
Pedro Ákos Horváth Filipe da Costa

Degree in Computer Science and Engineering

Practical Aggregation in the Edge

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Carlos Antunes Leitão, Assistant Professor,
NOVA University of Lisbon

Examination Committee

Chairperson: Jorge Carlos Ferreira Rodrigues da Cruz
Raporteur: Hugo Alexandre Tavares Miranda

Member: João Carlos Antunes Leitão

December, 2018

Practical Aggregation in the Edge

Copyright © Pedro Ákos Horváth Filipe da Costa, Faculty of Sciences and Technology,

NOVA University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To friends and family.

Acknowledgements

The work presented in this thesis would not have been possible with the hard work and

dedication of several people with whom I worked during the course of this thesis. I would

like to thank my advisor, João Leitão for his patience and dedication for helping me in

achieving the goals presented here. Without his continued support none of this would

have been possible.

I also want to give a special thanks to André Rosa, a student here at NOVA, that

provided some results for Yggdrasil, one of the main contributions of this work. André

Rosa, proved to be a very dedicated and enthusiastic student and I thank him for his hard

work that proved to be fundamental for evolving Yggdrasil to a more mature state.

My thanks also extends to the Department of Informatics of the NOVA University of

Lisbon and the NOVA LINCS research centre, which provided me with the necessary tools

and that sparked my interest in the line of work presented here. I would like to thank

the members of the research centre, and specially my colleges and friends with whom I

work daily, for providing an excellent environment with laughter even in the grimmest

and darkest hours.

Finally, I thank my friends and family that even though rarely see me, always sup-

ported me in my pursuit for my goals.

This work was partially supported by the European Research Project H2020 LightKone

under grant agreement ID 732505, and FC&T through Project NG-STORAGE (contract

PTDC/CCI-INF/32038/2017) and NOVA LINCS (grant UID/CEC/04516/2013).

vii

Abstract

Due to the increasing amounts of data produced by applications and devices, cloud in-

frastructures are becoming unable to timely process and provide answers back to users.

This has led to the emergence of the edge computing paradigm that aims at moving

computations closer to end user devices. Edge computing can be defined as performing

computations outside the boundaries of cloud data centres. This however, can be materi-

alised across very different scenarios considering the broad spectrum of devices that can

be leveraged to perform computations in the edge.

In this thesis, we focus on a concrete scenario of edge computing, that of multiple

devices with wireless capabilities that collectively form a wireless ad hoc network to per-

form distributed computations. We aim at devising practical solutions for these scenarios

however, there is a lack of tools to help us in achieving such goal. To address this first

limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to

develop and execute distributed protocols over wireless ad hoc networks on commodity

devices.

As to enable distributed computations in such networks, we focus on the particular

case of distributed data aggregation. In particular, we address a harder variant of this

problem, that we dub distributed continuous aggregation, where input values used for

the computation of the aggregation function may change over time, and propose a novel

distributed continuous aggregation protocol, called MiRAge.

We have implemented and validated both Yggdrasil and MiRAge through an extensive

experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results

show that Yggdrasil provides adequate abstractions and tools to implement and execute

distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a

practical comparative study on distributed continuous aggregation protocols, that shows

that MiRAge is more robust and achieves more precise aggregation results than competing

state-of-the-art alternatives.

Keywords: Edge Computing, Wireless Ad Hoc Networks, Aggregation, Frameworks

ix

Resumo

Com o aumento do volume de dados produzido por aplicações e dispositivos, as infra-

estruturas de nuvem serão incapazes de processar e fornecer respostas aos utilizadores

finais em tempo útil. Esta observação levou ao aparecimento do paradigma da compu-

tação na berma, que visa levar as computações para mais próximo dos dispositivos dos

clientes finais. A computação na berma pode ser definida como efetuar as computações

fora dos centros de dados. No entanto, isto pode ser materializado através de vários ce-

nários considerando a multitude de dispositivos que podem ser utilizados para fazer

computações na periferia do sistema.

Nesta tese, focamo-nos num cenário concreto de computação na berma, onde múlti-

plos dispositivos com capacidades de comunicação sem fios interagem através de uma

rede ad hoc sem fios de forma a efetuar computações de forma distribuída. Pretendemos

desenhar soluções práticas para estes cenários no entanto, existe uma falta de ferramentas

de apoio para implementar protocolos e aplicações nestes ambientes. Para endereçar esta

limitação, propomos uma nova framework, chamada Yggdrasil, que foi especificamente

desenhada para apoiar o desenvolvimento e execução de protocolos distribuídos em redes

ad hoc sem fios.

De forma a pavimentar o caminho para a execução de computações distribuídas nestas

redes, abordamos o problema de agregação de dados distribuída. Em particular, endereça-

mos uma variante mais desafiante deste problema, que é a agregação contínua distribuída,

onde os valores de entrada que são utilizados para computar a função de agregação po-

dem variar ao longo do tempo de forma independente, e propomos um novo protocolo

de agregação contínua, a que chamamos MiRAge.

Implementámos e validámos o Yggdrasil e o MiRAge através de uma avaliação ex-

perimental recorrendo a uma plataforma de teste composta por 24 Raspberry Pi’s. Os

nossos resultados mostram que o Yggdrasil fornece abstrações e ferramentas adequadas

para implementar e executar protocolos distribuídos em redes ad hoc sem fios. Também

apresentamos um estudo prático comparativo sobre protocolos distribuídos de agregação

contínua, que mostra que o MiRAge é mais robusto e que alcança resultados de agregação

mais precisos do que soluções alternativas do estado da arte.

Palavras-chave: Computação na Berma, Redes Ad Hoc Sem fios, Agregação, Frameworks

xi

xii

Contents

List of Figures xv

1 Introduction 1

2 Related Work 7

2.1 From the Cloud to the Edge . 7

2.2 The Wireless Medium . 9

2.2.1 MAC Layer Protocols . 10

2.2.2 Wireless Technologies . 11

2.2.3 Discussion . 12

2.3 Wireless Networking . 12

2.3.1 Wireless Ad Hoc Networks . 13

2.3.2 Discussion . 14

2.4 Wireless Ad Hoc Protocols . 15

2.4.1 Routing in Wireless Ad Hoc Networks 16

2.4.2 Discussion . 18

2.5 Frameworks for building Distributed Protocols & Applications 18

2.5.1 Isis and Horus . 18

2.5.2 APPIA . 19

2.5.3 TinyOS . 19

2.5.4 Impala . 20

2.5.5 Discussion . 21

2.6 Decentralised Communication Strategies 21

2.6.1 Deterministic Communication Patterns 21

2.6.2 Random Communication Patterns 22

2.6.3 Discussion . 23

2.7 Aggregation . 23

2.7.1 Aggregation Computational Schemes 25

2.7.2 Relevant Aggregation Protocols . 27

2.7.3 Discussion . 36

2.8 Self-Managed Overlay Networks . 37

2.8.1 Overlay Solutions . 37

xiii

CONTENTS

2.8.2 Discussion . 40

2.9 Summary . 40

3 The Yggdrasil Framework 43

3.1 Distributed Applications . 43

3.1.1 Requirements for Supporting Protocols 44

3.2 Yggdrasil: Design & Implementation . 46

3.2.1 System Model . 46

3.2.2 Design Choices . 46

3.2.3 Architecture . 48

3.2.4 Implementation Details . 49

3.2.5 Applications in Yggdrasil . 53

3.3 Showcase Exercise . 54

3.4 Summary . 57

4 Multi Root Aggregation: MiRAge 59

4.1 System Model . 59

4.2 Overview . 60

4.3 Multi Root Aggregation . 61

4.3.1 Aggregation Mechanism . 61

4.3.2 Tree Management Mechanism . 63

4.4 Summary . 67

5 Evaluation 69

5.1 Experimental Methodology . 69

5.2 Experimental Tools . 70

5.2.1 Yggdrasil Control Process . 70

5.2.2 Topology Control . 72

5.3 Experimental Setup & Configuration . 73

5.4 Yggdrasil: Experimental Evaluation . 73

5.4.1 Protocol Implementation . 73

5.4.2 Performance Evaluation . 75

5.5 MiRAge: Experimental Evaluation . 78

5.5.1 Experimental Results . 79

5.6 Summary . 87

6 Conclusion and Future Work 89

Bibliography 91

xiv

List of Figures

2.1 Edge Spectrum. 8

2.2 Hidden Terminal Scenario. 9

3.1 Simplified Yggdrasil’s Architecture. 48

3.2 Simple Discovery State. 54

3.3 Simple Discovery Handlers. 55

3.4 Simple Discovery Initialisation. 57

5.1 Distribution in Disperse Deployment. 72

5.2 Overlay Topology in Dense Deployment. 72

5.3 Broadcast Protocol: Delivery Ratio (CFD). 75

5.4 Routing Protocol: Comparison of Delivery Ratio per Node. 76

5.5 Aggregation Protocol: Precision of Aggregation Result. 77

5.6 Disperse Deployment. 80

5.7 Average Error in the Aggregated Value in Fault-free Scenario. 82

5.8 Average Error in Aggregated Value with Dynamic Input Values at Different

Number of Nodes. 83

5.9 Overlay Topology after node failures. 85

5.10 Average Error in Aggregated Value with Variable Number of Node Failures. 85

5.11 Overlay Topology after link failures. 86

5.12 Average Error in Aggregated Value with Variable Number of Link Failures. . 87

xv

C
h
a
p
t
e
r

1
Introduction

Nowadays, many user-facing distributed applications rely on cloud-based infrastruc-

tures to process and manage user and application data, where client applications fre-

quently interact with remote servers executing on data centres. This shift has been mostly

motivated by increases in the user base and the amount of data that needs to be manip-

ulated by such applications. Consider for example, social network applications such as

Facebook, Twitter, or Instagram that have billions of users accessing the cloud at once,

or IoT devices in a smart city that produce huge amounts of data that is uploaded to the

cloud for processing [22, 75].

However, solely relying on cloud infrastructures can have its disadvantages. The

increase on the required resources of the cloud also leads to an increase in the cost for

application providers; the latency experienced by end users, that must constantly contact

remote servers, increases; and security concerns arise from outsourcing data storage and

computations [32] to infrastructures controlled and managed by third parties. These

issues have motivated the need to move computations outside data centre boundaries,

towards the edge of the system. This has led to the emergence of the edge computing

paradigm.

Edge computing can be (broadly) defined as performing computation outside the

cloud boundary, at devices that are closer to the source of data, which nowadays are

mostly end user devices [75]. As one gets farther away from the cloud, one encounters

multiple types of devices where intermediate computations can be performed. First ISP

servers, then gateways, laptops, smart phones, and sensors/actuators. It is also important

to note that, further from the cloud the number of devices increases, while the individual

amount of resources per device decreases. Executing computations in such environments

1

CHAPTER 1. INTRODUCTION

becomes therefore, a complex task, as one has to deal not only with a large number of

devices, but also manage their limited resources [52].

Another important aspect that one has to consider as we move towards the edge of

the system, is that infrastructure support becomes increasingly lacking. This translates,

for instance, in the fact that devices will be connected by limited capability links. In

particular, one can expect to find most devices being connected through the wireless

medium, that offers a potentially unreliable communication environment. Due to this, in

this work we focus on the particularly challenging setting where all devices communicate

through an infrastructure-less wireless medium.

Furthermore, achieving general purpose computations in the edge is not a trivial task.

Consequently, we have opted to focus our efforts on a particular type of computation: data
aggregation. This is a first, and essential, step towards enabling general computation at

the edge. Aggregation can be computed in-network as devices exchange information and

cooperate among them. TinyDB [60] showcases how this can be done in order to create

a (distributed) database in the context of sensor networks. Additionally, Astrolabe [84]

has shown how aggregation can be leveraged to perform monitoring tasks in large scale

systems. Finally, ZebraNet [45] presents the importance of having a support runtime

for a self-managed network. All of these application scenarios showcase the relevance

of efficient aggregation mechanisms in paving the way for enabling the construction of

more complex applications.

Aggregation mechanisms are provided by distributed aggregation protocols. How-

ever, to bring aggregation protocols to light in the context of edge computing, we must

implement and evaluate them in real deployments. As mentioned before, at the edge of

the system we will find commodity devices capable of communicating through wireless

channels hence, we should leverage these devices that will become a relevant part of an

edge system.

Motivation

The work presented on this thesis is motivated by the following:

• Addressing the lack of support tools for the development and execution of proto-

cols and applications in wireless ad hoc networks, that can execute in commodity

devices, running common operative systems.

• Develop efficient and reliable distributed aggregation protocols that allow all pro-

cesses in a large-scale distributed system to obtain an accurate view of the system

state.

• Attain a comprehensive understanding on the operation and behaviour of wireless

ad hoc protocols through practical evaluation, by executing these protocols in real

devices under real conditions.

2

Contributions

This work provides four main contributions, and can be summarised as follows:

1. A framework, named Yggdrasil, for the development and execution of protocols and

applications for wireless ad hoc networks. The framework provides programmers

with a set of abstractions. Namely, an event driven execution model; low level com-

munication primitives; interaction mechanisms between protocols and applications

executing in the same process; and mechanisms for multi-threaded execution that

hide concurrency issues from protocol and application developers.

2. A novel aggregation protocol, named MiRAge, that builds and maintains a tree

topology to support the computation of the aggregation function in a fully decen-

tralised and fault tolerant fashion, without depending on a pre-configured or static

root. This tree is built and maintained while the aggregation process evolves, mean-

ing that there are no additional messages exchanged by the protocol.

3. An experimental evaluation of the Yggdrasil framework, that shows its correctness

and validates the usefulness of the framework for implementing multiple types of

distributed protocols for wireless ad hoc networks.

4. An experimental evaluation of distributed aggregation protocols using a real test-

bed composed of 24 Raspberry Pi, that shows the benefits of our own aggregation

solution in relation to the state-of-the-art.

Research Context

The work conducted in the thesis is an integral part of the research agenda of the H2020

LightKone: Lightweight computation for networks in the edge (Project number 732505),

founded by the European Commission.

Part of the contribution of this work appears as part as the “D5.1: Infrastructure

Support for Aggregation in Edge Computing” and “D5.2 - Report on Generic Edge Com-

puting” deliverables produced by the LightKone Consortium, in January 2018 and July

2018, respectively.

Publications

The work presented here generated the following publications:

Main:

• Practical Continuous Aggregation in Wireless Edge Environments
Pedro Ákos Costa and João Leitão.

Proceedings of the 37th IEEE International Symposium on Reliable Distributed

Systems (SRDS 2018), October 2-5, 2018.

3

CHAPTER 1. INTRODUCTION

Portuguese:

• Agregação Contínua e Prática em Ambientes Sem Fios na Berma
Pedro Ákos Costa and João Leitão.

Proceedings of the 10th Simpósio de Informática (INFORUM’18), Coimbra, Portu-

gal, Sep 2018.

• Yggdrasil: Uma Framework para Desenvolvimento e Execução de Protocolos em Redes
Ad Hoc
Pedro Ákos Costa and João Leitão.

Proceedings of the 10th Simpósio de Informática (INFORUM’18), Coimbra, Portu-

gal, Sep 2018.

Other:

• Towards Enabling Novel Edge-Enabled Applications
João Leitão, Pedro Ákos Costa, Maria Cecília Gomes, and Nuno Preguiça.

Technical Report, May 2018.

https://arxiv.org/abs/1805.06989

• A Case for Autonomic Microservices for Hybrid Cloud/Edge Applications
João Leitão, Maria Cecília Gomes, Nuno Preguiça, Pedro Ákos Costa, Vitor Duarte,

André Carrusca, André Lameirinhas, and David Mealha.

Technical Report, September 2018.

Thesis Structure

The rest of the document is organised as follows:

• Chapter 2 presents edge computing in more detail, discusses key properties of the

wireless medium and the variants of wireless ad hoc networks, providing the de-

scription of the environment we will operate on. Additionally, Chapter 2 presents

wireless ad hoc routing protocols in contrast to protocols that operate in wired

environments and provide an overview on existing frameworks for building and

executing distributed protocols and applications. This is followed by a study on

decentralised computation, where we study multiple distributed aggregation proto-

cols and provide some insight on algorithms used to build efficient tree topologies

where aggregation can be performed.

• Chapter 3 details the design and implementation of the Yggdrasil framework. Pre-

senting the rationale for its design, guided by properties of various types of dis-

tributed protocols for wireless ad hoc networks; its architecture and main compo-

nents, as well as the details of its implementation. For completeness, Chapter 3 also

4

https://arxiv.org/abs/1805.06989

offers a simple example of the use of Yggdrasil for building a simple distributed

protocol.

• Chapter 4 proposes a novel distributed aggregation protocol, named Multi Root

Aggregation, or simply MiRAge. We introduce the rationale for the design of the

protocol and fully specify the algorithm.

• Chapter5 presents an extensive experimental evaluation of the contributions of the

presented work. First, we evaluate the use of Yggdrasil given the implementation

of the set of protocols that served to guide its design and implementation. Second,

we perform a comparative study of distributed aggregation protocols that includes

our own protocol: MiRAge.

• Chapter 6 concludes the thesis and provides directions for future work.

5

C
h
a
p
t
e
r

2
Related Work

In this Chapter we further detail issues related to cloud infrastructures and motivate

the need for solutions that reside in the edge (Section 2.1), which guided us to study

infrastructure-less networks. As such, we describe the wireless medium and the chal-

lenges associated with its use (Section 2.2), discussing how the wireless medium can be

used to materialise an infrastructure-less network (Section 2.3).

We study wireless ad hoc routing protocols (Section 2.4) to understand fundamen-

tal differences between protocols that operate over wired and wireless networks. This

is followed by an overview of existing frameworks and toolkits for implementing and

executing distributed protocols and applications (Section 2.5).

Lastly we focus on distributed computations, by first providing an overview of (de-

centralised) communication strategies (Section 2.6), as they are essential to perform any

type of distributed computing. We follow this by presenting distributed data aggrega-

tion (Section 2.7), as our main focus of distributed computing, and finish the Chapter by

providing some insight on distributed algorithms to build robust tree topologies where

aggregation can be performed efficiently (Section 2.8).

2.1 From the Cloud to the Edge

The cloud computing paradigm has gained significant momentum in recent years. Cloud

providers such as Amazon and Google have millions of user using their services to de-

ploy applications and store data. In order to do so, the cloud environment presents a

multitude of commodity servers working together in one data centre or across multiple

data centres scattered throughout the world, which gives the possibility to tackle large

scale computation problems with solutions like MapReduce [24], and provide backend

services for large scale applications, such as Facebook.

7

CHAPTER 2. RELATED WORK

Figure 2.1: Edge Spectrum.

However, the cloud is not a panacea that solves all challenges. Data privacy presents

itself as one of the main problems of the cloud as discussed in [32]; furthermore, issues

regarding data management, resource allocation, and scalability still persist [26]. With

the increasing number of applications and users accessing such applications, these issues

start to become more pronounced. Applications and devices producing large amounts

of data (e.g., daily-life devices; IoT devices; sensors; among others) present a significant

overhead in data transfer and data management for the cloud. Even though the cloud

infrastructure is said to be elastic, the network infrastructures that connect users to the

cloud is not. The possibility for the network to become a bottleneck for users is highly

likely, as it is estimated that the total amount of data produced by people and devices will

reach 500 zettabytes by 2019 [22, 75], which can therefore, lead to a significant increase

in latency experienced by the users, or even full disruption of applications operation.

With this in mind, we must look for solutions that are outside of the cloud, hence we

must begin to look towards the edge of the system and on how, and what can be leveraged

to relief the cloud from doing all the work. Outside the cloud there are (smaller) private

or regional data centres; 5G towers; routers and gateways that can have some storage and

computing capability; private servers; end user devices, such as laptops and smartphones;

IoT devices; sensors and actuators; among other computational resources [52]. Figure 2.1

captures the spectrum of possible devices where computations can, and are, performed.

We notice that farther from the cloud the devices become less powerful, but in higher

numbers while having lower latency for end users. Given this scenario, the same compu-

tation and storage opportunities that were possible in the cloud become unfeasible thus,

a new computational paradigm is required: the edge computing paradigm.

However, there is no unified vision on what edge computing is, due to the fact that

every computation that can be executed outside the cloud can be considered to fall in

the scope of edge computing, and any network/computational resource that is outside a

data centre, can be viewed as an edge device. As such, edge computing materialises in

various and different forms. Through fog computing [19, 61, 90], which tries to extend

the cloud’s infrastructure closer to data sources and end users. Through intelligent IoT or

sensor networks that are able to pre-process data cooperatively without the need of the

cloud [8], and even in other forms as described in [46, 81].

Consequently, the edge computing paradigm encompasses any possible computations

8

2.2. THE WIRELESS MEDIUM

near data sources, as such, in the context of this thesis we focus on edge devices that are

neither sensors, which have limited resources, nor as powerful as servers. Instead, we

focus on edge devices that have some computational power, can be very disperse and

have no infrastructural support (e.g., no access to routers or access points). A concrete

example of such device are general purpose micro-computers such as the Raspberry Pi.

This implies that wiring devices together might not be possible hence, we must con-

sider wireless as a possible means for supporting all communication and cooperation

between devices in such edge computing settings.

2.2 The Wireless Medium

The wireless medium is a shared medium through which devices can communicate with

each other by transmitting radio waves using a given frequency. The radio waves are

generated by transceivers, or radios, which are usually omnidirectional and can reach

every device that is within its transmission range. Consequently, when a message is sent

from a wireless device, the message is delivered to every other device that is within that

range, this is commonly refereed to as one hop broadcast [82]. This abstraction allows

to build point-to-point and multicast primitives within the range of a sender by having

receivers, for whom the message is not addressed, to simply drop that message.

Since the wireless medium is a shared medium between any device that intents to

transmit on the same frequency, wireless communication suffers from contention, which

is usually a byproduct of collisions. When two devices transmit a message at the same

time and are within range of each other, a collision will most likely happen. Thus, none

of the messages will be successfully received by other devices resulting in message loss.

To better understand the consequences of collisions, consider three devices A, B, and

C, as in Figure 2.2, where A can only communicate with B; B can communicate with A

and C; and C can only communicate with B. Now assume that, A and C intend to send a

message to B. As A and C are unaware of each other they will both send the message to

B simultaneously, causing a collision between the two messages and making B unable to

receive either of them [74]. This has been described in the literature as the hidden terminal
problem.

Figure 2.2: Hidden Terminal Scenario.

9

CHAPTER 2. RELATED WORK

Extending this scenario to another with larger numbers of devices, where devices

need to forward messages between them, we can incur in the broadcast storm problem [69].

Nodes will continuously transmit, or retransmit, messages that will collide and thus,

saturate the network, rendering any form of communication impossible.

A strategy to minimise the effects of the hidden terminal and broadcast storm prob-

lems is to have nodes perform some form of access control to the wireless medium (we

discuss how this is performed in detail further ahead). Unfortunately, this can lead to the

exposed terminal problem [74]. This happens when a node decides not to transmit even if

its transmission does not interfere with other ongoing transmissions, which can conse-

quentially lead to a significant decrease of the network capacity, potentially disrupting

the execution of protocols and applications over the wireless medium.

2.2.1 MAC Layer Protocols

To address the contention and collisions on wireless networks, many medium access con-

trol (MAC) layer protocols have been proposed [25]. We will discuss the most commonly

used, which are the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

and Time Division Multiple Access (TDMA).

CSMA/CA In CSMA/CA [92] when a device wants to transmit, it first listens (senses)

the medium to see if no other device is transmitting. If the medium is occupied,

then the device waits for some time and senses the medium again. If the medium

is free, it proceeds to send a Request-To-Send (RTS) frame and waits for a Clear-To-

Send (CTS) frame from the intended receiver. By using the RTS/CTS mechanism

CSMA/CA avoids the hidden terminal problem, if no CTS frame is heard, it means

that a collision has occurred due to a hidden terminal. In this case, the sender will

wait some time and restarts the mechanism to access the medium (by sending the

RTS frame). When the CTS frame is received, the device proceeds to transmit the

data frame and waits for an ACK frame as a positive acknowledgement that the

data frame was received. If the ACK frame is not received, then a retransmission

must take place.

There is a exception when using CSMA/CA, when the data frame’s destination is

the (physical layer) broadcast address, the RTS/CTS mechanism cannot be used and

ACK frames are not sent after a successful transmission [82].

TDMA The TDMA [89] protocol tries to ensure collision-free transmissions, by defining

a schedule of non-overlapping time slots for each device. TDMA divides a time

period into fixed-length slots where transmissions are possible, when two devices

have the same slot they must coordinate to change their slots in order to avoid

collisions. Needless to say that finding the optimal time slots for every device in a

network in a distributed manner, is a NP-complete problem [28] thus, TDMA can

10

2.2. THE WIRELESS MEDIUM

be highly inefficient in some cases, computing sub-optimal schedules that can lead

to the low utilisation of the wireless medium.

Furthermore, the wireless environment presents more challenges than contention

and collisions. A wireless link is usually more unstable than a wired link, since it is

more affected by the physical environment [1]. This can lead to anomalies such as high

bit error due to noise in the wireless medium. Additionally, links might not always be

symmetric [50], due to different transmission power of radio devices, which might make

it hard to reason about the behaviour of protocols and applications.

These are some considerations that must be taken into account when designing pro-

tocols and applications that leverage the wireless medium for communication. These

are problems that are transversal to our work. Another aspect we consider here is the

variety of available technologies that use the wireless medium. Each one has different

reach, different data rates, different frequency ranges, availability on devices, and other

particularities. This is specially important since in this work we focus on practical imple-

mentations, and must choose a developing platform.

2.2.2 Wireless Technologies

There are many wireless technologies that allow us to build a wireless network [35, 66, 71,

77]. We briefly discuss three main technologies currently used for wireless networking

that use the 2.4Ghz frequency range. WiFi (Wireless Fidelity), which is the most common

on commodity devices; Bluetooth, used for connecting peripheral devices; and ZigBee,

that is commonly used in the context of sensors.

Wifi

The WiFi [77] technology is the most common in nowadays commodity hardware. It

can be easily found in our laptops, mobile phones, tablets, gaming consoles, and many

others. WiFi has a range of around one hundred meters and a data rate that ranges

from approximately 50 Mbit/s to 150 Mbit/s, depending on the communication standard

employed by the device.

Bluetooth

Bluetooth [35] is the technology most commonly used to connect peripheral devices, such

as keyboards, computer mouses, headphones, among others. It is designed to work in

short range having a reach in the order of ten meters. This technology was also designed

to be energy efficient, having low data rates (around 1 Mbit/s however, this can differ with

version and specification). It is usually seen operating in a master/slave configuration,

where a device can be either a master or a slave. However, each master can only have up

to seven active slave devices.

11

CHAPTER 2. RELATED WORK

ZigBee

ZigBee [71] is one of the main technologies used in sensor networks and IoT devices,

having a reach that varies between ten meters and one hundred meters, depending on the

power output of devices and other factors (e.g., indoor and outdoor), and a very low data

rate transmission (around 256 Kbit/s). As sensor and IoT devices are energy constrained,

ZigBee is also designed to be highly energy efficient. A ZigBee network is composed

by three types of devices: coordinators, routers, and end devices. Every network must

have a coordinator that builds and configures the network; routers are then used to relay

information between nodes; whereas end devices operate as data producers/consumers

that must be connected to the coordinator, either directly or through routers.

2.2.3 Discussion

A fundamental property our development platform must provide is the potential for

scalability. As such, we exclude devices that can only communicate through bluetooth,

as bluetooth networks have a scalability limit. A second fundamental property of the

network that we look for, is that it must be fully decentralised. The formation of the

network should not depend on the activity of special devices in the system. Consequently,

we exclude ZigBee as a communication technology.

