
Manuel Duarte Ribeiro da Cruz

Degree in Computer Science and Engineering

Understanding and evaluating the Behaviour of
DNS resolvers

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Co-advisers: José Legatheux, Professor, NOVA University of Lisbon
João Leitão, Professor, NOVA University of Lisbon
Eduardo Duarte, Technical Director, Association
DNS.PT

Examination Committee

Chairperson:
Raporteurs:

Members:

September, 2018

Understanding and evaluating the Behaviour of DNS resolvers

Copyright © Manuel Duarte Ribeiro da Cruz, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

To begin with, I would like to thank my three advisers, Professor José Legatheux, Professor

João Leitão and Technical Director Eduardo Duarte for all their support, criticism, insight

and for always being available to help whenever I required.

I would like to thank FCT-UNL and DNS.pt for the opportunity to work on this project,

as well as all the help that was provided, through resources and tools that were offered to

be used.

I would also like to thank my classmates and friends, specifically André Catela, Fran-

cisco Cardoso, João Santos, Paulo Aires, Ricardo Fernandes and Tiago Castanho, who

supported me through this endeavour of five years, always being by my side and motivat-

ing me to keep going. Thanks for proof-reading this document and acting as an extra set

of eyes.

Finally, I would like to thank my parents, my brother, and Inês Garcez for always being

present, supportive and also proof-reading this document. They were an instrumental

part in guiding me through this five year journey, and I can safely say that I wouldn’t be

here without any of them.

Without all of these people, this thesis would not be possible. From the bottom of my

heart, thanks to all of you.

5

Abstract

The Domain Name System is a core service of the Internet, as every computer relies on it

to translate names into IP addresses, which are then utilised to communicate with each

other. In order to translate the names into IP addresses, computers resort to a special

server, called a resolver. A resolver is a special DNS server that knows the DNS structure

and is able to navigate the huge number of DNS servers in order to find the final answer

to a query. It is important for a resolver to be able to deliver the final answer as quickly

as possible, to have the smallest impact on user experienced latency.

Since there is a very large amount of domains and servers, and the system is highly

replicated, there has to be some logic as to how a resolver selects which server to query.

This brings us to the problem we will study in this thesis: how do resolvers select

which DNS server to contact? If a resolver always selects the best DNS server - the one

that will be able to provide the answer to the query the fastest - then resolvers can more

quickly answer their clients, and thus speed up the Internet. However, if they contact

different, more or less equivalent, servers they could contribute to load balancing.

To understand how exactly the resolvers select the DNS servers to contact, we con-

ducted an experimental study, where we analysed different resolvers and evaluated how

they select the servers. We base the structure and parameters of our study in previous

research that has been conducted on the topic, which shows that resolvers tend to use the

latency of its queries to the servers as a means of selecting which server to contact.

Keywords: Domain Name System , Resolver , Server Selection

7

Resumo

O Domain Name System é um serviço chave da Internet, uma vez que todos os com-

putadores o utilizam para traduzir nomes (domínios) em endereços de IP, que são, por

sua vez, utilizados para comunicar com outros computadores. Para conseguir traduzir os

nomes em endereços de IP, os computadores contactam um servidor especial, chamado

resolver. Um resolver é um servidor DNS especial que conhece a estrutura do DNS e é

capaz de navegar o elevado número de servidores DNS, com o intuito de obter a resposta

final a uma pergunta feita ao servidor. É importante que o resolver consiga devolver a

resposta final o mais rapidamente possível, de modo a ter o mínimo impacto na latência

sentida pelos utilizadores.

Uma vez que existe um número muito elevado de domínios e de servidores, e como o

sistema é fortemente replicado, é necessário que exista alguma lógica que dite o processo

que o resolver executa para selecionar o servidor para questionar.

A necessidade desta lógica traz-nos ao problema em concreto: como é que os resolvers

selecionam qual o servidor DNS que irão contactar? Se um resolver conseguir sempre es-

colher o melhor servidor (o servidor que consegue fornecer a resposta à pergunta efetuada

mais rapidamente) então o resolver consegue responder ao cliente mais rapidamente,

e, portanto, aumentar a velocidade da Internet. No caso em que existam vários servido-

res com latências iguais, os resolvers poderão também ajudar com o load balancing da

rede.

Para compreender como é que os resolvers selecionam o servidor DNS a contactar,

conduzimos um estudo experimental, onde analisamos vários resolvers e avaliamos

como é que estes selecionam os servidores. Baseamos a estrutura e parâmetros do nosso

estudo nos resultados obtidos em estudos prévios, que mostram que os resolvers tendem

a utilizar a latência das suas queries como uma medida de seleção de servidores.

Palavras-chave: Domain Name System , Resolver , Seleção de Servidor

9

Contents

List of Figures 15

List of Tables 17

Listings 19

Glossary 21

1 Introduction 1

2 The Domain Name System 5

2.1 Overview . 5

2.2 DNS Structure as a distributed system . 6

2.2.1 Replication . 6

2.3 Queries . 8

2.4 Performance . 9

2.5 Summary . 10

3 Related Work 11

3.1 DNS Performance . 12

3.2 Authoritative server selection by the resolvers 13

3.2.1 Least SRTT . 13

3.2.2 Statistical Selection . 14

3.2.3 Measurements . 14

3.3 Anycast . 17

3.4 Summary . 21

4 Test Bed 23

4.1 Overview . 23

4.2 Necessary Machines . 24

4.2.1 Client . 24

4.2.2 Sniffer . 25

4.2.3 Authoritative Servers . 25

4.2.4 Resolvers . 27

11

CONTENTS

4.3 Individual Tools . 27

4.3.1 DNSJit . 28

4.3.2 Query Generator . 29

4.4 Tests . 30

4.4.1 Standard Tests . 31

4.4.2 Latency Cut-off Tests . 31

4.4.3 Packet Loss Tests . 31

4.4.4 Network Topology Change Tests 31

4.4.5 Random Query Rate Tests . 32

5 Results 33

5.1 BIND . 34

5.1.1 Standard Tests . 34

5.1.2 Latency Cut-off Tests . 35

5.1.3 Packet Loss Tests . 36

5.1.4 Network Topology Change Test . 37

5.1.5 Random Query Rate Test . 38

5.2 PowerDNS . 39

5.2.1 Standard Tests . 39

5.2.2 Latency Cut-off Tests . 39

5.2.3 Packet Loss Tests . 40

5.2.4 Network Topology Change Test . 41

5.2.5 Random Query Rate and Interval Test 42

5.3 Unbound . 43

5.3.1 Standard Tests . 43

5.3.2 Latency Cut-off Tests . 44

5.3.3 Packet Loss Tests . 45

5.3.4 Network Topology Change Test . 46

5.3.5 Random Query Rate and Interval Test 47

5.4 Windows12 . 48

5.4.1 Standard Tests . 48

5.4.2 Latency Cut-off Tests . 49

5.4.3 Packet Loss Tests . 51

5.4.4 Network Topology Change Test . 52

5.4.5 Random Query Rate and Interval Test 53

5.5 Client POV and Conclusion . 54

6 Conclusions 57

Bibliography 59

I Annex 1 61

12

CONTENTS

I.1 Bind Graphs . 61

I.2 PowerDNS Graphs . 63

I.3 Unbound Graphs . 64

I.4 Windows12 Graphs . 65

II Annex 2 67

II.1 Analyse Results . 67

II.2 Draw Graph . 71

II.3 Client POV . 75

II.4 Generate Tests . 78

13

List of Figures

2.1 The overall structure of DNS, adapted from [2] 6

2.2 A client’s browser requesting the IP address of www.wikipedia.org, adapted

from [7] . 7

3.1 Locations of more than 7,900 vantage points from RIPE Atlas, taken from [11] 16

4.1 Test bed . 24

4.2 Configuration file of authoritative servers of the root and .net domains . . . 26

4.3 Configuration file where we load the root zone 26

4.4 Root zone file . 26

4.5 .Net zone file . 27

4.6 .Net zone file . 27

4.7 Windows root hints . 28

5.1 BIND Test 9 . 36

5.2 BIND Test 10 . 36

5.3 Bind Test 11 . 37

5.4 Bind Test 11, with failed queries shown . 37

5.5 BIND Test 12 . 38

5.6 PowerDNS Test 9 . 40

5.7 PowerDNS Test 10 . 40

5.8 PowerDNS Test 11 . 41

5.9 PowerDNS Test 11, with failed queries shown 41

5.10 PowerDNS Test 12 . 42

5.11 Unbound Test 1 . 43

5.12 Unbound Test 2 . 43

5.13 Unbound Test 9 . 45

5.14 Unbound Test 9 with dropped packets . 45

5.15 Unbound Test 11 . 46

5.16 Unbound Test 11, with failed queries shown 46

5.17 Unbound Test 12 . 47

5.18 Windows12 Test 1 . 48

5.19 Windows12 Test 6 . 50

15

List of Figures

5.20 Windows12 Test 9, with failed queries shown 51

5.21 Windows12 Test 11 . 52

I.1 BIND Test 1 . 61

I.2 BIND Test 2 . 61

I.3 BIND Test 3 . 61

I.4 BIND Test 4 . 61

I.5 BIND Test 5 . 62

I.6 BIND Test 6 . 62

I.7 BIND Test 7 . 62

I.8 BIND Test 8 . 62

I.9 PowerDNS Test 1 . 63

I.10 PowerDNS Test 2 . 63

I.11 PowerDNS Test 3 . 63

I.12 PowerDNS Test 4 . 63

I.13 PowerDNS Test 5 . 63

I.14 PowerDNS Test 6 . 63

I.15 PowerDNS Test 7 . 63

I.16 PowerDNS Test 8 . 63

I.17 Unbound Test 3 . 64

I.18 Unbound Test 4 . 64

I.19 Unbound Test 5 . 64

I.20 Unbound Test 6 . 64

I.21 Unbound Test 7 . 64

I.22 Unbound Test 8 . 64

I.23 Unbound Test 10 . 64

I.24 Unbound Test 10 with dropped packets . 64

I.25 Windows12 Test 2 . 65

I.26 Windows12 Test 3 . 65

I.27 Windows12 Test 4 . 65

I.28 Windows12 Test 5 . 65

I.29 Windows12 Test 7 . 65

I.30 Windows12 Test 8 . 65

I.31 Windows12 Test 9 . 65

I.32 Windows12 Test 10 . 65

16

List of Tables

3.1 Median delay of specific Internet components without inflation from lower

layers . 12

3.2 Distribution of PlanetLab nodes around the world, taken from [17] 18

4.1 Tests designed to evaluate resolvers . 30

5.1 Results of the Standard Tests category of the Bind resolver 34

5.2 Results of the Latency Cut-off Tests category from the Bind resolver 35

5.3 Results of the Packet Loss Tests category from the Bind resolver 36

5.4 Results of the Network Topology Change Tests category from the Bind resolver 37

5.5 Results of the Random Query Rate Tests category from the Bind resolver . . 38

5.6 Results of the Standard Tests category of the PowerDNS resolver 39

5.7 Results of the Latency Cut-off Tests category from the PowerDNS resolver . . 39

5.8 Results of the Packet Loss Tests category from the PowerDNS resolver 40

5.9 Results of the Network Topology Change Tests category from the PowerDNS

resolver . 41

5.10 Results of the Random Query Rate Tests category from the PowerDNS resolver 42

5.11 Results of the Standard Tests category of the Unbound resolver 43

5.12 Results of the Latency Cut-off Tests category from the Unbound resolver . . 44

5.13 Results of the Packet Loss Tests category from the Unbound resolver 45

5.14 Results of the Network Topology Change Tests category from the Unbound

resolver . 46

5.15 Results of the Random Query Rate Tests category from the Unbound resolver 47

5.16 Results of the Standard Tests category of the Windows12 resolver 48

5.17 Results of the Latency Cut-off Tests category from the Windows12 resolver . 49

5.18 Results of the Packet Loss Tests category from the Windows12 resolver . . . 51

5.19 Results of the Network Topology Change Tests category from the Windows12

resolver . 52

5.20 Results of the Random Query Rate Tests category from the Windows12 resolver 53

5.21 Average latency experienced from the client point of view 54

5.22 Comparison between features of all the resolvers 54

17

Listings

analyse_match.lua . 67

draw_graph.lua . 71

analyse_client_pov.lua . 75

Main.java . 78

19

Glossary

authoritative name server a server that contains a valid and up to date copy of a zone.

caching only server (also

called a resolver)

a special server designed to traverse the DNS tree and cache

the responses.

ccTLD Country code top level domain. It is a domain under the root,

associated with a country code (such as .pt, .br, .es), as defined

by the United Nation’s ISO 3166.

gTLD Generic top level domain. It is a domain under the root, not

associated with a country, such as .com , .org, .info.

name server A server that associates a name of a resource to properties of

said resource, as for example the resource’s IP address.

Resource Record An entry in the DNS database. A RR is associated with a

domain name and contains a type, a value of that type and its

validity time (TTL).

route flapping When a router advertises a destination via one route and sub-

sequently another, that course of actions is called route flap-

ping.

21

GLOSSARY

TTL Time To Live represents how long (time or iterations of a pro-

tocol) a certain piece of information is considered to be up to

date.

zone A zone is a contiguous subsection of the domain space and

includes all the information related to one or more of its sub-

domains.

22

C
h
a
p
t
e
r

1
Introduction

The Domain Name System (DNS) is crucial to the performance and ease of use of Inter-

net applications. DNS is essentially used to translate domain names into IP addresses,

which are then utilized by the computers to communicate with each other. If DNS did

not exist, every single user would have to know the physical IP address of every single

machine that they wished to connect to, be it a friend’s computer or a website’s server.

The existence of DNS also solves another problem, which consists in the occasional need

to relocate or otherwise change the physical IP address of a server, since it introduces an

indirection between names and addresses. With DNS, it is as simple as changing the IP

field associated with the server name. Without it, it would be necessary to inform every

single user of the new IP address, and every single user would then need to memorize the

new IP address.

DNS is, fundamentally, a database, that maps domain names with a number of at-

tributes, such as the IP address. Due to the enormous amounts of records within DNS,

and the extremely large number of queries per second, it is mandatory to implement it as

a heavily distributed database.

DNS is structured as a hierarchy of servers, divided by the domain names that they

contain information on. This further decentralizes the database, diminishing the need

for extremely powerful servers, as each server only needs to handle a specific subset of

data. Since each server also handles less information, it allows them to operate faster.

DNS is also heavily replicated in order to provide high availability, as the odds of all the

servers regarding a specific subset of data being unreachable is quite low. The fact that it

is heavily replicated also helps in providing good geographical coverage, since there are

multiple instances of the same server all over the world.

DNS relies heavily on caching, a technique which consists in saving the results of pre-

vious lookups, to avoid successive lookups to the same data. With caching, the amount

1

CHAPTER 1. INTRODUCTION

of queries that have to be responded by consulting (external) servers diminishes consider-

ably, speeding up the overall process of a DNS query. There are special DNS servers that

are used solely to cache responses and resolve DNS queries, called resolvers or caching

only servers.

A DNS server often can’t fully respond to a query. When this is the case, it generally

sends the client the necessary information to reach a server that can actually answer the

query. This means that, in order to obtain the desired answer to a DNS query, one must

often travel the domain name tree. Resolvers also provide that service, along with caching

the responses.

Thus, a resolver is a special type of DNS server, that serves to resolve DNS queries.

Resolvers cache the responses they obtain from the servers to avoid repeating queries to

the external network. These responses can only be cached for so long before they are no

longer usable. How long they can be cached for is a parameter in the DNS database entry.

Resolvers are a vital part of DNS, as without them every single client would need to

have a private way to traverse the DNS tree. If everyone had a private resolver, caching

would not have nearly as much effect as it currently has, since the number of DNS queries

would be much larger. Resolvers are generally managed privately, by the Internet Service

Provider(ISP) or openly, such as GoogleDNS and OpenDNS.

Since there is a large number of DNS servers that contain the same data, the resolver

must choose one of them to contact. In this thesis, we sought to understand how resolvers

choose which server to contact. We attempted to understand how this aspect of a resolver

works, since it helps DNS operators to better understand how to strategically place their

servers to be most effective. Understanding how resolvers select the server they contact

also helps to evaluate the performance of resolvers and, potentially, optimizing them to

select an even better server. This study can also contribute to improve the methods of

deploying DNS replica servers.

We obtained results that confirm our suspicion, which was that the resolvers rely on

the Round Trip Time of a query, since, in general, that is a good metric to estimate how

quickly a server can provide an answer to a query. This measure, however, does not take

into account the load of servers, and thus could, in specific cases, not provide the answer

to the query the fastest. We were also able to understand how some resolvers attempt to

balance their queries, when presented with a situation in which there are multiple servers

available.

