Parallel and Distributed Processing in a Problem-Solving Environment for Environmental Science

José C. Cunha
Parallel and Distributed Processing Group
Departamento de Informática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Portugal
(jcc@di.fct.unl.pt)

June 1999

Index

- 1st part: PSE: A Global Perspective
- 2nd part: Work at UNL Towards a PSE for Environmental Science
- 3rd part: Conclusions
Slide 2

Problem–Solving Environments

- Integrated environment supporting:
 - entire life cycle
 - development and execution steps
 - to solve a given problem
 - with easy access by an end–user,
 - a scientist or engineer from a given domain

Slide 3

Development Steps

- Tools to help problem specification; design, analysis, verification, evaluation:
 - Rapid prototyping
 - Dependent on a specific domain
 - Expert assistance
Execution Steps

- To support online/offline observation and control of scientific experiments / simulation processes.
- Activities performed on multiple heterogeneous components (application-specific and generic tools):
 - selection, evaluation and testing
 - configuration, activation, interconnection
 - monitoring, controlling

Hetereogeneous Collection of Interconnected Components

- Sequential, Parallel, Distributed Problem Solvers
- Tools for data and result processing, interpretation, visualization
- Interactive steering: user and agent driven
- Online access to large databases
Requirements

- Complex (simulation) models
- Large volume of input or generated data
- Difficult interpretation and classification
- Reuse of components
- Dynamic configuration
- Dynamic modification of interaction patterns and operation modes according to the needs and evolution of each experiment

Slide 7

- Multidisciplinary nature:
 - Heterogeneous / hybrid components / models
 - Interactions among multiple users, collaborative environments
Component Integration
- Statically specified
- Dynamically inserted and removed from an existing configuration
- Multiple dynamically changing interaction patterns

High Degree of User Interaction
- Distinct operation modes (offline/online data interpretation or visualization)
- Distinct user interfaces
- User driven control (steering) of an ongoing computation
- Agent driven control

Dynamic Reconfiguration
- Components dynamically enter / leave the environment
- Component coordination
- Multiple users concurrently join ongoing experiments with distinct roles (observers, controllers)
- Consistent views
Figure 1: Conceptual Layers

- Application domain
- PSE
- Tools
- Formal mechanisms
- Coordination methods
- Resource managing/Interconnection services
- Monitoring and control layer
- Heterogeneous hardware/software
Formalisms for Software Architectures

- High-level specification of components, their composition, their interactions, for a given problem
- Modeling and reasoning on the global structure and behavior
- Semantics of interactions through the component connectors
- Specification languages for:
 - Description of system structure and analysis of system behavior
 - Incremental refinement and composition of architectures

Coordination Models

- Represent and manage patterns of interaction among components
- Define cooperation and communication models
- Guarantees of consistency

Resource Management Services

- Configuration of parallel and distributed heterogeneous virtual machines
- Activation of component instances
- Mapping and load balancing
- Local scale and large scale operations
- Management of metacomputing resources
• Interconnection Services
 – Models and infrastructures for heterogeneous components
• Monitoring and Control

Research Approach

• Short term
 – Build PSE for specific domains
 * Cooperation with scientists / engineers
 * Identification of user/application requirements
 * Early and incremental development of prototypes
 * Quick user feedback
 – Make them evolve towards advanced PSE to ease development and execution of complex applications
Slide 16

• Medium / Long term
 – Generic PSE to be tailored to specific problem domains
 – Tools for the more/less automatic generation of application–specific PSE
 – Advising/explaining tools to assist the user
 * During development time (correctness/performance)
 * During execution time (impact of parameter modification upon system behavior)
 – Integration of numeric, symbolic, multimedia, intelligent knowledge processing and discovery, database components

Slide 17

Further Challenges?

Abstract Specification of a PSE. To be submitted to a Meta–Environment that will generate a specific working PSE.

Layers. From a formal specification to the runtime support:

1. Formal specification of software architecture: components and connectors; structure and semantics of interactions.
2. Tools to reason about global system properties.
3. Tools to support transformation between software levels.
5. Specific PSE: working collaborative environment and tools.
Open Issues

- How to generate “Simple PSE”, i.e. with only a few components?
- How to build and validate the above mentioned Meta–environments?
 Through intensive experimentation.
- How to achieve "suitable" component–based middleware and supporting infrastructures?
 - Standards
 - Expressiveness (e.g. how to express coordination issues?)
 - Efficiency (e.g. how to interact with parallel components?)