This leaves us with WiFi. WiFi is mostly used by having devices connect to networks

with the help of an access point. However, it support another mode of operation, the ad

hoc mode which does not require infrastructure support. In the following section, we

give detail on these networks.

2.3 Wireless Networking

Wireless networks enable multiple wireless devices to communicate, providing abstrac-

tions that hide concrete deployment aspects such as the relative positioning of the de-

vices. The most common form of wireless network is based in infrastructure, where a

set of devices connect to an access point or a router with access to the Internet or other

infrastructure networks (e.g., a local area network).

However, in the context of large-scale IoT or sensor networks deployments, it is hard

to have all devices in reach of an access point or wireless router. In these scenarios, we

have to resort to infrastructure-less networks, where devices interact directly among

themselves. These networks are usually refereed as wireless ad hoc networks.

Since we target systems that operate with no access to infrastructure and where the

number of devices can grow at any point in time (in an organic fashion), ad hoc networks

are a key aspect to be considered. We now discuss these networks in more detail.

12

2.3. WIRELESS NETWORKING

2.3.1 Wireless Ad Hoc Networks

A typical ad hoc network is composed by a set of nodes that are interconnected arbitrarily

forming a multi-hop network (i.e., a network where not all devices are directly reachable

by a radio transmission by all other devices). These nodes can only communicate with

their direct neighbours using one hop broadcast or point-to-point communication primi-

tives. As such, there is usually no routing involved in these networks and routing among

devices must be performed at the application level. Additionally, these networks might

not even use IP addresses to identify nodes, and can rely solely on MAC addresses for

communication.

Given the capability of nodes to interconnect in an arbitrary fashion, an ad hoc net-

work is highly dynamic which led these to gain some popularity in use cases such as

disaster relief operations [37], military operations [78], monitoring and sensing applica-

tions [91], and even in supporting communication among vehicles [31].

However, these networks can be materialised in various forms given the network’s

objective and the devices that compose it.

Wireless Mesh Networks

Wireless mesh networks build upon ad hoc networks to extend an existing network infras-

tructure [5]. A mesh network is composed by two types of devices, mesh routers and mesh
clients. Mesh routers are assumed to be static and are responsible for forwarding packets

in transit between devices. Mesh clients on the other hand, connect to the routers and

only send and receive messages, being typically devices with lower amounts of resources.

With this, a mesh network is capable of performing routing, enabling mesh clients to

access infrastructural resources, such as file servers, application servers, and Internet

gateways.

However, in typical mesh networks, routing requires explicit support. To ensure (effec-

tive) routing connectivity, mesh routers may need to be built using specialised hardware

containing multiple antennas to leverage the full spectrum of the wireless medium [72].

Moreover, when considering highly dynamic networks, with nodes joining and leaving

concurrently, these networks might experience high control overhead for maintaining

routing information up-to-date.

Mobile Wireless Ad Hoc Network

In the literature [4, 29, 33, 39, 70], when wireless ad hoc networks are mentioned, they

are usually referring to a mobile wireless ad hoc network (MANET), where nodes that

materialise the network are mobile. This means that nodes will change position, and

consequently, neighbourhoods, frequently, leading mobile wireless ad hoc networks to be

highly dynamic.

13

CHAPTER 2. RELATED WORK

This in turn, makes routing between the nodes even more complicated. As routes

frequently change, it is not feasible to hold information such as the minimum number

of hops between all pairs of nodes, with different techniques being explored to address

this challenge [11, 47]. Furthermore, some also consider that the nodes composing the

network might be resource constrained, as such, extending the network’s life should be

considered when incorporating routing in MANETs [64].

Vehicular Wireless Ad Hoc Network

These networks are a particular case of MANETs. Vehicular wireless ad hoc networks [31]

(VANETs) assume that the network is mostly composed of vehicles that communicate

with each other and with (fixed) stations that are positioned near the road to get useful

information or access resources beyond vehicles computers.

These networks suffer from the same problems as MANETs related to routing however,

the network’s objective is fundamentally different. These networks may service vehicles

to be more autonomous or to intelligently collect information from sensors scattered

throughout an area [9]. Although, VANETs are composed by vehicles and, even though

present an interesting edge computing scenario, they are outside the scope of this thesis.

Wireless Sensor Networks

We can perceive wireless sensor networks as being wireless ad hoc networks composed

of vast numbers of specialised sensors that collect data from the environment. These

sensors are usually very small and inexpensive [6], being perfect for mass deployment.

Moreover, sensor networks can be deployed remotely on harsh environments, such as

underwater [7] or in volcanic regions [87]. However, due to their size, sensors tend to be

very resource constrained and therefore, extending their battery life tends to be the main

focus of research on sensor networks.

A typical sensor network architecture is composed by a sink (or gateway) node that

can be connected to an infrastructure, and a number of sensors that are connected to

the sink or to each other, forming a multi-hop wireless network. In such deployments,

the goal of each sensor is to report its collected data to the sink node, which is then

responsible for processing that data [50].

2.3.2 Discussion

All of the previously mentioned wireless networks are particularly tailored for different

edge scenarios. Wireless mesh networks are usually employed to extend existing infras-

tructures or to facilitate the access to resources in settings such as companies and office

spaces, where there is (some) lack of infrastructure. In this context, routing might be a

desirable feature to facilitate the interactions with these resources, that can be Internet

gateways, file servers, or even printers. We note that these networks are not designed to

14

2.4. WIRELESS AD HOC PROTOCOLS

allow distributed computations to occur across the devices that compose it. Moreover,

particularly on scenarios where all devices belong to a single entity (e.g., a company),

one could leverage these networks to take advantage of idle resources in these devices as

proposed in the context of peer-to-peer systems [10, 79].

Mobile and vehicular wireless ad hoc networks focus on the challenges that arise from

the fact that devices are not stationary, which introduces additional dynamics for instance,

regarding the stability of the neighbours of each device. The focus of these networks is

usually to provide effective routing schemes among devices to support some form of

cooperation among them, such as propagating information or sharing context-sensitive

data.

Wireless sensor networks focus on an extreme edge computation scenario, where

large numbers of devices, typically resource constrained and heterogeneous in nature,

interact among each other to propagate sensed information towards a sink node that exists

somewhere in the network. Often, these networks are supported by low cost wireless

technologies such as ZigBee. In this context however, we note that some of the processing

performed by the sink node could be performed in the network, if there were some nodes

in it that had additional memory and computational capability (and eventually a source

of power).

Altogether, these networks build upon a wireless ad hoc network to provide additional

functionalities and to address specific challenges characteristic of each of these scenarios.

In this work we aim at bringing computations towards the edge of the system, which

implies that computations should be performed in-network, as devices exchange infor-

mation among them. Contrary to the ad hoc networks presented above, whose focus

lies on enabling any pair of nodes to exchange information through routing in adverse

scenarios, we envision systems where devices interact naturally to achieve a common goal.

Moreover, we aim at building systems that can grow organically without support from

infrastructure and with self-organising capabilities.

To achieve these goals we will operate directly at the ad hoc network level, without

assuming any form of routing, nor any particular interaction pattern from devices. More

specifically, routing should be handled at the application level such that it can operate

specifically to provide the minimal functionality required by protocols or applications

with minimal cost and overhead in the wireless medium.

We intent to develop practical solutions for wireless ad hoc settings. As such, we must

understand key aspects of protocols for these networks. Because the most prevalent class

of protocols developed for wireless ad hoc networks are routing protocols (as described

in this Section), in the next Section we study how do these protocols operate.

2.4 Wireless Ad Hoc Protocols

We look into the operation of distributed protocols in wireless ad hoc networks. The most

prevalent protocols that can be found in the literature regarding wireless ad hoc networks

15

CHAPTER 2. RELATED WORK

are routing protocols (as it is implied in the previous Section). Wireless ad hoc routing

protocols have key distinctions in relation to wired/infrastructure routing protocols, as

the environment on which they operate over is fundamentally different.

2.4.1 Routing in Wireless Ad Hoc Networks

In a nutshell, a routing protocol is responsible for delivering a message from a node to

any other specific node in the system.

In wired networks routing among nodes is supported by the IP layer that is well

defined. Routing relies on specialised (and dedicated) hardware (switches and routers).

Routing in wired networks usually rely on link-state protocols [20] that assume that wired

links are not only stable but also possible to monitor.

In sharp contrast, in wireless ad hoc networks there is no dedicated hardware assisting

in routing activities. This requires nodes to coordinate among themselves to achieve

multi-hop communication. In some cases however, routing is avoided by transmitting

messages through flooding of the network, and then have each node inspect the contents

of the message to decide if it should process or discard it.

We now present several routing protocols that have been proposed to enable routing

capabilities in wireless ad hoc networks.

Ad-Hoc On-Demand Distance Vector Routing

Ad-Hoc On-Demand Distance Vector Routing [70] (AODV) is a routing protocol designed

for large scale and highly dynamic wireless ad hoc networks. It is a reactive routing

scheme, in the sense that routes are established when a node wants to contact another

node to which a route is (yet) unknown.

The algorithm is based on sending a message throughout the whole network in search

of the destination node. These messages contain a sequence-number to overrule older

messages, a hop-counter to determine the shortest path, and the source node’s identifier

(IP address). Nodes forward these messages, incrementing the hop-counter and updating

their routing table (storing the source identifier and the hop-counter); when these mes-

sages reach the destination node, it replies to the message with the lowest hop-counter;

when the reply reaches the source, a route has been established.

The routes established are temporary, as they are invalidated from time to time. This

allows AODV to handle link changes, but on the other hand, it might also cause a high

amount of retransmissions in order to reestablish routes that are frequently needed.

Optimized Link State Routing Protocol

In contrast to AODV, the Optimized Link State Routing Protocol [40] (OLSR) is a proac-

tive routing protocol that relies on periodic routing table updates. The protocol has

neighbouring nodes coordinate to decide on multipoint-relay nodes that cover two-hop

neighbour nodes which are then tasked with the forwarding of data packets.

16

2.4. WIRELESS AD HOC PROTOCOLS

The algorithm begins by having each node sense their direct neighbours and then

locally broadcasting their list of neighbours. The nodes obtain information about their

two-hop neighbours and decide which nodes will be used as multipoint-relays, by com-

puting the intersections between two-hop neighbours. The nodes then locally broadcast

their list of multipoint-relays nodes (notice that it is the same message as before, but only

containing a subset of neighbours). The chosen multipoint-relay nodes will broadcast the

message throughout the network, while the nodes that are not present in the list will only

process it. Nodes will update their routing table with the received information about

multipoint-relay nodes which will then be used to establish routes.

The use of these multipoint-relay nodes, allows OLSR to minimise the effects of a full

network broadcast, thus having a lower risk of saturating the network. This is very well

suited for dense wireless networks however, as the network size increases, so will the

control packets necessary for maintaining the routing information.

Better Approach to Mobile ad hoc Networking

Better Approach to Mobile ad hoc Networking [44] (B.A.T.M.A.N.) is a proactive routing

protocol similar to OLSR although, it tries to improve on the shortcomings of OLSR (e.g.,

maintenance of routing tables, bigger control messages). As such, B.A.T.M.A.N. relies

solely on announcements that provide routing information.

Each node periodically announces a packet containing it’s identifier (IP address), the

identifier of the node who sent it (at the start, the originator node), and a sequence num-

ber to overrule older announcements. When a node receives an announcement, it changes

the sender identifier to its own, and re-transmits the announcement. Nodes count how

many announcements have been received from each node by each link (direct neighbour)

in sliding windows, that move based on the sequence number. The number of announce-

ments that fall into the windows is then used to determine the best (probable) next-hop

for forwarding messages towards that node. The rationale is that windows containing

lower numbers of gaps denote more stable paths in the network.

The algorithm presents no more control messages than the announcement messages

that are kept with constant size. Nevertheless, the amount of effective retransmitted

messages can grow uncontrollably when the number of devices grows. Additionally, if

all nodes transmit their announcements simultaneously a large number of collisions can

happen.

Greedy Perimeter Stateless Routing

Greedy Perimeter Stateless Routing [47] (GPSR) is a reactive routing protocol that uses

the positioning of nodes to determine where to forward a packet. However, in order to

obtain the position of neighbouring nodes, GPSR relies on a proactive mechanism that

has nodes periodically (locally) announce their positioning.

17

CHAPTER 2. RELATED WORK

The protocol combines two techniques in order to establish routes between nodes:

greedy routing and perimeter routing. Greedy routing has nodes forward packets to the

node that is closest to the destination node. When a greedy decision cannot be made

(i.e., there is no (known) neighbour closer to the destination), GPSR resorts to perimeter

routing, where the node will make an heuristic-based decision to forward the packet

around the perimeter of the area that lies between the current node and the destination

(that is unoccupied by other devices).

The protocol introduces minimal control overhead of routing packets. However, nodes

are required to have a way of determining their position (e.g., GPS or other means) which

might be unfeasible in some scenarios (e.g., sensor networks).

2.4.2 Discussion

Routing protocols pose a very interesting case study, as nodes themselves have to perform

routing without the help of specialised hardware (i.e., routers, switches). Routing proto-

cols provide the ability of communicating with any arbitrary node in the system, which

can be a beneficial abstraction to applications and other protocols, .

In this work we intend develop practical solutions for wireless ad hoc networks. In

that regard, we need a way to efficiently develop and execute distributed protocols for

wireless ad hoc settings. Consequently, next we study frameworks and tools for efficiently

develop correct and efficient implementations in these scenarios.

2.5 Frameworks for building Distributed Protocols &

Applications

Implementing a distributed protocol can be a arduous and time consuming task. As such,

efficient development and execution tools for distributed protocols have been proposed

in the past. Here, we present some of the most prevalent ones however, and as it will

be discussed, these frameworks and toolkits have been developed for different purposes

than the one considered in this work (e.g., group communication or sensor networks).

2.5.1 Isis and Horus

Isis [16–18] and Horus [83] are both toolkits that provide abstractions for programmers

aiming at building distributed applications for clusters of computers using group com-

munication [85].

Both Isis and Horus are protocol kernels, where each protocol is composed by a set of

layers that are implemented by micro-protocols. When a message is sent or received it

must pass through all layers.

These layers can be arranged in any order as long as they respects their (individual)

dependencies. Each protocol must implement interfaces that support the upwards and

downwards interactions with other protocols.

18

2.5. FRAMEWORKS FOR BUILDING DISTRIBUTED PROTOCOLS &

APPLICATIONS

Isis focus lies on providing fault-tolerance mechanisms to the programmer however,

Isis assumes a model where nodes can crash but no network partitions can occur. Horus,

on the other hand, builds further on the Isis programming model to support network

partitions, while focusing on important group communication primitives, such as mem-

bership management, message ordering, view synchrony, among others. Furthermore,

Horus also implements special protocols that allow messages to bypass layers within the

stack in order to improve performance.

Both of these frameworks are implemented in different languages, namely C and

C++, and support low level programming. Although, as their focus lies on complex and

costly group communication abstractions, there is a lack of support for wireless network

primitives.

2.5.2 APPIA

Appia [63] is a protocol kernel that is tailored for building Quality of Service (QoS) pro-

tocols by combining micro-protocols to support applications that need to use different

communication channels (e.g., multimedia applications). The QoS can be viewed as a

stack of layers. Each layer is implemented by a micro-protocol in which, each instance is

termed a session.

The micro-protocols are event based, and interact with each other through events.

Appia implements a single threaded event scheduler that handles all events in the Appia

system. This event scheduler is responsible for handling and delivering each event to the

micro-protocols that should process the event, respecting their order in the stack.

Appia is implemented in Java and as such, leverages on the inheritance mechanisms

of Java Objects to allow programmers to customise their protocols and events easily just

by extending top level objects defined by the Appia framework.

However, Appia was developed to support view synchrony and group communication

protocols hence, it considers a wired environment and does not support wireless primi-

tives, such as one hop broadcast. Furthermore, Java has no support for low level network

primitives, as its network primitives consider TCP and UDP traffic only, which are not

suited to build protocols and applications specifically for wireless ad hoc networks.

2.5.3 TinyOS

TinyOS [55] is a lightweight operating system designed to provide tools and abstractions

for programmers building sensor network applications. It is based on a set of reusable

components that fit together to support some specific application. The programming

model is event driven and is based on split phases, asynchronous events, and computa-

tional tasks.

Each application built in TinyOS is composed by a set of components wired together.

A component defines interfaces that provide three abstraction: command, event, and task.

Commands are explicit requests for a component, events are asynchronous responses to

19

CHAPTER 2. RELATED WORK

commands or other interrupts (e.g., hardware signals, message arrivals), and task are com-

putational tasks triggered by either commands or events. In other words, commands and

events are inter-components interactions , while tasks are intra-component interactions.

All these abstractions are processed asynchronously and handled by TinyOS’s event

scheduler, that by default implements a FIFO policy. These components interact with each

other by wiring them together, which requires providing the complete set of components

that an application uses at compile time.

Furthermore, TinyOS already provides several components that include abstractions

for sensors, single hop networking, ad hoc routing, power management, timers, and

non-volatile storage.

When compiling a TinyOS program, the binary generated will be a single process

application that runs on a few specialised hardware, which makes sense in a sensor

perspective, since sensors have limited resources and usually run a single application.

However, if we consider commodity hardware that runs a Linux based operating systems

for example, this is not ideal as we may want to have a set of services or applications

running independently for different purposes.

2.5.4 Impala

Impala [56] is a middleware system that is intended to act as a lightweight operating

system for sensors. The key concern of Impala is the ease of deployment and updates of

sensor network applications thus, it privileges modular applications. Moreover, Impala

also presents another interesting feature, which is the ability to change application on

the fly adapting to the conditions of the device or the environment.

The applications are built by a set of protocols that are event driven. Each protocol

is implement as a set of event handlers. Impala further offers a user library containing

network utilities, timer utilities, and device utilities.

Impala is able to have multiple application loaded however, only one can be active

at each time. All applications share the same storage, and as such, must agree upon the

basic storage organisation (i.e., their data model).

To manage applications and the reception of events, Impala is composed by three

main components: the application adapter, the application updater, and the event filter.

The application adapter is responsible to change between applications and manage

their life cycle. The application updater is responsible for keeping track of the versions

of the modules used by the applications in order to perform remote updates.

The event filter captures and dispatches events between the device and the application.

Impala defines five types of events: i) Timer, which signal timers that have expired;

ii) Packet, that represents network messages; iii) Send Done, is a notification about a

successful, or unsuccessful, transmitted packet; iv) Data, represents new information

sensed by sensors; and, v) Device that signals a device failure.

20

2.6. DECENTRALISED COMMUNICATION STRATEGIES

Impala was implemented and tested in a Linux based system, with the objective of

later being ported to sensors in ZebraNet [57]. However, Impala presents a limitative

execution model as it only supports the execution of a single process at once.

2.5.5 Discussion

As we have discussed in this Section, some of the existing frameworks do not address

or take into consideration the wireless setting, like Isis, Horus, and Appia. Others, like

TinyOS and Impala, are too specific to concrete scenarios. There is also more recent work

on frameworks for IoT applications [58, 86], but these do not consider wireless ad hoc

networks as a possible means of communication, since interactions are mainly considered

to be held between IoT devices and either cloud or fog servers (through infrastructure

networks).

We notice therefore, that there is a gap in the available frameworks to build dis-

tributed protocols. This limitation is addressed by the first contribution of this work, a

framework specially tailored for the development and execution of distributed protocols

and applications for wireless ad hoc networks, named Yggdrasil. We detail the design

and implementation of Yggdrasil further ahead in the next Chapter of the thesis.

While tools for developing and executing distributed protocols in wireless ad hoc

settings are indispensable, we also study how we can perform computations in these

settings. For this, we continue the Chapter by presenting distributed communication

strategies that are fundamental abstractions for performing distributed computations; we

further discuss distributed data aggregation as a form of distributed computing, and focus

on building efficient and decentralised topologies for efficient and reliable distributed

data aggregation.

2.6 Decentralised Communication Strategies

A basic requirement to perform distributed computations is the ability to communicate

and exchange information with other nodes, to either coordinate, or transfer relevant data.

As previously discussed, we target highly decentralised systems where nodes do not have

access to infrastructure and hence, have to communicate using decentralised approaches.

We now study some of these mechanisms, that can broadly be characterised as being

deterministic or random in relation to the patterns of messages exchanged among a set

of nodes in a network.

2.6.1 Deterministic Communication Patterns

A deterministic communication pattern has nodes communicate in a predefined pattern,

in other words, all messages transmitted by a node will take the same path in the network,

to reach their destination. We can define two main deterministic communication patterns:

flooding/broadcast and topology dependent.

21

CHAPTER 2. RELATED WORK

Flooding/Broadcast

In a flooding/broadcast [54] pattern, a message sent by a node has, usually1 the objective

of reaching all nodes. In this approach, nodes send the message to all their neighbours

and, receivers of that message, keep forwarding it, repeating the same pattern.

A simple materialisation of this communication pattern is an epidemic broadcast

protocol, that operates in the following way. When a node has a message (typically

generated by another protocol or an application) to disseminate, it sends the message

to all nodes that it can reach. Whenever a node receives a message for the first time, it

repeats this behaviour by retransmitting the message. Otherwise, if the received message

is a duplicate, the protocol simply ignores it.

Topology Dependent

A topology dependent [41] pattern has nodes leveraging an underlying (logical) topology

to propagate their messages to a particular element in the network (such as a sink node),

with the objective of minimising the communication cost.

Frequently used topologies include: i) single-path tree, where nodes are arranged in

a tree, and information can easily flow towards the root node, or be broadcasted down-

stream to all or a subset (i.e., branch) of elements in the tree; ii) multi-path tree is similar

to the previous one with the exception that it contains redundant paths along the tree;

iii) ring topology where nodes are arranged in a ring, allowing simple communication to

relative portions of the ring; and finally iv) cluster-based topologies, where nodes are or-

ganised into clusters, which has nodes within a cluster communicating frequently, whilst

communication between clusters is performed at a higher hierarchical level (i.e., cluster

representative nodes communicating with each other).

2.6.2 Random Communication Patterns

Random communication patterns are, as the name implies, patterns that have nodes ex-

changing messages through random local decisions. There are two main random patterns:

gossip-based patterns and random walks2, that we now briefly define.

Gossip-Based Patterns

Gossip-based [51] patterns rely on having nodes exchange messages by selecting subsets

of other nodes in direct reach at random, usually in a per message basis.

The effective size of the subset selected for transmitting a message depends on the goal

of the communication step, as well as from operational aspects of the system deployment,

1There are flooding techniques with limited horizon, where a message will be forwarded only for a
pre-defined number of hops.

2Random walks are a particular case of gossip-based patterns, we however, give special emphasis to it
due to its frequent use in multiple protocols and distributed scenarios.

22

2.7. AGGREGATION

such as the total number of nodes in the system or the number of reachable nodes in

relation to the node that is propagating a message.

The exchange of information among nodes usually follows a pair-wise model (where

two nodes interact directly), and can be implemented using the following strategies: i) in

push strategies, nodes that have relevant information immediately send it to the subset of

receivers selected at random; in contrast, ii) pull strategies have nodes selecting random

subsets of other nodes in their vicinity, and ask for relevant information through a pull

request. Nodes that have relevant information can reply to these requests directly; finally,

there are iii) hybrid approaches that combine the two previous ones, usually using push

to quickly disseminate relevant information, and pull to recover lost updates.

Random Walks

Random walks [62] consists of a node choosing a random neighbour to propagate a mes-

sage. This neighbour will forward the message following the same pattern (picking

another random neighbour). This process continues until some criteria is met (e.g., maxi-

mum number of hops, reach target node or originator).

This mechanism allows messages to transverse the network through a random path,

resulting in a low communication overhead. Additionally, it is well suited to obtain

random samples of information distributed across many nodes.

There are also variants of this approach where the selection of the node to whom

to forward the message is not entirely random, but biased by some application specific

criteria [13, 88].

2.6.3 Discussion

The decentralised communication patterns discussed in this Section are tightly related

to how protocols exchange data to perform their (distributed) computations. In the

following Section, we present data aggregation as a form of distributed computation, in

which we study several protocols that use these communication patterns to compute an

aggregation function in a decentralised and distributed fashion.

2.7 Aggregation

While it is important to support general purpose computations in the edge, in the context

of this thesis we focus on building aggregation protocols at the edge. Aggregation proto-

cols can serve as a building block for more general purpose computations. Aggregation

can also help in reducing the amount of communication among nodes and can be used

to monitor the network’s state. However, given the distributed nature of edge comput-

ing scenarios in general, and wireless ad hoc networks in particular, we must carefully

evaluate the properties of distributed aggregation computations.

23

CHAPTER 2. RELATED WORK

Aggregation computations can be defined as computing an aggregation function [41]

over a set of input values, where each device (or node) holds one of these values. Tradi-

tional aggregation functions such as Count, Sum, Average, Min, and Max, present

different properties which we must consider to understand the challenges of computing

such functions in distributed environments. To this end, we will consider the definitions

given in [41], which presents aggregation functions as having two properties: Decompos-
ability and Duplicate Sensitiveness.

Decomposability: Decomposability is a property of an aggregation function that can

be defined by composing other functions. However, we can distinguish functions

that are self-decomposable and decomposable. Self-decomposable functions are

functions that have commutative and associative properties, much like Min, Max,

Sum, and Count. In more detail, these functions can be computed by employing

recursive strategies.

Decomposable functions are functions that can be composed by applying some

function to a self-decomposable function. The Average is an example of a decom-

posable function, which can be obtained by having pairs of values (x,1) where x is

the input value and 1 is the count of values, summing these pairs as (x + y,1 + 1),

and finally, computing the division of both computed sums.

Duplicate Sensitiveness: An aggregation functions is considered to be duplicate sensi-

tive if its result is sensitive to the presence of duplicates. For example, Sum and

Count will output unfaithful values when duplicates are present, while Min and

Max will output the same values regardless of duplicate values. In other words,

this depends on the function being idempotent or not.

In this work we go a step further regarding the computation of aggregation functions.

Normally, when considering distributed aggregation, the input values are considered

to be static. What this means is that each node holds one input value that will remain

unchanged for the rest of the system’s operation. This is highly unrealistic in scenarios

where an aggregation protocol is being leveraged, for instance, for monitoring systems.

Hence, in this work we not only consider distributed aggregation, but also distributed
continuous aggregation.

In the continuous aggregation problem, each node holds an input value that can

change over time in an independent fashion. A distributed continuous aggregation algo-

rithm must find a way to incorporate the changes of input values in the aggregation result.

Furthermore we also argue that the aggregation result should be computed by each node

in the system. This way, all nodes will have a summary of global information that can

then be leveraged by applications, or other protocols, to make local decisions regarding

their operation.

This brings additional challenges when computing aggregation functions in a dis-

tributed manner. Where Min and Max seemed easier at first given their duplicate

24

2.7. AGGREGATION

insensitive nature, they are as complex as calculating the Sum, Count, and Average,

in this particular context. This is due to fact that when values cease to exists, they must

be invalidated through some (distributed) mechanism.

We identify two approaches of performing distributed continuous aggregation. The

first is through the use of epochs, the second is to have a natural continuous aggregation

algorithm that is able to cope with the input value changes on the fly.

Epochs: Using epochs is the easiest way to deal with input values changes. This approach

is based on having the distributed aggregation protocol restart periodically, where

each period is considered to be an epoch. However, identifying the optimal epoch

period is not an easy task [49], as this depends on the system size and on the fre-

quency at which values changes, which might be unknown and dynamic parameters

of the system.

Natural Continuous: Designing a natural continuous aggregation algorithm is a more

challenging task. A natural continuous aggregation algorithm must be able to

continuously recalculate the aggregation result without the need to be restarted.