Regarding the structure of this document, it will contain five additional chapters.

In chapter 2, we will present the Domain Name System as a whole, delving into its

structure, replication mechanism, query communication and its performance.

The following chapter, chapter 3, analyses prior contributions to the problem ad-

dressed in the thesis. We start by analysing how much impact DNS has on the overall

performance of Internet communications. Following that, we analyse different ways to

select which server to query. To conclude this chapter, we analyse two previous studies

that focused on understanding how resolvers work.

2

Chapter 4 depicts the testing environment that we set up in order to test our chosen

resolvers. It begins by providing an overview of our system, after which it delves into the

specifics of each component and of some tools. The chapter ends by presenting the tests

we have created to evaluate the results.

Chapter 5 shows the results we obtained from executing our tests with our chosen

resolvers. We group the tests with their resolvers, providing a brief conclusion at the end

of each resolver section. We also analyse the performance from a clients’ point of view at

the end, while also presenting our general conclusions from the tests.

We finalise with chapter 6, which details the conclusions we have gathered from this

thesis. We present some aspects of our testing that were not as satisfactory, and thus

should require further testing.

3

C
h
a
p
t
e
r

2
The Domain Name System

2.1 Overview

The Internet Domain Name System (DNS) is a distributed database that provides a global

naming service for web, e-mail, and Internet services in general [8] by associating a do-

main name, such as www.google.com, with a physical IP address, among other properties.

Without DNS, every host that wanted to access a resource on the network would need

to know its physical IP address. Given the enormous scale of the Internet, that is simply

not feasible. In order to solve this problem, the concept of a name server was introduced.

With these specialized servers, a host is only required to know the physical address of a

name server, which the host can then contact to obtain the physical address of the desired

service, upon giving a name to search for.

Since DNS is a massive system, the information is distributed over thousands of

servers. This means that, in order to obtain a specific piece of information, like the

physical IP address of a website, one must navigate this web of servers until a server

where the necessary information is stored. This is an iterative process that starts at the

root of the system.

Many users often query the same domains, which means that it is ideal to have a

server, called a caching only server (also called a resolver) to be in charge of resolving

queries, as opposed to each user doing so individually, since, this way, we can cache the

results obtained and thus reduce query traffic in the DNS infrastructure, since the server

will have the most popular information cached. The resolver receives the client’s query,

performs the necessary steps to retrieve the information and provides the requested

information to the client. The resolver caches the responses it obtains from contacting

the DNS servers, since those responses can be useful for future queries, whether from the

same or different users.

5

CHAPTER 2. THE DOMAIN NAME SYSTEM

2.2 DNS Structure as a distributed system

The Domain Name System is built as a hierarchy of name servers, structured by the

domain names.

At the top of this hierarchy of name servers sits the root, which is then followed by the

Top Level Domains (TLD, which are then subdivided in gTLD and ccTLD), the domain-

name, and then any number of lower levels. To delimit this structure, we separate each

part with a dot (.), including separating the root from the TLD, making it such that the

root contains data about the TLDs. DNS’s structure is depicted in figure 2.1.

Figure 2.1: The overall structure of DNS, adapted from [2]

There are currently thirteen root-servers world-wide. Each of those servers has several

instances, ranging from at least two up to one hundred and eighty eight, so as to offer

availability and fault tolerance [16].

2.2.1 Replication

DNS utilizes a Master-Slave replication mechanism for ensuring the divisibility of the

information for each domain, where servers replicate masters based on a zone file. Servers

that are replicated utilizing this replication mechanism are called authoritative name

server over the zone. The slaves can act as masters, providing the records that their

master gave them, to another server, which would then be a slave server to the original

server in a transitive way.

DNS employs extensive caching, which stores information that has been requested

from other servers. However, not all DNS servers perform caching. Instead, the servers

that are required to fully answer DNS queries, the resolvers, are the only ones that actually

perform caching.

Figure 2.2 shows how a client interacts with a resolver (in the figure it is called by its

other name, caching-only server) to retrieve the IP address of the domain ”www.wikipedia.org”.

We see that the client’s browser issues a request to its operating system, which in turn

contacts a resolver, to obtain the IP address. The resolver then starts by querying the

root server, to obtain the IP address of an authoritative server over ”.org” (message 2

and its reply, 3). Following that, the resolver then queries the ”.org” authoritative server,

6

2.2. DNS STRUCTURE AS A DISTRIBUTED SYSTEM

requesting the IP address for ”wikipedia” (message 4 and its reply, 5). Finally, the resolver

obtains the IP address for ”www.wikipedia.org” from the server (messages 6 and its reply,

7) and returns it to the client. In this iteration, the resolver’s cache did not contain the

IP address for ”www.wikipedia.org”, and thus had to contact external servers. In a case

where the resolver’s cache contained the IP address for ”www.wikipedia.org”, we would

see only messages 1 and 8, since there would be no need to contact external servers.

Figure 2.2: A client’s browser requesting the IP address of www.wikipedia.org, adapted
from [7]

There are a number of private resolvers, which are generally ran by the ISP, as well as

public resolvers, such as OpenDNS and GoogleDNS. Both private and public resolvers

must cache the answers to previous queries, if they wish to be as efficient and fast as

possible, since local answers translates in faster DNS answer retrieval.

Caching in resolvers is heavily influenced by a parameter of each Resource Records

(Resource Records), named Time To Live (TTL), that controls how long a specific informa-

tion can be maintained in the cache of a resolver. A higher TTL value generally provides

a better cache hit-rate, since it is not necessary to constantly replace the information.

However, if the TTL is too large, the probability of having stale information in the cache

is higher. Therefore, a key point of contention for optimization of resolvers is proper

management of its cache, by the way of tuning the TTL parameter of RRs.

7

CHAPTER 2. THE DOMAIN NAME SYSTEM

2.3 Queries

In the context of DNS, a query is a request to a name server to obtain a specific RR,

upon giving its name and type. For example, a DNS query to obtain the IP address of

”google.com” would be translated to simple terms as ”what is the IP of google.com?”.

Both DNS queries and responses follow a standard message format, which is outlined

below.

Protocol Message Format

The message format contains five sections [9]:

• Header - contains a number of fixed fields, such as the opcode, the ID (which is used

to match responses to queries), a one bit field that specifies whether this message is

a query(0) or a response(1) and several other flags

• Question - carries the queried name (for example ”www.fct.unl.pt”) and other query

parameters

• Answer - carries RRs which directly answer the query

• Authority - carries RRs which points towards an authoritative name server respon-

sible for the answer

• Additional - carries RRs which relate to the query, but are not strictly answers for

the question (e.g. the server may anticipate the next query of the client, and send

those RRs)

The opcode is a four bit field which can have values in the range [0,15]. Only the

values 0 through 2 are defined, leaving the remainder reserved for future usage.

• 0 corresponds to a standard query

• 1 corresponds to an inverse query (where one provides the IP address and wishes

to obtain the domain name)

• 2 corresponds to a server status response

Depending on the Recursion Desired (RD) flag present in the header, a query can be

answered in one of two ways. If this flag is not set, the query is treated as a standard or

iterative query. If the flag is set, the query is treated as a recursive query.

Iterative Queries

Iterative queries are queries which the DNS server is not required to answer fully, e.g. it is

not required to provide a physical IP address that points to the designated host. Instead,

the server will reply to the query as best as it can. Typically, it will place the record of a

8

2.4. PERFORMANCE

name server that should know more about the domain being queried in the Additional

field of the message.

Iterative queries are very fast, since either a server knows the answer to the query,

whether from its cache or from its zone file, and it sends the final answer, or it doesn’t, in

which case it simply sends a referral answer.

Recursive Queries

Recursive queries on the other hand, have to be fully answered. Due to this requirement,

the reply message must contain an Answer section with the requested record, or indicate

an error.

If the server’s cache contains the answer to the query, it will reply with the data from

its cache, assuming the TTL has not expired.

If the server is authoritative over the zone that the requested domain name belongs

to, it will respond to this query by getting the necessary data from its zone file.

If none of the above conditions are met, the server will perform a series of iterative

queries, with the goal to find a server that is authoritative over the zone that contains

the domain present in the recursive query. Once the series of iterative queries has been

completed, the server now knows the answer to the original query, and can then reply to

the client. Recursive queries can be much slower than iterative queries, since the number

of servers that need to be contacted is, generally, much greater.

2.4 Performance

DNS serves a critical role in enabling network traffic. Without it, communication without

direct knowledge of the other machine’s physical IP address is impossible. Thus, main-

taining a high availability and good performance of DNS is extremely important. This is

achieved by having several instances of the servers. The speed at which resolvers answer

DNS queries is also crucial. Studies have shown that faster responses to DNS queries

correlate with increased profits and resolver usage, since faster responses do DNS queries

translates in faster overall Internet usage. [18]

In order to maximize the performance, DNS is implemented as a heavily distributed

database, with several instances of each server spread around the globe [16] , in order to

reduce the number of queries each server has to handle. The fact that the database is also

structured hierarchically, with each level of the hierarchy containing only portions of the

information, also aids in reducing the amount of data handled by each server instance,

which leads to higher performance, but also increases the number of iterations required

to find an answer.

Another factor impacting the performance of DNS is its caching behaviour. The more

data that is effectively cached, whether on resolvers or name servers, the less network

9

CHAPTER 2. THE DOMAIN NAME SYSTEM

traffic is generated, and thus the queries have to travel to fewer servers, which in turn

translates in a faster response time.

A key aspect of cache optimization is configuration of the TTL of DNS RRs appropri-

ately. If this value is set too low, it can cause too many unnecessary queries, but if it is set

too high, it can produce wrong answers more easily.

There is still the question of how to select the appropriate replica of the name server to

send the query to. This problem is, in general, tackled by algorithms run by resolvers that

collect statistics of the latency of the different authoritative servers. One other solution

is to use the anycast protocol on the network level, which allows the same IP address to

be announced at several locations, effectively creating a singular IP address for a set of

replicas, which would be the IP address the resolver would query.

2.5 Summary

Over this section we outlined how DNS operates and the importance it has. In Section 2.2

we present the structure of DNS as a whole. Section 2.2.1 outlines the replication mech-

anism of DNS while also introducing the concept of a resolver. Section 2.3 details how

DNS clients communicate with DNS, by analyzing the query template and introducing

iterative and recursive queries. Finally, in section 2.4, we start reasoning about the per-

formance implications of several DNS aspects, such as its extensive replication, caching

mechanism and server selection.

We start the next chapter with an analysis of the impact of DNS in overall latency

experienced by network applications. After that, we discuss previous research on the

problem at stake, and explore two different ways to solve it: network level anycasting and

authority server selection by the resolvers. In this thesis, we will focus on the latter.

10

C
h
a
p
t
e
r

3
Related Work

The goal of this thesis is to perform a study that contributes to a better understanding of

the behaviour of DNS resolvers, particularly how the resolver selects which instance of

the name server it will query. Upon gaining a better understanding of how the resolvers

select the instances, it will be possible to more strategically deploy name server instances

and fine tune resolvers for optimal, or improved, performance.

We start by analysing the study by Singla, Chandrasekara, Godfrey, and Magg [18], a

study detailing how the Internet is far from optimal, from a latency standpoint, which

collected data regarding the latency of DNS, allowing us to reason about the importance

of a high performing DNS.

Next, we analyse the studies by Yu, Wessels, Larson, and Zhang [23] and Müller,

Moura, O. Schmidt, and Heidemann [10]. Both these studies attempt to understand

how resolvers select the authoritative server that they query. The first study devises an

innovative test bed that allows the authors to evaluate how effective a certain resolver is.

The second study builds on the first one, replicating their results in a testing environment

and later on also applies the same testing methodology to resolvers outside a testing

frame.

Finally, we approach the studies by Sandeep, Pappas, and Terzis [17] and O. Schmidt,

Heidemann, and Harm Kuipers [11] which we utilise to assess the impact of the anycast

protocol in DNS performance, when it is used as a means to selecting the server with the

lowest latency.

11

CHAPTER 3. RELATED WORK

3.1 DNS Performance

It is important to provide fast DNS queries to reduce overall Internet latency. There

are a number of factors that contribute to an increased latency on the Internet, when

compared to perfect speed of light latency. These factors include protocols, the physical

infrastructure, and routing [18].

A typical user experience consists of inputing a domain name on a browser and con-

necting to it. The browser then resorts to DNS to obtain the physical IP address of the

server, so that it can establish a communication channel. Once the IP address is ob-

tained, communication can be established by utilizing a transport protocol, such as the

Transmission Control Protocol (TCP), to send and receive messages.

DNS queries have been shown to add a 5.4x median delay over a perfect speed of light

latency 1. However, the queries are not the sole contributors to higher latency. There

are also other factors in play, such as the TCP protocol. It adds a higher latency factor,

8.7x median delay of TCP transfer and 3.2x median delay of TCP handshake, than DNS

queries which indicates that the TCP protocol impacts latency more negatively than DNS

queries. It should be noted that these values are inflated by the physical and network

layers, and, when accounting for this factor, the median delay is shown to be 1.7x DNS ,

1.0x TCP transfer and 2.7x TCP handshake [18].

DNS 1.7
TCP transfer 1.0
TCP handshake 2.7
Routing 1.53

Table 3.1: Median delay of specific Internet components without inflation from lower
layers

The observations made in this work also reveal that the underlying physical infrastruc-

ture contributes significantly to a higher latency. In fact, they conclude that the physical

infrastructure is as significant, if not more, than protocol overheads [18]. Since DNS itself

represents a significant portion of the delay in the Internet, we conclude that understand-

ing exactly how resolvers select which authoritative servers to query is important, as that

is one of the sources of the delay introduced by DNS.

DNS introduces a 1.7x median delay. The source of the delay consists in the selection

of the authoritative server to contact, identifying and transmitting the queried RR, and

sending it back to the client. Out of all these three contributors, this thesis aims to focus

on the first one. We now analyse two different methods of selecting the appropriate server,

detailed in section 3.2 which analyses how resolvers select the appropriate server and

section 3.3 which analyses how the usage of the anycast protocol on the network layer

can also deal with the selection of the appropriate server.

1While referring to median delay in this section, it always relates to the median delay over the perfect
speed of light latency, which is, theoretically, the fastest possible way to transmit information

12

3.2. AUTHORITATIVE SERVER SELECTION BY THE RESOLVERS

3.2 Authoritative server selection by the resolvers

We now discuss the work that has been conducted to investigate how the resolvers select

a specific name server instance. As of 2018-02-07, we are aware of two important studies

conducted in this area, by Yu et al. [23] and Müller et al. [10].

In Yu et al.’s (2012) paper, the authors attempt to understand how do current (at the

time, 2012) resolvers distribute queries among a set of authority servers. They tested

six different resolvers: two versions of BIND (9.7.3 and 9.8.0) [1], [13], Unbound [20],

DNSCache [3] and WindowsDNS.

Resolvers usually select an authoritative name server by estimating the Smoothed

Round Trip Time (SRTT) for each server, utilizing statistics from past queries. If the

server has not answered any previous queries or they have timed out, they set the SRTT

value to either the query timeout value or an arbitrarily large value.

Once resolvers have all the SRTT values, they employ one of two selection mecha-

nisms: Least SRTT or Statistical Selection.

3.2.1 Least SRTT

The Least SRTT method presents a challenge due to the way it works since it, like the

name suggests, selects the server with the smallest SRTT value. This technique can be

suboptimal in cases where a server with a previously high SRTT value (if a server was

unreachable but it is now reachable, for example) should now have a smaller SRTT and

be chosen. However, since the SRTT value relies on previous queries, and the previously

observed value was large, it will not be queried without some other mechanism in place

to deal with the SRTT variation.

In order to counteract this effect, Least SRTT implements a decaying SRTT mechanism,

whereby the SRTT of unselected servers decreases by a factor β, where β < 1. How this

factor is computed is specific to the resolver. For example, BIND utilizes a constant β

value, while PowerDNS utilises an exponential value.

If the β value is constant, it implies that this factor is dependant on query rate as each

successive query impacts the decaying factor equally, while if the β value is exponential,

it does not possess this dependency. Taking the examples from Yu et al. [23], we have two

different cases: in the first case, there are two consecutive queries, t1 and t2, while on the

second case there are three consecutive queries, t1, t
′

and t2. This leads the first case to

have a β value of

e
t1−t2
C , (3.1)

where C is a constant, and the second case shows a β value of

e
t1−t
′

C .e
t
′
−t2
C = e

t1−t2
C . (3.2)

Thus, we observe that both β values are equal, and are only determined by the constant

C and are not dependant on the query rate. By applying the SRTT decaying factor, the

13

CHAPTER 3. RELATED WORK

resolvers ensure that, eventually, every server will be queried, and thus, assuming that

the most optimal servers maintain the smallest SRTT, the most optimal servers should be

selected over a large majority of queries.