Work at UNL/Lisboa Towards a PSE for Environmental Science

- Multidisciplinary Project
 - Framework to support Parallel and Distributed PSE (Parallel and Distributed Processing Group headed by Prof. José C. Cunha, Department of Computer Science, UNL)
 - Tridimensional Optimal Layout of WasteWater Treatment Plants (WWTP) (Group headed by Prof. David Pereira, Department of Environmental Sciences and Engineering, UNL)
• Issues
 – Integration of separate/distributed/heterogeneous components
 * distinct programming / computational models
 * distinct / hybrid problem-solving strategies
 – Parallel and distributed processing
 – Interactive / adaptive control
 – Easy access by the end-user in problem specification, development and execution control
 – Dynamic reconfiguration
 – Multiple cooperative users

Global View. Several sub-models (unitary operations, hydraulic, economic) are coordinated by a central model, resulting in a complete computer-aided design tool

• Data exchange between sub-models and central model: central model sends data (partial input) and gets results (partial output)
• Interaction may use a subroutine style or communication between independent processes
• Parallelization is necessary for the optimization problem
Types of Blocks. Three classes:

- Input Models
- Design and Optimization
- Output Models

Optimization

Combinatorial problem needs a mixture of heuristic rules and methods to reach acceptable solutions

- Optimization as a best solution for a given layout or choose the best design
- Use several techniques, depending on the case, e.g. Dynamic Programming or Parallel Genetic Algorithms
Parallel Genetic Algorithms Environments

- GA Approaches:
 - Sequential
 - Parallel
 - Hybrid; Co-evolutionary computing

- Parallel GA Approaches:
 - Fine grain; Coarse grain
 - Shared-memory; Distributed-memory
 - Master–slave; Island models

GA Support Environments

- Application–Oriented
- Algorithm–Oriented
- Toolkit–Oriented

Trend: Heterogenous Component–Based PSE for GA
Fundamental Requirements to Support the Experimentation

- Data visualization: online evolution of the GA computation
- Interactive steering
- Adaptive control

Components of the PSE
Experimentation: built several prototypes

- for each separate component
- for their interconnection
The GA Component

- Basis: Simple Sequential GA from David Goldberg (SGA)

- Parallel Models:

Single Population. The population is managed by the master
 - subdivides it in slices, distributed to slaves
 - each slave evaluates GA function and sends results back
 - SGA–Shared Memory on NT using threads, UNL
 - Similar model used by PGAPack on MPI, by David Levine, Argonne, US

Island Model. The population is scattered as independent islands that evolve autonomously
 - each island with distinct evolution rules/parameters
 - migrations of individuals between islands
 - SGA–Island on PVM, Linux LAN and Alpha Cluster, UNL
 - SGA–Island on MPI, Linux LAN, UNL
The Visualization Component

Goal. To support online or offline visualization of the evolution of the GA objective function

Approach. To reuse an existing GA visualization tool, extracted from a monolithic implementation of a sequential GA (SUGAL, A. Hunter, Univ. Sunderland)

- Encapsulated as a PVM or MPI task
- Allows visualization of the evolution of multiple islands
- With dynamic integration into the environment under user control

The Interactive Control Component

Goal. Command and steering console

- To inspect the status of the GA computation
- To modify the GA parameters on each island and the migration
Experiments. Several implementations of the control component:

- SGA–Island PVM. The console uses PVM to interact with GA.
- Use of a Distributed Monitor (DAMS) on PVM, to support:
 - the configuration/activation of island tasks
 - the command/steering console
- Use of a Distributed Debugger (DDBG) as a steering console to dynamically modify GA parameters

Further requirements. Support user and agent driven steering

Interaction Among Components

- Using PVM
- Using MPI
- Using a group based model for interconnection of heterogeneous GA components: PVM and MPI. (PHIS model, UNL)
Conclusions

So far: Experiments on tools and mechanisms

- To test and evaluate
- Several parallel GA prototypes
- Existing GA visualization tool
- Use of a flexible monitoring and control architecture
- Use a distributed debugging tool for steering
- Use of a group based interconnection model

Drawbacks:

- Not standard tools / interfaces
- Only local area network / cluster

Current Work:

- Standard interfaces for Computational Steering
- Evaluation / use of CORBA
- Evaluation / use of GLOBUS
Challenges

- Dynamic component integration
- Distinct patterns of component interaction
- Increased flexibility in user and component interaction
- Component and tool coordination
- Multiple cooperative tools and users, sharing the state and controlling an ongoing experiment

Summary of Open Issues

- Dynamic Configuration
- High Interactivity
- Education
- User and Agent Based Observation and Control
- Computational Steering
- Coordination Issues
- Software Architectures
- Generation of PSE's
EuroTools Special Interest Group on PSE

- EuroTools ESPRIT Working Group
- Main objective: To help end-users and tool developers to communicate and exchange ideas

URL: http://www.irisa.fr/EuroTools

- Coordinator: Jean-Louis Pazat, INRIA
- EuroTools Special Interest Groups:
 - HPF/OpenMP
 - PVM/MPI
 - Object-Orientation
 - JavaGrande EU
 - Metacomputing
 - Problem-Solving Environments: Coordinator: José C. Cunha, Universidade Nova de Lisboa, Contact: jcc@di.fct.unl.pt