, Blotter provides consistent snapshots
with no spurious conflicts and with an overhead that is linear in the
number of active transactions in the local data center.

Walter [28] also uses a non-monotonic variant of SI called par-
allel snapshot isolation (PSI). While both PSI and NMSI allow
long forks, in PSI the snapshot is defined at transaction begin time,
based on the state of the replica in which the transaction executes.
Ardekani et. al. [24] have shown that this leads to a higher abort
rate and results in lower performance when compared to NSMI.

There are also systems that guarantee isolation levels stronger
than NMSI in geo-replicated scenarios. The replicated commit pro-
tocol [23] provides serializable transactions by layering Paxos on
top of two-phase locking and two-phase commit. However, in that
protocol, not only commit but also read operations require contact-
ing all data centers and receiving replies from a majority of replicas.
In Blotter, we similarly layer Paxos on top of a concurrency con-
trol protocol. But, in contrast, Blotter adopts the NMSI isolation
level and uses novel concurrency control protocols that allow it to
perform consistent reads locally, within the data center where the

transaction was started. As a consequence, transactions in Blotter
only require a single cross data center round-trip at commit time.

Spanner [9] and Scatter [13] provide strong ACID transactional
guarantees with geo-replication, but, in contrast to Blotter, their
architecture layers two-phase commit and two-phase locking on top
of a Paxos-replicated log. Reversing the order of these two layers
leads to more cross data center round-trips and a corresponding
drop in performance, as shown by other authors [23].

TAPIR [29] follows the same principle as Blotter of having a
lower layer of weakly consistent replication, on top of which trans-
actions are built. However, TAPIR aims for stronger semantics,
namely strict serializability. The resulting protocol requires loosely
synchronized clocks at the clients (for performance, not correct-
ness), and incurs in a single round-trip to all replicas in all shards
that are part of the transaction. In contrast, we offer NMSI with-
out any clock synchronization and with a single round-trip to the
closest (or the master) data center.

Other systems also support transactions in a geo-replicated de-
ployment, but provide weaker guarantees than Blotter. MDCC [16]
provides read committed isolation without lost updates by combin-
ing different variants of Paxos [14]. In contrast to MDCC, Blotter
offers stronger semantics, but the ideas of MDCC are complemen-
tary since Blotter could make use of a similar approach to further
improve the geo-replicated commit.

Some systems like Megastore [3] or SQL Azure [6] provide ACID
properties within a partition of data and looser consistency across
partitions. In contrast, transactions in Blotter may span any set of
objects. Other systems support more limited forms of transactions
than Blotter. Eiger [22] supports read-only and write-only transac-
tions. COPS [21] and ChainReaction [1] support read-only trans-
actions that offer causality, but no isolation. In contrast, Blotter
supports ACID transactions with NMSI.

9. CONCLUSION
In this paper, we studied the possibility of using NMSI to im-

prove the performance of geo-replicated transactional systems. We
proposed Blotter, a system that leverages this isolation level to in-
troduce a set of new protocols. Our evaluation shows that Blot-
ter outperforms other systems with stronger semantics, namely in
terms of throughput. As such, our protocols may prove useful for
systems that are performance critical and can run under NMSI.

Acknowledgments
Computing resources for this work were provided by an AWS in
Education Research Grant. The research of R. Rodrigues is funded
by the European Research Council (ERC-2012-StG-307732) and
by FCT (UID/CEC/50021/2013). This work was partially sup-
ported by NOVA LINCS (UID/CEC/04516/2013) and EU H2020
LightKone project (732505).



10. REFERENCES
[1] S. Almeida, J. Leitão, and L. Rodrigues. Chain- reaction: A

causal+ consistent datastore based on chain replication. In
Proc. of 8th European Conference on Computer Systems,
EuroSys’13, pages 85–98, 2013.

[2] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang,
T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and
S. Venkataraman. Photon: Fault- tolerant and scalable
joining of continuous data streams. In SIGMOD ’13: Proc.
of 2013 international conf. on Management of data, pages
577–588, 2013.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In Proc. of the Conference on Innovative
Data system Research (CIDR), pages 223–234, 2011.

[4] P. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2), January 1981.

[5] N. Bronson et al. Tao: Facebook’s distributed data store for
the social graph. In Proc. of the 2013 USENIX Annual
Technical Conference, pages 49–60, 2013.

[6] D. G. Campbell, G. Kakivaya, and N. Ellis. In Proc. of the
2010 ACM SIGMOD International Conference on
Management of Data, pages 1021–1024.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proc. of the 1st ACM Symposium on Cloud Computing,
pages 143–154, 2010.

[9] J. C. Corbett et al. Spanner: Google’s globally-distributed
database. In Proc. of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12,
pages 251–264, 2012.

[10] G. DeCandia et al. In Proc. of the 21st ACM Symposium on
Operating Systems Principles, pages 205–220.

[11] A. K. Elmagarmid. A survey of distributed deadlock
detection algorithms. SIGMOD Rec., 15(3):37–45, Sept.
1986.

[12] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In
Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, SRDS ’05, pages 73–84, Washington,
DC, USA, 2005. IEEE Computer Society.

[13] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable consistency in Scatter. In Proc. of the
23rd ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 15–28, 2011.

[14] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, Mar. 2006.

[15] T. Hoff. Latency is everywhere and it costs you sales - how
to crush it. Post at the High Scalability blog.
http://tinyurl.com/5g8mp2, 2009.

[16] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. Mdcc: Multi-data center consistency. In Proc. of
the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 113–126, 2013.

[17] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[18] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July
1978.

[19] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[20] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. ACM SIGACT News, 41(1):63–73, Mar. 2010.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. In Proc. of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 401–416.

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-replicated
storage. In Proc. of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13,
pages 313–328, 2013.

[23] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases using
replicated commit. Proc. VLDB Endow., 6(9):661–672, July
2013.

[24] M. Saeida Ardekani, P. Sutra, and M. Shapiro.
Non-Monotonic Snapshot Isolation: scalable and strong
consistency for geo-replicated transactional systems. In Proc.
of the 32nd IEEE Symposium on Reliable Distributed
Systems (SRDS 2013), pages 163–172, 2013.

[25] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguiça.
On the scalability of snapshot isolation. In Euro-Par 2013
Parallel Processing, volume 8097 of LNCS, pages 369–381.
Springer, 2013.

[26] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv.,
22(4):299–319, Dec. 1990.

[27] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A distributed sql database that scales. Proc. VLDB
Endow., 6(11):1068–1079, Aug. 2013.

[28] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proc. of the 23rd ACM
Symposium on Operating Systems Principles, SOSP ’11,
pages 385–400, 2011.

[29] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proc. of the 25th ACM
Symposium on Operating Systems Principles (SOSP), pages
263–278, 2015.

[30] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In Proc. of the
24th ACM Symposium on Operating Systems Principles,
SOSP, pages 276–291, 2013.


	Introduction
	System Model
	Non-monotonic SI
	Snapshot isolation revisited
	Specification of NMSI
	What is enabled by NMSI?
	Discussion: Limitations of NMSI

	Architecture of Blotter
	Single Data Center Protocol
	Overview
	Protocol design
	Garbage Collection

	Geo-replication
	Evaluation
	Experimental Setup
	Microbenchmarks
	Auction Site
	Microblogging
	Garbage Collection
	Comparison to Jessy

	Related Work
	Conclusion
	References