3.2.2 Statistical Selection

The Statistical Selection method selects the server based on the SRTT, but instead of

selecting the server with the smallest SRTT value, it selects a server based on a probability.

The probability of a server being selected is related with the server’s SRTT value: a higher

SRTT value translates in a lower probability of being selected, while a lower SRTT value

translates in a higher probability of being selected. Due to this inclusion of a statistical

probability, ever single server will eventually be chosen. Since the likelihood of selecting

a server that exhibits a lower SRTT is higher than one with a larger SRTT, this method

will tend to select good servers over a majority of queries.

PowerDNS To properly evaluate the selected resolvers, Yu et al. [23] chose three

different scenarios:

• Scenario 1 - RTT of the authority servers range linearly (starting at 50ms, going up

to 170ms, in intervals of 10ms)

• Scenario 2 - RTT of the authority servers range linearly (starting at 50ms, going up

to 170ms, in intervals of 10ms), apart from one unresponsive server

• Scenario 3 - RTT of the authority servers range linearly (starting at 50ms, going up

to 170ms, in intervals of 10ms), apart from one unresponsive server, which recovers

after five minutes

The authors set up a testing scenario in an isolated environment. They deployed thirteen

authoritative servers that serve the tested ”.com” domain. They purposefully set the TTL

of all DNS records to a large value, as well as the size of the resolver’s cache, so as to

eliminate differences in results that stem from caching effects. Since the goal was to test

server selection, this is a good approach. They also setup a network emulator, to simulate

packet delay (adjust the different servers’ RTT) and packet loss (to make a certain server

unresponsive). As for input, a portion of a resolver log from a large U.S. ISP was utilized.

It contained approximately 3.5 million lookups for 408,808 unique domain names. This

lead to an average query rate by the resolvers of approximately 250 queries per second.

3.2.3 Measurements

Yu et al. [23] found four types of sub-optimal server selection behaviour. Two of those

behaviours were observed in Scenario 1, one in Scenario 2 and the final one in Scenario 3.

In Scenario 1, the authors found three resolvers (DNSCacche, Unbound, and Win-

dowsDNS) that distributed queries evenly among all the authoritative servers. DNSCache

14

3.2. AUTHORITATIVE SERVER SELECTION BY THE RESOLVERS

doesn’t estimate the RTT of the servers , while Unbound only uses this estimate to rule

out under-qualified servers (it randomly selects a server that hast under 400ms SRTT).

Also in Scenario 1, BIND 9.8 was found to send more queries to server with a higher

RTT, which is the opposite of the desired behaviour. This was found to be due to the

high query rate, since BIND 9.8 was also tested with a slower query rate, which saw some

improvement. The experimental results are congruent with the theory, since, as BIND

9.8 utilizes the Least SRTT with a constant decaying factor, once a high RTT server is

selected, it will always be selected until a query is responded or times out. In contrast,

PowerDNS, which also uses the Least SRTT method, but with an exponential decaying

factor displays a large majority of queries being sent to the server with the least latency.

It does however suffer from the same problem that the constant decaying factor suffers,

which is that, when a high latency server is selected, it will stay as the selected server

until a query is responded or times out. This is not as impactful, since the exponential

decaying factor means that SRTT decays much slower than when coupled with a constant

decaying factor.

Still in Scenario 1, BIND 9.7, which uses the Statistical Selection method coupled with

a decaying factor also shows sub optimal server selection. While a larger percentage of

queries are indeed performed to the least latent server, it is not a majority, since every

other server receives at least 7% of the queries.

In Scenario 2, BIND 9.8 and DNSCache still sent a significant number of queries to

the unresponsive server. DNSCache does not keep statistics of previous queries, hence it

did not know that a server was unresponsive. BIND 9.8 assumes that a timed out query

was responded with a very large RTT. This leads a large number of queries to be sent

to an unresponsive server, when one is inevitably selected due do the decaying factor.

This problem is also somewhat present in PowerDNS, but since it uses an exponential

decaying factor, it takes substantially more time for an unresponsive server to be selected,

which means a lower percentage of queries will be sent to the unresponsive server.

Finally, in Scenario 3, some resolvers detected that a server had become responsive

slowly. Unbound and PowerDNS took the largest amount of time (15 and 3 minutes,

respectively). In the case of Unbound, this is due to the fact that it probes unresponsive

servers periodically, once every 15 minutes, and thus, in the worst case scenario, it takes

15 minutes to detect that a server has become responsive once again. PowerDNS on

the other hand, since it relies on Least SRTT coupled with exponential decaying, takes

a significant amount of time to select the newly responsive server. However, once it is

selected, its SRTT value will be updated and it will be selected faster.

Müller et al.’s (2017) paper further develops Yu et al.’s (2012) work and also attempts

to update the results. The authors deployed 7 authoritative servers over 7 different

datacenters. These servers are then queried by 9,700 vantage points (VPs), scattered

throughout the globe as seen in figure 3.1, which are provided by RIPE Atlas [15]. These

VPs will query for a DNS TXT resource record, and uses the locally configured resolver.

To determine which authoritative server the VP reaches, each server was configured with

15

CHAPTER 3. RELATED WORK

a different response for the same DNS TXT RR. Since DNS responses are extensively

cached, the authors only query their domain, so as to control the TTL, which they set at

5 seconds. They also ran separate measurements, with an interval of at least four hours

between them, which provide the resolvers more than enough time to flush the response

from their caches.

Figure 3.1: Locations of more than 7,900 vantage points from RIPE Atlas, taken from [11]

The deployment of the authoritative servers over several datacenters provides a good

geographical coverage, with authoritatives ranging from a close proximity (one authorita-

tive has an instance in Dublin and another in Frankfurt, for example) to large proximity

(one authoritative has an instance in São Paulo and another in Tokyo, for example).

Müller et al. [10] consider some measurement challenges:

• The probes might be configured via DHCP to utilize multiple resolver, so they

consider a combination of the probe’s ID and the resolver’s IP address to be a single

VP

• Load balancers between VP and resolvers using anycast may send the queries to

different instances. This effect cannot be eliminated, but they compared the client

and authoritative data to find that it only presents minor effects on the collected

data

Müller et al. [10] corroborated Yu et al.’s (2012) results:

• Most resolvers query all instances of an authoritative server in both studies

16

3.3. ANYCAST

• In the first study, 3 out of 6 resolvers were classified as being heavily based on RTT,

while in the second study most resolvers were based on RTT, as all authoritative

servers showed a preference for instances with lower RTT

After performing this measurement setup and corroborating Yu et al.’s (2012) find-

ings, Müller et al. [10] sought to validate their results by comparing them to real-life

deployments of the root zone and the ccTLD ”.nl”.

In the root zone measurements, they found that a significant portion (20%) of resolvers

sent queries to only one root letter. A majority of resolvers (60%) queried a majority of

root letters (6), but only a very small minority of resolvers actually queried all 10 root

letters. These results are explained by the lack of cache control. Since most resolvers

have prior queries to root letters, they are more likely to have the necessary RR in cache,

making a query to a root letter unnecessary.

As for the ”.nl” measurements, a majority of resolvers were found to query all author-

itatives, confirming the results from previous studies [23] and their study as well.

In conclusion, both studies [23][10] showed that resolvers are heavily based on RTT,

but they still query all server instances. This is a necessary mechanism to attempt to

always query the best server, as a better server can suddenly become available. A notable

exception is the root zone, where a significant portion of resolvers were shown to only

query one authoritative server.

3.3 Anycast

The anycast protocol allows data from a single source client to reach one of several desti-

nation nodes. The protocol consists in assigning a specific IP address to multiple servers.

The servers then announce that they possess that IP address, and, since multiple servers

announce the same address, the routers interpret it as different ways to reach the same

server. In reality, the different paths terminate in different servers, that are now all reach-

able on the same IP address. These paths are not necessarily available to everyone, as

the anycast addresses can be announced locally (within the host’s routing network) or

globally. In the case of DNS, this is then utilized to distribute the queries without needing

any application level logic, as the routing is handled by the routers themselves [5].

We will now analyse two studies, Sandeep et al. [17] and O. Schmidt et al. [11].

The first study attempts to measure the performance impact of anycast in DNS, while

the second study attempts to determine how many anycast locations are required to

provide optimal coverage, making it necessary to also study the performance of anycast.

Sandeep et al.’s (2005) study is relatively dated and therefore some of their conclusions

on specific aspects of the performance of anycast as a server selection protocol may not

apply currently.

Sandeep et al. [17] attempt to measure how much of an impact anycast has on DNS’s

performance. In order to measure this, they utilize four different zones to represent four

17

CHAPTER 3. RELATED WORK

different scenarios:

• A zone multiple servers in a single geographic location, without employing anycast.

The B root server is utilized in for this scenario. This scenario is used as a base case,

to compare with the anycasted scenarios, and understand how large is the impact

of anycast in DNS’s performance

• A zone using a single anycast address for all its servers, with multiple servers in

multiple different locations. Both F and K root servers are utilized for this scenario.

They used two different servers to investigate the effects of the number and location

of anycast group members on performance.

• A zone using multiple anycast addresses for its server, with multiple servers in

different locations. They used UltraDNS (which is authoritative for the .org and

.info TLDs), which provides all their servers with two different anycast addresses

(TLD1 and TLD2). Every server is thus accessible via two distinct anycast addresses

which should, in theory, increase their resilience to outages2.

• A zone with multiple servers, distributed geographically, all reachable via their

unicast address. To emulate this scenario, the Sandeep et al. [17] configured their

clients to send requests to the F root server, through each of its instances unicast

address.

The authors compared these four scenarios based on three distinct criteria, of which we

highlight two: Query Latency which measures the delay of queries and Availability

which measures outage periods (e.g. a server that experiences no outage periods has

optimal availability). They utilized approximately 400 different vantage points, scattered

throughout the globe (although a majority of the vantage points were located in North

America, as can be seen in table 3.2), provided by PlanetLab [12].

Table 3.2: Distribution of PlanetLab nodes around the world, taken from [17]

Continent % of PL Nodes
South America 0.5
Australia 1.8
Asia 15.8
Europe 16.7
North America 65.2

Sandeep et al.’s (2005) results on the Query Latency criteria show that the F root

server displayed the lowest latency (75ms mean). This was explained based on the amount

of instances that the F root server encompasses, which was, at the time, the highest

amongst all the tested servers. Since it had more instances, queries needed to travel a

2In this context, an outage is a window of time during which a node is unsuccessful in retrieving a record
from the anycast server servicing it

18

3.3. ANYCAST

shorter distance to reach a server. Despite this, the latency experienced even in the F root

server, which was the lowest amongst the tested anycast deployments, was still higher

than the unicast latency, where the F root server showed a mean latency of 45ms, a little

bit over half the latency observed in the anycast deployment of the same F root server.

The difference in these two measurements was attributed to the fact that only two of the

F root servers are global and many clients don’t have visibility to the local servers that are

closer to them.

Regarding the Availability criteria, anycast performed remarkably well, as the aver-

age percentage of unanswered queries was below 0,9%. Sandeep et al. [17] found that the

UltraDNS anycast addresses TLD1 and TLD2 experienced more failed queries than both

F and K root servers, which they tentatively attribute to the fact that all UltraDNS clusters

are global, which results in clients following more different paths to reach their servers,

resulting in a heightened effect of route flapping [21]. Both TLD1 and TLD2 exhibit over-

all shorter (two to three times) outages when compared to the other zones. However, the

combined (TLD1+TLD2) zone experiences a large number of outages, since [17] treat the

act of a client switching from TLD1 to TLD2 (and vice-versa) as an outage. The combined

zone also revealed short outages, which goes according to the expectations that more than

one anycast address provides added resilience to network outages on DNS clients. This

data revealed that anycast’s recovery time after an outage is governed by the recovery

time of the network routing. Thus, the different anycast setups cannot reduce the average

time to recover from an outage. They can, however, reduce the severity of the outage (so

that it affects less clients) by employing more than one anycast address, as evidenced in

the combined (TLD1+TLD2) zone.

Moving on to O. Schmidt et al.’s (2017) study, which consisted in measuring how effec-

tive anycast was in selecting the instance of a site with the lowest latency, from different

vantage points (7900) scattered throughout the globe, provided by RIPE Atlas [15]. We

analysed it to attempt to understand how effective is the use of the anycast protocol in

the selection of DNS servers.

All of their testing was performed over four root servers - C, F, K, L. These servers were

chosen since they represented the scenarios they wanted to study: a server replicated in

only a few sites (C root server, replicated in 8 sites), two servers replicated in a moderate

amount of sites(F and K root servers, replicated in 58 and 33 sites, respectively) and in

large amount of sites (L root server, replicated in 144 sites). The sites of each server are

not all equally available. Both C and L root servers have all their sites available globally,

which means anyone can connect to them. However, F and K have significantly more

local sites (53/58 and 14/33, respectively) and, by extension, significantly less global

sites. This distribution impacts the effectiveness of anycast in selecting the DNS server

with the lowest latency, as, due to routing policies, a server may be selected that is not

the most optimal. Since during the course of the development of their paper, the K server

changed its routing protocol, placing all but one site available globally, the tests were

repeated for this new version of the K server.

19

CHAPTER 3. RELATED WORK

In order to properly measure the performance of the anycast protocol, the authors

devised an interesting strategy: from every vantage point, they measure both the latency

to every anycast site, and the latency through the anycast protocol. To do this, they

resort to the ping command. After having gathered the closest server latency-wise for

every vantage point, they compared that latency with the one obtained from pinging

the anycast IP address. They then compute the hit rate, which is how often the anycast

protocol resolves the anycasted IP address to the lowest latency server. We believe that

we can take advantage of this hit rate measurement and apply it to our goal, utilizing it

to identify how accurately a resolver selects the server with the lowest latency.

Sandeep et al. [17] study shows promising results regarding anycast performance on

DNS. While it didn’t always select the most optimal server, as evidenced by the difference

in latency on the unicast and anycast F root server zones, it still chooses a server with

relatively low latency. It also revealed that with more than one anycast address, it is more

resilient to network outages. However, Sandeep et al. [17] is somewhat dated, and thus

we cannot confidently stand behind the results obtained. Despite the study’s age, we

believe that the overall conclusions withdrawn from it are still sound, as they tend to

agree with our analysis of O. Schmidt et al. [11].

O. Schmidt et al. [11] study shows that anycast does not always select the authoritative

server with the lowest latency, but it still chooses a server with relatively low latency, thus

corroborating the findings from Sandeep et al. [17]. This less than optimal performance

can be due to a number of factors such as load-balancing needs or routing policies, which

causes clients to prefer nodes in the same network as opposed to the closest node, latency

wise.

20

3.4. SUMMARY

3.4 Summary

In this chapter we analysed some research that is relevant to understanding the behaviour

DNS resolvers. We started by linking the desire for lower latency on the Internet with the

subject of this thesis, by showing that DNS introduces a non trivial delay in communica-

tions in Section 3.1.

Next, we performed a more thorough analysis of two studies that attempt to determine

how resolvers select the authoritative servers in Section 3.2. Both studies present similar

results in their internal test frames, showing that some resolvers do indeed select the

authoritative server with the lowest latency. However, most resolvers also contact almost

every authoritative servers available, as a way to ensure that they can keep choosing the

best one in a dynamic setting. The external, live testing performed in the second study

also seems to corroborate the results presented in both studies, so we conclude that they

are a good starting point to this thesis.

Finally, we sought to understand how effective is the anycast protocol (Section 3.3).

From the research conducted, we understand that anycast does not always select the server

with the lowest latency. However, it still produces quite good results, since it generally

selects a server with a relatively low latency. It also provides additional resilience to

network outages, which is further increased when servers are configured to have more

than one anycast address.

Both anycast and resolver authority server selection seem to yield very good results,

selecting the authoritative server with the lowest latency in a majority of cases. However,

since resolvers must check to see if the authoritative server selected is still alive, anycast

seems to edge out this approach, as it does not need to periodically check with the other

authoritative servers, to see if they are still reachable. However, in case of server failures,

anycast was shown to not be as effective in handling them as some of the resolver’s

implementations.

21

C
h
a
p
t
e
r

4
Test Bed

In this chapter, we will describe how we set up our test bed and how the components

interact with each other. In addition, we also outline the configuration parameters of the

individual components, while also describing some tools we used to analyse our data.

4.1 Overview

The testing method consists in the following steps: from a client machine, we issue

a series of queries to our chosen domain (www.net.) which we have previously set up.