In other words, the algorithm must seamlessly incorporate input value changes,

adding new input values and removing old ones from the aggregation result as part

of its regular operation.

2.7.1 Aggregation Computational Schemes

There are different schemes that can be employed to compute an aggregation function in a

distributed fashion. Each scheme has its own advantages and drawbacks. Some schemes

try to reach the exact aggregation result by controlling the employed communication

pattern. Other schemes focus on reaching approximated estimations on the aggregation

result in favour of simpler communication management or obtaining additional informa-

tion regarding the distribution of input values across the system.

In short, we can define two main categories of techniques to compute aggregation

functions, the ones that reach exact values, and the ones that calculate approximations

and estimations.

2.7.1.1 Exact Value Computations

Exact value computations strive to obtain the exact value of the aggregation function that

is being computed. In that regard, every input value present in the network must be

taken into account. As a consequence, all nodes within the system must transmit their

values at least one time (as long as there are no message losses).

Therefore, we describe two techniques that reach the exact value: Full Dissemination
and Hierarchical Aggregation.

25

CHAPTER 2. RELATED WORK

Full Dissemination Full dissemination techniques is a simple approach to compute

distributed aggregation functions. A node in the system floods the network with a re-

quest for input values, and every other node responds with their own input value. The

computation is then performed in the initiator node.

Since every node is disseminating their input values, any aggregation function can be

computed at each node. However, this approach will cause a high message overhead in

the network, which can easily lead to its saturation.

Hierarchical Aggregation In hierarchical aggregation techniques, nodes are arranged

in a logical hierarchical topology (typically a tree), where the top of the hierarchy can be

viewed as a special node (sink node). This node is responsible for building the hierarchy;

after this, the nodes that are at the bottom of the hierarchy will send their values to upper

levels. Upper level nodes, compute an intermediate aggregate with the values received

from lower levels, and pass the result to upper levels. This process continues until it

reaches the sink node.

These techniques, reduce the amount of messages transmitted in the network, as

messages pass through pre-defined paths. Nevertheless, the cost of maintaining the

hierarchy might be high, and on the presence of faults, hierarchical aggregation can easily

reach unfaithful results.

2.7.1.2 Estimation Computations

Estimation computations rely on probabilistic methods to reach the approximate result of

an aggregation function. They focus on reducing message size, reducing communication,

and in some cases, ensuring fault tolerance. We describe three main estimation computa-

tion techniques: Sampling, Data Representation Computation, and Iterative Approaches.

Sampling Sampling techniques tend to focus on probabilistic counting techniques to

determine an estimation (usually to determine the network size). These techniques com-

monly use random walks, or random selection of nodes within the system, to collect

samples of input values that can be used to infer or compute an approximation of the

global aggregation result.

However, these techniques rely on probabilistic methods, and as such, they can easily

incur in situations where the sampling is biased. This can happen due to an imbalance in

input values for the aggregation across the network.

Data Representation Computation Data representation computation relies on auxil-

iary data structures to compute estimates. These data structures represent the values

in the system, although the representation of values differs from protocol to protocol.

Some protocols focus on representing values in an histogram to answer more complex

aggregation functions (e.g., median, mode, among others), while others represent values

through bit masks as a way of compressing them, or in a subset of representative values.

26

2.7. AGGREGATION

Nevertheless, these techniques require estimation functions to extract the aggrega-

tion result from the data structures. Furthermore, the compression techniques used are

typically resource heavy, and might incur in high computational overheads that may be

unacceptable in some cases (e.g., sensor networks).

Iterative Approaches Iterative approaches exploit mathematical properties of aggrega-

tion functions to compute estimations. These approaches usually rely on the principle

of “mass conservation”, which dictates that as long as the sum of the aggregated values

in the network remain constant, it is possible to reach the correct approximation [48].

Consequently, nodes exchange information in order to compute partial aggregate results.

The more exchanges happen, the more approximate the result will be to the exact value.

However, these techniques can be very sensitive to duplicate messages and message

loss, since it translates to gain or loss of “mass” which will violate the principle of “mass

conservation”.

2.7.2 Relevant Aggregation Protocols

We now present some of the exiting distributed aggregation algorithms that illustrate

the classes of solutions discussed above. Some of these solutions will be used in our

experimental work for accessing the benefits of our own proposal, MiRAge.

Tiny Aggregation

Tiny Aggregation [59] (TAG) was developed to support aggregation queries in wireless

sensor networks using TinyOS [55]. It performs computations using an hierarchical ap-

proach on top of a topology dependent communication pattern and provides an SQL-like

query language. As such, it provides basic aggregation functions such as Count, Sum,

Average, Min, and Max. TAG also allows queries to use the Group By operator,

enabling aggregation functions to be captured over subsets of input values given certain

node properties (e.g., the total sum of all input values of nodes provided their geographi-

cal area).

The protocol is composed of two phases: distribution and collection. The distribution

phase consists in creating the routing topology (typically tree-based) from the sink node

(root node) to all other devices. To do this, the root node broadcasts a query request mes-

sage; every node within range that receives this message will mark the message originator

node as its parent and adjust their radio wake up interval according to the parent node.

Nodes keep forwarding the aggregation request until all nodes are assigned a parent.

In the collection phase, each parent node must wait for the values of its children.

Although, since the children have adjusted their wake up interval with the parent, the

parent node expects that all of its children report their values within that interval.

27

CHAPTER 2. RELATED WORK

When the parent node receives the values from all its children nodes, it computes

a partial aggregate result with its own value an forwards the partial result to its parent

node. This process continues until the root node receives replies from all its children.

Given TAG’s computation pattern, the final result of the aggregation is only computed

in the root node. If the result is relevant to the other nodes in the system, the root node

must broadcast it throughout the network. TAG is not a natural continuous algorithm, as

such, it must resort to execute in epochs to solve the continuous aggregation problem.

Regarding fault tolerance, a single fault could disconnect a large portion of the net-

work and incur in gross aggregation errors. TAG tries to mitigate these problems, by

having each node keep a list of neighbours allowing them to switch parents, snooping

messages by utilising the wireless medium, and nodes keeping cached values of their

children’s previously reported values that can be used if no reply is received from one

of the children nodes. However, the authors do not consider the fault of the sink node,

which renders the protocol incapable of operating.

Directed Acyclic Graph

Similarly to TAG, Directed Acyclic Graph [67] (DAG) is an aggregation protocol that relies

on an hierarchical topology to perform hierarchical computations. Although, the routing

topology offers multiple paths among nodes instead of a single path. It support the same

aggregation functions as TAG, with the exception of the Group By functionality, since

it does not offer an SQL-like interface.

When an aggregation request is received, the sink node broadcasts it to the network.

The aggregation request performs similarly to the one described in TAG however, adding

a list of parents to the message. This list allows for child nodes to choose a grandparent,

where their input value will be used to compute a partial result thus, allowing nodes to

have multiple parents.

The key difference between DAG and TAG, is the fact that the topology contains

redundant paths to the root. As such, the final aggregation result is again only computed

in the root node, and must be broadcasted across the network if it is relevant for the rest

of the nodes in the system. Similarly, DAG must run in epochs to solve the continuous

aggregation problem.

The multi-path routing tree of DAG brings some advantages in regard to fault toler-

ance within the network. As input values are propagated through multiple paths, the loss

of a single value through a path does not affect the computation of the aggregation result.

However, this comes at the cost of larger messages, the failure of a grandparent node can

still lead to gross aggregation errors, and, similarly to TAG, the failure of the sink node

renders the protocol unable to proceed.

28

2.7. AGGREGATION

Generic Aggregation Protocol

The Generic Aggregation Protocol [23] is another algorithm that relies on an hierarchical

(tree) topology to perform (hierarchical) aggregation. However, contrary to TAG and

DAG, the management of the topology in GAP happens naturally with the exchange of

values among nodes, instead of needing an explicit broadcast from the root node to build

the tree topology. GAP can compute common aggregation functions as the Count, Sum,

Average, Min, and Max. We discuss the operation of this protocol in more detail, as

this is the closest solution to the MiRAge protocol that we propose in Chapter 4.

In GAP, instead of receiving an explicit aggregation request to begin establishing the

tree and compute the aggregation result, nodes start by exchanging information. However,

as we detail further ahead, the tree still needs to have a fixed and pre-defined root to

enable the formation of the tree topology. The process of building the tree is governed by

a parameter maintained by each node called its level, which is initially set to an arbitrary

large value. Furthermore, each node maintains additional information concerning their

neighbouring nodes, with whom they exchange information. The maintained information

contains, for each neighbour, its current level on the tree; its relative relation with the

local node in the tree, that can either be PARENT, CHILD, or PEER; and the aggregated value.

A node also maintains information regarding itself, being similar to the one maintained

for each neighbour, having a relation of SELF, and its aggregated value being its input

value.

To build the tree topology, a root must be appointed. This is done by adding a virtual

neighbour to the appointed root. This virtual node has a constant level of -1 and becomes

the parent node of the root node. The level of a node is calculated by considering the

level of its parent node (the parent level plus one) therefore, the root will have a level of

zero.

Messages exchanged by the GAP protocol are called updated vectors. An update

vector contains the node’s identifier, its current level, its current aggregated value so far,

and the identifier of the parent node.

When a node first discovers a neighbouring node (through the help of an underlying

discovery protocol), it sends the update vector to the newly found node (using a point-to-

point message). A node that receives an update vector from another node, first updates

the information regarding the sender node. For that, the local node updates the level and

the aggregated value of the sender node. The local node must also update its relative

relation to the sender node in the tree. If the sender node has the local node marked

as its parent (information enclosed in the received message), the local node changes the

sender’s node relation to CHILD. If the sender node does not mark the local node as its

parent, but the previous known relation by local node was CHILD, the sender node is

marked as being a PEER. If none of the above cases hold, the relation remains unchanged.

Note that when two nodes discover each other for the first time their relation is set to

PEER.

29

CHAPTER 2. RELATED WORK

After updating the local information, a node runs a stabilisation mechanism. This

aims to enforce a set of invariants that collectively ensure the construction and main-

tenance of the tree topology. The invariants include: only one node can be marked as

PARENT, the PARENT node must have the lowest level among all other known neighbours,

and the local node must have the level of its parent plus one. In other words, this stabili-

sation allows a node to choose a correct parent, and adjust its level accordingly.

After this, a node computes a new update vector that reflects all changes that might

have happened to its local state. For this, the node calculates the aggregation function

with its own aggregated value (its input value) and the aggregated values received from

the neighbours marked as CHILD. If the update vector differs in some way to the previous

one, it is sent to every neighbour, otherwise the node does not transmit the update vector.

As the algorithm progresses, the first nodes to have a parent will be the neighbours of

the root node, as this is the one with the lowest level in the system. The root’s neighbour-

ing nodes will propagate the level change, causing their neighbours to choose appropriate

parents. Nodes will calculate the aggregation function based on their input value and

the values received from their children, which will be propagated towards the root node

hence, calculating the aggregation result. A node stops sending messages when there are

no local modifications to its state.

In GAP, only the root is capable of calculating the final aggregation result, and as

in TAG and DAG, this result must be propagated across the network, if one needs the

rest of the nodes in the systems to become aware of it. However, GAP was designed to

support continuous aggregation in a natural way. This is because a message is always

sent if it differs from the previously sent message, and since a node in GAP calculates the

aggregation function based on its own input value, it means that when the input value

is changed, so will the resulting (local) calculation of the aggregation function hence,

leading to the propagation of the change throughout the system.

The implication for this, is that any event that results in a variation visible in the

result of the aggregation function being computed (i.e., the value of the local node or a

neighbour changes, a new neighbour is discovered, or a fault happens) leads a node to

propagate that change naturally.

In addition, whenever a node detects the failure of a neighbouring node, it runs the

stabilisation mechanisms to ensure the tree topology is correct. However, when the root

node fails ensuring the correctness of the topology becomes impossible, since no other

node will be able to have the lowest level in the system with a valid parent.

Push-Sum Protocol

The Push-Sum protocol presented in [48], relies on gossip communication combined with

an iterative approach to compute aggregation functions, such as Average, Sum, and

Count. The protocol operates by having nodes exchange messages with their neighbours

in a pair-wise fashion.

30

2.7. AGGREGATION

In Push-Sum, each node contains a pair (vi ,wi), where vi is the local value of node

i, and wi is an additional parameter associated to the value, called weight. The initial

local value of a node is its input value and the initial weigh depends on the aggregation

function to be computed. These local values are propagated through the network via

message exchange in the following way:

A node splits its local value and weight in half, sends one half to a randomly chosen

neighbour, and keeps the other. When a node receives a message it simply adds the

received value and weight to its local state. An estimation of the aggregation result value

can be calculated at any given time by dividing the local value and weight (vi/wi).

As more iterations of the protocol are performed, the approximation being computed

becomes more accurate. To calculate different aggregation functions the protocol allows

the manipulation of the initial weights of values used by each node. For Average the

weights are set to one in all nodes; for Sum, the initiator node, has weight one, while all

the other nodes have weight set to zero. Count differs from Sum by having the value

set to one in all nodes (maintaining the weight set to one in the initiator and zero in all

other nodes).

In Push-Sum all nodes compute the aggregation result however, it is uncertain when

has a node computed the final aggregation result. Furthermore, as the initial input value

is lost during the execution of the protocol, the protocol must run in epochs in the case

of input value changes to solve the continuous aggregation problem.

Finally, the protocol is only correct if the principle of “mass conservation” is kept thus,

the links between nodes must be reliable (i.e., messages cannot be lost or duplicated).

Regarding changes in the system’s filiation (i.e., entry/failure of nodes), Push-Sum is able

to cope with new nodes joining the system, as it only means that nodes have another

neighbour with whom they can exchange messages. However, when a node fails, Push-

Sum is unable to recover the values that where transferred to the failed node, and remove

the values transferred by the failed node from the system.

LiMoSense

The LiMoSense [30] protocol is a fault-tolerant variant of the Push-Sum protocol. LiMoSense

tries to overcome the limitations present in the Push-Sum protocol by storing the accu-

mulation of the transferred values between each pair of (communicating) nodes. A node i

maintains information about the total values transferred and received by each neighbour-

ing node j. Another key difference of the LiMoSense protocol, in relation to Push-Sum,

is that instead of each node maintaining a pair of value and weight, it maintains a pair

of the estimate of the aggregation function and the weight of that estimate (esti ,wi). Due

to this transformation, and how the protocol handles it, LiMoSense can only be used to

calculate the Average aggregation function.

When a message is to be sent to a node j by node i, i starts by adding the values (its

current estimate and half of its current weight) to be transferred to the total amount of

31

CHAPTER 2. RELATED WORK

values previously transferred to j. The addition is calculated by a weighted sum. The

resulting new total is stored locally, and sent to j.

When j receives the message sent by i, j calculates the difference between the locally

stored total received value from i and the recently received value by i. The difference is

calculated similarly to the addition of values, with one of the parcels having a negative

weight. The difference is incorporated in j’s local estimation and weight, and the received

message from i is stored as being the new total received value from i.

As the protocol progresses the estimation of the aggregation value will become more

accurate as more messages are exchanged. As in Push-Sum the estimation will be com-

puted by every node in the system. Moreover, in LiMoSense the input value is stored

independently and thus, it is not lost during the protocol’s execution. The input value is

then used when it changes value, to calculate the new estimate, meaning that LiMoSense

supports continuous aggregation naturally.

Because each node maintains the total values transferred and received, the protocol

is able to recuperate “mass” in the presence of faults. When a message is lost, the next

message will contain the lost values. However, the stored values can grow with no bound.

To deal with this issue, LiMoSense also employs a mechanism based on binary serial

numbers to reset stored data.

When a node leaves a neighbourhood, either by a link fault or a crash, the nodes that

detect this change must compensate the lost input value. To do so, they first add the total

amount of value sent to the faulty node to their own local values, then they add the total

amount of received value from that node to a special register. The value in this special

register will be lazily removed from the local node’s local values when sending messages,

effectively removing the values transferred from the faulty node from the system.

Distributed Random Grouping

Distributed Random Grouping [21] (DRG), is an aggregation protocol tailored for wireless

sensor networks that leverages the broadcast nature of the wireless medium to create

random local groups that calculate local aggregates. The algorithm allows to calculate

Average, Max, and Min, but does not specify how other functions could be calculated.

The algorithm follows iterative steps, until the aggregate value converges. In each step,

nodes can be presented as having three states: idle, member, and leader.

A step of the protocol consists of an idle node choosing with some probability p

to become a leader of a group. When one does, it sends a message to all reachable

neighbours to notify them that it is the leader of a group. All other idle nodes that receive

this message send an acknowledgement message (JACK) to the leader node containing

their local aggregated value (at the beginning their input value). Once the leader receives

the JACK from its neighbours, it calculates the aggregated value with its own value, and

broadcasts again to its neighbours the aggregated value thus, updating the local group

currently computed aggregated value.

32

2.7. AGGREGATION

In order to converge, groups must overlap overtime propagating the previously com-

puted aggregate from one group to another hence, having every node in the system

compute a valid estimation of the final aggregation result. However, the algorithm does

not consider the changing of input values, as such, to solve the continuous aggregation

problem it must resort to epochs.

The algorithm is not fault-tolerant, as it does not consider the implications of the

failure of a node. Furthermore, the loss of a JACK message or an updating message,

implies “mass” loss, which leads to the computation of incorrect aggregation values.

Flow Updating

Flow Updating [42, 43] performs gossip-based communication using an iterative ap-

proach based on the concept of flows from graph theory, where each flow is a repre-

sentation of a differential between the approximation computed by two nodes. We define

the flow from node i to j as fij , and the flow from j to i as fji . Flows have a symmetry

property, and as such, fij = −fji . Flow Updating leverages this property to calculate esti-

mations about the real aggregation result, while in some cases obtaining the exact result.

It is tailored to compute the Average aggregation function.

Instead of exchanging “mass” like Push-Sum, LiMoSense, or DRG, Flow Updating has

nodes exchange flows and estimates which are based on the original input value of each

node that is kept unaltered. With this, the protocol is able to recover “mass” in the event

of message losses.

At the start of the algorithm, a node sets the flows and estimates of its neighbours

to zero, as it has no knowledge about them. Given this, it calculates its local estimate

by subtracting all flow values to its original value. It further computes the flows for

each neighbour by updating the currently held flow to a neighbour with the difference

between the previously calculated local estimate and the previously held local estimate

calculated by that neighbour (at the start zero). Then, the nodes send to each of their

neighbours a message containing the flow computed to that neighbour and the calculated

local estimate. When a node receives these messages, it updates the flow to the originator

by storing the symmetric of the received flow (fij = −fji) and the received estimate.

Periodically (after receiving the updates), each node can recalculate the local estimate

with the updated values for the flows of each neighbour and the estimate values received,

and recompute the flows to each neighbour. Nodes exchange this information indefinitely,

obtaining the aggregated result in all nodes eventually. Every calculation performed by

the algorithm is based on the original input value, if this changes, the algorithm starts

to consider the new input value causing a change in the computed flows and estimates,

which will be propagated through the system. Given this, Flow Updating is an algorithm

that support continuous aggregation naturally.

As in LiMoSense, this protocol is able to sustain message loss, without incurring in

permanent errors in the computed aggregated result. When a node fails, all neighbours

33

CHAPTER 2. RELATED WORK

of the faulty node stop considering its flow and estimation, causing the calculation of the

new estimation to change. This change will be propagated through the network causing

the contribution of the faulty node to be forgotten.

Extrema Propagation

Extrema Propagation [14], combines a data representation computation technique with

a gossip communication strategy. With this, Extrema Propagation is able to compute an

estimation of the real aggregation result of the Sum aggregation function. Each node

produces a vector with k random numbers that follow a known distribution (e.g., Expo-

nential) and exchange this vector with their direct neighbours.

When a node receives a vector, it calculates the pointwise minimum3 of its local

vector and the received one, keeping the result as its local vector. Each node proceeds by

exchanging vectors until there are no changes for T rounds (T is a configurable parameter).

When the algorithm terminates, each node will have the same vector containing the

minimum numbers in the system for each position in the vector. The algorithm terminates

by calculating the maximum likelihood of the minimum vector, obtaining an estimation

about the aggregate result based on the mathematical properties of the initial distribution

of values generated by nodes.

An interesting aspect in this protocol, is that the error of the estimation depends only

on the size of the exchanged vector. The bigger the vector, the lower the error bound.

This could come as an advantage in very large systems, where messages need to be kept

small. Nevertheless, in smaller systems it is hard to justify the effort of generating random

numbers that follow a known distribution, to obtain an approximate result, when the

input values of all nodes fit in a single message (that is relatively small) and, contrary to

this solution, able to reach an exact result.

Q-Digest

Q-Digest [76] leverages on a data representation computation mechanism to provide the

ability to compute more complex aggregation functions as the median and mode. Each

node computes a data structure, named quantile digests (q-digests) and propagates these

data structures (in a compact form) along a spanning tree to reach a sink node. A q-digest

is a data structure that consists of a set of buckets that represent the frequency of values

within a range (i.e., an histogram of classes of values).

Each node contains a set of values within some range and the frequency of their

values. The objective of the q-digest is to compress this data. To do so, these values are

represented in a binary data tree. Each leaf node represents a value within a range. Values

flow up the tree when their frequency is not representative enough, following properties

that relate to the total count of values in a sub-tree to a compression level.

3The minimum number at each position of a set or function.

34

2.7. AGGREGATION

In other words, one could see each step of the tree as a bucket of values, the higher it is

in the tree, the more values are represented by the bucket. The q-digest, once computed,

will be composed by the set of buckets that are most representative (given the total count

of values).

The q-digests are propagated through the spanning tree where parent nodes are tasked

to merge the received q-digests with their own. This is done by simply adding the counts

of the received buckets to their own and recomputing the q-digest. The algorithm termi-

nates, when the sink node computes the final q-digest, obtaining a full histogram of the

most representative values in the network.

This protocol, by leveraging on the q-digests, presents a compression mechanism that

allows to compute more complex queries. Although, q-digests require that there is some

knowledge about the values that the network is producing, so that it is possible to build

compatible q-digests (that have the same initial range of values) to merge them efficiently,

avoiding to generate a single huge bucket that represents all possible individual values.

However, this might be impossible to know a priori in some cases.

Randomized Reports

Randomized Reports [15] is a probabilistic polling (sampling) method to determine an

estimate of the network size, as such, it only supports the Count aggregation function.

It relies on a node flooding the network with a request message and setting a timer T .

Each node that receives the message, replies to the originator with some probability p.

When T expires, the originator node counts the number of replies and estimates the size

of the network by scaling the obtained count by 1/p.

This is a very simple algorithm that is able to mitigate the effects of flooding messages

by not having all nodes respond to the request message. Nevertheless, this algorithm

only supports the Count aggregation function, and cannot be easily adapted to compute

other aggregation functions, such as Average, where more information is required.

Random Tour

Random Tour [62] consists in utilising random walks to collect samples on the network’s

size in peer-to-peer networks. An initiator node i, begins the process by sending a sample

message to a randomly chosen neighbour containing a tag. This tag contains a counter

X with the value 1/di (where di corresponds to the degree4 of the node i) and the node’s

identifier. When a neighbour node j receives the sampling message, it increments the

counter X by 1/dj and forwards the sampling message to another randomly chosen neigh-

bour. Once the message is received again by the initiator node i, the node estimates the

network size by calculating diX.

4Number of neighbours of a node.

35

CHAPTER 2. RELATED WORK

The Random Tour algorithm is able to achieve good estimates of the network size, but

when the network is very large (e.g., up to 100,000,000 nodes) it will take a long time to

reach the estimated value at the cost of a significant number of message exchanges.

Sample & Collide

Sample & Collide [62], similarly to Random Tour, leverages on random walks to perform

probabilistic counting to determine an estimate of the network size in peer-to-peer net-

works. The algorithm is inspired by the “Inverted Birthday Paradox” [15], as it acquires

random samples from peers, and then calculates estimates based on how many random

samples are required before two samples return to the same peer.

The algorithm executes as follows: First, the initiator node i sets a timer with value

T and sends a sample message containing T , to a randomly chosen neighbour. Upon

receiving the sampling message, a node j, computes a uniformly distributed random

number U between [0,1] and decrements T by −log(U)/di (i.e., T + log(U)/di), where di
is the degree of node i. Then the node verifies if T is less or equal to zero; if it is, the node

is sampled and returns its identifier to the initiator node; otherwise, it will forward the

message to a randomly chosen neighbour with an updated timer.

The algorithm terminates when some node has been sampled for a configurable num-

ber of times l, and an estimate of the network size is calculated using a Maximum Likeli-

hood method.

The algorithm, when compared to Random Tour, achieves lower accuracy with fewer

message exchanges. As such, the algorithm is best suited for larger systems where es-

timations can have lower accuracy. Nevertheless, the algorithm presents the same key

limitation as Randomized Reports, being that it can only compute the Count function.

2.7.3 Discussion

We begin by noting that aggregation protocols that use computational schemes that rely

on data representation and sampling techniques, have very specific objectives. The algo-

rithms that make use of sampling (and Extrema propagation) are ultimately tailored to

determine a good estimate over the network size in a fast and efficient way. Algorithms

that leverage on data representation, as Q-Digest, have objectives that usually go beyond

calculating an aggregation function, since they are tailored to retrieve more information

about the system using effective compression mechanisms. While these are also relevant

aggregation problems in distributed systems, they fall out of the scope of this thesis and

hence, will not be considered further.

We focus on algorithms that can compute any aggregation function, and that can

be leveraged on a real system to perform management decisions, for instance. As such,

the considered algorithms of this work must be fault tolerant, being able to cope with

message loss, link failures, and node crashes, without affecting the computation of the

aggregation function significantly or permanently. Furthermore, input values being used

36

2.8. SELF-MANAGED OVERLAY NETWORKS

for the aggregation function, on a real system, may change over time. Requiring the

aggregation protocol to be restarted periodically is not a desirable feature, as this may

affect negatively any decisions being made regarding the system’s operation.

Consequently, the algorithms we consider as valid solutions for the aggregation prob-

lem this work focusses on are: GAP, an algorithm that relies on a tree topology to compute

any aggregation function; LiMoSense, and Flow Updating, two algorithms that make use

of an iterative approach. We further note, that these algorithms base their computations

on the original input value, and have mechanisms to deal with the change of input value,

which is a requirement to support continuous aggregation naturally.

We also point out that algorithms that rely on a tree topology, such as GAP, have

two main drawbacks. The first one is that these algorithms require the root to be pre-

configured and static. The second is that, because of the static root, they cannot deal with

the fault of the root node, which will render the algorithm unable to perform any correct

operation. Therefore, we study previously proposed mechanisms to build and maintain

tree topologies in the next Section, which are potentially relevant to overcome this key

limitation.

2.8 Self-Managed Overlay Networks

Since we aim at designing systems that are decentralised and have self-management prop-

erties, we need an abstraction that simplifies the coordination among devices. Moreover,

as presented before, some aggregation protocols utilise communication strategies that

rely on concrete topologies. One way to achieve both aspects is to leverage on (logical)

overlay networks.

Many peer-to-peer systems effectively operate on top of logical networks. These net-

works are called overlay networks because they operate above another network layer,

typically the physical network. Although these networks do not usually consider wire-

less environments, they provide interesting management mechanisms that should be

considered in the context of the work presented here.

2.8.1 Overlay Solutions

There are two main classes of overlay networks: structured and unstructured overlays.

Structured overlays are logical networks that have a known topology (e.g., a ring [12,

38, 80], a tree [53], among others), on the other hand, unstructured overlays present a

random topology. Structured overlays tend to achieve a higher performance for particular

objectives (e.g., resource location or application level routing), but usually have high

maintenance overheads. In contrast, unstructured overlays have a lower maintenance cost,

but might not be as efficient as structured overlays, being more suitable for cooperative

dissemination of information.