The network traces are then captured using another machine to sniff out the network

packets, generating packet tracing (.pcap) files with the contents of the network packets

of each test. After obtaining these files, we analyse them resorting to DNSJit, a tool which

allows us to parse a .pcap file, loading all the attributes of a DNS message (such as the

source IP address, the destination IP address, all the flags, the query itself) into an easily

manipulated data structure. Next, we analyse the data structures, retrieving statistics

such as the percentage of queries that were responded by each authoritative server and

the latencies experienced. Finally, we re-use the latency of the queries to plot charts that

associate a query with its latency.

In order to evaluate the resolvers (we chose PowerDNS [13], Unbound [20], Bind [1],

Windows-Server 2012 [22]) we deployed a four server wide DNS hierarchy. That is, we

have one server which contains an excerpt of the root zone, as found in IANA [6]. We

edited this zone to only have one Resource Record (RR) and thus a single TLD (net.).

Having our fake root zone with a single TLD simplifies our querying process, as we only

need to query a domain within this TLD. This is a reasonable simplification to enforce in

our tests, since we are only interested in understanding the process through which the

resolver selects an authoritative server to contact and thus, we only require one testable

23

CHAPTER 4. TEST BED

domain.

Having the fake root zone set up, we next set up three authoritative servers for the

net. TLD. These authoritative servers all share the same zone file, with a slight difference

between them: The zone file itself contains one single entry, for the domain www.net.

(for the sake of simplicity), which is associated with a single IP address, which is related

to the authoritative server to which the zone belongs to. This leads us to have an easy

way to debug and actively monitor the test, as the dig results will contain the IP address

obtained, which will vary depending on which authoritative name server was contacted.

4.2 Necessary Machines

Figure 4.1: Test bed

Our test bed itself consists in seven separate machines, depicted in figure 4.1, which

are configured and managed through the usage of virtualisation software. All the ma-

chines should have a connection to each other: i.e. any machine should be able to ping

any other machine, so they can all communicate with each other. Every machine should

have some way of being remotely accessed by the controller of the tests. This means

that every machine will require SSH or, in the case of the Windows machine, Windows

Remote.

4.2.1 Client

The client machine is running on Linux, and is in charge of overseeing the tests, in

addition to retrieving the .pcap files generated by the sniffer machine and analysing them.

It is required for SSH and DNSJit [4] to be installed in this machine, as we need to access

the remaining machines via SSH to control them and transfer files to the client machine.

Given that we also need to communicate with Windows machines, we opted to also install

python, along with its package pywinrm. Pywinrm (Python Windows Remote) allows

us to remotely connect to a Windows machine without requiring us to set up SSH access

on the Windows machine (although this can be done), and is then used to access the

24

4.2. NECESSARY MACHINES

Windows resolver. DNSJit is required as it is the tool we have selected to analyse the

.pcap files.

In our setup, we were generating the queries outside of the client machine, and then

transferring them to the client. If, however, we wanted to keep everything inside the

client machine, and thus more automated, we would also need to install Java on this

machine, as our query generator is written in Java.

The client machine should also have the IP addresses of the resolvers as well as the

authoritative name servers in its hosts file, as the test generator utilises the names to sort

the tests, while it retrieving the IP addresses from the hosts file.

4.2.2 Sniffer

The sniffer machine is also running on Linux, and is in charge of collecting the network

traffic to then be processed by the client machine. Given that the purpose of this machine

is to collect the network traffic , we require a tool that does so and places it in the .pcap

format. To this end, we opted to use the widely known tcpdump command, and is thus

required in this machine.

4.2.3 Authoritative Servers

There are a total of four authoritative servers and they are all running on a Linux op-

erating system. One server is authoritative over the root zone, while the other three

are authoritative over the .net zone, as shown in figure 4.1. All these servers are set to

be authoritative only via BIND options, and thus they require BIND to be installed. It

should be noted that, despite BIND being installed, they do not act as resolvers. The

server responsible for the root zone does not require any additional software, other than

BIND. The remaining three servers, however, require a tool that can simulate delays in

the network, in order to introduce latency in our tests. For that, we use tc-netem [19] to

add a qdisc (a qdisc, or queueing discipline, is a traffic control scheduler [14] manageable

through the tc linux command) to each server, which we configure to have the necessary

parameters for each test.

Moving on to the configuration options of the servers, which are shared between

all four of them, except the definition of their zone files. These options are detailed in

figure 4.2. Here, the important option, which turns the servers into authoritative only

servers, is the option in line 6, signifying that we do not wish for this server to be recursive.

All servers must then load their zone files, as shown in figure 4.3. Here, the name of the

zone as well as its file path will obviously vary, depending on which zone should be added

to which server.

The root zone file is depicted in figure 4.4. It is a stripped down version of the root

zone file located at IANA [6], to which we added our own .net TLD. We maintained the

same SOA record parameters as the ones present in the original file. As can be seen on

25

CHAPTER 4. TEST BED

Figure 4.2: Configuration file of authoritative servers of the root and .net domains

Figure 4.3: Configuration file where we load the root zone

lines 6, 9 and 12, this TLD has three name servers, ns1, ns2 and ns3, each associated with

their A glue records.

Figure 4.4: Root zone file

The authoritative name server zone file is depicted in figure 4.5. It should be noted

that this is the zone file for ns1, with the zone files for ns2 and ns3 being slightly different:

after SOA, they would have ns2 and ns3, respectively, and the first record would be

ns2.net. and ns3.net., respectively. As can be seen, it is quite similar to the root zone file,

with the main change being the SOA record, which states that the server with this zone

26

4.3. INDIVIDUAL TOOLS

file is authoritative for the .net zone.

Figure 4.5: .Net zone file

4.2.4 Resolvers

Finally, we have the resolvers. Out of our four selected resolvers, three of them (Pow-

erDNS, Unbound and Bind) are hosted on machines running a Linux operating system,

while the remaining resolver (Windows-Server 2012) is hosted on machines running its re-

spective Windows version, as the resolver itself comes bundled with the whole operating

system package.

In order for the resolvers to be able to resolve our domain, we must first point them

towards our own root server. This is done by replacing the standard hints file, which

points to the original root servers, to ours (as seen in figure 4.6), which replaces the IP

address of one root server with the IP address of our own root server. In the Windows

resolver, we also change its hints file, to only contain one entry, shown in figure 4.7. As

for the remaining configuration options, we stick to the default options. This means that

our resolvers may not necessarily be as optimized as they can be, as there may be options

which increase their performance.

Figure 4.6: .Net zone file

4.3 Individual Tools

In this section, we will talk about two tools that we have used, specifically, DNSJit [4]

and our tool that generates our queries.

27

CHAPTER 4. TEST BED

Figure 4.7: Windows root hints

4.3.1 DNSJit

DNSJit is an engine for capturing, parsing and replaying DNS messages. This tool is a

combination of parts of other tools (dsc, dnscap, drool) built with a Lua wrapper, which

creates a script-based engine. For our purposes, the core functionality of DNSJit consists

in its ability to parse and process DNS messages, which we use to process the DNS

messages and feed them to a data-structure that we created. Once we have the data-

structure with all the information we need, we then process it, extracting statistics about

the dataset.

Since DNSJit is a script-based engine, we run the files by executing the command

”dnsjit <our_file> <parameters>”. We have generated two DNSJit scripts, slightly based

on the examples available on the tool’s website: one script analyses the .pcap file that

we feed to the script, producing statistics, while the other script produces a graph that

associates each query with the latency it experienced, in order to facilitate visualisation

of the data.

These two scripts require eight parameters, separated by whitespace:

1. <.pcap file> - This parameter provides the .pcap file that will be analysed.

2. <tested_domain> - The domain to which the queries were pointed at. In our tests,

this was always ”www.net.”.

3. <test_runtime> - How long the test was ran for.

4. <query_interval> - The interval between each successive query.

5. <filename> - The name of the file where the script will write its output

6. <resolver_used> - The resolver that was used for this test.

The second to last parameter varies between the two scripts. On the statistics script, this

parameter is <ttl_used> - the value of the TTL that was used for this test. On the graphing

script, this parameter is <resolver_ip_addr> - the address of the IP address used.

The last parameter is the list of servers that were used in this test. This list contains

the IP address of the server, the latency that the server was set to during the test, the

28

4.3. INDIVIDUAL TOOLS

packet loss that the server was set to during the test and the shutdown interval, which

is how long of an interval there should be between periods where the server is available.

This parameter should be set between quotation marks, and multiples of this parameter

can bet provided to the script, with each of them detailing the specifications of one server.

The final command to run our scripts looks like this: dnsjit <scriptname> <.pcap

file> <tested_domain> <test_runtime> <query_interval> <filename> <resolver_used>

<ttl_used OR resolver_used> <”ip_address latency packetloss shutdown_interval”>

4.3.2 Query Generator

In order to generate our queries, we wrote a very simple Java-based query generator. This

generator outputs a script, which is then ran on the client machine. This script will

handle all the set up necessary for every test, the test itself and the collecting of data and

its analysis. In order for the generator to support all these functionalities, it requires a

few parameters:

1. <tcpdump_opts> - A quotes enclosed list of options for the tcpdump command, all

separated by whitespace

2. <test_name> - The name of this test. We named the tests sequentially i.e. Test 1,

Test 2, Test 3

3. <resolver> - The IP address resolver to be used for this test.

4. <domain> - The domain to be queried during this test.

5. <resolver_name> - The name of the resolver to be used for this test.

6. <query_filename> - The filename of the output of the query generator.

7. <results_filename> - The filename of the results of the test.

8. <ttl_used> - The TTL used for this test.

9. <next_script> - The name of the next script to be used, in order to chain several

tests one after the other.

10. <query_internval> - The interval between each successive query in this test. If set

to -1, it will generate a random value between 0 and 1 seconds.

11. <test_runtime> - The amount of time this test should run for

29

CHAPTER 4. TEST BED

4.4 Tests

In order to evaluate our resolvers, we designed twelve tests. These tests were created to

evaluate different aspects of the resolver, like its behaviour in a stable environment, how

much does a name server’s latency affects its choice and how long does it take to respond

to changes in the network topology. Each tests lasts for one hour and queries the same

domain, ”www.net.”, which has a TTL of 2 seconds (slightly less than the interval among

queries to avoid resolver caching). Therefore, there should not be any replies from the

resolver’s cache and the amount of queries analysed should be at a constant value of 1200

throughout testing, barring any form of pre-fetching, through which a resolver would

fetch the requested resource record, by predicting future queries based on past behaviour,

and thus responding faster to the client..Table 4.1 depicts the tests we created, along with

the parameters of the specific tests.

Server 1 Server 2 Server 3

Test Number Latency Packet loss Latency Packet loss Latency Packet loss

1 10ms 0% 100ms 0% 190ms 0%

2 40ms 0% 100ms 0% 160ms 0%

3 70ms 0% 100ms 0% 130ms 0%

4 100ms 0% 100ms 0% 100ms 0%

5 10ms 0% 100ms 0% 500ms 0%

6 40ms 0% 100ms 0% 500ms 0%

7 70ms 0% 100ms 0% 500ms 0%

8 100ms 0% 100ms 0% 500ms 0%

9 10ms 10% 100ms 0% 190ms 0%

10 10ms 30% 100ms 0% 190ms 0%

11 10ms Variable 100ms 0% 190ms 0%

12 10ms 0% 100ms 0% 190ms 0%

Table 4.1: Tests designed to evaluate resolvers

There are five distinct categories of tests in our setup:

• Standard Tests (1 through 4)

• Latency Cut-off Tests (5 through 8)

• Packet Loss Tests (9 and 10)

• Network Topology Change Tests (11)

• Random Query Rate Tests (12)

30

4.4. TESTS

4.4.1 Standard Tests

This group is designed to understand how does the resolver behave in a stable environ-

ment, while evaluating how it distributes the queries to the available authoritative name

servers. Tests 1, 2 and 3 have a server that is clearly better than the remaining, as it

exhibits a lower latency value. Therefore, we will classify resolvers as good if they consis-

tently select the server with the lowest latency, and not optimal, from this point of view,

otherwise. Based on previous work [23], we expect our resolvers to stabilize its query

distribution over the course of this test group, with Test 1 showing a more prevalent

query percentage towards Server 1. This prevalence should then decrease, as its latency

increases, while in Test 4 queries should be evenly distributed.

4.4.2 Latency Cut-off Tests

This group is similar to the Standard Tests group, with the caveat of Server 3 always

exhibiting a latency value of 500ms. Our objective with this value is to understand if

there is a limit to the maximum latency of a server that the resolver is able to choose as a

viable one, when other closer servers are available . We chose the value of 500ms as that

was reported [23] to be the latency cut-off value of Unbound.

4.4.3 Packet Loss Tests

The third group of tests contains Tests 9 and 10. This group’s tests are designed to

understand the impact of a ”shaky” connection on the choice of a resolver. To that end,

we applied a certain degree of packet loss to Server 1, and we monitor how frequently

this server is queried.

4.4.4 Network Topology Change Tests

The fourth category of tests is made up of a single test, Test 11. This test is designed to

understand how quickly a resolver reacts to a change in the network topology. To that end,

Server 1 starts the test with its packet loss value set to 0%. Ten minutes after beginning the

test, this value is changed to 100%, which simulates the server being unreachable. After

another ten minutes, the packet loss value returns to 0%. This pattern arises periodically

up to the end of the test. A resolver will be classified as good, in this test, if, during

it, it quickly notices the change in the network topology, and doesn’t attempt to keep

contacting an unreachable server. In addition, our classification for this test also includes

how quickly the resolver starts sending queries to Server 1 after it has become reachable

again. Since we perform one query every three seconds, these periods show up on the

graphs as intervals every 400 queries. This means that from queries 1-400 Server 1 was

reachable, then during queries 401-800 Server 1 was unreachable, repeating until we

reach the 1200 queries performed in one test.

31

CHAPTER 4. TEST BED

4.4.5 Random Query Rate Tests

Finally, the fifth category of tests, which also only contains one test, Test 12. This test

exhibits a variable query delay of a random value between 0 and 1 seconds, while the

other 11 tests exhibit a query delay of three seconds. This means that, in this test, the

query rate will always be higher than one query per second, while the other 11 tests have

a query rate of one query every three seconds. This test was designed to understand if

there is any impact in having a query rate higher than the resource record’s TTL, as well

providing a less synthetic context to the previous tests, which had a fixed query rate. It

also allows us to understand whether or not a resolver employs pre-fetching. This query

rate is set in the client’s side, which means that several queries will be answered by the

cache of the resolver. Thus, we expect resolvers to show a minimum of 1800 queries

(given our TTL of 2 seconds and our test runtime of 3600 seconds). Resolvers that do

employ pre-fetching should show a higher amount of queries. With a variable query rate,

this last test is also slightly more representative of human behaviour.

32

C
h
a
p
t
e
r

5
Results

In this chapter, we will discuss the results we obtained during our study of the behaviour

of the different resolvers.

It should be noted that the configurations used in each resolver may not necessarily

be the most optimal. In fact, it is quite likely that is the case: the only changes we have

made were to its root hints file, which we switched to our own version, in order to direct

it to our root server. This means that all the resolvers have default configurations.

The tests and their categories are the ones that have been detailed in Table 4.1 and we

present the results of each category separately (for each resolver) also in table format.

In addition to that, a graph was created for each test. The graphs that are not shown in

this section can be found in the annex. Every graphic contains three servers, listed by their

IP addresses in the graphics legend, on the upper right-hand side. Server 1 corresponds

to the IP address 192.168.5.141, which is the colour red. Server 2 corresponds to the IP

address 192.168.5.142, which is the colour green. Server 3 corresponds to the IP address

192.168.5.143, which is the colour blue. These graphs relate a single query (shown on

the X axis) with the latency it experienced (shown on the Y axis) with a dot, coloured

according to which server replied to that query.

We start by analysing the Bind resolver, then PowerDNS, followed by Unbound and

finally, Windows12. After these resolvers are analysed, we present our conclusions, in

addition to a final analysis of the data as a whole, for each resolver, from a client point of

view.

33

CHAPTER 5. RESULTS

5.1 BIND

5.1.1 Standard Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 1 11.07ms 96.5% 104.99ms 2.1% 202.42ms 1.4%

Test 2 41.15ms 90.9% 101.24ms 5.3% 161.11ms 3.8%

Test 3 71.15ms 76.9% 101.08ms 15.3% 131.06ms 7.8%

Test 4 101.15ms 33.9% 101.32ms 33.2% 101.20ms 32.9%

Table 5.1: Results of the Standard Tests category of the Bind resolver

Table 5.1 shows the results obtained in the first category of tests.

The first test showed a heavy preference to the Server 1, which received a dominant

percentage of queries (96.5%). Despite this, the two other servers were also queried,

albeit not as often as Server 1, which indicates that Bind is contacting every server, in an

attempt to select the best one. That attempt is thus successful, as Server 1 is the server

queried most often. It should be noted, however, that this first test had a slight anomaly

in the network: the first query to Server 2 and the first query to Server 3 both exhibited

abnormally high latency (201ms and 382ms, respectively, which seems to be roughly

twice the expected latency). Despite this fact, we believe that the test’s data still holds,

as it was a single query that experienced this unexpected latency and all the remaining

queries appear to be within the expected range of latency.

The second test continues the trend of the first, exhibiting a preference for servers

with lower latency. We can also see that the percentage of queries received by Server 1

has diminished to 90.9% as its latency has increased, while the other two Servers are

receiving a higher percentage of queries. This indicates that the resolver is contacting

servers that are not the best more often, as it realises that the difference between the best

server and the others is not as large.

The third test continues on the pattern of the two previous tests, exhibiting an even

lower query percentage towards Server 1.

Finally, on the fourth test, we see that the query percentage is roughly the same for

every server, which is explained by the fact that the latency to each server is also equal,

thus there is no ”best” server available, and all are chosen equally.

Having concluded the first type of tests, we classify Bind as having a good performance

in these tests, as it actively selected the best server in each of them. In addition, it

also constantly makes sure it has selected the best server, by sporadically contacting the

remaining servers.

34

5.1. BIND

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 5 11.25ms 96.8% 101.20ms 2.2% 501.05ms 1%

Test 6 41.33ms 92.1% 101.64ms 6.2% 504.95ms 1.7%

Test 7 71.02ms 81.6% 101.03ms 16.3% 501.60ms 2.1%

Test 8 101.84ms 48.5% 101.95ms 49.2% 501.68ms 2.3%

Table 5.2: Results of the Latency Cut-off Tests category from the Bind resolver

5.1.2 Latency Cut-off Tests

The first test of this category confirms that Bind does not have a cut-off point at or below

500ms, as Server 3 is still selected despite it being quite rare as only 1% of the queries are

received by the server. Server 1 and 2, as expected, behave similarly to the first category

of tests, which is expected as these two servers share the same latency and packet loss

values of those tests. Throughout these tests, it is interesting to note that both Server 1

and Server 2 show slightly higher query percentages when compared to the respective

tests of the first category, while Server 3 shows lower query percentages. This further

supports our assessment that Bind actively searches for the best server, as when a server’s

latency increases, its query percentage decreases, while when its latency decreases, its

query percentage increases.

Our conclusions from this test are that Bind does not have a cut-off point at or below

500ms and that it consciously selects the best server available and Bind distributes queries

among servers, selecting one server with a probability that is the inverse of the previous

latency measured, or an equivalent pattern.

35

CHAPTER 5. RESULTS

5.1.3 Packet Loss Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 9 11.00ms 17.1% 100.96ms 74.8% 191.01ms 8.1%

Test 10 10.95ms 4.8% 101.45ms 86.5% 191.66ms 8.7%

Table 5.3: Results of the Packet Loss Tests category from the Bind resolver

The ninth test (performed with 10% packet loss) shows an average latency to Server

1 (which experiences packet loss) of 11.00ms. It should be noted that we only include

successful queries in our latency calculations, therefore queries whose packets were lost

do not affect our calculation of the latency. It is evident, however, that BIND treats the

failed query differently, since Server 1 only has a query percentage of 17.1%, much less

than that shown in the previous tests, without packet loss. Bind seems to be treating

this server as having a higher latency, given its decreased query percentage, as a server

with a higher latency would be contacted less frequently. That is not the case, since when

looking at the graph for this specific test 5.1, it shows that there are periods where Server

1 is contacted regularly, and then periods where it is not contacted at all. This clustered

pattern is indicative that Bind is contacting Server 1 until it drops a packet, after which

it stops contacting it for a certain amount of time until it tries again.

The tenth test, with an even higher degree of packet loss, supports our findings from

Test 9, as Server 1 receives a smaller percentage of queries than the remaining servers,

while still exhibiting the lowest average latency according to our calculations. This test

experienced an anomaly, as can be seen in Figure 5.2. This anomaly was due to a dis-

connect of the network card of the machine that was hosting all the virtualised testing

machines. It was not necessary to repeat the test since we can see in Figure 5.2 that the

testing environment recovered quickly after the anomaly, and the majority of the test was

unaffected.

Figure 5.1: BIND Test 9 Figure 5.2: BIND Test 10

36

5.1. BIND

5.1.4 Network Topology Change Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 11 11.01ms 47.1% 100.98ms 47.4% 191.01ms 5.5%

Table 5.4: Results of the Network Topology Change Tests category from the Bind resolver

Looking only at the query percentages, Bind queries Server 1 47.1% of the time. Given

the nature of this test, and that Server 1 is only reachable 50% of the time, this query

percentage distribution seems encouraging for the Bind resolver. In fact, upon analysing

the graph generated for this test, we believe that Bind performed quite well. After the

first downtime period, it took 10 queries until Server 1 was contacted again, which is

equivalent to approximately 30 seconds. After the second downtime period, it took

9 queries until Server 1 was contacted again, which is equivalent to approximately 27

seconds. In addition, we note that Server 3 is queried much more frequently when Server

1 is unreachable. This is due to the fact that BIND is actively searching for a better server

to select.

Figure s 5.3 and 5.4 represent the same test. However, Figure 5.4 also includes the

failed queries in an effort to understand how frequently the resolver queries the un-

available server. We see five queries over a ten minute period that are directed to the

unreachable server. We can then conclude that, in the worst case scenario, it would take

BIND 2 minutes to contact a previously unreachable server, under our test conditions, as

that was the interval at which the unresponsive server was queried.

It would be interesting to research if Bind differentiates a packet loss from an unreach-

able ping (ICMP).

Figure 5.3: Bind Test 11
Figure 5.4: Bind Test 11, with failed
queries shown

37

CHAPTER 5. RESULTS

5.1.5 Random Query Rate Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 12 11.04ms 96.7% 100.89ms 1.8% 191.06ms 1.5%

Table 5.5: Results of the Random Query Rate Tests category from the Bind resolver

In regards to the query percentage distribution, this test produces the expected results,

with Server 1 showing to be the clear favourite of the resolver for this test. We did,

however, notice that the total amount of queries was not the amount expected. Given our

TTL of two seconds, we expected at least 1800 queries, since the test ran for 3600 seconds.

However, we see that we have just a little bit over 1200 queries, at 1226. We sought to

understand the reasoning behind this, and it turns out that BIND was sending the client

responses with its TTL set to 0, which may pose a red flag.

Figure 5.5: BIND Test 12

Our final classification of the Bind resolver is a favourable one. It demonstrated that

it chooses the best server in the standard test scenario, while still validating that it was

indeed choosing the best server. It was able to deal with packet loss, by quickly querying

another server. It was also fairly quick to adapt to changes in the network topology. The

biggest drawback that this resolver showed was the abnormal query number on the last

test, which indicated that it was responding to the client with expired resource records.

However, these resource records were very recently expired, in the order of the second.

38

5.2. POWERDNS

5.2 PowerDNS

5.2.1 Standard Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 1 11.03ms 92.2% 100.99ms 4.3% 191.12ms 3.5%

Test 2 41.08ms 83.7% 101.10ms 9.7% 161.11ms 6.6%

Test 3 71.02ms 67.4% 101.10ms 19.8% 131.00ms 12.8%

Test 4 101.03ms 33.3% 101.02ms 33.4% 101.03ms 33.3%

Table 5.6: Results of the Standard Tests category of the PowerDNS resolver

The first test reveals that PowerDNS starts off well, choosing the least latent server,

Server 1, for 92.2% of the queries. Despite this clear preference, it also contacts the other

two available servers, although it contacts Server 2 more frequently than Server 3 (4.3%

vs 3.5%). Throughout the next tests, we see the query percentage move towards the 33.3%

mark, which is reached by Test 4. During all the tests where the query percentage had

not yet reached this value, Server 1 was chosen a majority of the time, always exhibiting

a higher query percentage than the remaining two. Of the remaining two servers, Server

2 was always chosen more frequently than Server 3. This indicates that, like the previous

resolver, Bind, PowerDNS actively seeks to confirm that it is indeed choosing the best

server available and, from our observations, does so successfully. This leads us to classify,

in regards to this test, PowerDNS as a good resolver.

5.2.2 Latency Cut-off Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 5 11.03ms 92.9% 101.02ms 4.4% 501.00ms 2.7%

Test 6 41.01ms 86.4% 101.01ms 9.8% 501.07ms 3.8%

Test 7 71.12ms 74.6% 100.86ms 20.4% 501.17ms 5.0%

Test 8 101.03ms 47.2% 101.02ms 47.2% 501.02ms 5.6%

Table 5.7: Results of the Latency Cut-off Tests category from the PowerDNS resolver

The fifth test proves that PowerDNS does not have a cut-off point at or below 500ms,

since Server 3, which was set to have a latency value of 500ms, was still contacted. This

test group follows the same pattern exhibited in the first test group of standard tests, with

the exception of the query percentage of Server 3, which is due to the fact that Server

3 had a different latency. The query percentages again show that they tend to converge

towards a value, in this case being 47.2% for both Server 1 and Server 2. Server 3 finishes

this group with the remaining 5.6% of queries. This is further evidence that PowerDNS is

39

CHAPTER 5. RESULTS

actively evaluating if the server it has selected is the best, as the query percentages shift

according to the latency experienced towards each server.

5.2.3 Packet Loss Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 9 11.13ms 24.4% 101.06ms 64.8% 191.16ms 10.8%

Test 10 16.85ms 8.7% 102.51ms 81.3% 194.12ms 10.0%

Table 5.8: Results of the Packet Loss Tests category from the PowerDNS resolver

Test number nine was performed with a packet loss value of 10% set on Server 1.

Despite this value, Server 1 still saw a large portion of queries, which may indicate that

PowerDNS is good at handling network failures. In fact, Server 1 still had a query distri-

bution percentage of 24.4%, which is still lower than Server 2’s 64.8% but higher than

Server 3’s 10.8%. This indicates that, on a network with 10% packet loss towards a normal

10ms latency server, it is still better than a no packet loss 190ms latency server, but worse

than a 100ms latency server without packet loss.

The tenth test is performed with 30% packet loss. In this test, we finally see Server 1

being chosen the least amount of times, sitting at 8.7% of all queries, whereas Server 3

now has 10% of all queries, with the remaining 81.3% queries being answered by Server

2. Interestingly, PowerDNS Server 3’s query percentage falls off 0.8%, indicating that

PowerDNS is now preferring Server 2 more strongly than in the previous test case.

In both these tests, we saw the same burst pattern (shown in Figure s 5.6 and 5.7)

as was revealed in the corresponding Bind tests, which indicates that these two resolvers

likely use a similar method of authoritative name server selection.

Figure 5.6: PowerDNS Test 9 Figure 5.7: PowerDNS Test 10

40

5.2. POWERDNS

5.2.4 Network Topology Change Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 11 24.82ms 43.5% 103.60ms 50.5% 197.13ms 6.0%

Table 5.9: Results of the Network Topology Change Tests category from the PowerDNS
resolver

As with Bind, we can see that in this test, Server 1 still has a large percentage of the

queries directed to it, despite not a majority. When we analyse the graph Figure 5.8 of this

test, we can add context to this data. The graphs show a burst pattern, coinciding with the

periods where Server 1 is reachable. From the graphs, we can conclude that in this test,

PowerDNS adapted relatively quickly. It took approximately 60 seconds to contact Server

1 after it was brought back up at the 400 query mark, and again 60 seconds once the server

was brought back up again at the 800 query mark, as shown in Figure 5.8. Figure 5.9

shows the failed queries that PowerDNS sent to Server 1 while it was unreachable. From

this graph, we can see that it sent a query to Server 1 approximately once every 85 seconds.

Given this value, we believe that the largest amount of time that Server 1 would not be

contacted while it was available would be 85 seconds, since that is the frequency at which

PowerDNS contacted it to check if it was back up.

Figure 5.8: PowerDNS Test 11
Figure 5.9: PowerDNS Test 11, with
failed queries shown

41

CHAPTER 5. RESULTS

5.2.5 Random Query Rate and Interval Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 12 24.60ms 95.3% 103.24ms 2.8% 196.76ms 1.9%

Table 5.10: Results of the Random Query Rate Tests category from the PowerDNS resolver

This final test adheres to the patterns observer in Test 1, with Server 1 showing being

heavily prefered by PowerDNS.

The main conclusion of this test, however, is that PowerDNS must employ some sort

of pre-fetching mechanism with our default configurations. We believe this to be the case

because, as we can see in Figure 5.10, there are over 3000 queries performed. Given our

TTL of 2 seconds, without any pre-fetching mechanism, we would expect 1800 queries.

Since we had over a thousand more queries, we can confidently say that PowerDNS has a

pre-fetching mechanism.

Figure 5.10: PowerDNS Test 12

With these tests, we classify PowerDNS as a very good resolver. We saw that it heavily

preferred the best server in the first two groups of tests, and it doesn’t seem to have a

latency cut-off point below 500ms. In order to deal with packet loss, it simply chose

another server for a certain amount of queries, always returning to the server with packet

loss eventually, but never sending too many queries to it. It reacted very quickly to

changes in the network topology, with a worst case scenario reaction time of 85 seconds,

which is quite good. We also discovered that it employed some method of pre-fetching.

42

5.3. UNBOUND

5.3 Unbound

5.3.1 Standard Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 1 11.23ms 44.5% 101.24ms 47.2% 191.05ms 8.7%

Test 2 41.13ms 35.4% 101.11ms 32.0% 161.10ms 32.6%

Test 3 71.52ms 34.9% 101.32ms 29.8% 131.30ms 35.3%

Test 4 101.87ms 30.8% 101.69ms 35.9% 101.65ms 33.3%

Table 5.11: Results of the Standard Tests category of the Unbound resolver

The first test reveals that Unbound does not choose the server with the lowest latency

a majority of the time. In fact, Server 1 only has a query percentage of 44.5%, which is

lower than that of Server 2, sitting at 47.2%. Server 3 though shows a low percentage of

queries (8.3%), which is a good sign, as a server with higher latency should respond later

to the resolver and thus be undesirable. In Figure 5.11 we see something that we do not

understand and can not, at this moment, explain the reasoning behind it: throughout the

test, Server 3 is barely contacted, except for the final third of the test, which is equivalent

to the last 20 minutes, where it is contacted very frequently for a brief period of time.

In fact, it seems to be contacted roughly with the same frequency as the remaining two

servers during that time period. We do not possess a plausible reason for this behaviour

at the time. By the second test, we see in Figure 5.12 that the query frequency has almost

Figure 5.11: Unbound Test 1 Figure 5.12: Unbound Test 2

balanced out among the resolvers. The test still shows a slight preference for Server 1, but

since Test 1 did not reveal such a preference, we believe this falls within the acceptable

statistical deviation.

With the third and fourth tests, we reach a balance in the query percentage among all

three servers. As stated before, having a balance at Test 4 is advisable, which is present

in the resolver. It does, however, reach that balance earlier than anticipated.

Given the results obtained from these tests, it seems that the probability of a server

being selected for a certain query is less relative to the measured latency of previous

queries and more close to a random distribution. Despite this, it is possible that Unbound

has some sort of range, within which it treats all servers as equal. Since it prefers Servers 1

43

CHAPTER 5. RESULTS

and 2 on the first test, we believe that this range does favour lower latency servers. Given

our classification criteria for this group of tests, we classify Unbound as a not optimal

resolver, since it does not choose the best server a majority of the time.

5.3.2 Latency Cut-off Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 5 11.24ms 48.9% 101.28ms 50.9% 500.72ms 0.2%

Test 6 41.37ms 48.3% 101.36ms 51.3% 501.35ms 0.4%

Test 7 71.33ms 50.1% 101.33ms 49.7% 501.30ms 0.2%

Test 8 101.79ms 48.5% 101.47ms 51.2% 501.09ms 0.3%

Table 5.12: Results of the Latency Cut-off Tests category from the Unbound resolver

Tests 5,6,7 and 8 seem to indicate that Unbound does not retain its cut-off point, which

was shown to be 500ms in Yu, Wessels, Larson, and Zhang [23]. This is the case since in

all the tests, Server 3 was chosen for some queries (albeit a very small number of queries)

as the server to be contacted by Unbound. In addition to this, these tests further reinforce

our claim that Unbound does not always select the server with the lowest latency but

does seem to have a range of values within which it chooses server from, in addition to

querying every server periodically, since Server 3 is still contacted in these tests.