37

CHAPTER 2. RELATED WORK

Overlays are built and maintained by distributed algorithms. These algorithms are

associated with membership protocols. However, achieving a global membership (logical

connections to all nodes) is a challenge in large scale systems, since maintaining up-to-

date information about every node in the systems leads to significant control overhead.

Consequently, these protocols rely on partial memberships (connections to logical direct

neighbour nodes usually, a subset of all nodes) to achieve global connectivity.

Here we focus on structured overlays that are based on tree topologies, since these

are the ones that are commonly used in aggregation protocols to provide efficient routing

for values to be propagated, whilst performing computations ensuring no input value

duplication.

Plumtree

An effective way of building tree topologies is through the use of flooding, much like how

it is done in TAG [59] and DAG [67]. In Plumtree [53] however, instead of the topology be-

ing leveraged to aggregate values ensuring that no value is aggregated twice, the topology

is used to provide an efficient mechanism to broadcast messages. Plumtree relies on two

fundamental gossip communication mechanisms to build and maintain the tree topology,

eager push and lazy push. Eager push is used to quickly pass messages, while lazy push

is used to recuperate lost messages.

The tree is built by having a node broadcast a message through the network. Nodes

that receive duplicate messages answer to those duplicate messages with a negative ac-

knowledgement. This causes the link between those two nodes to become PASSIVE mean-

ing that link will only be used to recover messages, rather than to send messages.

When a node perceives that it receives a high number of messages by utilising one of

its PASSIVE links, it modifies the link to ACTIVE meaning that link will again be used to

send messages, effectively in some cases repairing the tree naturally.

This however, is a tricky algorithm to be implemented in a wireless setting. This is

mainly due to the fact that one wants to leverage the additional communication primitive

provided by the medium (one-hop broadcast) to minimise the number of total messages

sent, and that Plumtree relies on links between the nodes that are able to be monitored.

Self-Stabilisation Algorithms

Self-stabilisation algorithms while not being directly related to overlay networks, are

fundamental for the design of distributed algorithms that build spanning trees over a

network [34]. Self-stabilisation algorithms have emerged from the theoretical field, as

their main focus is proving that an algorithm can stabilise in a bounded amount of rounds

or message exchanges nevertheless, they can still be used to inspire practical solutions.

This is the case of GAP, that is presented as a modified version of the breadth-first search

algorithm described in [27]. Not all self-stabilisation algorithms have the need of a fixed

38

2.8. SELF-MANAGED OVERLAY NETWORKS

and static root, as such, here we present two algorithms that have no such prerequisite

and that present some similarities with the MiRAge protocol (presented in Chapter 4).

The Algorithm by Afek, Kutten, and Yung The algorithm described in [3], has every

node in the system attempt to construct a tree covering the whole network rooted on it-

self. For this, each node has a unique identifier, being the node with the largest identifier

the root of the tree that will cover the entire network. Nodes have knowledge of their

neighbourhoods, meaning that a node knows for each of its neighbour, its identifier, the

identifier of the root of the tree to which the neighbour is attached, and its distance to

that root. This knowledge is obtained by a process that is outside the scope of the algo-

rithm however, a simple materialisation would be to periodically transmit the required

information.

To actually form the tree, nodes must be able to leave their current tree and join a new

one. A node checks the information regarding its neighbours, and if it finds that one of its

neighbours is in a tree higher than its current tree (the root of the tree of the neighbour is

higher than the local node’s one), it sends a join request messages to that neighbour. The

neighbour will forward this message to root of the tree. The root of the tree will answer

with a grant request message that will be sent back to the node that made the request.

The node will mark as its parent the neighbour from which it receives the grant message.

The algorithm presents two undesirable features, first it produces a higher overhead

with the need to send specific join and grant messages. Second is that, in order to achieve

stability (i.e., form the tree), the algorithm is restarted in each node a multitude of times

until all nodes are attached to the same tree. This happens because every time a node

detects any instability (i.e., some event that forces the local topology to change) through

the observation of its local state, it reverts back to its original state of being the root of its

own tree and starts over.

The Algorithm by Afek and Bremler In [2] the authors present the notion of “power
supply” that is used to describe their self-stabilisation algorithm. This notion describes

root nodes as sources of “power” that is then propagated through the network. The

authors present a synchronous and an asynchronous variant, here we will only focus on

the asynchronous one. Similarly to the previous algorithm, each node contains a a unique

identifier and a distance to the root, this information is then used to establish a spanning

tree whose root is the node with the lowest identifier in the network. Nodes maintain

information about their neighbours and the currently known root of the tree.

As the previous algorithm, nodes start as the root of their own tree. Furthermore, the

algorithm specifies two types of messages, strong and weak. Strong messages carry power

from a root, while weak messages are exchanged periodically to verify inconsistencies

of the local state of neighbouring nodes. For a node to change to a lower root, it must

receive enough power from it. Enough is described as receiving two sequential strong

messages that contain power from the new root through the same neighbour. The first

39

CHAPTER 2. RELATED WORK

message causes an instability in the local node’s state, causing it to revert to its initial state,

the second message serves as confirmation that the root is still alive and that the node

can attach itself to the tree. Consequently, the node marks the neighbour from whom it

receives the messages as its parent, and propagates the strong message to its neighbours.

Similar to the previous algorithm, every time a node detects an instability in its local

state, either by the reception of a weak or strong message, the node reverts back to its

initial state of being the root of its own tree. Furthermore, the need for having two types

of messages also introduces additional overhead.

2.8.2 Discussion

Plumtree presents interesting features regarding tree management, as it can easily repair

the tree topology during its operation, by simply changing the status of a link. However,

the mechanism used by Plumtree to change link status, may rely on too much message

exchanges when considering the algorithm for wireless ad hoc settings, which can lead

to the contention of the wireless medium.

The stabilisation mechanisms by the other protocols, in contrast, must restart the

protocol every time an instability is detected locally but, present two main interesting

features. First, every node in the system actively competes to become the root of a tree

covering the entire system, which enables the construction of a tree with no fixed or

statically configured root. The second is the notion of power that enables other nodes

in the system to verify that the root of the (current) tree is still alive without needing to

explicitly contact it.

In Chapter 4 we propose a novel distributed aggregation protocol that leverages some

of these features in a way that avoids the need to send additional messages to manage the

spanning tree that supports the aggregation process.

2.9 Summary

In this Chapter we presented the limitations of cloud computing, which motivated us

focus on edge computing scenarios. Hence, we detailed the edge computing paradigm

that includes a broad spectrum of different materialisations.

We chose to focus on the particular edge scenario of wireless ad hoc networks in com-

modity devices, and presented the challenges that are inherent to the wireless medium.

We studied existing wireless ad hoc networks, and realised that none is notably suited for

efficient edge computing.

We discussed the importance of understanding how protocols operate in wireless ad

hoc settings and how to implement and execute them on real devices. Hence, we first dis-

cussed distributed protocols in the context of wireless ad hoc networks, namely routing

protocols, to understand the key differences of the operation of wired and wireless pro-

tocols. We followed this discussion by presenting frameworks for efficiently developing

40

2.9. SUMMARY

distributed protocols and applications. We noted that none of the existing frameworks

provided the needed support, which leads to proposal of the first contribution of this

work, the Yggdrasil Framework (detailed in the next Chapter).

In this work, we focus on enabling computations in these networks. To do so, not only

do we need the support to develop and execute these protocols, but also need protocols

that effectively leverage the network to perform computations. Therefore, we began by

looking into decentralised communication patterns as a fundamental piece of abstraction

for distributed protocols that aim at performing computations within the network.

Because supporting generic computations over the network is a daunting task, we

studied distributed data aggregation as a simple, yet fundamental, form of distributed

computation that leverages the network. We studied several protocols with different

properties. We noted that many of the existing protocols do not support networks with

dynamic properties, such as the change of input values that each node holds or the insta-

bility of the network topology employed, or are unable to reach exact results.

Given this limitations, we looked for efficient mechanisms to build tree topologies

that can support the computation of exact aggregation results and that are robust even in

the presence of the failure of the root of the tree. This inspired the second contribution

of this thesis (described in Chapter 4), the proposal of a novel distributed aggregation

protocol name MiRAge.

41

C
h
a
p
t
e
r

3
The Yggdrasil Framework

To allow the design, validation, and evaluation of distributed protocols for wireless ad

hoc networks we must develop correct implementations that can be executed on real

devices. In the previous Chapter, we discussed existing tools to implement distributed

protocols however, we have shown that none of the existing solutions are adequate to

develop distributed protocols for wireless ad hoc settings, particularly when considering

their execution on commodity devices, that support the operation of future edge systems.

In this Chapter we propose a novel framework, named Yggdrasil, that provides sup-

port for developing and executing distributed protocols and applications in wireless ad

hoc settings. We begin by studying properties of distributed applications and protocols,

by looking into three different classes of protocols, which motivates the basic functional-

ities that Yggdrasil must support (Section 3.1). We continue to present the architecture

and design of Yggdrasil, and discuss some of the key aspects in Yggdrasil’s implementa-

tion (Section 3.2). For completeness, and to end the Chapter, we provide an example on

how to use Yggdrasil to implement a simple protocol (Section 3.3).

3.1 Distributed Applications

A distributed application is an application that leverages the computational resources of

various devices to solve a concrete problem. However, solving a problem in a distributed

setting is a daunting task. For this, distributed applications rely on a set of distributed

protocols to provide abstractions that aid in solving concrete parts of the problem that the

application is trying to solve. In other words, protocols can be viewed as modules or com-

ponents that are combined and used in the construction of (complex) applications [36].

A distributed protocol can be modelled as a state machine. As such, a protocol is

described as having an internal state, that changes in reaction to the occurrence of one

43

CHAPTER 3. THE YGGDRASIL FRAMEWORK

or more events. Hence, protocols contain a set of event handlers that either modify or

expose portions of the protocol’s state.

From here, we extract two fundamental properties that should be provided by a frame-

work that supports the implementation of distributed protocols. First, it should allow

protocols to be built in a modular way with well defined APIs, so that the implementa-

tion of a protocol can be leveraged across a variety of applications that require the same

abstraction. Second, the implementation of a protocol should follow as close as possible

to the specification of the protocol, as to minimise the introduction of undesirable bugs.

3.1.1 Requirements for Supporting Protocols

In the concrete setting of wireless ad hoc networks, protocols should be provided with

fundamental abstractions for their operation. To identify these abstraction we study three

classes of distributed protocols in the wireless ad hoc setting. These three classes include:

a broadcast protocol, a routing protocol, and an aggregation protocol.

In more detail, we study the operation of a broadcast protocol, that follows the decen-

tralised communication strategy based on flooding, and that introduces small random

delays in the retransmission of messages (to avoid collisions in the wireless medium);

B.A.T.M.A.N. [44], a routing protocol that periodically sends announcements to construct

routing tables; and GAP [23], an aggregation protocol that although, not originally pro-

posed for wireless networks poses interesting and relevant properties in this context. We

further argue that the aspects found in the operation of these protocols are common

aspects found in other distributed protocols.

We now present the set of requirements that a framework such as Yggdrasil must

provide. These are motivated by the design and operation of the case study protocols

mentioned above.

Communication Abstractions: One-hop Broadcast

Any distributed protocol needs communication abstractions to support interactions among

different nodes of the system. In our three case studies, there are communication steps

that benefit from a primitive that sends a message to all (direct) neighbours of a node

in the ad hoc network. In particular, the broadcast protocol transmits and retransmits

messages using this approach; B.A.T.M.A.N. disseminates announce messages in a simi-

lar fashion; and in GAP, nodes propagate updates summarising their current view of the

tree topology and aggregation to all neighbours. This implies that the framework should

facilitate the use (and expose) a one hop broadcast communication primitive [82].

Communication Abstractions: Point-to-Point

Distributed protocols cannot solely rely on an one hop broadcast primitive. Often mes-

sages are only intended to a single destination, and having the neighbouring nodes waste

44

3.1. DISTRIBUTED APPLICATIONS

CPU cycles to process irrelevant messages is undesirable. This is clear when consider-

ing the operation of B.A.T.M.A.N., where messages that are routed are sent to particular

nodes that are responsible to keep forwarding the message, always following the same

pattern, until it reaches the node to which the message is addressed. Consequently, it is

beneficial to also expose a point-to-point communication primitive that allows a node

to send a message directly to a specific direct neighbour in the wireless ad hoc network.

Protocol Interaction: Request & Reply

Protocols do not execute in complete isolation. For instance, messages disseminated by

the broadcast protocol or transmitted through the routing protocol are generated by ei-

ther an application or some other protocol, that delegates, to one of these protocols, the

responsibility to deliver it to the appropriate nodes or node. Another relevant example

of this can be found in the operation of the aggregation protocol. In this case, while the

protocol can compute the aggregation without external interactions, the result of the ag-

gregation should be exposed to other protocols (or application) when requested. To deal

with this need of interaction among protocols, the framework should provide a mecha-

nism that allows a protocol to send a request to another protocol. These requests will

typically require a concrete action to be taken by the receiving protocol (e.g., broadcast

a message; forward a message). Some of these requests might need to produce a reply

(e.g., report the aggregated value when requested), therefore the framework should also

support the option of a reply to be sent back to the protocol or application that created

a request.

Protocol Interaction: Notification

Various protocols operating within the context of a single process may depend on the

information that another protocol obtains during its execution. They could retrieve this

information through the use of the previous interaction, although this would be highly

inefficient as they are not aware when the relevant information may become available.

Consider the example of GAP that relies on the operation of a companion discovery pro-

tocol. Every time the discovery protocol discovers a new neighbour, it should make this

information available to GAP and any other protocol that requires it. Hence, the discov-

ery protocol should have a mechanism to notify these protocols that a new neighbour has

been discovered. However, during the implementation of the discovery protocol there is

no knowledge on which protocols may need the information at runtime. The consequence

is that another, more indirect, form of interaction must be made available for protocols.

To address this, the framework should support a mechanism of notification, where a

protocol can at any time send a notification, with a pre-defined identifier, that is transpar-

ently delivered to any protocol that registered interest in that type of notification. This

operates akin to a publish-subscribe system however, limited to the scope of protocols in

the context of a single process.

45

CHAPTER 3. THE YGGDRASIL FRAMEWORK

Timer Management

A prevalent behaviour found in the specification of protocols, which is illustrated by our

routing and aggregation case studies, is the need to perform actions periodically, such as

sending a message. Due to the frequent need of this behaviour, and to assist developers in

handling this potentially error prone task, providing support for timed actions is relevant.

To that end, the framework should support an integrated management mechanism for

timers (i.e., operations whose execution depends on the passing of time). Timers can be

periodic, for when a protocol needs to perform a given action at recurrent time intervals

(until the timer is canceled); or be unique, triggering once after a given amount time. The

latter is relevant, for instance, to manage timeouts, an aspect found in many protocols

in actions related with fault-tolerance, and that is illustrated in the broadcast case study,

where a random small delay is applied before retransmitting messages.

3.2 Yggdrasil: Design & Implementation

We now discuss the design and implementation of the Yggdrasil framework. We start by

defining our system model through a set of assumptions, that in conjunction with the

previously presented requirements, motivate our design choices. We then present a high

level overview of the architecture of the framework, and discuss its main components.

Finally, we detail how we have implemented the framework using the C language.

3.2.1 System Model

We consider a system operating as a set of processes that cooperate and interact to ma-

terialise an application. Each process resides in a node which has its own resources

(CPU, memory, disk, etc). All interactions between processes are performed through the

exchange of messages via the wireless medium. We do not assume any form of native rout-

ing, meaning that messages are only exchanged by processes that are directly reachable

through their radio device (i.e., within radio range).

A single process combines logic provided by the development and execution frame-

work (Yggdrasil), a set of protocols, and one or more application components. Protocols

provide services or abstractions to other protocols or application components. Applica-

tion components contain logic specific to the application, and are responsible for interac-

tions that go beyond the system (i.e., users or other systems).

3.2.2 Design Choices

State Machine Model

In Yggdrasil, protocols are modelled (and implemented) as a state machine. This means

that each protocol has its own internal state that evolves according to the reception and

processing of events. Protocols can themselves generate events to be processed by that

46

3.2. YGGDRASIL: DESIGN & IMPLEMENTATION

protocol, or to be delivered to other protocols. The events that guide the execution of

protocols are of four types and are motivated by frequent protocol patterns as discussed

previously: i) Messages, that are the only type of event that can be transported between

protocols that execute in independent Yggdrasil instances (i.e., different processes/nodes);

ii) Timers, that notify a protocol to execute some periodic task or that a local timeout

occurred; iii) Requests/Replies, that allow the direct interaction between protocols in the

context of one Yggdrasil instance; and finally, iv) Notifications, that allow the indirect

interaction between protocols in the context of one Yggdrasil instance.

Taking Advantage of Multi-Core Devices

An application for wireless ad hoc networks can (easily) require the support of multiple

and independent protocols to operate. This can lead these protocols to compete for device

resources during execution, namely CPU, which could have an overall negative impact on

application performance. Since nowadays many devices have multiple CPUs (for instance

Raspberry Pi 3 - Model B has four CPUs [73]), we decided that we should promote parallel

and concurrent execution of protocols and applications. To this end, protocols have

the possibility of executing in the context of independent threads or alternatively, some

protocols can be executed by a shared thread. This should be defined by application

developers, according to particularities of the hardware where they plan to execute their

applications, and properties of the protocols being used. However, developers should

not be required to handle complexities related with concurrent execution. Consequently,

the framework is responsible for transparently manage the execution of various execution
threads, hiding concurrency issues that might occur (e.g., various protocols try to send a

message through the radio at same time).

Dynamic Management of Protocols

We note that in practice, there are different protocols that offer the same service/abstrac-

tion to other protocols and applications components. Often different alternatives exhibit

different performance on different execution environments (which might only be possible

to infer at runtime). For example, if the nodes are too clustered a broadcast protocol based

on flooding, might generate too many redundant receptions; whereas in less clustered

environments, effectively all nodes should retransmit each message. This creates the need

to enable the activation/deactivation or switching [65] of protocols at runtime, as to pave

the way for autonomic management mechanisms. We note that, although this feature is

available in Yggdrasil, it is not explored in the context of this thesis.

Support for Debugging and Experimental Validation

One of the potential benefits of employing a framework to develop and execute proto-

cols and applications in wireless ad hoc networks, are the existence of support tools for

performing validation and testing. Due to this, we believe that a minimal set of tools to

47

CHAPTER 3. THE YGGDRASIL FRAMEWORK

Operating System

Yggdrasil Runtime

Low Level
Yggdrasil Library

Applications

Dispatcher Protocol

Timer Management Protocol

Protocol Executor

ProtocolosProtocolosProtocols

Figure 3.1: Simplified Yggdrasil’s Architecture.

simplify these tasks should be provided with the framework. We have developed a first

prototype of such a tool, that enables the coordination of the execution of applications

using the framework across multiple devices without the need for devices to be plugged

to a (control) infrastructure network. We provide some details on this tool in the context

of our own experimental work reported on Chapter 5.

3.2.3 Architecture

Figure 3.1 depicts a high level view of the Yggdrasil architecture. Yggdrasil is a frame-

work that operates above the operating system. In particular, Yggdrasil was developed

considering a unix-based general-purpose operating system. From the operating system

we assume abstractions to configure the radio device and consequent wireless network,

besides standard abstractions and programming interfaces (such as concurrent execution

and synchronisation mechanisms as mutex and semaphores).

The core component of Yggdrasil is the Yggdrasil Runtime. This component offers all

of the high level abstractions of the framework (many of them discussed previously), the

programming API for developers, and the support for the runtime execution of protocols

and application components. The core of Yggdrasil is small as to ensure its simplicity and

robustness.

The Yggdrasil Runtime relies on the Low-Level Yggdrasil Library to interact with the

operating system and manage the radio device and network configuration. The library

is responsible for exposing an abstraction through which communication (via message

exchange) is achieved among multiple devices. This abstraction is named a Channel. The

motivation for having this library is two fold. First, it allows us to isolate this component

from the Yggdrasil Runtime, minimising the probability of introducing bugs in the core.

Second, it simplifies the growth of the framework to support other communication en-

vironments, by either replacing or adding new libraries that expose their functionality

through a channel.

48

3.2. YGGDRASIL: DESIGN & IMPLEMENTATION

Some mechanisms of Yggdrasil are supported via specialised protocols (that we named

core protocols) that are more tightly coupled with the Yggdrasil Runtime than regular user

protocols. This coupling is materialised in the form of API functions that directly interact

with these protocols. The core protocols are: i) Dispatcher, which is responsible for man-

aging the transmission and reception of network messages using the channel abstraction

exposed by the Low Level Library; ii) Timer Management, which is responsible for the

management of timers for all other protocols executing in a process; and iii) Executor

that allows the developer to have multiple protocols sharing a single execution thread

(the default execution model in Yggdrasil is to have each protocol to execute in the context

of its own private execution thread). While the framework offers implementations for

the three core protocols, the user can replace any of them by one of her own design. This

is useful, for instance, for debug purposes or to extend the functionality of the frame-

work. As a concrete example, for debug purposes, one could replace the Dispatcher’s

implementation such that all messages sent or received are logged to a file.

Finally, a main application and its protocols/components (either provided by the

framework, or user defined) will interact with the Yggdrasil Runtime and its core pro-

tocols. The main application is responsible for configuring the Runtime through the

API exposed by it. This configuration includes specifying the protocol and application

components that are going to be executed, and optionally defining some properties for

the wireless ad hoc network to be employed, such as the network name and WiFi radio

channel to be used.

3.2.4 Implementation Details

A prototype of Yggdrasil was developed in the C language. This prototype includes

all the previously described functionalities and provides implementations of additional

protocols. These include: neighbour discovery; failure detection; aggregation protocols;

communication protocols, such as routing, broadcast, and reliable point-to-point delivery;

topology control; and experiment management protocols. The last two are dedicated

to simplify experimental validation and benchmarking activities. The prototype also

provides support libraries with auxiliary functions for the creation and manipulation

of the different types of events, generic data structures, and other utilities. In total, the

current prototype contains more than 35.000 lines of code. We now give some details on

this implementation and its main features1.

Protocol Definition:

The basic unit of Yggdrasil are protocols and application components. This is the most

relevant part for programmers when leveraging Yggdrasil’s abstractions, as it is on the

development and execution of protocols and applications that Yggdrasil focusses on. As

previously described, protocols are modelled as state machines (we discuss application

1This code is available online at: https://github.com/LightKone/Yggdrasil

49

CHAPTER 3. THE YGGDRASIL FRAMEWORK

components further ahead). As such, protocols must contain a defined state containing all

the variables that will be manipulated or used by the protocol.

The internal state of a protocol must evolve, and do so by the processing of events. As

such, a protocol must have a way of handling the processing of events. Yggdrasil provides

developers with two methods of defining the logic of event handlers, we named these

Main Loop and Event Handlers.

Main Loop: Using this method the developer must provide an implementation of a main

control loop function of a protocol. This main control loop is then responsible for

consuming events and process them accordingly. Yggdrasil provides a mechanisms

(described ahead) that allows the main control loop to wait until an event for that

protocol becomes available. This methodology provides programmers with more

control over the behaviour of a protocol when implementing it.

Event Handlers: Using this method the developer only has to implement handlers (i.e.,

individual functions) for the types of events that are relevant for her protocol. For

clarity, this means for instance that if a protocol does not consume a notification

event, it does not need to implement a notification event handler. These handlers

have predefined interfaces, that must be respected by the developer. In contrast to

the previous methodology, this methodology provides programmer with a simpler

and more systematic interface for developing their protocols.

The implementation of protocols is not exclusive to one of these methodologies. In

fact, the implementation of a protocol can combine both methodologies, by using a main

control loop that calls the appropriate event handler. Nevertheless, we perform a dis-

tinction over them because they internally represent different execution models. While

defining a main loop is associated with the protocol executing in a single independent

thread, defining event handlers is associated with the protocol executing in the context

of a shared thread. This behaviour is defined upon the initialisation of the protocol.

Protocols should follow two additional implementation requirements. The implemen-

tation of a protocol should define an initialisation function and a destructor function.

The initialisation function is responsible for initialising the protocol’s state, preparing

the triggering of initialisation events (e.g., setup a periodic timer), and creating a spec.

This spec is used by the Runtime to correctly prepare and manage the execution of the

protocol. As such, this spec should contain the protocol id, a unique internal numeric

identifier; the protocol’s name, a string for debug purposes; the protocol’s state, so that

the Runtime can instantiate the protocol upon its execution; the notifications it produces
and consumes if any, enabling the publish-subscriber interface used for indirect interac-

tions among protocols; the function pointer to the protocol’s main loop or the collection of

function pointers to the relevant event handlers, defining the execution model; and finally,

the function pointer to the destructor function. The destructor function is responsible for

releasing the memory allocated by the protocol’s state, if the protocol is terminated.

50

3.2. YGGDRASIL: DESIGN & IMPLEMENTATION

Protocol Interaction:

In Yggdrasil, as explained previously, interactions between protocols are performed via

events. Yggdrasil supports four types of events detailed previously (timers, messages,

requests/replies, and notifications), and offers specific data types that represents each

one. All data types include a header part that identifies the protocol (via its protocol

id) which generated said event, and a payload field that is managed by the protocol

that creates/consumes the event. Each data structure has its how particularities, for

example, the payload of the message data type is of constant size; the timer data type has

a randomly generated identifier and two time fields, a first one containing the absolute

time for when the timer should first trigger, and a second one containing the period, if any,

for recurrent triggers for periodic timers; notification and request/reply data types also

contain the numeric identifier of the destination protocol, with the difference that in the

notification data type this field is manipulated by the Runtime, while in request/replies

it is manipulated by the protocol that generates the event.

Each data type, has additionally, auxiliary functions to initialise the header fields, and

add, retrieve, and free the information in the payload field. In particular, timer data types

have an additional auxiliary function to set the relative time for when the timer needs to

be triggered.

Protocols need to dispatch these events in order for them to be delivered to the ap-

propriate destinations. For this purpose, the Runtime provides a clear API to dispatch

events. Each type of event has its own function to be called for triggering its delivery to

other protocol or protocols. The Runtime simply checks the destinations and delivers the

event to the appropriate protocol(s). Again, there are some particularities that are specific

for the message, timer, and notification event types. Message event types, can either be

dispatched to the network or delivered to the appropriate protocol once it is received

from the network. Timer event types can be set or canceled. Regarding notifications,

as they have no concrete destination upon its creation, the Runtime checks and delivers

them to all protocols that registered interest in receiving said notification.

Protocols consume these events through an event queue. This event queue is pro-

vided and managed by the Runtime upon the registration of protocols that are part of an

application.

Events are consumed from the event queue in FIFO order however, different types

of events have different priorities. The current priority is the following: Timers, Noti-

fications, Messages, Requests/Replies. The motivation for this ordering is related with

the typical delay sensitivity of the different types of events although, the ordering can be

easily changed by redefining the structure of an enumerate.

To handle this type of behaviour, given that events have different sizes, the event

queue is implemented by having a set of inner queues that are dedicated to the handling

of each type of event. When an event is to be popped from the queue, the queue performs

a search over the contents of inner queues in order, and retrieves an element from the first

51

CHAPTER 3. THE YGGDRASIL FRAMEWORK

one that has an element. Each inner queue is materialised by a circular buffer to avoid

continuous reallocation of memory however, the circular buffer may grow when needed.

As a final note, event queues have mechanisms to be blocking, in other words, if there

is nothing to be consumed from an event queue, the protocol must wait. This mechanism

can however be bypassed, as event queues also implement a function where protocols

can specify a maximum time for waiting for an event. This can be useful for protocols

that need to perform specific actions when there is no event to be consumed.