44

5.3. UNBOUND

5.3.3 Packet Loss Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 9 17.45ms 49.9% 102.10ms 49.7% 191.98ms 0.4%

Test 10 25.55ms 44.6% 103.18ms 53.3% 196.55ms 1.9%

Table 5.13: Results of the Packet Loss Tests category from the Unbound resolver

Test number nine was performed with a packet loss value of 10% set on Server 1, while

Test number ten had Server 1 with a packet loss of 30%. In Test 9, Server 3 received less

than 1% of queries, while Server 1 and 2 received around half of all queries each. At first

glance it seems that packet loss had no effect in this test, since the query percentages are

quite similar to the tests that do not experience packet loss. However, when comparing

the two generated graphs seen in figures 5.13 and 5.14 (which also displays the packets

that were lost) we see that Unbound seems to be quickly acknowledging that packets

have been lost. Once a packet has been deemed as lost, Unbound sends it again, to the

same server. Test 10 displayed the same patterns of quickly realising that a packet had

not reached its destination and is thus sent once again. This strategy of handling packet

loss differs from the previous two analysed resolvers, in that they treat a failed query as

the server being unreachable, instead of instantly double checking if the server is still

reachable and merely experienced a network hiccup.

Figure 5.13: Unbound Test 9 Figure 5.14: Unbound Test 9 with
dropped packets

45

CHAPTER 5. RESULTS

5.3.4 Network Topology Change Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 11 24.37ms 11.5% 102.97ms 67.1% 196.60ms 21.4%

Table 5.14: Results of the Network Topology Change Tests category from the Unbound
resolver

In this test, Unbound adapted to the new network topology very slowly, as is hinted

at by the low amount of queries directed towards Server 1, with only 11.5%. To further

analyse its response time, we looked at figures 5.15 and 5.16. By resorting to these graphs,

we were able to verify that when Unbound lost contact with Server 1, it sent four queries to

Server 1 in very quick succession (it is likely that the resolver is retrying the same original

failed query), which, since the server is down, are unanswered. After that, Unbound tries

again to send two queries to the server that is down, roughly 90 seconds after the first

four queries were sent.

Figure 5.15: Unbound Test 11 Figure 5.16: Unbound Test 11, with
failed queries shown

Once those queries fail, since the server is still down at this point, Unbound then takes

approximately 14 minutes to contact the server that has been up for over five minutes,

thus showing a very poor score in this particular test. It does, however, recover more

quickly from the second downtime period, but it still remains the fact that it took over

five minutes to contact a newly reachable server.

Our findings in this test support the findings from Yu, Wessels, Larson, and Zhang

[23], which state that Unbound periodically queries unresponsive servers every 15 min-

utes. Since we found that Unbound also employs a mechanism to quickly check if the

server is available and the failed queries were simply a freak occurrence, Unbound seems

to have been changed to handle very short periods of unavailability, while still retain-

ing it’s periodic poll rate to unavailable servers. This mechanism thus has a maximum

response time of approximately 14 minutes, as was shown on our test, which classifies

this resolver as being relatively slow to adapt to successive network topology changes.

However, in a real world environment, outages should not be in the order of magnitude

experienced in this test, which turns these results into a very favourable characteristic.

46

5.3. UNBOUND

5.3.5 Random Query Rate and Interval Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 12 24.26ms 48.6% 102.84ms 51.1% 196.64ms 0.3%

Table 5.15: Results of the Random Query Rate Tests category from the Unbound resolver

Test number twelve shows the same alternating behaviour of choosing different servers

that was seen on Test 1. It also revealed that Unbound suffers from a similar problem to

Bind, in that it sometimes replies to the user with a record from its cache, while the value

of that record’s TTL is 0. This was discovered upon a more thorough analysis which was

prompted by the discrepancy in the expected query number of at least 1800 queries in

the test, to the obtained 1255 queries.

Figure 5.17: Unbound Test 12

Upon completing all the tests for Unbound, we can now say a few things about it. It

seems that it no longer possesses its previous 500ms latency cut-off point. It does not

choose the best server a majority of the time, however it does alternate between the best

two servers. Unbound also took a very large amount of time to react to successive network

topology changes. Despite this slow reaction time, it did check to make sure that it was

indeed a big outage and not a small network anomaly, which is a good plus.

47

CHAPTER 5. RESULTS

Figure 5.18: Windows12 Test 1

5.4 Windows12

All the tests performed on Windows12 share an anomaly: instead of the expected 1200

queries, we find that the number of queries actually performed by Windows12 is not even

constant. In fact, it hovers around 1000 queries. This is very strange behaviour, since we

perform one query every three seconds, and the resource record we query has a TTL of

two seconds, we should always have 1200 queries. The fact that we have less is indicative

of Windows12 not respecting the TTL set, as it is the only way to have a lower amount of

queries, which was proven to be true in previous resolvers’ results.

5.4.1 Standard Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 1 11.18ms 99.8% 100.31ms 0.1% 190.75ms 0.1%

Test 2 41.36ms 99.9% 100.70ms 0.1% n/a 0%

Test 3 71.06ms 51.3% 101.19ms 48.7% n/a 0%

Test 4 n/a 0% 101.02ms 0.1% 101.13ms 99.9%

Table 5.16: Results of the Standard Tests category of the Windows12 resolver

The first test reveals that Windows12 chooses the server with the lowest latency most

of the time. However, it also shows that Windows12 does not take in consideration the

possibility of, eventually, a different server could be faster. Therefore, it starts and it

contacts Server 2 and Server 3 only once, as seen in Figure 5.18. We assume it stores the

latency it experienced, and then contacts Server 1. As Server 1 seems to have a much

lower latency, it is then the server of choice for the duration of the test. This may prove

to be a problematic point, depending on the next tests’ results.

48

5.4. WINDOWS12

In the second test, we see a repeat of the pattern observed in the first test. It initially

ends up querying Server 1 and stores the latency it experienced. Two more queries are

sent to Server 1 before it decides to check on the availability of remaining servers. Since

it finds Server 2, which has a higher latency than Server 1, it does not choose this server

any further. Server 3 is never selected in Test 2 and therefore we do not measure a latency

to it.

In the third test, Windows12 now attempts to find a better server, as shown by the

query percentages of Server 1 and Server 2. It seems that it reaches a point where it is not

satisfied with the latency experienced and thus attempts to find a better server. Server 3

is, again, not queried at all during this test.

In the final test, Server 3 is the most queried server, with Server 2 having only a single

query, while Server 1 is not queried in this test at all.

With these tests, we believe that Windows12 is indeed choosing the best server. How-

ever, it apparently does not employ a mechanism through which it checks if it is still

contacting the best server, as there are tests in which a server is not contacted at all. Test 4

also shows that Windows12 does not attempt to spread the query load in some situations.

5.4.2 Latency Cut-off Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 5 11.09ms 99.7% 100.65ms 0.2% 500.75ms 0.1%

Test 6 41.21ms 38.0% 101.18ms 61.8% 500.91ms 0.2%

Test 7 71.14ms 99.9% 100.63ms 0.1% n/a 0%

Test 8 102.33ms 50.0% 102.05ms 49.9% 500.67ms 0.1%

Table 5.17: Results of the Latency Cut-off Tests category from the Windows12 resolver

In Test 5, Windows12 contacts Server 3 only once, and thus we are inclined to think

it does have a cut-off point. However, given its past behaviour, we can’t yet assume that

to be the case. With Test 6, however, we discover that it does not have a cut-off point, as

Server 3 is contacted twice. Still in this test, there is some weird behaviour. Despite there

not being any packet loss, which we verified, Windows12 still switches before 20 minutes

of testing has passed, as seen in Figure 5.19. This is strange behaviour, as previously

Windows12 generally chose the same server, especially in this mirror test on the first set

(Test 2).

Test 7 shows the absence of the anomaly recorded in Test 6, and returns to the values

displayed in Test 5. It doesn’t, however, contact Server 3 a single time.

Test 8 then shows the resolver switching between selected servers, as evidenced by

the fact that both Server 1 and Server 2 have almost equal query percentages, while still

contacting Server 3 once.

49

CHAPTER 5. RESULTS

Figure 5.19: Windows12 Test 6

With the results of these tests reviewed, we can’t quite comprehend the exact be-

haviour of the resolver. However, we do verify that it almost always selects the server

with the lowest latency, as was observed in the first group of tests. We can also say that

Windows12 does not appear to have the cut-off point that these tests check for.

50

5.4. WINDOWS12

5.4.3 Packet Loss Tests

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 9 n/a 0% 101.14ms 99.9% 190.74ms 0.1%

Test 10 n/a 0% 101.19ms 99.9% 190.44ms 0.1%

Table 5.18: Results of the Packet Loss Tests category from the Windows12 resolver

Test 9 and Test 10 have identical query percentages, with Server 2 receiving 99.9% of

queries in both tests. while Server 3 receives the remaining 0.1% and Server 1 is never

selected. Since Server 1 is never selected, in an exact setup where it once was, with the

exception of the packet loss, we have to conclude that Windows12 must have some sort

of mechanism that does not rely on DNS queries to classify the servers. We believe this

is the case as Server 1 should have been selected in either of these tests and only after

it had failed to reply to a query would then change server. It is possible that in both

tests, both initial queries to Server 1 had failed, with a chance of 0.3% of that situation

occurring. We can, however, verify that is not the case, as can be seen in Figure 5.20

which shows the queries sent by the resolver, including those which had their packets

lost. This hypothesis may explain the previously seen behaviour of this resolver. However,

we could not perform a deeper investigation of it.

Figure 5.20: Windows12 Test 9, with failed queries shown

51

CHAPTER 5. RESULTS

5.4.4 Network Topology Change Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 11 11.43ms 16.1% 101.28ms 83.9% n/a 0%

Table 5.19: Results of the Network Topology Change Tests category from the Windows12
resolver

Looking only at the query percentages, this test seems to demonstrate that Windows12

is not contacting Server 1 after it becomes reachable again. In fact, by looking at the

graph of this test (Figure 5.21) we can indeed see that this is the case. It should be noted

that there is a slight discrepancy in this graph, when compared with the other resolvers.

According to our testing methodology, the server should go down at query number 200.

The graph shows that Server 1 goes down before that. This is explained by the fact that

Windows12 does not seem to be respecting the TTL of its cache, as evidenced by the

number of queries analysed, which is always less than the expected 1200. Thus, since our

testing assumes a steady query to time ratio, this graph has this slight discrepancy.

Figure 5.21: Windows12 Test 11

52

5.4. WINDOWS12

5.4.5 Random Query Rate and Interval Test

Server 1 Server 2 Server 3

Average Latency Query Percentage Average Latency Query Percentage Average Latency Query Percentage

Test 12 11.14ms 50.3% 101.16ms 49.7% n/a 0%

Table 5.20: Results of the Random Query Rate Tests category from the Windows12 re-
solver

Test twelve also reveals strange behaviour. Windows12 alternates between choosing

Server 1 and Server 2, and also performs more than 1200 queries but less than the ex-

pected 1800. This confirms our theory that Windows12 is not respecting the TTL. Besides

that, we are not certain why, in this specific test, it is alternating between both Server 1

and Server 2. In fact, it does not even contact Server 3 once. We can not explain the fact

that both Server 1 and Server 2 are selected 50% of the time on this test but not on the

first test, for instance.

Given all the results from Windows 12, we classify it as an average resolver, when

compared to the other three. It does indeed choose the best server in terms of latency in

almost all cases. It does not have the cut-off point, making it the fourth resolver to not

exhibit that feature. It does not react positively to successive network topology changes,

as Test 11 revealed that after a server comes back up, it does not get contacted again.

In fact, to provide a fair classification, more tests are needed to this resolver, as it is

necessary to understand the rationale behind the behaviour exhibited in our tests. We

suggest looking at other potential message exchanges between the Windows12 resolver

and the servers, as it seems very likely that it performs some measurements without

resorting to the DNS messages.

53

CHAPTER 5. RESULTS

5.5 Client POV and Conclusion

One flaw of all our tests is that they do not measure the latency felt by the client. This

was done by design, as we were interested in how the resolvers chose which authoritative

name server to contact. However, in order to be able to properly rank them, we feel that

we need to address this final concern. To that effect, we took the .pcap files of all the tests

and fed them through a script that computed the average query latency for all the tests,

except Test 12, as that test is influenced by the caches of the resolvers. The values we

obtained are shown in 5.21.

Average Latency

Bind 76.219 ms

PowerDNS 89.483 ms

Unbound 88.567 ms

Windows12 63.692 ms

Table 5.21: Average latency experienced from the client point of view

From this final analysis of the data collected, we, surprisingly, see that Windows12

provided the best user experience, boasting the lowest latency of all three resolvers. Upon

some consideration, we came to the conclusion that this is due to the fact that Windows12

does not respect the cached TTL, and thus serves the clients more replies from its cache

than the other resolvers, which don’t serve any responses from their caches in Tests 1

through 11. For reference, assuming we had a perfect resolver that always chose the

server with the lowest latency, that hypothetical resolver would exhibit an average latency

value of 50.09ms.

Table 5.22 puts in perspective some of the conclusions we gathered with our tests.

Latency Cut-off Cache Management Load Balancing

Bind No Does not respect TTL Yes

PowerDNS No Likely pre-fetching Yes

Unbound No Does not respect TTL Yes

Windows No Does not respect TTL No

Table 5.22: Comparison between features of all the resolvers

To conclude, we found that:

• Bind, PowerDNS and Windows12 chose the server with the lowest latency the ma-

jority of the time.

54

5.5. CLIENT POV AND CONCLUSION

• None of the resolvers had a latency cut-off at 500ms, despite one resolver previously

having it.

• Bind, PowerDNS and Windows12 assume that if a server does not respond to a

query, it is unreachable, while Unbound first tests to see if it was a simple network

anomaly.

• PowerDNS and Bind were the fastest to respond to successive network topology

changes. Unbound took several minutes, while Windows12 did not respond at all.

• Only PowerDNS employs pre-fetching. The other resolvers do not always respect

the cached TTL.

• Finally, all resolvers except Windows12 try to balance the interest of their clients

(less latency) with the interests of the network (load balancing)

55

C
h
a
p
t
e
r

6
Conclusions

This thesis had the goal of understanding the behaviour of some DNS resolvers, more

specifically how they choose which server to contact. To that end, we first began by study-

ing previous work that had been done in this topic. Through our research, we discovered

a previous study detailing the exact behaviour of some resolvers, which was discovered by

analysing the resolvers’ code. This differs from our approach, which requires us to strictly

analyse the data produced by our tests, as some resolvers do not have an open source

nature. It does, however, provide us with a starting point by analysing their methodology

and results, which confirmed that our initial idea of observing the resolvers in an en-

closed network and measure their performance through the latency experienced by each

query was a good starting point. We also were able to determine an alternative way that

resolvers use to choose a server, involving the anycast protocol, which places the burden

of the decision upon the network itself. Since this removes the part that the resolvers

have in the decision of which server to contact, we do not focus our thesis in this protocol,

but offer it as a possible alternative.

Having confirmed our initial idea of basing our testing environment on the latency

experienced by the resolver, we designed several tests to measure their behaviour. Our

tests measured how a resolver behaved in a static environment, attempted to understand

if there is a certain latency after which a server is no longer contacted, how do they

balance the query load, how a resolver handles packet loss and network topology changes

and, how it responds to a slightly higher load and whether or not it implies pre-fecthing.

We came up with twelve tests to serve our purpose. With the data from all the tests, we

were also able to determine how good the resolvers were, from a client’s point of view.

For our testing environment, we settled on using three authoritative name servers.

This implies that we need, at the very minimum, a total of five machines: one for each

authoritative name server, one for the resolver and one for the client. We ended up

57

CHAPTER 6. CONCLUSIONS

implementing a structure with seven machines, in which the two additional machines

were our own version of the root authoritative name server and a packet sniffer, to collect

the data from our tests.

We evaluated four resolvers (Bind, PowerDNS, Unbound and Windows-Server 2012)

in our testing, and found that the two most well-rounded resolvers were Bind and Pow-

erDNS, as they performed the best in our tests, distributing the load in situations where

it was possible, very frequently choosing the best server and reacting to packet loss and

network topology changes quite quickly. PowerDNS does seem to be better, though, as it

has pre-fetching, while Bind does not.

From a client’s point of view, the resolvers all seemed relatively equal (once we ac-

counted for the disrespect of the TTL by Windows12), with Bind showing to be the best

one.