Core Protocols:

The framework offers implementations for all core protocols. In particular, we note that

the Dispatcher protocol is responsible for processing all messages sent by protocols, by

serialising them, and sending them to the network. Additionally, this protocol also waits

for messages to be received. Upon reception, the protocol deserialises the messages, and

delivers them (through the Runtime) to the appropriate protocol (being silently dropped

by the Runtime if the destination protocol does not exist). The Dispatcher ensures that

information about the sender (i.e., MAC address) is correct when sending messages to the

network. Our implementation of the Dispatcher also contains an ignore list, that can be

manipulated by other protocols through request events, to ignore certain origin nodes.

The Timer Management protocol allows for various protocols in an Yggdrasil instance

to register periodic or unique timers. As such, every timer that is set by a protocol will be

delivered to the Timer Management protocol. The protocol maintains an ordered queue

of all registered timers, and when these expire, the protocol delegates to the Runtime the

delivery of a copy of that Timer event to the appropriate protocol. Timers can be canceled

as discussed previously, which will trigger the Runtime to deliver a copy of the Timer

event to be canceled with both time fields set to zero.

Yggdrasil has a third core protocol named Executor. This executor is a pseudo-protocol
that can be used to at runtime to dynamically register or unregister protocols. The Ex-

ecutor is responsible for managing the execution of those protocols in the context of a

single shared execution thread. This is achieved by having all those protocols sharing a

single event queue. The Executor thread then monitors this queue for events to any of

its registered protocols. Whenever an event arrives, the Executor executes the handler

function associated with that type of event and the destination protocol operating over

the internal state of the protocol.

Other Features:

The framework has other features that have proved to be beneficial for implementing

some common behaviours in distributed systems and also to optimise the behaviour

of multiple protocols executing in parallel. One example can be found on protocols

that aim at piggyback information in the messages exchanged by other protocols. This

is a very common technique to reduce the number of messages exchanged through the

52

3.2. YGGDRASIL: DESIGN & IMPLEMENTATION

network, where some additional information is added to the payload of messages (without

surpassing the maximum size of a frame in the network) that is transparently processed

by the receiver.

Yggdrasil supports this feature by enabling a protocol to intercept the event queue

of another. This means that whenever some protocol delivers an event to the original

queue, the event is instead transparently delivered to the queue of the intercepting pro-

tocol, which then becomes responsible to deliver the event to the original event queue.

Piggyback in this context is implemented as follows.

A protocol that wants to piggyback information, intercepts the event queue of the

Dispatcher protocol. Hence, whenever a protocol generates a message to be sent, instead

of the message being put into the Dispatcher protocol’s event queue, it is put into the

piggybacking protocol event queue. The protocol receives the message, and verifies if

there is enough free space in the payload to add its information. If so, it starts by adding

to the payload information about the original destination of the message (both MAC

address and protocol id). It then adds the information to be piggybacked to the payload

of the message, and updates the destination protocol to be itself (so that the message is

processed by the same protocol on arrival at the destination node). Optionally, the MAC

address of the destination can be updated if it is destined to a particular node, to the

broadcast address (other nodes will discard the message after processing the piggybacked

data). The message is then directly delivered to the Dispatcher for transmission.

Additional Abstractions:

A common pattern found in the state maintained by protocols is the management of col-

lections of information, usually stored in linked list. To facilitate this, Yggdrasil also offers

an implementation of a generic linked list. Furthermore, Yggdrasil offers a specialised

implementation of this list to hold information regarding neighbouring nodes.

In addition, Yggdrasil provides implementations of common interaction interfaces.

These are mainly for the delivery and reception of notifications and requests/replies

regarding the discovery of a new neighbour, the request to route a message to a specific

destination, and the request to obtain the aggregation result.

3.2.5 Applications in Yggdrasil

As mentioned before, an application in Yggdrasil is composed by a set of protocols and ap-

plication components. Application components contain logic specific to the application,

and as such, we delegate to the programmer the design, implementation, and execution

model of the component. The only restrictions imposed to programmers is the interac-

tion model with protocols, which has to be done via events (naturally, the same events

that protocols use). Similarly to protocols, events are consumed via event queues that

are managed by the Yggdrasil Runtime, consequently, application components must be

registered in the Runtime, as to obtain their own event queue.

53

CHAPTER 3. THE YGGDRASIL FRAMEWORK

3.3 Showcase Exercise

Algorithm 1: Simple Discovery
1: Local State:
2: Nid //Node identifier

3: Neighs //Set: (Nid)

4: Upon Init () do:
5: Neighs←− {}
6: Setup Periodic Timer Beacon (∆T)

7: Upon Beacon do: //every ∆T
8: Trigger OneHopBCast (Nid)

9: Upon Receive (id) do:
10: if @ id ∈ Neighs then
11: Neighs←− Neighs ∪ {id}
12: Trigger Notification New Neigh(id)

We now present an example to show how one can leverage the previously explained

abstractions provided by Yggdrasil to efficiently implement protocols. For this, we will use

a simple protocol that is fundamental for the operation of many of the presented protocols

in Chapter 2, a discovery protocol that enables other protocols executing simultaneous

to learn which are the other nodes with whom they can communicate. We provide the

pseudo code of this protocol in Algorithm 1.

The discovery operates as follows: every ∆T it announces the node’s identifier (a

random bit string) through one hop broadcast (Alg. 1 line 8). Upon the reception of an

announcement, the algorithm checks if it already knows the identifier in the message

(Alg. 1 line 10). If the identifier is new (not contained in the set hold by the algorithm),

it is added to the list of known identifiers and a notification of a new neighbour is sent

(Alg. 1 lines 11− 12).

In the following, we show how this algorithm is translated to C code in Yggdrasil. We

will begin by explaining how the state of the protocol is defined.

Protocol State:

1 typedef s t r u c t _s imple_discovery_s ta te {
2 uuid_t myid ;
3 l i s t * neighbours ;
4 short proto_id ;
5 YggTimer announce ;
6 } s imple_discovery_s ta te ;

Figure 3.2: Simple Discovery State.

By using Yggdrasil, the programmer must first define a structure that contains the

54

3.3. SHOWCASE EXERCISE

state of the protocol, as depicted in Figure 3.2. The first two variables defined are related

to the actual state maintained by Algorithm 1 as demonstrated at lines 2 and 3, where the

variable type uuid_t is, in short, a redefinition of a char array with 16 positions provided

by a C library (uuid) that provides functions to generate universally unique identifiers

(uuids). The variable type list is the linked list provided by Yggdrasil explained previ-

ously.

The last two variables defined in the state encode information that must be maintained

by Yggdrasil, such as the protocol’s numerical identifier (proto_id) and the periodic timer

that the protocol uses for its periodic beacon action (announce), where the data type

YggTimer represents a Timer event. This last variable, is not mandatory to be maintained

by this protocol per se however, it is useful to maintain the original Timer event for

instance, to cancel it or change its parameters.

Protocol Handlers:

1 s t a t i c short process_t imer (YggTimer * timer , s imple_discovery_s ta te * s t a t e) {
2 YggMessage msg ;
3 YggMessage_initBcast (&msg , s t a t e −>proto_id) ;
4 YggMessage_addPayload(&msg , (void *) s t a t e −>myid , s i z e o f (uuid_t)) ;
5
6 dispatch (&msg) ;
7
8 return SUCCESS ;
9 }

10
11 s t a t i c short process_msg (YggMessage * msg , s imple_discovery_s ta te * s t a t e) {
12 uuid_t id ;
13 void * ptr = YggMessage_readPayload (msg , NULL, id , s i z e o f (uuid_t)) ;
14
15 i f (neighbour_find (s t a t e −>neighbours , id) == NULL) {
16 neighbour_item * newnei = new_neighbour (id , msg−>srcAddr , NULL, 0 , NULL) ;
17 neighbour_add_to_l i s t (s t a t e −>neighbours , newnei) ;
18
19 send_event_neighbour_up (s t a t e −>proto_id , newnei−>id , &newnei−>addr) ;
20
21 }
22 return SUCCESS ;
23 }

Figure 3.3: Simple Discovery Handlers.

We next define the handlers that will process each type of event relevant for the

operation of the protocol. The protocol needs to perform timed actions and receive

messages hence, we will define handlers for Timer events and Message events. This is

shown in Figure 3.3. Each handler receives the respective event (Timer or Message),

represented by the data types YggTimer and YggMessage respectively, and the state to be

modified or consulted. Furthermore, handlers are specified to return if they succeeded

or failed in their execution.

As specified by Algorithm 1, when the protocol receives a Timer event, it should send

a message through one hop broadcast. For that end, in the implementation (function

process_timer) we begin by defining a message data structure (msg), we initialise this

data structure to be sent through one hop broadcast (function YggMessage_initBcast).

55

CHAPTER 3. THE YGGDRASIL FRAMEWORK

This entails setting the destination address of the message to be the physical broadcast

address (ff:ff:ff:ff:ff:ff) and tagging the message with the protocol’s numeric iden-

tifier. We must add the node’s identifier to the message’s payload (function YggMes-

sage_addPayload). The message is then dispatched to the network by sending the mes-

sage to the Dispatcher protocol (function dispatch).

When the protocol receives a message (function process_msg), it must check if it

already knows the identifier of the sender. To this end, we must extract the informa-

tion contained in the payload of the message. This is achieved by the function YggMes-

sage_readPayload that reads the payload of the message (first parameter msg), from the

position pointed by the pointer in the second parameter (NULL in case if it is the beginning

of the payload), and stores the read contents in the provided third parameter (in this case

an uuid_t id). The fourth parameter denotes the number of bytes to read. Addition-

ally, the function returns the pointer that points to the last position that was read from

the payload, allowing to reuse it to read additional elements from the payload. In this

example this feature is not used as we only have one element to read from the payload.

Next, we search the neighbour list for the received identifier (function neighbour_find),

which will either return a pointer for the neighbour item (i.e., an item in the list that en-

codes information related to a neighbouring node) that has that identifier, or NULL if it

does not exist. If the neighbour does not exist, we create a new neighbour item with

the received information (function new_neighbour) and add it to the list of neighbours

(function neighbour_add_to_list). The protocol must now send a new neighbour no-

tification, which achieved by the function send_event_neighbour_up. We do not show

the implementation of this function however, what it does is create a Notification event,

add to the notification’s payload the identifier and MAC address of the new neighbour

(similarly to how the message data structure is initialised), and ask the Runtime to deliver

the event to every interested protocol/component (similarly to the dispatch function).

Protocol Initialisation:

The only thing left for the programmer to do, is the initialisation function that will be used

to register the protocol in the Yggdrasil Runtime. Figure 3.4 presents the C code for this.

Additionally, Figure 3.4 also presents the destructor function (simple_discovery_destroy)

that frees the state allocated by the protocol. The initialisation function (simple_discovery_init)

receives the parameters used by the protocol, this is encoded in the data structure sim-

ple_discovery_args that should be defined in the corresponding header file of the pro-

tocol. In this case this structure contains the announce period of the protocol.

The initialisation function first initialises the state of the protocol, and then creates the

spec for the protocol (function create_protocol_definition) where the programmer

must provide the protocol’s numerical identifier (also defined in the header file), the pro-

tocol’s name, the state of the protocol, and the protocol’s destructor function. Then this

spec must be configured, to this end, the programmer must provide the notifications that

56

3.4. SUMMARY

1 s t a t i c short s imple_discovery_destroy (s imple_discovery_s ta te * s t a t e) {
2 cancelTimer (& s t a t e −>announce) ;
3 ne ig hbo ur_ l i s t_ des t roy (s t a t e −>neighbours) ;
4 f r e e (s t a t e −>neighbours) ;
5 f r e e (s t a t e) ;
6
7 return SUCCESS ;
8 }
9

10 proto_def * s i mp le _d i sc ov er y_ in i t (s imple_discovery_args * args) {
11
12 s imple_discovery_s ta te * s t a t e = malloc (s i z e o f (s imple_discovery_s ta te)) ;
13 getmyId (s t a t e −>myid) ;
14 s t a t e −>neighbours = NULL;
15 s t a t e −>proto_id = PROTO_SIMPLE_DISCOVERY_ID ;
16 s t a t e −>neighbours = l i s t _ i n i t () ;
17
18 proto_def * discovery = c r e a t e _ p r o t o c o l _ d e f i n i t i o n (s t a t e −>proto_id , " Simple Discovery " , s t a t e ,

s imple_discovery_destroy) ;
19 proto_def_add_produced_events (discovery , 1) ; //NEIGHBOUR_UP
20
21 proto_def_add_msg_handler (discovery , process_msg) ;
22 proto_def_add_timer_handler (discovery , process_t imer) ;
23
24 YggTimer_init (& s t a t e −>announce , s t a t e −>proto_id , s t a t e −>proto_id) ;
25 YggTimer_set (& s t a t e −>announce , args−>announce_period_s , args−>announce_period_ns , args−>

announce_period_s , args−>announce_period_ns) ;
26
27 setupTimer(& s t a t e −>announce) ;
28 return discovery ;
29 }

Figure 3.4: Simple Discovery Initialisation.

the protocol will produce (function proto_def_add_produced_events), in this case only

one notification is produced, the new neighbour notification. The programmer must also

provide the spec with the protocol’s handlers (functions proto_def_add_msg_handler

and proto_def_add_timer_handler). Finally the periodic Timer event is configured by

initialising the Timer event data structure (function YggTimer_init) with the protocol’s

numeric identifier, and by setting its time parameters (function YggTimer_set). The

Timer event is then delivered to the Timer Management protocol through the Runtime

(function setupTimer).

3.4 Summary

In this Chapter we presented the first contribution of this thesis, the Yggdrasil framework,

that provides the grounding for the rest of our work. We began by motivating Yggdrasil’s

design with the help of the operation of some protocols presented in the previous Chapter,

we then detailed Yggdrasil’s implementation and provided a showcase example for the

reader to understand how can one make use of Yggdrasil. We conclude this Chapter with

some final remarks.

The Yggdrasil framework began with the development of its low level library. Its first

objective was to configure the device radio programatically and send messages through

one hop broadcast. Since then, the Yggdrasil framework evolved with the Runtime to

support the execution of multiple protocols. Protocols where viewed as independent

execution threads that interacted through the Runtime. Latter, we designed the Executor

57

CHAPTER 3. THE YGGDRASIL FRAMEWORK

protocol so that we could support protocols executing in the context of shared threads,

and to date we are still exploring other useful abstractions and methodologies that could

be incorporated in Yggdrasil.

The Yggdrasil framework is still being developed as to address more use cases and

other relevant issues that may arise in the future. However, the prototype presented in

this Chapter is a stable version of the Yggdrasil framework. In particular, Yggdrasil was

already used by a student to develop and evaluate different flavours of broadcast protocols

for wireless ad hoc networks. Moreover, Yggdrasil was crucial to the development and

experimental evaluation of the second contribution of this thesis, that we present in the

next Chapter.

58

C
h
a
p
t
e
r

4
Multi Root Aggregation: MiRAge

In this Chapter we discuss the design of our own distributed aggregation protocol that

is capable of performing continuous aggregation naturally in an efficient and reliable

fashion. We begin by providing the system model we consider (Section 4.1), we then

proceed to present a brief overview of the protocol (Section 4.2). We follow this by

providing the details of the protocol’s operation (Section 4.3) that is divided into two

parts. A first one where we describe how values are aggregated in our protocol, and a

second one where we discuss how we build and maintain the tree topology that supports

the aggregation process.

4.1 System Model

We assume a distributed system where nodes communicate via message exchange. Fur-

thermore, we assume that devices are equipped with a WiFi radio capable of operating

in ad hoc mode. Each node is pre-configured to join a single ad hoc network. We do not

assume any routing algorithm or infrastructure access. Devices can transmit messages

using one hop broadcast, where the message can be received (with some probability) by

all, or a subset of devices in the transmission range of the sender.

No node is aware of the total number of nodes in the system. However, we assume

that each node has a unique identifier (this can be achieved by having each node generate

a large random bit string at bootstrap) that can be ordered within the system. We do not

make any assumption regarding clock synchronisation although, we assume that each

node perceives the passing of time at a similar (albeit, not necessarily equal) rate.

Finally, we assume that each device runs a discovery protocol, similar to the one

described in the previous Chapter, where periodically the node transmits (in one-hop

broadcast) an announce containing its own identifier. The period of this transmission

59

CHAPTER 4. MULTI ROOT AGGREGATION: MIRAGE

is controlled via a parameter ∆D. This protocol is also used by each node as an unreli-

able failure detector, where if the announce of a known node is not received for a (large

enough) consecutive number of transmission periods, the node becomes suspected of

having failed, generating a notification to the aggregation protocol. The number of trans-

missions that a node can miss before suspecting another one is a parameter denoted Kf d .

This is an assumption made by many other aggregation protocols described previously in

Chapter 2 namely GAP [23], LiMoSense [30], Flow-Updating [42], among others.

4.2 Overview

Our protocol is inspired in the design of GAP, but generalises its design to remove the

dependence of a single root. To this end, our protocol leverages on a self-healing spanning

tree to support efficient continuous aggregation. In our protocol, that we named Multi

Root Aggregation, or simply MiRAge, all nodes compete to build a tree rooted on them-

selves, similarly to the self-stabilisation algorithms explain previously however, without

the need for additional messages.

The competition is controlled via the identifier of each node (a large random bit string)

and a monotonic sequence number (i.e., a timestamp) controlled by the corresponding

root node. Additionally, our protocol was designed to ensure that all nodes in the system

are able to continually compute and update the result of the aggregate function while the

tree is being constructed and maintained.

To provide a clearer intuition of our protocol we present two complementary concepts

regarding the construction and maintenance of the support spanning tree. First, a tree

is considered correct while its root is non-faulty, which is verified by nodes through the

observation of increasing sequence numbers (i.e., timestamps) for that tree. Since we

must have a single tree that spans the network to provide an efficient and reliable way to

aggregate values, we define the concept of dominating tree. The dominating tree is the

correct tree that will ultimately span the entire network. We further detail that a tree a

dominates over a tree b if the identifier of the root of a is lower than the identifier of the

root of b. Hence, we can define the dominating tree as the correct tree whose root has the

lowest identifier within the whole network.

Nodes periodically exchange information regarding the tree they are attached to, and

the aggregated value being computed. When a node receives information of a correct tree

that dominates over its current tree, the node simply attaches itself to the new tree.

When performing aggregation, unlike in GAP and other topology-based approaches,

in MiRAge, nodes have no need to know who are they children and parent in the tree.

They only need to keep track of the links that belong to the tree. Intuitively, and because a

tree topology represents a single path (in any direction) for information to be propagated,

each node can be viewed as a root of the tree to which aggregated values are propagated to.

In more detail, a node propagates to a neighbour the resulting aggregated value without

the effects of the contribution of that neighbour.

60

4.3. MULTI ROOT AGGREGATION

4.3 Multi Root Aggregation

We now present the design of MiRAge, which is divided into two parts for better compre-

hension. We start by explaining how the aggregation result is computed by each node in

the system. We then explain how the natural evolution of the protocol through the ex-

change of messages between nodes, allows to maintain the self-healing spanning tree that

supports the aggregation. These two parts are respectively represented in Algorithms 2

and 3 in pseudocode.

4.3.1 Aggregation Mechanism

Algorithm 2 describes the local state maintained by each node executing MiRAge and

the components of the protocol related with computing the aggregation function at each

node.

In MiRAge, each node owns a unique node identifier (Alg. 2 line 2) and stores its

own input value for the aggregation (Alg. 2 line 3). Additionally, each node maintains its

current estimate of the aggregation result (Alg. 2 line 4) and a set of known neighbours,

where the following information is maintained for each neighbour: i) the neighbour’s

node identifier; ii) the latest received estimation; iii) the neighbour’s current status in

the support spanning tree, being Active if the neighbour shares a tree link with the local

node and Passive otherwise; iv) the identifier of the tree that the neighbour is connected

to; and v) its level in that tree (Alg. 2 line 5).

Each node also owns a set of local variables that capture its current position and

configuration in the support spanning tree. These include: the identifier of the tree to

which the node is currently connected (tree identifiers are the identifier of the tree root

node), its level (the root of the tree has level zero), the highest timestamp observed for the

current tree, and the identifier of the parent node (Alg. 2 lines 6− 9). In addition, each

node stores a map that associates tree identifiers to the highest observed timestamp for

that tree (Alg. 2 line 10).

When a node is initialised (Alg. 2 line 11) it has no knowledge regarding existing

neighbours. Due to this, it assumes that the result of the aggregation function is its own

value, and initialises the state related with the support spanning tree to reflect a tree

rooted on itself (the tree identifier being its own identifier). Additionally, the node setups

a periodic function named Beacon that is executed every ∆T , which corresponds to the

main aggregation logic of our algorithm. A typical value for ∆T is one or two seconds.

When the Beacon procedure is executed, a node will start by updating its local es-

timate. This is achieved through the execution of the updateAggregation procedure,

which applies the aggregation function represented by the operator ⊕ in Algorithm 2

line 32, to the input value of the node with the received estimates of neighbours whose

link with the local node has been marked as belonging to the node’s current tree (i.e.,

status = Active).

61

CHAPTER 4. MULTI ROOT AGGREGATION: MIRAGE

Algorithm 2: MiRAge: Aggregation Function Computation.
1: Local State:
2: Nid //Node identifier

3: Value //current input value

4: Aggregation //Current result of aggregation

5: Neighs //Set: (Nid, value, status, Tid, Tlvl)
6: Tid //Unique identifier of the tree to which the

node is currently attached (Nid of tree root)

7: Tlvl //Level of the node in its current tree

8: Tts //Higher timestamp of current tree

9: Pid //Identifier of current tree parent

10: Trees //Map: T rees[Tid]→ Timestamp

11: Upon Init () do:
12: Value←− initV alue() //initial input value

13: Tid ←−Nid
14: Tlvl ←− 0
15: Tts←− now() //now() = current time

16: Pid ←−Nid
17: Neighs←− {}
18: Aggregation←− Value
19: Setup Periodic Timer Beacon (∆T)

20: Upon Beacon do: //every ∆T
21: Call updateAggregation()
22: if (Tid = Nid) then
23: Tts ←− now()
24: msg←− {}
25: foreach (id, val, stat, tid, tlvl) ∈ Neighs ∧Tid = tid ∧ stat = Active do
26: msg←−msg ∪ (id, Aggregation 	 val)
27: Trigger OneHopBCast (< Nid , Tid , Tlvl , Tts, Pid , Value, msg>)

28: Procedure updateAggregation()
29: Aggregation←− Value
30: foreach (Neigh, Vneigh, Status, Tneigh, Lneigh) ∈Neighs do
31: If (Status = Active) then //Active → Tid = Tneigh
32: Aggregation←− Aggregation ⊕ Vneigh

33: Upon Receive (< id, tid, tlvl, tts, pid, val, msg >) do:
34: Call updateNeighbourEntry(id, tid, tlvl, val)
35: if ∃(Nid ,RecvV al) ∈msg then
36: Call updateNeighbourEntry(id, tid, tlvl, RecvV al)
37: Call updateTree(tid, tts, tlvl, pid, id)

38: Procedure updateNeighbourEntry(id, tid, tlvl, val)
39: if (@ (id ′ , _, stat, _, _) ∈ Neighs : id ′ = id) then
40: Neighs←− Neighs ∪ (id, val, Passive, tid, tlvl)
41: else
42: Neighs←− Neighs \(id, _, stat, _, _)∪ (id, val, stat, tid, tlvl)

After updating its local estimate, the node will prepare a message to be transmitted

through one-hop broadcast. This message must contain information that encodes a sense

of directionality for all nodes to compute the correct aggregation result. Hence, the node

computes a partial aggregated value that should be propagated towards each Active

62

4.3. MULTI ROOT AGGREGATION

neighbour. This is done by applying some function or method (operator 	 in Alg. 2

line 26) that removes the effects of the contribution of a neighbour from the previously

computed local estimate. The 	 operator depends on the aggregation function, as it

should revert specific modifications applied by the aggregation function (operator ⊕ in

Alg. 2 line 32) to the locally calculated estimate. For instance, if the aggregation function

is the sum function, the 	 can be specified as being the subtract function effectively

removing specific portions of the local estimation. Unfortunately, in the case of the max

and min functions it is not as easy to define the 	 operator as a simple function hence, an

effective solution is to recalculate the local estimation without the effects of the specific

node’s aggregated value. We note that this must be done to guarantee that old maximums

or minimums are forgotten by the system.

The computed partial aggregated values are then tagged with the corresponding neigh-

bour’s identifier whose contribution effects where removed, effectively forming a tuple

for each neighbour. The message is also tagged with the local node’s identifier, and the

information on the support tree that the node is currently attached to, including the tree

identifier, the level of the node, the highest tree timestamp observed, and the identifier

of the node’s parent (Alg. 2 line 27).

Upon receiving one of these messages (Alg. 2 line 33), a node starts by updating the

information it knows about the sender by calling the updateNeighbourEntry procedure.

This procedure either creates or updates the entry for a given neighbour in a node’s

neighbour set. The information that is updated is the latest input value observed by that

neighbour, the identifier of the tree to which the neighbour is currently attached, and

its current tree level (the status of the node remains unchanged and is set to Passive if

this was the first message received from that node). However, if the sender considered

the local node as an Active neighbour, then the message contains a tuple with the local

node’s id and a partial aggregate that must be considered to ensure that all nodes compute

the correct aggregated value. In this case, the local node updates again the information

regarding the neighbour with the received aggregated value (Alg. 2 line 36).

4.3.2 Tree Management Mechanism

Upon initialisation, each node joins the tree rooted on itself (see Alg. 2 line 13). Whenever

nodes exchange aggregation information, they also propagate information regarding their

current tree and their position in that tree.

Whenever a node processes an aggregation message (Alg. 2 line 33), it takes advantage

of this information to run a local stabilisation mechanism to manage the support tree

(Alg. 2 line 37). This is achieved through the procedure updateTree, presented in Alg. 3.

In a nutshell, this procedure is responsible for ensuring three complementary goals: i) the

correct dominating tree covers all nodes; ii) in presence of failures, the tree is repaired

(potentially establishing a new dominating tree); and iii) avoid a node to connect to a

tree whose root has failed (i.e., tree stability). We now explain how each of these goals is

63

CHAPTER 4. MULTI ROOT AGGREGATION: MIRAGE

achieved in MiRAge.