Our testing had some limitations, in that it was not able to tell how Windows12 knew

which server to choose (we suspect it has some other mechanism for this purpose, since

it does not use the DNS messages for it). Given this limitation, we think that it would

be interesting to study Windows12 more closely, to understand how exactly it evaluates

the servers. It would also be interesting to understand how the resolvers differentiate

between packet loss and an unreachable ping.

We believe that our testing environment can be applied to any resolver, provided the

very small configuration adjustments are performed, and thus is our main contribution

with this thesis, along with the results we obtained.

58

Bibliography

[1] BIND 9.11.3. url: http://www.isc.org/downloads/bind/.

[2] DNS Structure. url: https://www.dns.pt/pt/dominios-2/o-sistema-dns/

(visited on 01/29/2018).

[3] DNSCache. url: http://cr.yp.to/djbdns/dnscache.html.

[4] DNSJit. url: https://github.com/DNS-OARC/dnsjit.

[5] T. Hardie. Distributing Authoritative Name Servers via Shared Unicast Addresses. RFC

3258. http://www.rfc-editor.org/rfc/rfc3258.txt. RFC Editor, 2002. url:

http://www.rfc-editor.org/rfc/rfc3258.txt.

[6] IANA. url: https://www.iana.org/domains/root/files.

[7] J. Legatheux. In: Fundamentos de Redes de Computadores. 2017. Chap. 1, p. 28.

[8] P. Mockapetris. Domain names - concepts and facilities. STD 13. http://www.rfc-

editor.org/rfc/rfc1034.txt. RFC Editor, 1987. url: http://www.rfc-

editor.org/rfc/rfc1034.txt.

[9] P. Mockapetris. Domain names - implementation and specification. STD 13. http:

//www.rfc- editor.org/rfc/rfc1035.txt. RFC Editor, 1987. url: http:

//www.rfc-editor.org/rfc/rfc1035.txt.

[10] M. Müller, G. C. M. Moura, R. de O. Schmidt, and J. Heidemann. Recursives in
the Wild: Engineering Authoritative DNS Servers. Tech. rep. ISI-TR-720. Available:

https://www.isi.edu/~johnh/PAPERS/Mueller17a.pdf. johnh: pafile: USC/In-

formation Sciences Institute, June 2017. url: http://www.isi.edu/%7ejohnh/

PAPERS/Mueller17a.html.

[11] R. de O. Schmidt, J. Heidemann, and J. Harm Kuipers. “Anycast Latency: How

Many Sites Are Enough?” In: Proceedings of the Passive and Active Measurement
Workshop. 2017.

[12] PlanetLab. url: https://www.planet-lab.org/ (visited on 02/18/2018).

[13] PowerDNS 4.1.2. url: http://www.powerdns.com/.

[14] qdisc. url: http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.

html.

[15] RIPE Atlas. url: https://atlas.ripe.net/ (visited on 02/18/2018).

59

http://www.isc.org/downloads/bind/
https://www.dns.pt/pt/dominios-2/o-sistema-dns/
http://cr.yp.to/djbdns/dnscache.html
https://github.com/DNS-OARC/dnsjit
http://www.rfc-editor.org/rfc/rfc3258.txt
http://www.rfc-editor.org/rfc/rfc3258.txt
https://www.iana.org/domains/root/files
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
https://www.isi.edu/~johnh/PAPERS/Mueller17a.pdf
http://www.isi.edu/%7ejohnh/PAPERS/Mueller17a.html
http://www.isi.edu/%7ejohnh/PAPERS/Mueller17a.html
https://www.planet-lab.org/
http://www.powerdns.com/
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
https://atlas.ripe.net/

BIBLIOGRAPHY

[16] root-servers.org. url: http://www.root-servers.org/ (visited on 01/29/2018).

[17] S. Sandeep, V. Pappas, and A. Terzis. “On the Use of Anycast in DNS.” In: ACM
SIGMETRICS. 2005.

[18] A. Singla, B. Chandrasekara, P. B. Godfrey, and B. Magg. “The Internet at the Speed

of Light.” In: Proceedings of the 13th ACM Workshop on Hot Topics in Networks. 2014.

[19] tc-netem. url: http://man7.org/linux/man-pages/man8/tc-netem.8.html.

[20] Unbound 1.7.0. url: http://www.unbound.net/.

[21] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damping. RFC 2439.

RFC Editor, 1998.

[22] Windows Server 2012 R2 Essentials. url: https : / / www . microsoft . com / en -

us/cloud-platform/windows-server.

[23] Y. Yu, D. Wessels, M. Larson, and L. Zhang. “Authority Server Selection of DNS

Caching Resolvers.” In: SIGCOMM Computer Communication Review. 2012.

60

http://www.root-servers.org/
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://www.unbound.net/
https://www.microsoft.com/en-us/cloud-platform/windows-server
https://www.microsoft.com/en-us/cloud-platform/windows-server

A
n
n
e
x

I
Annex 1

I.1 Bind Graphs

Figure I.1: BIND Test 1 Figure I.2: BIND Test 2

Figure I.3: BIND Test 3 Figure I.4: BIND Test 4

61

ANNEX I. ANNEX 1

Figure I.5: BIND Test 5 Figure I.6: BIND Test 6

Figure I.7: BIND Test 7 Figure I.8: BIND Test 8

62

I .2. POWERDNS GRAPHS

I.2 PowerDNS Graphs

Figure I.9: PowerDNS Test 1 Figure I.10: PowerDNS Test 2

Figure I.11: PowerDNS Test 3 Figure I.12: PowerDNS Test 4

Figure I.13: PowerDNS Test 5 Figure I.14: PowerDNS Test 6

Figure I.15: PowerDNS Test 7 Figure I.16: PowerDNS Test 8

63

ANNEX I. ANNEX 1

I.3 Unbound Graphs

Figure I.17: Unbound Test 3 Figure I.18: Unbound Test 4

Figure I.19: Unbound Test 5 Figure I.20: Unbound Test 6

Figure I.21: Unbound Test 7 Figure I.22: Unbound Test 8

Figure I.23: Unbound Test 10

Figure I.24: Unbound Test 10 with
dropped packets

64

I .4. WINDOWS12 GRAPHS

I.4 Windows12 Graphs

Figure I.25: Windows12 Test 2 Figure I.26: Windows12 Test 3

Figure I.27: Windows12 Test 4 Figure I.28: Windows12 Test 5

Figure I.29: Windows12 Test 7 Figure I.30: Windows12 Test 8

Figure I.31: Windows12 Test 9 Figure I.32: Windows12 Test 10

65

A
n
n
e
x

II
Annex 2

II.1 Analyse Results

1 #! / usr / bin / env dnsjit

2 local pcap = arg[2]

3 local tested_domain = arg[3]

4 local test_runtime = arg[4]

5 local query_interval = arg[5]

6 local filename = arg[6]

7 local resolver_used = arg[7]

8 local ttl_used = arg[8]

9 local servers = {}

10

11 local index = 9

12 while arg[index] and arg[index + 1] and arg[index + 2] and arg[index+3] do

13 table.insert(servers,{

14 address = arg[index],

15 latency = arg[index+1],

16 packetloss = arg[index+2],

17 shutdownInterval = arg[index+3]

18 })

19 index = index + 4

20 end

21

22

23 if pcap == nil then

24 print("usage:�"..arg[1].."�<pcap>")
25 return

26 end

27

28 require("dnsjit.core.object")

29 require("dnsjit.core.object.packet")

67

ANNEX II. ANNEX 2

30

31 output = require("dnsjit.filter.coro").new()

32

33 local queries_by_id = {}

34

35 local query_info = {}

36

37 local lowest_time = 9999999999999999

38 local total_latency = 0

39 local total_count = 0

40

41

42 output:func(function(filter, obj)

43 --print("entered method")

44 local pkt = obj:cast()

45 local dns

46 if pkt:type() == "packet" then

47 dns = require("dnsjit.core.object.dns").new(obj)

48 if dns:parse() ~= 0 then

49 return

50 end

51 elseif pkt:type() == "dns" then

52 dns = pkt

53 if dns:parse() ~= 0 then

54 return

55 end

56 pkt = dns:prev()

57 while pkt ~= nil do

58 if pkt:type() == "packet" then

59 pkt = pkt:cast()

60 break

61 end

62 pkt = pkt:prev()

63 end

64 if pkt == nil then

65 return

66 end

67 else

68 return

69 end

70 if dns then

71 if dns.qr == 0 then

72 local n = dns.questions

73

74 while n > 0 and dns:rr_next() == 0 do

75 if dns:rr_ok() == 1 then

76 label = dns:rr_label()

77 --print("label")

78

79

68

II .1. ANALYSE RESULTS

80 --print("query_id ", dns.id)

81

82 init_time = tonumber(pkt.ts.sec) * 1000000000 + tonumber(pkt.ts.nsec

↪→)

83 queries_by_id[dns.id] = init_time

84

85 --dns:print()

86

87 end

88 n = n - 1

89 end

90 --print("\n")

91 end

92 end

93 if dns.qr == 1 then

94 if dns.questions > 0 and dns:rr_next() == 0 and dns:rr_ok() then

95 if string.match(dns:rr_label(), tested_domain) then

96 if dns.aa == 1 then

97 --print("response_id ", dns.id)

98 if queries_by_id[dns.id] then

99 latency = tonumber(pkt.ts.sec) * 1000000000 + tonumber(pkt.ts.nsec

↪→) - queries_by_id[dns.id]

100 if latency < lowest_time then

101 lowest_time = latency

102 end

103 --print(latency / 1000000000)

104 total_latency = total_latency + latency

105 total_count = total_count + 1

106

107 queries_by_id[dns.id] = nil

108 table.insert(query_info, {

109 latency = latency,

110 resolver = pkt:dst(),

111 resolver_port = pkt.dport,

112 authoritative = pkt:src(),

113 authoritative_port = pkt.sport,

114 query = dns:rr_label()

115 })

116 end

117 end

118 end

119 end

120 --dns:print()

121 end

122 end

123)

124 input = require("dnsjit.input.pcapthread").new()

125

126 print("analyzing�file�" .. pcap)

127 input:open_offline(pcap)

69

ANNEX II. ANNEX 2

128 input:receiver(output)

129 input:run()

130

131

132

133

134

135

136 authoritative_table = {}

137 avg_latency_to_auth = {}

138 query_count = 0

139 for _, q in pairs(query_info) do

140 query_count = query_count + 1

141 if authoritative_table[q.authoritative] then

142 authoritative_table[q.authoritative] = authoritative_table[q.authoritative]

↪→ + 1

143 table.insert(avg_latency_to_auth[q.authoritative], q.latency)

144

145 else

146 authoritative_table[q.authoritative] = 1

147 avg_latency_to_auth[q.authoritative] = {}

148 table.insert(avg_latency_to_auth[q.authoritative], q.latency)

149 end

150 end

151

152 print("results/".. resolver_used .. "/"..filename .. ".txt")

153 local file = io.open("results/".. resolver_used .. "/"..filename .. ".txt", "

↪→ w")

154 io.output(file)

155

156 io.write("Analysis�of�traffic�from�".. resolver_used .."�to�.net�authoritative
↪→ �name�servers�(one�hour�period)\n�while�answering�to�queries:�" ..

↪→ tested_domain)

157 io.write("\nTest�runtime�(s):�", test_runtime, "\n")

158 io.write("Query�interval�(s):�", query_interval, "�\n")
159 io.write("TTL�used�in�test�(s):�", ttl_used, "\n")

160

161 for _, v in pairs(servers) do

162 io.write("Server:�", v.address, "��Latency�(ms):�", v.latency, "�Packetloss�
↪→ (%):�", v.packetloss , "�Shutdown�Interval�(s):�", v.shutdownInterval , "

↪→ \n")

163 end

164

165

166 io.write("\n")

167

168 for k, v in pairs(authoritative_table) do

169 table = avg_latency_to_auth[k]

170 count = 0

171 latency = 0

70

II .2. DRAW GRAPH

172 min_latency = 999999999999999999999999999999 -- a large starting number so it

↪→ gets properly updated - this is equivalent to roughly one sextillion

↪→ seconds

173 max_latency = 0

174 for _, av in pairs(table) do

175 count = count + 1

176 latency = latency + av

177 min_latency = math.min(min_latency,av)

178 max_latency = math.max(max_latency,av)

179 end

180 --print(latency, count)

181 io.write("Authoritative:�", k, "��QueriesToAuth:�", v, "��QueryPercentage:�",
↪→ v / query_count, "��MinLatency(ms):�", (min_latency) / 1000000,

182 "��MaxLatency(ms):�", (max_latency) / 1000000,"��AvgLatency(ms):�", (latency

↪→ / count) / 1000000, "\n")

183 end

184

185

186 io.close(file)

187

188 print("Wrote�to�file�" .. filename .. ".txt")

189 print("cat�results/"..filename.. ".txt")

II.2 Draw Graph

1 #! / usr / bin / env dnsjit

2 local pcap = arg[2]

3 local tested_domain = arg[3]

4 local test_runtime = arg[4]

5 local query_interval = arg[5]

6 local filename = arg[6]

7 local resolver_used = arg[7]

8 local resolver_ip_addr = arg[8]

9 local servers = {}

10

11 local index = 9

12 while arg[index] and arg[index + 1] and arg[index + 2] and arg[index+3] do

13 print(arg[index])

14 table.insert(servers,{

15 address = arg[index],

16 latency = arg[index+1],

17 packetloss = arg[index+2],

18 shutdownInterval = arg[index+3]

19 })

20 index = index + 4

21 end

22

23

71

ANNEX II. ANNEX 2

24 if pcap == nil then

25 print("usage:�"..arg[1].."�<pcap>")
26 return

27 end

28

29 require("dnsjit.core.object")

30 require("dnsjit.core.object.packet")

31

32 output = require("dnsjit.filter.coro").new()

33

34 local queries_by_id = {}

35 local query_info = {}

36 local lowest_time = 9999999999999999

37 local total_latency = 0

38 local total_count = 0

39 -- **

40

41

42 local queries_to_domain = {}

43 local max_latency_allowed = 1000000000 / 2

44 local queryNumber = 0

45 local srv_addresses = {}

46 for _,s in pairs(servers) do

47 srv_addresses[s.address] = 1

48 end

49

50

51 output:func(function(filter, obj)

52 --print("entered method")

53 local pkt = obj:cast()

54 local dns

55 if pkt:type() == "packet" then

56 dns = require("dnsjit.core.object.dns").new(obj)

57 if dns:parse() ~= 0 then

58 return

59 end

60 elseif pkt:type() == "dns" then

61 dns = pkt

62 if dns:parse() ~= 0 then

63 return

64 end

65 pkt = dns:prev()

66 while pkt ~= nil do

67 if pkt:type() == "packet" then

68 pkt = pkt:cast()

69 break

70 end

71 pkt = pkt:prev()

72 end

73 if pkt == nil then

72

II .2. DRAW GRAPH

74 return

75 end

76 else

77 return

78 end

79 if dns then

80 if dns.qr == 0 then

81 local n = dns.questions

82 while n > 0 and dns:rr_next() == 0 do

83 if dns:rr_ok() == 1 then

84 label = dns:rr_label()

85 --print(label .. " " .. tested_domain .. " " .. resolver_ip_addr)

86 if label == nil then

87 break

88 end

89 if string.match(label, tested_domain) then

90

91 if pkt:src() == resolver_ip_addr and srv_addresses[pkt:dst()] then

92 init_time = tonumber(pkt.ts.sec) * 1000000000 + tonumber(

↪→ pkt.ts.nsec)

93 queries_by_id[dns.id] = init_time

94

95

96

97 end

98 end

99

100 end

101 n = n - 1

102 end

103 --print("\n")

104 end

105 end

106 if dns.qr == 1 then

107 if dns.questions > 0 and dns:rr_next() == 0 and dns:rr_ok() then

108 if string.match(dns:rr_label(), tested_domain) then

109 if dns.aa == 1 then

110 --print("response_id ", dns.id)

111 if queries_by_id[dns.id] then

112 queryNumber = queryNumber + 1

113 latency = tonumber(pkt.ts.sec) * 1000000000 + tonumber(pkt.ts.nsec

↪→) - queries_by_id[dns.id]

114 --print(latency / 1000000000)

115 queries_by_id[dns.id] = nil

116 table.insert(query_info, {

117 latency = latency,

118 authoritative = pkt:src(),

119 authoritative_port = pkt.dport,

120 number = queryNumber

121 })

73

ANNEX II. ANNEX 2

122 end

123 end

124 end

125 end

126 --dns:print()

127 end

128 end

129)

130 input = require("dnsjit.input.pcapthread").new()

131

132 print("analyzing�file�" .. pcap)

133 input:open_offline(pcap)

134 input:receiver(output)

135 input:run()

136

137

138 local starting_query_time = 0

139

140

141 print("results/".. resolver_used .. "/"..filename .. ".gnuplot")

142 local gnuplotFile = io.open("results/".. resolver_used .. "/"..filename .. "

↪→ .gnuplot", "w")

143 io.output(gnuplotFile)

144

145 io.write("set�terminal�png�size�1920,1080")
146 io.write("\nset�samples�",queryNumber)
147 io.write("\nset�size�0.9,1")
148 io.write("\nset�key�off")
149 io.write("\nset�output�\"".. filename .. ".png\"")

150 io.write("\nset�title�\"".. filename .. "\"")

151 io.write("\nset�ylabel�\"Latency�(ms)\"")
152 io.write("\nset�xlabel�\"Time�(s)\"")
153 io.write("\nset�yrange�[0:",(max_latency_allowed*1.1)/1000000,"]")
154 io.write("\nset�xrange�[0:", queryNumber*1.005, "]")

155 io.write("\nset�label�1�’192.168.5.141’�at�graph�1.005,0.95�font�\"Arial,20\"�
↪→ tc�rgb�\"red\"�")

156 io.write("\nset�label�2�’192.168.5.142’�at�graph�1.005,0.91�font�\"Arial,20\"�
↪→ tc�rgb�\"green\"")

157 io.write("\nset�label�3�’192.168.5.143’�at�graph�1.005,0.87�font�\"Arial,20\"�
↪→ tc�rgb�\"blue\"")

158 io.write("\nplot�’" .. filename .. ".dat’�using�1:2:3�title�\"" .. filename ..