Algorithm 3: MiRAge: Tree Management.
1: Procedure updateTree(tid, tts, tlvl, pid, id) do:
2: if (Nid = pid) then // I am neighbour’s parent

3: if (Pid = id) then
4: Call commuteToMyTree ()
5: else if (Tid = tid) then
6: Call changeNeighbourStatus (id, Active)
7: else if (Pid = id) then // Neighbour is my parent

8: if (Tid = tid ∨ (tid < Nid∧ (Trees[tid] = ⊥ ∨ Trees[tid] < tts)) then
9: Call changeNeighbourStatus (id, Active)
10: newT s←− tts
11: if (Tid = tid) then newT s←−max(Tts,tts)
12: Call updateTreeStatus (tid, tlvl + 1, newT s, id)
13: else
14: Call commuteToMyTree ()
15: else // None of the above

16: if (tid < Tid ∧ (Trees[tid] =⊥ ∨ tts < Trees[tid])) then
17: Call changeNeighbourStatus (id, Active)
18: Call updateTreeStatus (tid, tlvl + 1, tts, id)
19: else
20: Call changeNeighbourStatus (id, Passive)
21: if (tid ,Nid ∧ (Trees[tid] = ⊥ ∨ Trees[tid] < tts)) then
22: Trees[tid]←− tts
23: Call checkTreeTopology (Tlvl − 1)

24: Procedure checkTreeTopology(lvl) do:
25: foreach (id, _, stat, tid, tlvl) ∈ Neighs do
26: if (stat = Passive ∧ tid = Tid ∧ tlvl < lvl) then
27: Call changeNeighbourStatus (Pid , Passive)
28: Call changeNeighbourStatus (id, Active)
29: Call updateTreeStatus (Tid , tlvl + 1, Tts, id)

30: Upon NeighborDown (id) do:
31: if (Pid = id) then // My parent failed

32: Call checkTreeTopology (Tlvl)
33: if (Pid = id) then // No suitable parent found

34: Call commuteToMyTree ()
35: Neighs←− Neighs \(id, _, _, _, _)

36: Procedure changeNeighbourStatus(id, stat) do:
37: Neighs←− Neighs \ (id, val, _, tid, tlvl)
38: Neighs←− Neighs ∪ (id, val, stat, tid, tlvl)

39: Procedure updateTreeStatus(tid, tlvl, tts, pid) do:
40: Tid ←− tid
41: Tlvl ←− tlvl
42: Tts←− tts
43: Pid ←− pid

44: Procedure commuteToMyTree() do:
45: Call updateTreeStatus (Nid , 0, now(), Nid)

64

4.3. MULTI ROOT AGGREGATION

Establishing the Dominating Tree:

When a node joins the system, it establishes itself as the root of its own tree. Since nodes

exchange information regarding the tree to which they are connected, and since tree

identifiers are unique, every node can compare the identifier of its current tree with the

tree to which a neighbour is connected. This enables nodes to switch to a different tree

if it dominates over their current tree, setting the node that sent information about the

new dominating tree as their parent (Alg. 3 lines 12 and 18). This allows a single (correct)

dominating tree to eventually be established among all nodes.

Additionally, and since each node only maintains a single parent, it is easy to ensure

that no cycles exist in the tree. In particular, assume that a node a switches parent from

node p to p′. The next message transmitted by a will report p′ as being its current parent.

This allows p to set the local status of a to Passive, effectively removing the link between

these nodes from the tree (Alg. 3 line 20). Furthermore, p′ will observe this message

and set the status of a to Active, ensuring the link between them is now part of the tree

(Alg. 3 line 6). This simple procedure allows a topology with no cycles and no redundant

links to be established.

Notice however, that a will only set the status of p to Passive when it receives a

new message from p. This is because the algorithm tries to reuse portions of the already

established paths for the dominating tree. Consider that a switched parent form node p

to p′ because p′ announced a tree that dominated over a’s current tree (Alg. 3 line 16−18).

a will switch to the tree announced by p′ and transmit the change. When p receives the

message from a reporting the change, if p is still in the same tree as a was, p will perform

the same step as a (Alg 3 line 16−18). This is due to the fact that for p to be parent of a, a

joined the tree to which p belonged to at some point in time. As such, if the tree that was

adopted by a dominated over its previous tree, it will also dominate over the current tree

of p, meaning that p will set a as its parent. This represents a possible case where the link

between p and a does not change status (albeit both nodes switch to another tree).

Tree Repair/Recovery:

When a node fails, its neighbours will be eventually notified through the NeighbourDown

notification (Alg. 3 lines 30− 35). When a node a detects the failure of a peer p that was

not the parent of a, no special measures are required except forgetting p. This is true since

the tree topology, from the perspective of a, did not become compromised. However, if

p was the parent of a, the tree topology has become incorrect and measures have to be

taken to repair, or recover the tree.

In this case, a will attempt to locate a viable replacement for its parent (Alg. 3 lines

32 and 24− 29). This is done by inspecting the state of all neighbours to find a suitable

candidate that must be connected to the same tree, whose link is not currently part of the

tree (i.e., status = Passive), and whose level in the tree is strictly below the level of a, as to

avoid the creation of cycles. If a valid candidate is found, a updates its parent information

65

CHAPTER 4. MULTI ROOT AGGREGATION: MIRAGE

and its current level in the tree (this information will be propagated downwards in the

tree on messages transmitted afterwards).

However, if no suitable candidate is found, a switches to the tree rooted on itself,

triggering the process for establishing a new dominating tree as described above (Alg. 3

line 34) on node a. What this means is that a single fault may not affect the entirety of the

network and only provoke a momentary localised instability, until a and the ones affected

by a’s state rejoin the dominating tree. The nodes that are affected by this are the ones

that are in the subtree rooted in a that is currently a disconnected part of the tree due the

fault of p.

When a transmits a message that reflects its new state, neighbours of a whose status

is marked as Passive will not update their state as they are in the dominating tree.

Neighbours of a whose status is marked as Active (children of a), will either adopt the

tree of a (Alg. 3 line 12), effectively not changing links; or switch to the tree rooted on

themselves, because their identifier is lower than a’s identifier (Alg 3 line 14) and their

tree is the one that should be the dominating tree, degenerating themselves to a similar

state to the one of a. In that case, node a will eventually rejoin the dominating tree, by

receiving information that the dominating tree is still up. By induction, so will the rest

of the subtree rooted in a.

It is important to note that in the case of the failure of the root node the same mecha-

nism explained before applies, as no other node can have a level of zero in that tree. This

mechanism will, in this case, lead nodes to the process of establishing a new dominating

tree. Furthermore, in these cases additional instability can happen and neighbouring

nodes may detect direct cycles between them. In such scenarios both nodes will, simi-

larly, switch to the tree rooted on themselves (Alg. 3 line 4). The failure of the root poses

additional challenges that we discuss next.

Tree Stability:

When the root of the dominating tree fails, all nodes will have to converge to a new domi-

nating tree. However, and since information does not propagate throughout the system

instantaneously, it can happen that a node a discovers that the previous dominating tree

is no longer correct, switches to a new tree, and afterwards receives a message from a

different node that has yet to detect the failure of the previous tree. This can lead a to

go back to the previous (incorrect) dominating tree. This happens because, with a high

probability, the failed tree dominates over all other trees in the system (i.e., its identifier

is lower than the identifiers of all other correct trees). This can generate instability in

the process of establishing the tree, compromising the convergence of nodes to a new

dominating tree.

To avoid this situation, we resort to the timestamps that are associated with each

tree in the system. The timestamp of a tree is only incremented by the corresponding

root node (Alg. 2 lines 22 − 23), and serves as a form of (multi-hop) heartbeat for that

66

4.4. SUMMARY

tree. Messages exchanged among nodes carry the highest timestamp observed for the

sender’s current tree. Hence, observing increasing timestamps for a tree, indicates that

the root node is still active. To avoid the situation described above, nodes only switch to a

dominating tree if it is the first time they become aware of that tree (which is relevant for

the bootstrap process) or if the message being processed by the node carries a timestamp

greater than all previously observed timestamps for that tree.

Optional Optimisation:

Optionally, and to promote trees with lower heights, nodes can run an optimisation

procedure to try and find a replacement for their current parent in a tree (Alg. 3 line 23).

This is similar to the mechanism used to recover from faults, with the exception that the

candidate must have a level lower than the current parent. This mechanism is not strictly

required to ensure the correctness of the aggregation support tree.

4.4 Summary

In this Chapter we have presented the second main contribution of this work, the dis-

tributed aggregation protocol MiRAge. We have provided a brief overview of our protocol

where we discussed the intuition of MiRAge and pointed out the main differences regard-

ing similar solutions.

We presented the detailed operation of MiRAge that is divided into two parts: a

first one that details how every node in the systems computes the aggregation result;

and a second one that details how the tree topology employed by MiRAge is built and

maintained by the collective efforts of the nodes in the system.

In the next Chapter we present the experimental evaluation of both Yggdrasil and

MiRAge.

67

C
h
a
p
t
e
r

5
Evaluation

In this Chapter we present our experimental work. At a higher level, we aim at demon-

strating the applicability of our solutions, Yggdrasil and MiRAge, in realistic scenarios.

To this end, we begin by describing our experimental methodology (Section 5.1), we fol-

low this by presenting the tools that we have developed to help us in conducting our

experiments (Section 5.2) and then, detail our experimental setup (Section 5.3).

Since our work presents two contributions, we also divide the rest of the Chapter

into two parts. First we detail the experimental evaluation of Yggdrasil (Section 5.4).

Then we present an extensive evaluation of MiRAge, where we compare it with relevant

protocols from the state-of-the-art that serve as performance baselines to our own solution

(Section 5.5).

5.1 Experimental Methodology

We intend to demonstrate the applicability of our solutions. To this end, we resort to

implementations of our solutions and relevant baselines which execute in the physical de-

vices that constitute the wireless ad hoc network. Our devices of choice are 24 Raspberry

Pi’s 3 - model B [73] equipped with an ARMv7 CPU, 1 GB of RAM, and a radio device

capable of operating in ad hoc mode, executing a Linux-based operating system named

Raspbian, in its 9.1 version with kernel version 4.9.41 − v7+. Each of the 24 devices is

numbered from 1 to 24 to ease identification. These 24 devices form a wireless ad hoc

network, over which, all communication is performed.

We use two experimental deployments of our fleet of 24 Raspberry Pis. A disperse

deployment where we position each Raspberry Pi in different rooms across two hallways

in our department building, such that each device can only communicate other nodes

that are within the transmission range of their radio devices; and a dense deployment

69

CHAPTER 5. EVALUATION

where all nodes are placed in a single room, well within transmission range of each other.

The first deployments serves the purpose of showcasing the operation of our imple-

mented protocols in a realistic environment. Although, there are some considerations to

be made about this deployment. This scenario presents some adversary conditions, as

there are multiple access points and other devices polluting the wireless medium as such,

transmission ranges of each radio have been shown to vary. This means that some pairs

of nodes, may be able to communicate with each other occasionally, producing instabil-

ity in the operation of protocols. More importantly, our disperse deployment presents

challenges regarding the controlled execution of experiences, namely the introduction

of variable conditions, such as node/link failures or input value changes in the case of

aggregation, in a surgical fashion. This is due to the fact that we have no knowledge of

the pattern in which nodes communicate among them, as this may slightly vary from

execution to execution.

These limitations are somewhat circumvented through the use of the dense deploy-

ment. Although in this deployment node are within transmission range of each other, we

restrict the neighbouring relations of nodes by filtering out messages, effectively produc-

ing a logical multi-hop network that can be leveraged to perform more controlled expe-

riences. This deployment also presents a high radio pollution in the wireless medium

(since all nodes are clustered together) however, varying transmission ranges are not a

problem.

We used Yggdrasil to implement all protocols that are considered in our experimental

evaluation. Furthermore, to execute experiments in these two setting we developed two

tools in Yggdrasil that we describe below.

5.2 Experimental Tools

The first challenge in executing experiments in a disperse deployment is to have all nodes

start and stop the same experience (approximately) simultaneously. The solution relies

on building a control network to start, stop, and introduce other dynamic features to the

experience. Remember that nodes in the disperse deployment can only communicate

through the established wireless ad hoc network as such, this control network must run

atop this network. The second challenge is to enforce the topology in the dense deploy-

ment. However, with Yggdrasil’s functionalities, achieving this second challenge is quite

easy as we explain further ahead.

5.2.1 Yggdrasil Control Process

To address the first challenge, we developed the Yggdrasil Control Process, that is com-

posed by three control protocols. A specialised discovery protocol, the external input proto-
col that allows commands to be issued by a client application (through TCP sockets), and

the core control protocol. In addition to these protocols we have developed a set of simple

70

5.2. EXPERIMENTAL TOOLS

client applications that issue commands to the external input protocol and an application

component that interprets the commands given by the Yggdrasil Control Process. We

now explain each of these protocols in some detail.

Discovery Protocol: The discovery protocol designed to support the Yggdrasil Control

Process is very similar to the simple discovery protocol that we used as a showcase

example of Yggdrasil’s provided abstraction to implement protocols in Chapter 3.

The key difference is that, since we use TCP connections in the design of the core
control protocol, we have created a discovery protocol that also propagates the IP ad-

dress of the wireless interface (which is generated by DHCP through a local process)

on the announcement messages periodically issued by the protocol. Moreover, this

protocol was also enriched with support for special disable and enable operations,

that respectively deactivate and activate the transmission of announcements, which

is relevant to ensure that during experiments we minimise interference due to the

activity of the Control Process.

External Input Protocol: The external input protocol fundamentally waits for incoming

TCP connections on any network interface and processes user operations issued

through these connections (through a client application). These operations, as stated

before, can be requests to start or terminate an experiment, simulate a link failure,

recover from a link failure, etc. Some of these commands can be tagged with a set

of nodes identifiers, in which case only those nodes execute the requested action.

Otherwise, the command is executed by all processes. Independently of the targets

of the command, whenever this protocol receives a request from the user, it issues

the command to the core control protocol for dissemination and processing (for

some commands it also waits for a reply from the core control protocol that is

redirected to the client).

Core Control Protocol: The core control protocol is the main protocol of the Yggdrasil

Control Process. This protocol has two main goals. The first is to disseminate com-

mands to all other Yggdrasil Control Processes in the experimental testbed (which

are discovered by the discovery protocol although, we should note that this solu-

tion allows for multi-hop network configurations). This is achieved by a broadcast

protocol, that operates on top of TCP connections, whose design is inspired by the

Plumtree [53] protocol described in Chapter 2. This broadcast protocol, currently,

also offers a mechanism to gather responses from processes that execute dissemi-

nated commands to produce a reply for the client. This mechanism however, is not

fully stable in the current prototype. The second goal of the core control protocol is

the (local) execution of commands issued by users.

71

CHAPTER 5. EVALUATION

1

24 22
20

9
6

5
16

1011

4

2
18

8

13 12

14
15

7

19

17

23

21

3

Figure 5.1: Distribution in Disperse Deployment.

5.2.2 Topology Control

To address the second challenge, we developed a protocol on Yggdrasil, called the Topol-

ogy Control protocol. This is a very simple protocol given the abstractions and function-

alities provided by Yggdrasil. The protocol operates as follows: it begins by reading two

configuration files. The first file contains the MAC addresses of each device mapped to a

number (the number of the device) and creates a MAC address database. The second file

contains the numbers of the devices with which the local device will communicate. The

protocol proceeds to send a request event type to the dispatcher protocol to ignore all

incoming messages from the source nodes not contained in the second file. This enables

the construction of a static multi-hop topology.

The protocol also has a request interface to change links. When the protocol receives

one of these requests, it checks if the link (MAC address) is ignored or not by the dis-

patcher, and sends a request to dispatcher protocol either to stop ignoring or to ignore

the source. This effectively enables the simulation of link failures and link recoveries.

1

5

3 4 6

2 7

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

Figure 5.2: Overlay Topology in Dense Deployment.

72

5.3. EXPERIMENTAL SETUP & CONFIGURATION

5.3 Experimental Setup & Configuration

We now present how the devices are positioned in each setting. Figure 5.1 illustrates

the distribution of nodes in space in the disperse deployment. Each of the hallways has

approximately 30 meters. The overlay employed in the dense deployment is represented

graphically in Figure 5.2.

Each device is configured to execute the Yggdrasil Control Process on boot. The

Yggdrasil Control Process is then used to control all our experiments. This is done by

having the Yggdrasil Control Process create a child process for the experience when the

begin experience command is issued, and kill this process once the command to terminate

the experience is issued. These processes log to disk all activity during experiments. Logs

are processed offline.

We now detail our experimental work for each of our contributions that follow and

make use of the previously described methodology and tools.

5.4 Yggdrasil: Experimental Evaluation

In this Section we report our experimental evaluation of Yggdrasil. This evaluation is

divided in two parts. The first part provides additional insights on how useful and easy is

to leverage Yggdrasil to implement distributed protocol for ad hoc networks. To this end,

we discuss our implementation of the protocols used to motivate the design of Yggdrasil

in Chapter 3: the broadcast protocol, B.A.T.M.A.N., and GAP. We also informally compare

our B.A.T.M.A.N.’s implementation with a reference implementation of the protocol in C

(that operates as a Linux daemon).

The second part is used to validate our implementations through practical evaluation.

For this, we have conducted a performance evaluation of the implemented protocols using

Yggdrasil to execute the protocols and simple test applications that exercise them in our

disperse deployment.

5.4.1 Protocol Implementation

As to validate the advantage of leveraging Yggdrasil to produce implementations of wire-

less ad hoc distributed protocols, we have implemented the three case study protocols

discussed in Chapter 3: a simple broadcast protocol based on a flooding mechanism, a

simplified version of B.A.T.M.A.N. (V4) [68], and the aggregation protocol GAP [23]. With

the exception of the broadcast protocol, which is the most simple, we have implemented

the remaining protocols as described by the authors.

The broadcast protocol has about 200 lines of C code, that include a mechanism to

garbage collect information about delivered messages. The protocol interacts with an

application through request events, which hold a message to be disseminated throughout

the network. This message is retrieved from the request’s payload, delivered to the

application and set for latter transmission with an arbitrary small delay, as to avoid

73

CHAPTER 5. EVALUATION

broadcast storms [69]. All delivered messages are stored in a list to ensure at most once

delivery semantics. Messages that are in this list for a long enough period are eventually

garbage collected by a periodic task dedicated to that purpose.

Our implementation of B.A.T.M.A.N. has less than 500 lines of C code. It has a

number of simplifications regarding the original specification however, these do not affect

the execution or correctness of the algorithm. In particular, our implementation of the

protocol’s sliding windows is represented as an array of shorts (rather than a bit array).

Due to this, messages exchanged between processes are slightly larger than the original

specified messages (however, they are still smaller than the maximum size of a network

frame: 1,500 bytes).

An interesting aspect regarding this implementation is that we can compare it with a

reference implementation, also in C, that operates as a Linux daemon. The code is pub-

licly available at https://www.open-mesh.org/projects/open-mesh/wiki. This dae-

mon implements version 3 of B.A.T.M.A.N. which, ignoring aspects related with the

support for Internet gateways and external networks (that are ignored by our implemen-

tation), has the same logic as version 4 (that we implemented). We analysed the code of

this implementation and discovered that it has approximately 7,000 lines. We inspected

the code to identify and disregard all aspects related with interactions with the kernel,

support for gateways and external networks, and other optimisations that we ignored in

our implementation, and estimate that the core logic of the routing protocol has 2,000

lines of code. This represents an increase of about 4 times on the number of lines of

code when considering our implementation. This difference is justified mostly due to the

B.A.T.M.A.N. daemon having to deal with low level aspects such as, message serialisation,

timer management, concurrency management, network interface management, among

others. All of this is highly simplified by using Yggdrasil to implement the protocol.

Our implementation of GAP has less than 400 lines of C code. It implements the

complete protocol as specified by the authors [23]. However, the authors propose different

policies to deal with management of the values of neighbours. Our implementation uses

the proposed default policy, which maintains all values from neighbours as long as they

are not suspected of failure. Additionally, GAP assumes a companion discovery and

fault detection mechanism. For this, we have implemented a protocol that provides both

abstractions by piggybacking heartbeat messages on messages sent by GAP. This is the

same protocol described in the previous Chapter for MiRAge.

All implementations took, independently, less than a week to be made, including de-

bugging and verifying the correctness of the implementations. These observations, lead us

to conclude that the Yggdrasil framework offers useful abstractions for the development

of distributed protocols and applications for wireless ad hoc environments. Furthermore,

and considering the difference in the size of our implementation of B.A.T.M.A.N. and

the implementation of the B.A.T.M.A.N. daemon, we can also consider that these ab-

stractions allow programmers to focus on aspects related with the design and operation

of the protocol, involving less effort in the amount of code that has to be written (and

74

https://www.open-mesh.org/projects/open-mesh/wiki

5.4. YGGDRASIL: EXPERIMENTAL EVALUATION

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

re
d

 M
e

s
s
a

g
e

s
 (

%
)

C
D

F

Nodes (%)

Figure 5.3: Broadcast Protocol: Delivery Ratio (CFD).

reviewed). Another interesting observation, is that this simplicity might be useful, for

example, to use Yggdrasil as a support tool for lecturing advanced courses where wireless

ad hoc networks and distributed protocols are discussed.

5.4.2 Performance Evaluation

Our experimental evaluation relies on simple demo applications which exercise the three

classes of protocols, used to motivate the design of Yggdrasil. The goal is to assert that

the implemented protocols have the expected (and) correct behaviour.

The experimental evaluation was conducted in our disperse deployment. The exper-

iments for each protocol were executed for a period of 10 minutes. We collected logs in

all devices for each experience, and then post-processed these logs after all experiences

concluded. In the following we describe the experience and results obtained for each of

the three case studies.

Broadcast Protocol:

For evaluating the performance of our developed broadcast protocol, which operates by

flooding the network, we designed a simple test application that works as follows. Every

two seconds, each process independently and randomly decides to broadcast a message

with a probability of 50% by issuing a request to the broadcast protocol. Messages dis-

seminated by the process carry the identifier of the process that generated the message

and a unique monotonic identifier. All nodes register to a log all disseminated messages

and all messages received.

In this evaluation we consider as performance metric the delivery rate of broadcast

messages (i.e., the fraction of nodes that deliver a given message). Figure 5.3 reports

our results in the form of a commutative distribution function (CDF) that shows the

percentage of messages (in the y-axis, note that it is in logarithmic scale) in function of

75

CHAPTER 5. EVALUATION

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 all

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Sender Node
Yggdrasil-BATMAN Daemon-BATMAN

Figure 5.4: Routing Protocol: Comparison of Delivery Ratio per Node.

the fraction of nodes that delivered it (in the x-axis). The results show that the large

majority of disseminated messages (in total there where approximately 3,500 messages

disseminated) were delivered by every node. Only a small fraction, below 10%, of mes-

sages were delivered by few nodes. This however is not surprising, since collisions in

the wireless medium still happen, despite our transmission delays that try to mitigate

this effect. Overall, we consider that the protocol presents the expected performance and

hence its implementation is correct.

Routing Protocol:

For validating the correctness of our implementation of the B.A.T.M.A.N. [68] protocol,

we implemented a simple application akin to the one described above for evaluating the

broadcast protocol. In this application each node decides to transmit a message with a

probability of 50% every two seconds. When a node sends a message, it picks a destination

for it randomly among the 23 possible destinations (we avoid nodes sending messages

to themselves). Similarly to the previous experiment, we have logged all messages sent

and received, and analysed the results offline. To further validate the behaviour of our

implementation of the protocol, we wrote a second application (without resorting to

Yggdrasil) that has exactly the same behaviour described previously, while using the

B.A.T.M.A.N. daemon described previously. This allowed us to compare the performance

of our own implementation with a reference implementation that does not resort to our

framework.

In this experimental comparison we measure the fraction of messages sent by each

node that were effectively received by their destination. Figure 5.4 reports the delivery ra-

tio per individual node in our deployment, using each of the routing alternatives, as well

as the average delivery ratio for all nodes (the final pair of columns labeled all). We note

that in each experiment there were approximately 3,500 messages sent, with each node

transmitting close to 150 messages. The results show that both implementations present

76

5.4. YGGDRASIL: EXPERIMENTAL EVALUATION

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0 100 200 300 400 500 600

Time (s)

Computed Aggregated Value
Target Value

Figure 5.5: Aggregation Protocol: Precision of Aggregation Result.

very similar performance. In fact, when considering the average delivery ratio, our imple-

mentation surpasses the B.A.T.M.A.N. daemon by 3%. We note that this difference is most

probably caused by interference in the wireless medium. In fact, certain nodes (such as

node 20) have systematically lower delivery rates (i.e., messages sent by them reach their

destination less frequently). This happens because in our disperse deployment, some

nodes were positioned close to wireless access points or laptops that had WiFi radios

active, and frequently polluting the wireless medium. Note that both implementations of

the protocol route messages using unicast messages, which benefit from retransmission

mechanisms implemented in the MAC layer (described in Chapter 2), which justifies why

routing is less affected by collisions in the wireless medium when compared with the

broadcast protocol.

Altogether, these results show that our implementation of B.A.T.M.A.N. has an equiv-

alent behaviour to that of a reference implementation, with the difference that our im-

plementation has 4 times less lines of code, being therefore easier to implement and

maintain. This indicates that indeed, Yggdrasil offers the right and correct abstractions

for developing distributed protocols for wireless ad hoc networks.

5.4.2.1 Aggregation Protocol:

Our experiments with the aggregation protocol (GAP [23]) are slightly different. We

configured GAP to compute the average aggregation function. As input values to the ag-

gregation process we used static values. In fact, we attributed as input value to each node

its own identifier. This implies that the average of these input values is 12.5. Furthermore,

we configured the GAP protocol to transmit periodic updates of its local estimate of the

aggregated values (and tree management information) every two seconds (while the es-

timate is not stable). As discussed previously, GAP relies on a companion and generic

protocol that discovers the neighbours of each node, and also emits suspect notifications

when no message is observed from a particular node for a period of at least 10 seconds.

77

CHAPTER 5. EVALUATION

GAP requires a node to act as root node for the tree established by the protocol. We se-

lected node 1 for this purpose. We wrote a simple application that exercises this protocol,

where periodically (every two seconds), a request for the current aggregation estimate

is issued to the aggregation protocol, waiting for a reply afterwards. This estimate was

recorded to a log as soon as it was received.

Figure 5.5 reports the obtained results, only at the root node, where we depict the

estimate of the aggregated value over time (we remind the reader that all experiments

were conducted for a period of 10 minutes). For the convenience of the reader we also

present a green solid line that represents the target (i.e., correct) value. This allows to

infer the precision of the aggregation process in the root node. The results show that

the protocol rapidly evolves to an estimate of around 12.7 units. Around the 50 second

mark the root node starts to output a result of about 12.2 units until the 230 second

mark. After this, the result slightly fluctuates for about 100 seconds, finally stabilising

after the 350 second mark to a result of 12.45 units for the remainder of the experiment.

Unfortunately, GAP, which is supposed to compute the precise aggregation result, is

unable to do so in this setting. The reason is due to frequent loss of messages in a segment

of the ad hoc network (as we discussed previously in the context of the previous protocols,

some nodes where positioned in locations where there was prevalent wireless noise, or

electromagnetic interference). This clearly shows the practical benefit of a framework

such as Yggdrasil, that allows to run experiments on real settings. While the protocol is

correct, noise in the environment makes it impossible for it to compute the correct value.

This would be very hard to verify through simulation only.

In the next Section we present the experimental evaluation of MiRAge, where the

implementation of GAP is also used. We will also provide further detail on the operation

of GAP in the disperse deployment.

5.5 MiRAge: Experimental Evaluation

In this Section we present an extensive experimental evaluation of MiRAge comparing its

performance against state of the art solutions for continuous aggregation. Furthermore,

we evaluate MiRAge with and without the optimisation to promote trees with lower

heights (the optimised version is labelled MiRAge - Opt).

All of the protocols presented here are implemented in Yggdrasil. In addition, all

protocols make use of the same fault detector that also operates as a discovery protocol,

described in the previous Chapter. The protocol is configured with ∆T = 1s and Kf d = 10.

In practice this means that each node transmits an announcement with its own identifier

every second, and that a node a is suspected to have failed by node b, when b is unable to

receive an announcement from a for a period longer than 10 seconds.

We evaluate the protocols using the two deployments presented previously, a disperse

deployment and a dense deployment with a logical network. We exercise the protocols in

78

5.5. MIRAGE: EXPERIMENTAL EVALUATION

varied conditions that include: fault-free, input value changes, and multiple node failures

scenarios.

In our evaluation of MiRAge we use the baselines described in Chapter 2, which are

the following:

Flow-Updating [42], a protocol that computes the average function using an iterative

approach; a version of LiMoSense [30] published by the authors, where counters main-

tained by nodes are never garbage collected. LiMoSense is a representative of the well

known Push-Sum protocol [48] that can compute the sum, count, and average functions,

enriched to ensure fault tolerance. In addition, LiMoSense requires a parameter q to

be configured to a small arbitrary value so that weights are not excessively divided (i.e.,

weight >= 2 ∗ q), we choose q = 1/24 = 0.04166(6), which follows the authors guideline

to be a small value; GAP [23] which is the protocol that mostly resembles MiRAge, being

able to compute any aggregate function but unfortunately, unable to tolerate the failure

of its static tree root. Since GAP does not enable every node in the network to obtain the

computed aggregate result, we also developed a simple variant of GAP, that we named

GAP+Bcast where the root of the tree broadcasts the currently computed result. This

is achieved by having the result propagated in piggyback along the tree used by GAP,

enabling all nodes to learn the result of the aggregation. Furthermore, both GAP and

GAP+Bcast where configured to use the default policy to manage neighbours’ values, as

described previously. All protocols were configured to perform their periodic communi-

cation step every two seconds. In both GAP and GAP+Bcast experiments, the root was

statically configured in all experiments to be node number 1, which will also be the root

computed by MiRAge.

While MiRAge can easily be employed to compute any arbitrarily aggregate function,

in our experiments every protocol was configured to compute the average. The initial

input values of nodes are fixed, as described previously for GAP, being the numbers 1 to

24 attributed statically to each of the 24 Raspberry Pis. Hence, the average value, based

on the initial input values, is 12.5. Each experiment was executed six times. Protocols

were rotated between executions to amortise the effects of external and uncontrollable

factors. Each execution was configured to have a duration of 10 minutes (600 seconds).

To remove unexpected behaviours introduced by the environment, we chose the three

best executions for each protocol. Results show averages of results obtained across the

best executions. In the following, we discuss our experimental results.

5.5.1 Experimental Results

In our experimental work we focus on the Average Error in the Aggregated Value, abbrevi-

ated AvgErr, that illustrates how far on average are all nodes from the correct aggregate

result, being defined as:

AvgErr =
∑n

i=1(|Avgreal −Avgi |)
n×Avgreal

× 100

79

CHAPTER 5. EVALUATION

 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64 128 256 512

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP
GAP+Bcast

(a) Average Error in the Aggregated
Value.

 0

 5

 10

 15

 20

 100 150 200 250 300 350 400 450 500 550

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP
GAP+Bcast

(b) Average Error in the Aggregated
Value in the middle of the experiment.

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
M

e
s
s
a

g
e

s
 S

e
n

t
p

e
r

N
o

d
e

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP
GAP+Bcast

(c) Total number of Messages sent by all
nodes.

Figure 5.6: Disperse Deployment.

where n represents the total number of nodes, Avgreal is the current (and correct) aggre-

gate result considering all input values, and Avgi represents the current value computed

by node i. We present this normalised for the real aggregation result. Intuitively, in

a scenario where all nodes have computed the correct average, the AvgErr will be 0%,

which is the ideal scenario. On the other hand, when the real average value is 12.5 and

the computed average value by all nodes is 25, the AvgErr will be 100%; a computed

average value of 50 would yield an AvgErr of 300%. Additionally, we also measure the

total number of messages transmitted by all nodes in function of time. This is a measure

of the communication overhead of each protocol.

5.5.1.1 Disperse Deployment

Figure 5.6 presents the results for our experiments in the disperse deployment. Where

the nodes have been deployed as represented in Figure 5.1 previously.

Figure 5.6a reports the measured AvgErr across all nodes as the experience progresses.

Note that the x-axis is in logarithmic scale, as the main point of this plot is to show the

convergence of nodes towards the correct result, a process that is more noticeable at

the start of the experiment. In addition, we provide the results obtained after the 64

second mark in Figure 5.6b to show the behaviour of protocols after they converged to a

somewhat stable setting.

80

5.5. MIRAGE: EXPERIMENTAL EVALUATION

Results show that Flow-Updating is the protocol that converges more slowly towards

the correct average, having an AvgErr lower than 10% only after more than one minute

of execution has passed. Flow-Updating is also the protocol that suffers more from the

instability of the environment, outputting results that have high fluctuations (around 5%)

during the rest of the experiment, never being able to achieve the correct aggregation

result. This is because Flow-Updating exchanges information with all neighbours. If

the local neighbourhoods of nodes vary frequently, which they have shown to do so due

to pollution in the wireless medium that cause variable transmission ranges, the local

computed aggregates by each node will also vary significantly.

LiMoSense slowly converges towards a 5% AvgErr at the 70 second mark. After this

point, it suffers from high spikes in the AvgErr, this is due to the detection of failures in

some nodes, introducing high error in the aggregated value in compensation of the fault

(we will elaborate more on this phenomena further ahead). Around the 200 second mark,

the network stabilises, and the algorithm proceeds to slowly converge to a near perfect

AvgErr, with the introduction of small amounts of variation. However, it never reaches

the perfect (0%) AvgErr, this is because of the iterative nature of LiMoSense, and the fact

that LiMoSense performs pairwise interactions, sending values to only one neighbour at

each communication step. Hence, in order to reach the perfect AvgErr, the network would

have to be stable for some amount of time.

GAP converges relatively fast towards an AvgErr close to 12% and stabilises around

this value. This is expected, as GAP was not designed to provide all nodes in the system

with the aggregate result. On the other hand, GAP+Bcast rapidly converges to an AvgErr
of 2% unfortunately, it is never able to reach the correct result in all nodes. This is caused

by instability in the network and because when GAP is able to converge to a stable tree,

values still need to be propagated to the root. The root will propagate the computed

result however, if the topology changes due to the loss of messages or the discovery of

a new node, the root will start propagating different values leading to an asynchronous

view of the result in the root and the rest of the network.

MiRAge shows the best performance in both variants, reaching an AvgErr of around

0.6% at the 30 second mark. MiRAge without the optimisation is able to reach the correct

aggregation result around the 50 second mark however, MiRAge with the optimisation

shows fluctuations of the AvgErr across the remainder of the experiment. This happens

because the optimisation forces nodes to introduce additional instability trying to estab-

lish the lowest height tree. This will cause nodes to momentarily use connections that are

less stable to propagate aggregated values.

Figure 5.6c shows the total number of messages sent over time for each protocol. The

results show that both MiRAge variants, Flow-Updating, and LiMoSense have exactly the

same cost. This is expected as all protocols were configured to exchange information at

the same rate. GAP and GAP+Bcast issue more messages at the start of the experiment,

as they send bootstrap messages to newly found nodes. GAP stops transmitting messages

when values become stable, reducing GAP’s communication overhead. However, this

81

CHAPTER 5. EVALUATION

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64 128 256 512

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)
Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

Figure 5.7: Average Error in the Aggregated Value in Fault-free Scenario.

could lead to missed updates due to message loss, and as such, GAP+Bcast was modified

to cope with this issue by always transmitting messages, converging to a slightly higher

cost than the remaining protocols.

In all experiments that we conducted, communication overhead always followed this

pattern and hence, we omit those results from the following section.

5.5.1.2 Dense Deployment with Overlay

In this setting we have conducted multiple experiences. We note that while collisions

in the wireless medium are highly probable, this setting is mostly shielded from other

uncontrollable external factors as varying communication ranges that cause additional

instability. We start by examining the behaviour of protocols in a fault free environment.

Then we explore the effect of three dynamic aspects: i) input value change; ii) node

failure; and iii) link failure. In experiments where we introduce dynamic aspects, these

happen in the middle of the experiment (around the 300 seconds mark). Furthermore,

we omit the results for GAP since it is unable to compute the aggregation result in all

nodes of the system.

Fault-Free Scenario Figure 5.7 presents the AvgErr in a fault free execution for all pro-

tocols.

The results show that in this setting Flow-Updating quickly starts to converge towards

a perfect aggregate value. Both MiRAge variants converge somewhat slower but reach an

AvgErr of 0% slightly before. This happens due to the fact that MiRAge uses a determin-

istic tree topology to achieve convergence, whereas Flow-Updating relies on an iterative

technique that iteratively converges towards the correct value. The optimised version of

MiRAge has a slower start to convergence although, it reaches the perfect aggregate value

at the same time as the non-optimised version. This again, is due to the establishment of

the lowest height tree, introducing slightly more error in the beginning, but establishing

a more efficient tree topology to propagate values.

GAP+Bcast converges towards the correct value across all nodes albeit, slightly slower

than MiRAge and introducing a higher error in the process, this is because before the

82

5.5. MIRAGE: EXPERIMENTAL EVALUATION

nodes have the result from the root, they will output their initial input values. LiMoSense

is the slower protocol of our evaluation, converging to a good approximation of the value

at the middle of the experiment. This is because, while the other protocols propagate

values to multiple neighbours, LiMoSense, following the Push-Sum strategy, propagates

values to only one neighbour at each communication step.

 0

 20

 40

 60

 80

 100

 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(a) 1 node.

 0

 20

 40

 60

 80

 100

 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)
Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(b) 12 nodes.

 0

 20

 40

 60

 80

 100

 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(c) 24 nodes.

Figure 5.8: Average Error in Aggregated Value with Dynamic Input Values at Different
Number of Nodes.

Table 5.1: Input value change on 1 node, new aggregation result is 16.25 units.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Old Value 1 2 3 4 5 6 7 8 9 10 11 12
New Value 1 2 3 4 5 6 97 8 9 10 11 12

Node 13 14 15 16 17 18 19 20 21 22 23 24

Old Value 13 14 15 16 17 18 19 20 21 22 23 24
New Value 13 14 15 16 17 18 19 20 21 22 23 24

Dynamic Input Values In these experiments we have introduced variations on the

input value of different amounts of nodes in the system. We have conducted experiments

where we modify the input value of 1, 12, and 24 nodes concurrently. The values to be

changed were randomly generated between 1 and 200 units and attributed randomly to

nodes. Table 5.1 represents the distribution of values for experiments with 1 input value

83

CHAPTER 5. EVALUATION

Table 5.2: Input value change on 12 nodes, new aggregation result is 51.833(3) units.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Old Value 1 2 3 4 5 6 7 8 9 10 11 12
New Value 186 52 79 4 111 6 7 8 9 5 11 103

Node 13 14 15 16 17 18 19 20 21 22 23 24

Old Value 13 14 15 16 17 18 19 20 21 22 23 24
New Value 46 14 134 125 17 87 19 137 21 16 23 24

Table 5.3: Input value change on 24 nodes, new aggregation result is 112.125 units.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Old Value 1 2 3 4 5 6 7 8 9 10 11 12
New Value 39 69 132 84 87 135 88 136 112 161 119 53

Node 13 14 15 16 17 18 19 20 21 22 23 24

Old Value 13 14 15 16 17 18 19 20 21 22 23 24
New Value 179 101 186 176 37 88 57 103 152 154 161 82

change. In these experiments, node number 7 (in grey) changed its input value from 7

units to 97 units, resulting in a new aggregation result of 16.25 units. Tables 5.2 and 5.3

represent the distribution of values for experiments with 12 and 24 input value variations,

respectively.

Results are summarised in Figure 5.8 and show consistent results for all experiments.

LiMoSense is the protocol that is more susceptible to input value variations, whereas Mi-

RAge, Flow-Updating, and GAP+Bcast all present somewhat similar results, being able to

converge to the new aggregation result in less than 20 seconds. The reason why only these

three protocols are able to cope in a timely fashion with the change of input values is nu-

anced. While LiMoSense must apply a transformation to new input value to compensate

for the already transferred values that reflected the old input value, the remaining proto-

cols’ computation of the aggregation result directly depends on the (original) input value.

This implies that as soon as the input value changes, nodes start propagating aggregation

information that completely reflects the input value variation. Therefore, it suffices that

messages propagate through the system to ensure that all nodes’ result reflect the change.

Node Failures In these experiments we introduced a variable number of (concurrent)

node crash faults and measured the impact on the AvgErr. In more detail, we introduced a

number of concurrent node crashes that vary from 1, 6, and 12 nodes around 300 seconds

in the experience. In these, we made sure that node number 1 was not selected to become

faulty, as it was the appointed root node of GAP and GAP+Bcast and its failure would not

be tolerated by the protocols. The resulting overlay topologies after the node crashes are

depicted in Figure 5.9. In experiments with one node crash, node number 7 was assigned

84

5.5. MIRAGE: EXPERIMENTAL EVALUATION

1

5

3 4 6

2

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

(a) 1 node.

1

5

3 6

2

10

8

9

24

14

15 16 19

1312

20

2221

(b) 6 nodes.

1

5

3 6 10

8

9

24 15 16

1312

(c) 12 nodes.

Figure 5.9: Overlay Topology after node failures.

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(a) 1 node.

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(b) 6 nodes.

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(c) 12 nodes.

Figure 5.10: Average Error in Aggregated Value with Variable Number of Node Failures.

to become faulty resulting in the topology represented in Figure 5.9a. In experiments

with more node crashes, we gradually increased the number of nodes assigned to become

faulty, resulting in the topologies represented in Figures 5.9b and 5.9c for 6 and 12 node

failures respectively.

Figure 5.10 reports the obtained AvgErr in these scenarios. In these experiments,

results show that from the 300 to the 310 second mark all protocols present an increase

in the AvgErr. This happens due to the implication of a node crashing. When a node

crashes, its input value is no longer consider to the aggregation result hence, during this

period the remaining nodes will still consider the previous aggregation value as being

the correct one until the fault(s) is (are) detected. Once faults are detected, all protocols

suffer from an increase in the AvgErr as they try to adapt to the changes.

LiMoSense is the protocol that suffers more from faulty nodes. This is because when a

node is suspected of having failed, LiMoSense must apply a compensation mechanism to

85

CHAPTER 5. EVALUATION

remove the input values of the faulty nodes from the rest of the system. This compensa-

tion mechanism will introduce very high AvgErr as to effectively remove the values that

the faulty node transferred, and to reintroduce the values that were transferred to the

faulty node in the system. As we have mentioned before, this is a very slow process when

compared to the other protocols.

The remainder protocols are able to adapt to the change in around 20 seconds, and

present similar increases in the AvgErr upon the detection of the faults. MiRAge (without

the optimisation) is the protocol that shows the lower increase of AvgErr in scenarios

with less variation. This is due to fact that nodes that crashed have been considered to

be leaf nodes of the established tree in some of the runs. This means that there are less

topological changes to be made, introducing a lower AvgErr.

1

5

3 4 6

2 7

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

(a) 1 link.

1

5

3 4 6

2 7

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

(b) 6 links.

1

5

3 4 6

2 7

10

11

8

9

24

14

15 16 19

17

181312

20

2221

23

(c) 12 links.

Figure 5.11: Overlay Topology after link failures.

Link Failures In these experiments we introduced 1, 6, and 12 concurrent link failures

around 300 seconds in the experience, where pairs of nodes become permanently unable

to communicate. This experiment simulates the existence of obstacles or other external

factors that might force the topology to permanently change. The resulting overlay topolo-

gies after the link failures are depicted in Figure 5.11 (dotted lines represent failed links).

In experiments with one link failure, node number 2 and 7 were made unable to commu-

nicate, effectively removing their link from the topology in Figure 5.11a. For experiments

with more link failures, we gradually increased the number of pairs of nodes that were

made unable to communicate, resulting in the topologies represented in Figures 5.11b

and 5.11c for 6 and 12 link failures respectively.

Figure 5.12 reports the measured AvgErr in these scenarios. The results show some-

what consistent results for LiMoSense with the previous experiments with node crashes,

the key difference is that there are less nodes affected by the failure of the link and as such,

the introduced variation is lower as there are less nodes applying the compensation mech-

anism. The remainder protocols show similar increases in the AvgErr with the exception

of GAP+Bcast in the experiments with lower amounts of variation (1 and 6 link failures),

specially in the experiments with 1 link failure. This is because in this experiment we

failed a crucial link in the topology, forcing values to be propagated to the root by node 6

in the topology. As GAP+Bcast must broadcast the value from the root node to the rest of

the system, the root will propagate the incorrect value, that considers the loss of a subtree

86

5.6. SUMMARY

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(a) 1 link.

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(b) 6 links.

 0

 10

 20

 30

 40

 50

 290 300 310 320 330 340 350

A
v
e

ra
g

e
 E

rr
o

r
in

 A
g

g
re

g
a

te
d

 V
a

lu
e

 (
%

)

Time (s)

MiRAge
MiRAge - Opt

LiMoSense
Flow Updating

GAP+Bcast

(c) 12 links.

Figure 5.12: Average Error in Aggregated Value with Variable Number of Link Failures.

(rooted in node number 7), until the correct values are propagated to the root through a

different path. This phenomena does not happen in both versions of MiRAge, because

nodes are not dependent on the root to propagate the aggregation result.

5.6 Summary

In this Chapter we have presented our experimental work over Yggdrasil and MiRAge. Re-

garding Yggdrasil, we have provided an informal comparison in terms of effort required

to implement protocols. We also validated these implementations through an experi-

mental evaluation. Overall, Yggdrasil has shown the capacity to save time regarding the

implementation of multiple protocols that perform as well as reference implementations.

Regarding the evaluation of MiRAge, we have conducted an extensive evaluation

with the relevant protocols from the state-of-the-art. This evaluation covered multiple

scenarios, namely real-like scenarios by using our disperse deployment, and scenarios

with dynamic aspects, such as node crashes, input value changes, and topological changes

due to link failures. Our results show that MiRAge is able to be more robust and precise

than the alternatives for continuous aggregation. We further reinforce that both GAP

and GAP+Bcast are unable to sustain failures of the root node being therefore, less fault-

tolerant than MiRAge.

87

C
h
a
p
t
e
r

6
Conclusion and Future Work

Conclusion

The edge computing paradigm has emerged as a strategy to address the existing limi-

tations of cloud infrastructures. As the number of devices increases, and as the digital

data being produced and in need of processing scales to unprecedented numbers, cloud

infrastructures are rapidly becoming unable to process and produce responses in reaction

to all input data in a timely fashion. Edge computing can take various forms, as we have

discussed in this work, and in this thesis we focussed on the challenging edge scenario

where edge devices interact through wireless ad hoc networks hence, we strived to design

solutions that enable computations to be performed in this particular scenario.

To properly understand how distributed protocols performed in wireless ad hoc net-

works, we intended to develop real implementations of distributed protocols that could

effectively execute in real devices. However, as the study of the state-of-the-art revealed,

there is a lack of suitable tools to allow efficient implementation and execution of proto-

cols and applications in these settings. As such, we proposed the first main contribution

of this work, the Yggdrasil framework. Yggdrasil proved to be a powerful tool that en-

abled us to develop and test distributed protocols operating on wireless ad hoc networks.

As our experimental work revealed, Yggdrasil is capable of providing the adequate tools

to develop correct protocols in a timely fashion.

To achieve our goal of performing computations in wireless ad hoc networks, we

studied distributed data aggregation. We found that the state-of-the-art mostly focussed

on achieving aggregation results in a single specialised node in the system and that input

values where considered to be static. We however, focussed on a more challenging variant

of the aggregation problem where input values may change over time. Hence, we studied

protocols that could also cope with this dynamic aspect, i.e., solutions for the continuous

89

CHAPTER 6. CONCLUSION AND FUTURE WORK

aggregation problem. This led to the second contribution of this work, the Multi Root

Aggregation protocol, or simply MiRAge.

The concept of MiRAge is to establish a self-healing spanning tree to perform continu-

ous aggregation. This concept is not entirely new however, MiRAge brings the advantage

of being able to recover from the failure of the root of tree and enabling each node to

compute the aggregation function, something that competitive alternatives based on tree

topologies are not able to do. We have shown an extensive evaluation that shows that

MiRAge is able to achieve faster convergence across all nodes in the network, while being

robust to failures (both node crashes and link failures).

Future Work

As future work we are currently aiming for three main venues regarding Yggdrasil. The

first venue we aim for is to improve the interfaces provided by Yggdrasil, as to provide

improved intuitive programming interfaces and abstractions. The second venue we aim

for is to further explore the dynamic management of protocols, designing solutions and

applications that leverage this feature The last venue is related to the meaning of the

name Yggdrasil. The name Yggdrasil comes from norse mythology and it symbolises the

tree of life that connects the various realms that exist in the mythology. Consequently,

we aim at generalising Yggdrasil to support more types of networks, namely IP networks,

enabling the coexistence of distributed protocols that operate over IP networks and that

operate over ad hoc networks. To reach such goal, we will integrate new low level libraries

that can be used by the Dispatcher protocol to correctly identify in which interface should

a message be sent. For this, the Dispatcher protocol must also be extended.

In relation to MiRAge, and distributed aggregation protocols in general, we also

aim at two main venues for future work. The first is that our experimental evaluation

showed that the optimisation of promoting lower height trees did not prove to bring many

advantages. Specially in scenarios of high instability, the optimisation proved to lower

the performance of the algorithm. Another more viable approach would be to promote

trees with more reliable communication links to propagate the aggregated values. This

could be achieved by employing similar techniques as employed by the routing protocol

B.A.T.M.A.N..

A second venue to pursue is to reduce the communication overhead of MiRAge, having

the algorithm stop sending messages under stable conditions (i.e., no changes in the

input values). This however, compromises key properties of the algorithm that require

messages to be continuously propagated, namely to deal with the failure of the root of

the tree. A starting point would be to infer local stability in a node (e.g., the values that

the neighbours of a node are sending are not changing), and to integrate fault detection

in the algorithm itself, allowing for a more natural form of fault detection. Such efforts

might lead to the design of a novel algorithm that builds on some of the key ideas and

strategies introduced by MiRAge.

90

Bibliography

[1] I. Aad and C. Castelluccia. “Differentiation mechanisms for IEEE 802.11.” In: Pro-
ceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twenti-
eth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213). Vol. 1. Apr. 2001, 209–218 vol.1. doi: 10.1109/INFCOM.2001.

916703.

[2] Y. Afek and A. Bremler. “Self-stabilizing Unidirectional Network Algorithms by

Power-supply.” In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’97. New Orleans, Louisiana, USA: Society for Industrial

and Applied Mathematics, 1997, pp. 111–120. isbn: 0-89871-390-0. url: http:

//dl.acm.org/citation.cfm?id=314161.314193.

[3] Y. Afek, S. Kutten, and M. Yung. “Memory-efficient self stabilizing protocols for

general networks.” In: Distributed Algorithms. Ed. by J. van Leeuwen and N. Santoro.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 15–28. isbn: 978-3-540-

47405-0.

[4] M. Akter, A. Islam, and A. Rahman. “Fault tolerant optimized broadcast for wire-

less Ad-Hoc networks.” In: 2016 International Conference on Networking Systems
and Security (NSysS). Jan. 2016, pp. 1–9. doi: 10.1109/NSysS.2016.7400690.

[5] I. F. Akyildiz and X. Wang. “A survey on wireless mesh networks.” In: IEEE Com-
munications Magazine 43.9 (Sept. 2005), S23–S30. issn: 0163-6804. doi: 10.1109/

MCOM.2005.1509968.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “A survey on sensor

networks.” In: IEEE Communications Magazine 40.8 (Aug. 2002), pp. 102–114. issn:

0163-6804. doi: 10.1109/MCOM.2002.1024422.

[7] I. F. Akyildiz, D. Pompili, and T. Melodia. “Challenges for Efficient Communication

in Underwater Acoustic Sensor Networks.” In: SIGBED Rev. 1.2 (July 2004), pp. 3–8.

issn: 1551-3688. doi: 10.1145/1121776.1121779. url: http://doi.acm.org/

10.1145/1121776.1121779.

[8] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. “Internet

of Things: A Survey on Enabling Technologies, Protocols, and Applications.” In:

IEEE Communications Surveys Tutorials 17.4 (Oct. 2015), pp. 2347–2376. issn:

1553-877X. doi: 10.1109/COMST.2015.2444095.

91

https://doi.org/10.1109/INFCOM.2001.916703
https://doi.org/10.1109/INFCOM.2001.916703
http://dl.acm.org/citation.cfm?id=314161.314193
http://dl.acm.org/citation.cfm?id=314161.314193
https://doi.org/10.1109/NSysS.2016.7400690
https://doi.org/10.1109/MCOM.2005.1509968
https://doi.org/10.1109/MCOM.2005.1509968
https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1145/1121776.1121779
http://doi.acm.org/10.1145/1121776.1121779
http://doi.acm.org/10.1145/1121776.1121779
https://doi.org/10.1109/COMST.2015.2444095

BIBLIOGRAPHY

[9] C. Ameixieira, A. Cardote, F. Neves, R. Meireles, S. Sargento, L. Coelho, J. Afonso,

B. Areias, E. Mota, R. Costa, R. Matos, and J. Barros. “Harbornet: a real-world

testbed for vehicular networks.” In: IEEE Communications Magazine 52.9 (Sept.

2014), pp. 108–114. issn: 0163-6804. doi: 10.1109/MCOM.2014.6894460.

[10] D. P. Anderson. “BOINC: A System for Public-Resource Computing and Storage.”

In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.

GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–10. isbn:

0-7695-2256-4. doi: 10.1109/GRID.2004.14. url: http://dx.doi.org/10.

1109/GRID.2004.14.

[11] N. Anwar and H. Deng. “Ant Colony Optimization based multicast routing al-

gorithm for mobile ad hoc networks.” In: 2015 Advances in Wireless and Optical
Communications (RTUWO). Nov. 2015, pp. 62–67. doi: 10.1109/RTUWO.2015.

7365721.

[12] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. “CHR: a distributed hash

table for wireless ad hoc networks.” In: Distributed Computing Systems Workshops,
2005. 25th IEEE International Conference on. IEEE. 2005, pp. 407–413.

[13] Y. Azar, A. Z. Broder, A. R. Karlin, N. Linial, and S. Phillips. “Biased Random

Walks.” In: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of
Computing. STOC ’92. Victoria, British Columbia, Canada: ACM, 1992, pp. 1–9.

isbn: 0-89791-511-9. doi: 10.1145/129712.129713. url: http://doi.acm.org/

10.1145/129712.129713.

[14] C. Baquero, P. S. Almeida, R. Menezes, and P. Jesus. “Extrema Propagation: Fast

Distributed Estimation of Sums and Network Sizes.” In: IEEE Transactions on Par-
allel and Distributed Systems 23.4 (Apr. 2012), pp. 668–675. issn: 1045-9219. doi:

10.1109/TPDS.2011.209.

[15] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating Aggregates on a
Peer-to-Peer Network. Technical Report 2003-24. Stanford InfoLab, Apr. 2003. url:

http://ilpubs.stanford.edu:8090/586/.

[16] K. Birman and R. Cooper. “The ISIS Project: Real Experience with a Fault Tolerant

Programming System.” In: Proceedings of the 4th Workshop on ACM SIGOPS Euro-
pean Workshop. EW 4. Bologna, Italy: ACM, 1990, pp. 1–5. doi: 10.1145/504136.

504153. url: http://doi.acm.org/10.1145/504136.504153.

[17] K. P. Birman. “Replication and Fault-tolerance in the ISIS System.” In: Proceedings
of the Tenth ACM Symposium on Operating Systems Principles. SOSP ’85. Orcas

Island, Washington, USA: ACM, 1985, pp. 79–86. isbn: 0-89791-174-1. doi: 10.

1145/323647.323636. url: http://doi.acm.org/10.1145/323647.323636.

[18] K. P. Birman. “Replication and Fault-tolerance in the ISIS System.” In: SIGOPS
Oper. Syst. Rev. 19.5 (Dec. 1985), pp. 79–86. issn: 0163-5980. doi: 10.1145/

323627.323636. url: http://doi.acm.org/10.1145/323627.323636.

92

https://doi.org/10.1109/MCOM.2014.6894460
https://doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
https://doi.org/10.1109/RTUWO.2015.7365721
https://doi.org/10.1109/RTUWO.2015.7365721
https://doi.org/10.1145/129712.129713
http://doi.acm.org/10.1145/129712.129713
http://doi.acm.org/10.1145/129712.129713
https://doi.org/10.1109/TPDS.2011.209
http://ilpubs.stanford.edu:8090/586/
https://doi.org/10.1145/504136.504153
https://doi.org/10.1145/504136.504153
http://doi.acm.org/10.1145/504136.504153
https://doi.org/10.1145/323647.323636
https://doi.org/10.1145/323647.323636
http://doi.acm.org/10.1145/323647.323636
https://doi.org/10.1145/323627.323636
https://doi.org/10.1145/323627.323636
http://doi.acm.org/10.1145/323627.323636

BIBLIOGRAPHY

[19] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. “Fog Computing and Its Role in

the Internet of Things.” In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing. MCC ’12. Helsinki, Finland: ACM, 2012, pp. 13–16.

isbn: 978-1-4503-1519-7. doi: 10.1145/2342509.2342513. url: http://doi.

acm.org/10.1145/2342509.2342513.

[20] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der Merwe.

“Design and Implementation of a Routing Control Platform.” In: Proceedings of
the 2Nd Conference on Symposium on Networked Systems Design & Implementation
- Volume 2. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 15–28.

url: http://dl.acm.org/citation.cfm?id=1251203.1251205.

[21] J.-Y. Chen, G. Pandurangan, and D. Xu. “Robust Computation of Aggregates in

Wireless Sensor Networks: Distributed Randomized Algorithms and Analysis.” In:

IEEE Transactions on Parallel and Distributed Systems 17.9 (Sept. 2006), pp. 987–

1000. issn: 1045-9219. doi: 10.1109/TPDS.2006.128.

[22] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update.

https://tinyurl.com/zzo6766. 2016.

[23] M. Dam and R. Stadler. “A generic protocol for network state aggregation.” In: self
3 (2005), p. 411.

[24] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large

Clusters.” In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-0782.

doi: 10.1145/1327452.1327492. url: http://doi.acm.org/10.1145/1327452.

1327492.

[25] I. Demirkol, C. Ersoy, and F. Alagoz. “MAC protocols for wireless sensor networks:

a survey.” In: IEEE Communications Magazine 44.4 (2006), pp. 115–121. issn: 0163-

6804. doi: 10.1109/MCOM.2006.1632658.

[26] T. Dillon, C. Wu, and E. Chang. “Cloud Computing: Issues and Challenges.” In:

2010 24th IEEE International Conference on Advanced Information Networking and
Applications. Apr. 2010, pp. 27–33. doi: 10.1109/AINA.2010.187.

[27] S. Dolev, A. Israeli, and S. Moran. “Self-stabilization of dynamic systems assuming

only read/write atomicity.” In: Distributed Computing 7.1 (1993), pp. 3–16. issn:

1432-0452. doi: 10 . 1007 / BF02278851. url: https : / / doi . org / 10 . 1007 /

BF02278851.

[28] S. C. Ergen and P. Varaiya. “TDMA scheduling algorithms for wireless sensor

networks.” In: Wireless Networks 16.4 (May 2010), pp. 985–997. issn: 1572-8196.

doi: 10.1007/s11276-009-0183-0. url: https://doi.org/10.1007/s11276-

009-0183-0.

93

https://doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://dl.acm.org/citation.cfm?id=1251203.1251205
https://doi.org/10.1109/TPDS.2006.128
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1109/MCOM.2006.1632658
https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/s11276-009-0183-0
https://doi.org/10.1007/s11276-009-0183-0
https://doi.org/10.1007/s11276-009-0183-0

BIBLIOGRAPHY

[29] S. C. Ergen and P. Varaiya. “TDMA scheduling algorithms for wireless sensor

networks.” In: Wireless Networks 16.4 (2010), pp. 985–997. issn: 1572-8196. doi:

10.1007/s11276-009-0183-0. url: https://doi.org/10.1007/s11276-009-

0183-0.

[30] I. Eyal, I. Keidar, and R. Rom. “LiMoSense: live monitoring in dynamic sensor

networks.” In: Distributed computing 27.5 (2014), pp. 313–328.

[31] E. C. Eze, S. Zhang, and E. Liu. “Vehicular ad hoc networks (VANETs): Current state,

challenges, potentials and way forward.” In: 2014 20th International Conference on
Automation and Computing. Sept. 2014, pp. 176–181. doi: 10.1109/IConAC.2014.

6935482.

[32] B. Ferreira. “Privacy-preserving efficient searchable encryption.” Doctoral disserta-

tion. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2016.

[33] T. K. Forde, L. E. Doyle, and D. O’Mahony. “Ad hoc innovation: distributed deci-

sion making in ad hoc networks.” In: IEEE Communications Magazine 44.4 (2006),

pp. 131–137. issn: 0163-6804. doi: 10.1109/MCOM.2006.1632660.

[34] F. C. Gaertner. A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms.
Tech. rep. Swiss Federal Institute of Tecnology (EPFL), 2003.

[35] C. Gomez, J. Oller, and J. Paradells. “Overview and evaluation of bluetooth low

energy: An emerging low-power wireless technology.” In: Sensors 12.9 (2012),

pp. 11734–11753.

[36] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. isbn: 3540288457.

[37] G. T. C. Gunaratna, P. V.N. M. Jayarathna, S. S. P. Sandamini, and D. S. D. Silva.

“Implementing wireless Adhoc networks for disaster relief communication.” In:

2015 8th International Conference on Ubi-Media Computing (UMEDIA). Aug. 2015,

pp. 66–71. doi: 10.1109/UMEDIA.2015.7297430.

[38] I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse. “Kelips: Building

an efficient and stable P2P DHT through increased memory and background over-

head.” In: International Workshop on Peer-to-Peer Systems. Springer. 2003, pp. 160–

169.

[39] Z. J. Haas, J. Y. Halpern, and L. Li. “Gossip-based ad hoc routing.” In: Proceedings.Twenty-
First Annual Joint Conference of the IEEE Computer and Communications Societies.
Vol. 3. 2002, 1707–1716 vol.3.

[40] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. “Op-

timized link state routing protocol for ad hoc networks.” In: Multi Topic Conference,
2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE Interna-
tional. IEEE. 2001, pp. 62–68.

94

https://doi.org/10.1007/s11276-009-0183-0
https://doi.org/10.1007/s11276-009-0183-0
https://doi.org/10.1007/s11276-009-0183-0
https://doi.org/10.1109/IConAC.2014.6935482
https://doi.org/10.1109/IConAC.2014.6935482
https://doi.org/10.1109/MCOM.2006.1632660
https://doi.org/10.1109/UMEDIA.2015.7297430

BIBLIOGRAPHY

[41] P. Jesus, C. Baquero, and P. S. Almeida. “A Survey of Distributed Data Aggregation

Algorithms.” In: IEEE Communications Surveys Tutorials 17.1 (Jan. 2015), pp. 381–

404. issn: 1553-877X. doi: 10.1109/COMST.2014.2354398.

[42] P. Jesus, C. Baquero, and P. S. Almeida. “Fault-Tolerant Aggregation by Flow Up-

dating.” In: Distributed Applications and Interoperable Systems. Ed. by T. Senivongse

and R. Oliveira. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 73–86.

isbn: 978-3-642-02164-0.

[43] P. Jesus, C. Baquero, and P. S. Almeida. “Flow updating: Fault-tolerant aggrega-

tion for dynamic networks.” In: Journal of Parallel and Distributed Computing 78

(2015), pp. 53 –64. issn: 0743-7315. doi: https://doi.org/10.1016/j.jpdc.

2015.02.003. url: http://www.sciencedirect.com/science/article/pii/

S0743731515000416.

[44] D. Johnson, N. Ntlatlapa, and C. Aichele. “Simple pragmatic approach to mesh

routing using BATMAN.” In: 2nd IFIP International Symposium on Wireless Commu-
nications and Information Technology in Developing Countries (WCITD’2008). IFIP.

2008.

[45] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. “Energy-

efficient Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences

with ZebraNet.” In: SIGARCH Comput. Archit. News 30.5 (Oct. 2002), pp. 96–107.

issn: 0163-5964. doi: 10.1145/635506.605408. url: http://doi.acm.org/10.

1145/635506.605408.

[46] J. Kangasharju, J. Roberts, and K. W. Ross. “Object replication strategies in con-

tent distribution networks.” In: Computer Communications 25.4 (2002), pp. 376

–383. issn: 0140-3664. doi: https://doi.org/10.1016/S0140- 3664(01)

00409 - 1. url: http : / / www . sciencedirect . com / science / article / pii /

S0140366401004091.

[47] B. Karp and H. T. Kung. “GPSR: Greedy Perimeter Stateless Routing for Wireless

Networks.” In: Proceedings of the 6th Annual International Conference on Mobile
Computing and Networking. MobiCom ’00. Boston, Massachusetts, USA: ACM,

2000, pp. 243–254. isbn: 1-58113-197-6. doi: 10.1145/345910.345953. url:

http://doi.acm.org/10.1145/345910.345953.

[48] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-based computation of aggregate

information.” In: 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. Oct. 2003, pp. 482–491. doi: 10.1109/SFCS.2003.1238221.

[49] O. Kennedy, C. Koch, and A. Demers. “Dynamic approaches to in-network aggre-

gation.” In: Data Engineering, 2009. ICDE’09. IEEE 25th International Conference
on. IEEE. 2009, pp. 1331–1334.

95

https://doi.org/10.1109/COMST.2014.2354398
https://doi.org/https://doi.org/10.1016/j.jpdc.2015.02.003
https://doi.org/https://doi.org/10.1016/j.jpdc.2015.02.003
http://www.sciencedirect.com/science/article/pii/S0743731515000416
http://www.sciencedirect.com/science/article/pii/S0743731515000416
https://doi.org/10.1145/635506.605408
http://doi.acm.org/10.1145/635506.605408
http://doi.acm.org/10.1145/635506.605408
https://doi.org/https://doi.org/10.1016/S0140-3664(01)00409-1
https://doi.org/https://doi.org/10.1016/S0140-3664(01)00409-1
http://www.sciencedirect.com/science/article/pii/S0140366401004091
http://www.sciencedirect.com/science/article/pii/S0140366401004091
https://doi.org/10.1145/345910.345953
http://doi.acm.org/10.1145/345910.345953
https://doi.org/10.1109/SFCS.2003.1238221

BIBLIOGRAPHY

[50] H.-S. Kim, M.-S. Lee, Y.-J. Choi, J. Ko, and S. Bahk. “Reliable and Energy-Efficient

Downward Packet Delivery in Asymmetric Transmission Power-Based Networks.”

In: ACM Trans. Sen. Netw. 12.4 (Sept. 2016), 34:1–34:25. issn: 1550-4859. doi:

10.1145/2983532. url: http://doi.acm.org/10.1145/2983532.

[51] J. Leitão. “Gossip-Based Broadcast Protocols.” Master’s thesis. Faculdade de Ciên-

cias da Universidade de Lisboa, 2007.

[52] J. Leitão, P. Á. Costa, M. C. Gomes, and N. Preguiça. Towards Enabling Novel Edge-
Enabled Applications. Tech. rep. 2018. url: https://arxiv.org/abs/1805.06989.

[53] J. Leitão, J. Pereira, and L. Rodrigues. “Epidemic broadcast trees.” In: 2007 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007). IEEE.

2007, pp. 301–310. doi: 10.1109/SRDS.2007.27.

[54] J. Leitão, J. Pereira, and L. Rodrigues. “HyParView: A membership protocol for

reliable gossip-based broadcast.” In: Proc. of DSN’07. IEEE. 2007.

[55] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.

Hill, M. Welsh, E. Brewer, and D. Culler. “TinyOS: An Operating System for Sensor

Networks.” In: Ambient Intelligence. Ed. by W. Weber, J. M. Rabaey, and E. Aarts.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–148. isbn: 978-3-

540-27139-0. doi: 10.1007/3-540-27139-2_7. url: https://doi.org/10.

1007/3-540-27139-2_7.

[56] T. Liu and M. Martonosi. “Impala: A Middleware System for Managing Autonomic,

Parallel Sensor Systems.” In: SIGPLAN Not. 38.10 (June 2003), pp. 107–118. issn:

0362-1340. doi: 10.1145/966049.781516. url: http://doi.acm.org/10.1145/

966049.781516.

[57] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi. “Implementing Software on

Resource-constrained Mobile Sensors: Experiences with Impala and ZebraNet.” In:

Proceedings of the 2Nd International Conference on Mobile Systems, Applications, and
Services. MobiSys ’04. Boston, MA, USA: ACM, 2004, pp. 256–269. isbn: 1-58113-

793-1. doi: 10.1145/990064.990095. url: http://doi.acm.org/10.1145/

990064.990095.

[58] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito. “Stack4Things:

An OpenStack-Based Framework for IoT.” In: 2015 3rd International Conference on
Future Internet of Things and Cloud. 2015, pp. 204–211.

[59] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “TAG: A Tiny AGgre-

gation Service for Ad-hoc Sensor Networks.” In: SIGOPS Oper. Syst. Rev. 36.SI

(Dec. 2002), pp. 131–146. issn: 0163-5980. doi: 10.1145/844128.844142. url:

http://doi.acm.org/10.1145/844128.844142.

96

https://doi.org/10.1145/2983532
http://doi.acm.org/10.1145/2983532
https://arxiv.org/abs/1805.06989
https://doi.org/10.1109/SRDS.2007.27
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1007/3-540-27139-2_7
https://doi.org/10.1145/966049.781516
http://doi.acm.org/10.1145/966049.781516
http://doi.acm.org/10.1145/966049.781516
https://doi.org/10.1145/990064.990095
http://doi.acm.org/10.1145/990064.990095
http://doi.acm.org/10.1145/990064.990095
https://doi.org/10.1145/844128.844142
http://doi.acm.org/10.1145/844128.844142

BIBLIOGRAPHY

[60] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “TinyDB: an acqui-

sitional query processing system for sensor networks.” In: ACM Transactions on
database systems (TODS) 30.1 (2005), pp. 122–173.

[61] R. Mahmud, R. Kotagiri, and R. Buyya. Fog Computing: A Taxonomy, Survey and
Future Directions. Ed. by B. Di Martino, K.-C. Li, L. T. Yang, and A. Esposito.

Singapore, 2018. doi: 10.1007/978-981-10-5861-5_5. url: https://doi.org/

10.1007/978-981-10-5861-5_5.

[62] L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. “Peer Counting and

Sampling in Overlay Networks: Random Walk Methods.” In: Proceedings of the
Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing. PODC

’06. Denver, Colorado, USA: ACM, 2006, pp. 123–132. isbn: 1-59593-384-0. doi:

10.1145/1146381.1146402. url: http://doi.acm.org/10.1145/1146381.

1146402.

[63] H. Miranda, A. Pinto, and L. Rodrigues. “Appia, a flexible protocol kernel support-

ing multiple coordinated channels.” In: Proceedings 21st International Conference
on Distributed Computing Systems. Apr. 2001, pp. 707–710. doi: 10.1109/ICDSC.

2001.919005.

[64] H. Miranda, S. Leggio, L. Rodrigues, and K. Raatikainen. “A Power-Aware Broad-

casting Algorithm.” In: 2006 IEEE 17th International Symposium on Personal, Indoor
and Mobile Radio Communications. Sept. 2006, pp. 1–5. doi: 10.1109/PIMRC.2006.

254191.

[65] J. Mocito and L. Rodrigues. “Run-Time Switching Between Total Order Algo-

rithms.” In: Proceedings of the Euro-Par 2006. LNCS. Dresden, Germany: Springer-

Verlag, Aug. 2006, pp. 582–591.

[66] G. Montenegro, C. Schumacher, and N. Kushalnagar. IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals. RFC 4919. Aug. 2007. doi: 10.17487/RFC4919. url: https://rfc-

editor.org/rfc/rfc4919.txt.

[67] S. Motegi, K. Yoshihara, and H. Horiuchi. “DAG based in-network aggregation for

sensor network monitoring.” In: International Symposium on Applications and the
Internet (SAINT’06). Jan. 2006, 8 pp.–299. doi: 10.1109/SAINT.2006.20.

[68] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Approach To Mobile
Ad-hoc Networking (B.A.T.M.A.N.) Internet-Draft draft-openmesh-b-a-t-m-a-n-00.

Work in Progress. Internet Engineering Task Force, Mar. 2008. 24 pp. url: https:

//datatracker.ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00.

97

https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1145/1146381.1146402
http://doi.acm.org/10.1145/1146381.1146402
http://doi.acm.org/10.1145/1146381.1146402
https://doi.org/10.1109/ICDSC.2001.919005
https://doi.org/10.1109/ICDSC.2001.919005
https://doi.org/10.1109/PIMRC.2006.254191
https://doi.org/10.1109/PIMRC.2006.254191
https://doi.org/10.17487/RFC4919
https://rfc-editor.org/rfc/rfc4919.txt
https://rfc-editor.org/rfc/rfc4919.txt
https://doi.org/10.1109/SAINT.2006.20
https://datatracker.ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00
https://datatracker.ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00

BIBLIOGRAPHY

[69] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. “The Broadcast Storm Problem in a

Mobile Ad Hoc Network.” In: Proceedings of the 5th Annual ACM/IEEE International
Conference on Mobile Computing and Networking. MobiCom ’99. Seattle, Washing-

ton, USA: ACM, 1999, pp. 151–162. isbn: 1-58113-142-9. doi: 10.1145/313451.

313525. url: http://doi.acm.org/10.1145/313451.313525.

[70] C. E. Perkins and E. M. Royer. “Ad-hoc on-demand distance vector routing.” In:

Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second
IEEE Workshop on. Feb. 1999, pp. 90–100. doi: 10.1109/MCSA.1999.749281.

[71] C. M. Ramya, M. Shanmugaraj, and R. Prabakaran. “Study on ZigBee technology.”

In: 2011 3rd International Conference on Electronics Computer Technology. Vol. 6.

Apr. 2011, pp. 297–301. doi: 10.1109/ICECTECH.2011.5942102.

[72] A. Raniwala and T. cker Chiueh. “Architecture and algorithms for an IEEE 802.11-

based multi-channel wireless mesh network.” In: Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies. Vol. 3. Mar.

2005, 2223–2234 vol. 3. doi: 10.1109/INFCOM.2005.1498497.

[73] Raspberry Pi 3 Model B - Raspberry Pi. https://www.raspberrypi.org/products/raspberry-

pi-3-model-b/. url: https://www.raspberrypi.org/products/raspberry-pi-

3-model-b/ (visited on 01/28/2018).

[74] M. G. Rubinstein, I. M. Moraes, M. E. M. Campista, L. H.M. K. Costa, and O. C.M. B.

Duarte. “A Survey on Wireless Ad Hoc Networks.” In: Mobile and Wireless Com-
munication Networks. Ed. by G. Pujolle. Boston, MA: Springer US, 2006, pp. 1–33.

isbn: 978-0-387-34736-3.

[75] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. “Edge Computing: Vision and Chal-

lenges.” In: IEEE Internet of Things Journal 3.5 (Oct. 2016), pp. 637–646. issn:

2327-4662. doi: 10.1109/JIOT.2016.2579198.

[76] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. “Medians and beyond: new

aggregation techniques for sensor networks.” In: Proceedings of the 2nd international
conference on Embedded networked sensor systems. ACM. 2004, pp. 239–249.

[77] B. Sidhu, H. Singh, and A. Chhabra. “Emerging wireless standards-wifi, zigbee and

wimax.” In: World Academy of Science, Engineering and Technology 25.2007 (2007),

pp. 308–313.

[78] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai,

and K. Frampton. “Sensor Network-based Countersniper System.” In: Proceedings
of the 2Nd International Conference on Embedded Networked Sensor Systems. SenSys

’04. Baltimore, MD, USA: ACM, 2004, pp. 1–12. isbn: 1-58113-879-2. doi: 10.

1145/1031495.1031497. url: http://doi.acm.org/10.1145/1031495.1031497.

98

https://doi.org/10.1145/313451.313525
https://doi.org/10.1145/313451.313525
http://doi.acm.org/10.1145/313451.313525
https://doi.org/10.1109/MCSA.1999.749281
https://doi.org/10.1109/ICECTECH.2011.5942102
https://doi.org/10.1109/INFCOM.2005.1498497
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1145/1031495.1031497
https://doi.org/10.1145/1031495.1031497
http://doi.acm.org/10.1145/1031495.1031497

BIBLIOGRAPHY

[79] M. P. Spertus, S. Kritov, D. M. Kienzle, H. F. Van Rietschote, A. T. Orling, and W. E.

Sobel. Efficient backups using dynamically shared storage pools in peer-to-peer networks.
US Patent 7,529,785. May 2009.

[80] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A

scalable peer-to-peer lookup service for internet applications.” In: ACM SIGCOMM
Computer Communication Review 31.4 (2001).

[81] A. Z. Tomsic, T. Crain, and M. Shapiro. “Scaling Geo-replicated Databases to the

MEC Environment.” In: 2015 IEEE 34th Symposium on Reliable Distributed Systems
Workshop (SRDSW). Sept. 2015, pp. 74–79. doi: 10.1109/SRDSW.2015.13.

[82] M. Torrent-Moreno, S. Corroy, F. Schmidt-Eisenlohr, and H. Hartenstein. “IEEE

802.11-based One-hop Broadcast Communications: Understanding Transmission

Success and Failure Under Different Radio Propagation Environments.” In: Proceed-
ings of the 9th ACM International Symposium on Modeling Analysis and Simulation
of Wireless and Mobile Systems. MSWiM ’06. Terromolinos, Spain: ACM, 2006,

pp. 68–77. isbn: 1-59593-477-4. doi: 10.1145/1164717.1164731. url: http:

//doi.acm.org/10.1145/1164717.1164731.

[83] R. Van Renesse, T. M. Hickey, and K. P. Birman. Design and performance of Horus: A
lightweight group communications system. Tech. rep. Cornell University, 1994.

[84] R. Van Renesse, K. P. Birman, and W. Vogels. “Astrolabe: A robust and scalable

technology for distributed system monitoring, management, and data mining.” In:

ACM transactions on computer systems (TOCS) 21.2 (2003), pp. 164–206.

[85] P. Verissimo and L. Rodrigues. Distributed Systems for System Architects. Norwell,

MA, USA: Kluwer Academic Publishers, 2001. isbn: 0792372662.

[86] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. “ENORM: A Frame-

work For Edge NOde Resource Management.” In: IEEE Transactions on Services
Computing (2017), pp. 1–1. issn: 1939-1374. doi: 10.1109/TSC.2017.2753775.

[87] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and M. Welsh.

“Deploying a wireless sensor network on an active volcano.” In: IEEE Internet Com-
puting 10.2 (Mar. 2006), pp. 18–25. issn: 1089-7801. doi: 10.1109/MIC.2006.26.

[88] B. Wong and S. Guha. “Quasar: A Probabilistic Publish-subscribe System for Social

Networks.” In: Proceedings of the 7th International Conference on Peer-to-peer Systems.
IPTPS’08. Tampa Bay, Florida: USENIX Association, 2008, pp. 2–2. url: http:

//dl.acm.org/citation.cfm?id=1855641.1855643.

[89] J. Yeo, H. Lee, and S. Kim. “An efficient broadcast scheduling algorithm for TDMA

ad-hoc networks.” In: Computers & Operations Research 29.13 (2002), pp. 1793

–1806. issn: 0305-0548. doi: https://doi.org/10.1016/S0305- 0548(01)

00057 - 0. url: http : / / www . sciencedirect . com / science / article / pii /

S0305054801000570.

99

https://doi.org/10.1109/SRDSW.2015.13
https://doi.org/10.1145/1164717.1164731
http://doi.acm.org/10.1145/1164717.1164731
http://doi.acm.org/10.1145/1164717.1164731
https://doi.org/10.1109/TSC.2017.2753775
https://doi.org/10.1109/MIC.2006.26
http://dl.acm.org/citation.cfm?id=1855641.1855643
http://dl.acm.org/citation.cfm?id=1855641.1855643
https://doi.org/https://doi.org/10.1016/S0305-0548(01)00057-0
https://doi.org/https://doi.org/10.1016/S0305-0548(01)00057-0
http://www.sciencedirect.com/science/article/pii/S0305054801000570
http://www.sciencedirect.com/science/article/pii/S0305054801000570

BIBLIOGRAPHY

[90] S. Yi, C. Li, and Q. Li. “A Survey of Fog Computing: Concepts, Applications and

Issues.” In: Proceedings of the 2015 Workshop on Mobile Big Data. Mobidata ’15.

Hangzhou, China: ACM, 2015, pp. 37–42. isbn: 978-1-4503-3524-9. doi: 10.

1145/2757384.2757397. url: http://doi.acm.org/10.1145/2757384.2757397.

[91] J. Yick, B. Mukherjee, and D. Ghosal. “Wireless sensor network survey.” In: Com-
puter Networks 52.12 (2008), pp. 2292 –2330. issn: 1389-1286. doi: https://doi.

org/10.1016/j.comnet.2008.04.002. url: http://www.sciencedirect.com/

science/article/pii/S1389128608001254.

[92] E. Ziouva and T. Antonakopoulos. “CSMA/CA performance under high traffic

conditions: throughput and delay analysis.” In: Computer Communications 25.3

(2002), pp. 313 –321. issn: 0140-3664. doi: https://doi.org/10.1016/S0140-

3664(01)00369-3. url: http://www.sciencedirect.com/science/article/

pii/S0140366401003693.

100

https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
http://doi.acm.org/10.1145/2757384.2757397
https://doi.org/https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/https://doi.org/10.1016/j.comnet.2008.04.002
http://www.sciencedirect.com/science/article/pii/S1389128608001254
http://www.sciencedirect.com/science/article/pii/S1389128608001254
https://doi.org/https://doi.org/10.1016/S0140-3664(01)00369-3
https://doi.org/https://doi.org/10.1016/S0140-3664(01)00369-3
http://www.sciencedirect.com/science/article/pii/S0140366401003693
http://www.sciencedirect.com/science/article/pii/S0140366401003693

	Contents
	List of Figures
	Introduction
	Related Work
	From the Cloud to the Edge
	The Wireless Medium
	MAC Layer Protocols
	Wireless Technologies
	Discussion

	Wireless Networking
	Wireless Ad Hoc Networks
	Discussion

	Wireless Ad Hoc Protocols
	Routing in Wireless Ad Hoc Networks
	Discussion

	Frameworks for building Distributed Protocols & Applications
	Isis and Horus
	APPIA
	TinyOS
	Impala
	Discussion

	Decentralised Communication Strategies
	Deterministic Communication Patterns
	Random Communication Patterns
	Discussion

	Aggregation
	Aggregation Computational Schemes
	Relevant Aggregation Protocols
	Discussion

	Self-Managed Overlay Networks
	Overlay Solutions
	Discussion

	Summary

	The Yggdrasil Framework
	Distributed Applications
	Requirements for Supporting Protocols

	Yggdrasil: Design & Implementation
	System Model
	Design Choices
	Architecture
	Implementation Details
	Applications in Yggdrasil

	Showcase Exercise
	Summary

	Multi Root Aggregation: MiRAge
	System Model
	Overview
	Multi Root Aggregation
	Aggregation Mechanism
	Tree Management Mechanism

	Summary

	Evaluation
	Experimental Methodology
	Experimental Tools
	Yggdrasil Control Process
	Topology Control

	Experimental Setup & Configuration
	Yggdrasil: Experimental Evaluation
	Protocol Implementation
	Performance Evaluation

	MiRAge: Experimental Evaluation
	Experimental Results

	Summary

	Conclusion and Future Work
	Bibliography