↪→ "\"�with�points�lc�variable�pointtype�3")
159 io.close(gnuplotFile)

160

161

162

163 local gnuplot_table = {}

164

165 for _ , q in pairs(query_info) do

166 latency = q.latency / 1000000

74

II .3. CLIENT POV

167 gnuplot_table[q.number] = latency

168 end

169

170 local gnuplot_keys = {}

171 for k in pairs(gnuplot_table) do

172 table.insert(gnuplot_keys,k)

173 end

174

175 table.sort(gnuplot_keys)

176

177 local datFile = io.open("results/".. resolver_used .. "/"..filename .. ".dat",

↪→ "w")

178 io.output(datFile)

179

180 query_start_time_secs = -1

181 for _, k in ipairs(gnuplot_keys) do

182 latency = gnuplot_table[k]

183 for _, q in ipairs(query_info) do

184 if k == q.number then

185 serverReached = string.sub(q.authoritative ,13)

186 io.write(k, "�" , latency, "�", serverReached, "\n")

187 end

188 end

189 end

190 io.close(datFile)

191

192

193 print(queryNumber)

II.3 Client POV

1 #! / usr / bin / env dnsjit

2 local client_ip = arg[2]

3 local tested_domain = arg[3]

4

5 local pcaps = {}

6 local index = 4

7 while arg[index] do

8 table.insert(pcaps,arg[index])

9 index = index + 1

10 end

11

12

13

14 if pcaps == nil then

15 print("usage:�"..arg[1].."�<pcap>")
16 return

17 end

75

ANNEX II. ANNEX 2

18

19 require("dnsjit.core.object")

20 require("dnsjit.core.object.packet")

21

22 output = require("dnsjit.filter.coro").new()

23

24 local queries_by_id = {}

25

26 local query_info = {}

27

28 local lowest_time = 9999999999999999

29 local total_latency = 0

30 local total_count = 0

31

32

33 output:func(function(filter, obj)

34 --print("entered method")

35 local pkt = obj:cast()

36 local dns

37 if pkt:type() == "packet" then

38 dns = require("dnsjit.core.object.dns").new(obj)

39 if dns:parse() ~= 0 then

40 return

41 end

42 elseif pkt:type() == "dns" then

43 dns = pkt

44 if dns:parse() ~= 0 then

45 return

46 end

47 pkt = dns:prev()

48 while pkt ~= nil do

49 if pkt:type() == "packet" then

50 pkt = pkt:cast()

51 break

52 end

53 pkt = pkt:prev()

54 end

55 if pkt == nil then

56 return

57 end

58 else

59 return

60 end

61 if dns then

62 if dns.qr == 0 then

63 local n = dns.questions

64

65 while n > 0 and dns:rr_next() == 0 do

66 if dns:rr_ok() == 1 then

67 label = dns:rr_label()

76

II .3. CLIENT POV

68 --print("label")

69

70

71 --print("query_id ", dns.id)

72 if pkt:src() == client_ip then

73 init_time = tonumber(pkt.ts.sec) * 1000000000 + tonumber(

↪→ pkt.ts.nsec)

74 queries_by_id[dns.id] = init_time

75 end

76 --dns:print()

77

78 end

79 n = n - 1

80 end

81 --print("\n")

82 end

83 end

84 if dns.qr == 1 then

85 if dns.questions > 0 and dns:rr_next() == 0 and dns:rr_ok() then

86 if string.match(dns:rr_label(), tested_domain) then

87

88 if queries_by_id[dns.id] and pkt:dst() == client_ip then

89 latency = tonumber(pkt.ts.sec) * 1000000000 + tonumber(pkt.ts.nsec) -

↪→ queries_by_id[dns.id]

90 if latency < lowest_time then

91 lowest_time = latency

92 end

93 --print(latency / 1000000000)

94 total_latency = total_latency + latency

95 total_count = total_count + 1

96 queries_by_id[dns.id] = nil

97 table.insert(query_info, {

98 latency = latency,

99 query = dns:rr_label()

100 })

101 end

102 end

103 end

104 --dns:print()

105 end

106 end

107)

108 input = require("dnsjit.input.pcapthread").new()

109

110 for _,pcap in pairs(pcaps) do

111 input:open_offline(pcap)

112 input:receiver(output)

113 input:run()

114 end

115

77

ANNEX II. ANNEX 2

116 print(total_count)

117 print("Average�Latency:�", (total_latency/ 1000000) / total_count)

II.4 Generate Tests

1 import java.io.BufferedWriter;

2 import java.io.FileOutputStream;

3 import java.io.IOException;

4 import java.io.OutputStreamWriter;

5 import java.io.Writer;

6 import java.util.ArrayList;

7 import java.util.HashMap;

8 import java.util.List;

9 import java.util.Map;

10 import java.util.Random;

11

12 public class Main {

13

14 static class Auth {

15

16 private String execAddress;

17 private String controlAddress;

18 private int delayMS;

19 private float packetLoss;

20 private int intervalDown;

21

22 public Auth(String exec, String control, int delay, float packetLoss, int

↪→ intervalDown) {

23 this.execAddress = exec;

24 this.controlAddress = control;

25 this.delayMS = delay;

26 this.packetLoss = packetLoss;

27 this.intervalDown = intervalDown;

28 }

29

30 public String getExec() {

31 return this.execAddress;

32 }

33

34 public String getControl() {

35 return this.controlAddress;

36 }

37

38 public int getDelay() {

39 return this.delayMS;

40 }

41

42 public float getPacketLoss() {

78

II .4. GENERATE TESTS

43 return this.packetLoss;

44 }

45

46 public int getIntervalDown() {

47 return this.intervalDown;

48 }

49 }

50

51 private static final int SETUPSLEEPSECONDS = 1;

52 private static final String DNSJIT = "./dnsjit/src/dnsjit"; // location of

↪→ dnsjit

53 private static final String JITSCRIPT = "jitScripts/analyse_match.lua"; //

↪→ location of dnsjit script to analyse results

54 private static final String JITGRAPH = "jitScripts/draw_graph.lua"; //

↪→ location of dnsjit script to draw the graph

55 private static final String PCAPFOLDER = "pcaps/"; // folder with the pcaps

56 private static final String TEST_FOLDER = "Test_folder/"; // folder where

↪→ the tests should be located

57

58 public static void main(String[] args) throws IOException {

59 // List<String> remainingArgs = new ArrayList<String>();

60

61 String queryTrace = "#!/bin/bash\n";

62 String tcpdump_opts = "";

63 String tcpdump_filename = "";

64 String resolver = "";

65 String domain = "";

66 String resolverType = "";

67 String query_filename = "";

68 String results_filename = "";

69 String ttl_used = "";

70 String nextScript = "";

71 String serviceRestart = "";

72 String sniffer = "sniffer";

73 float queryInterval = 0;

74 int testRuntime = 0;

75 List<Auth> servers = new ArrayList<Auth>();

76

77 //

78 String usage = "******�ssh�needs�to�be�previously�established�(using�ssh-
↪→ copy-id�-i�root@server)�******\n"

79 + "java�Main\n" + "�\"tcpdump_options\"�.........#1\n" + "��
↪→ test_number�...............#2\n"

80 + "�resolver�..................#3\n" + "��domain�
↪→#4\n"

81 + "�resolverType�..............#5\n" + "��query_filename�
↪→#6\n"

82 + "�results_filename�..........#7\n" + "��ttl_used�
↪→#8\n"

79

ANNEX II. ANNEX 2

83 + "�nextScript�................#9\n" + "��queryInterval�
↪→#10\n"

84 + "�testRuntime(seconds)�......#11\n"
85 + "�\"server_exec_addr�server_control_addr�server_delay�

↪→ server_packetloss�server_interval_down\"�.....#12\n"
86 + "can�have�multiple�servers,�just�have�multiple�entries�of�#12";
87 if (args.length < 12) {

88 System.out.println("Usage:\n" + usage);

89 return;

90 }

91

92 tcpdump_opts = args[0];

93 tcpdump_filename += args[1].contains(".pcap") ? args[1] : args[1] + ".pcap

↪→ ";

94 resolver = args[2];

95 domain = args[3];

96 resolverType = args[4];

97 query_filename = args[5] + ".sh";

98 results_filename = args[6];

99 ttl_used = args[7];

100 nextScript = args[8] + ".sh";

101 queryInterval = Float.parseFloat(args[9]);

102 testRuntime = Integer.parseInt(args[10]);

103

104 for (int i = 11; i < args.length; i++) {

105 String[] server = args[i].split("�");
106 // exec_ip, control_ip, delay, packetloss, timeDownMins

107 Auth a = new Auth(server[0], server[1], Integer.parseInt(server[2]),

↪→ Float.parseFloat(server[3]),

108 Integer.parseInt(server[4]) * 60);

109 servers.add(a);

110 }

111

112 switch (resolverType) {

113 case "BIND":

114 serviceRestart = "bind9";

115 break;

116 case "POWERDNS":

117 serviceRestart = "pdns-recursor";

118 break;

119 case "UNBOUND":

120 serviceRestart = "unbound";

121 break;

122 }

123 switch(resolver){

124 case "WINDOWS12": queryTrace += "python�win12_clear_cache.py\n"; break;

125 //case "WINDOWS16": queryTrace += "python win16_clear_cache.py\n"; break;

126 default: queryTrace += "ssh�root@" + resolver + "�’service�" +

↪→ serviceRestart + "�restart’\n"; break;

127 }

80

II .4. GENERATE TESTS

128

129 // add delays

130 for (Auth a : servers) {

131 int delayMS = a.getDelay();

132 String controlIP = a.getControl();

133 float packetLoss = a.getPacketLoss();

134 queryTrace += "\nssh�root@" + controlIP + "�’tc�qdisc�del�dev�eth0�root�
↪→ handle�1:1�netem’�\n"

135 + "echo�\"Deleted�previous�qdisc�on�" + controlIP + "\"�\n";
136 queryTrace += "sleep�" + SETUPSLEEPSECONDS + "\n";

137 queryTrace += "ssh�root@" + controlIP + "�’tc�qdisc�add�dev�eth0�root�
↪→ handle�1:1�netem�delay�" + delayMS

138 + "000�0�loss�" + packetLoss + "%’�" + "\necho�\"Added�new�qdisc�on�
↪→ " + controlIP + "�with�"

139 + delayMS + "ms�delay�and�" + packetLoss + "%�packetloss�\"\n";
140 // queryTrace += "ssh root@" + controlIP + " ’tc qdisc change dev

141 // eth0 root netem loss " + packetLoss + "%’\n";

142 }

143

144 // open tcpdump

145 queryTrace += "\nssh�root@" + sniffer + "�’nohup�tcpdump�" + tcpdump_opts

↪→ + "�-w�" + tcpdump_filename

146 + "�>/dev/null�2>&1�&’\n";
147

148 // run queries

149 queryTrace += "\n" + createQueries(domain, queryInterval, testRuntime,

↪→ servers, resolver) + "\n";

↪→
150

151 // queries executed, close tcpdump

152 queryTrace += "ssh�root@" + sniffer + "�’pkill�tcpdump’\n";
153

154 // make directory to store results

155 queryTrace += "\nmkdir�-p�results/" + resolver;

156

157 // make directory to store pcaps

158 queryTrace += "\nmkdir�-p�pcaps/" + resolver;

159

160 // copy file

161 queryTrace += "\nscp�root@" + sniffer + ":/root/" + tcpdump_filename + "�
↪→ pcaps/"+resolver+"/" + tcpdump_filename + "\n";

162

163 // analyse queries

164 for (Auth a : servers) {

165 String exec = a.getExec();

166 queryTrace += exec + "=$(getent�hosts�" + exec + "�|�awk�’{print�$1}’)\n
↪→ " + "echo�$" + exec + "\n";

167 }

168 queryTrace += DNSJIT + "�" + JITSCRIPT + "�" + PCAPFOLDER + resolver + "/"

↪→ + tcpdump_filename + "�" + domain + "�" + testRuntime

81

ANNEX II. ANNEX 2

169 + "�" + queryInterval + "�" + results_filename + "�" + resolverType +

↪→ "�" + "�" + ttl_used + "�";
170

171 for (Auth a : servers) {

172

173 queryTrace += "$" + a.getExec() + "�" + a.getDelay() + "�" + a.

↪→ getPacketLoss() + "�" + a.getIntervalDown()

174 + "�";
175 }

176

177 // if(results_filename.equals("results11")){

178 queryTrace += "\n" + resolver + "=$(getent�hosts�" + resolver + "�|�awk�’{
↪→ print�$1}’)\n" + "echo�$" + resolver

179 + "\n";

180 queryTrace += DNSJIT + "�" +JITGRAPH + "�" + PCAPFOLDER + resolver + "/"+

↪→ tcpdump_filename + "�" + domain + "�"
181 + testRuntime + "�" + queryInterval + "�" + results_filename + "�" +

↪→ resolverType + "�" + "�$"
182 + resolver + "�";
183 for (Auth a : servers) {

184

185 queryTrace += "$" + a.getExec() + "�" + a.getDelay() + "�" + a.

↪→ getPacketLoss() + "�" + a.getIntervalDown()

186 + "�";
187 }

188

189 queryTrace += "\ncd�results/"+resolver;
190 queryTrace += "\ngnuplot�" + results_filename + ".gnuplot";

191 /*for (Auth a : servers) {

192 queryTrace += "\ngnuplot $" + a.getExec() + ".gnuplot";

193 }*/

194 queryTrace += "\ncd";

195

196 // }

197

198 if (!nextScript.equals(query_filename)) {

199 System.out.println("Different!");

200 queryTrace += "\nbash�" + TEST_FOLDER + nextScript;

201

202 }

203

204 System.out.println(queryTrace);

205

206 try (Writer writer = new BufferedWriter(

207 new OutputStreamWriter(new FileOutputStream(query_filename), "utf-8"))

↪→) {

208 writer.write(queryTrace);

209 } catch (IOException e) {

210 e.printStackTrace();

211 }

82

II .4. GENERATE TESTS

212 }

213

214 private static String createQueries(String domain, float queryInterval, int

↪→ testRuntime, List<Auth> servers, String resolver) {

215 String result = "echo�\"Starting�queries\"�\n{\n"
216 + resolver + "IP=$(getent�hosts�" + resolver + "�|�awk�’{print�$1}’)\n

↪→ " + "echo�$" + resolver + "IP\n";

217

218 String stdDig = "\ndig�@$"+resolver+"IP��+cdflag�" + domain + "�&&�sleep�"
↪→ + queryInterval + "\n";

219 Map<Auth, Integer> execDowntimeCount = new HashMap<Auth, Integer >();

220 for (Auth a : servers) {

221 execDowntimeCount.put(a, a.getIntervalDown());

222 }

223 float i = 0;

224 while (i < testRuntime) {

225 // System.out.println("adding query");

226 if (queryInterval < 0) {

227 double interval = myRandom(0, 1);

228 result += "dig�+cdflag�" + domain + "�&&�sleep�" + interval + "\n";

229 i += interval;

230 } else {

231 result += stdDig;

232 i += queryInterval;

233 }

234

235 for (Auth a : execDowntimeCount.keySet()) {

236 if (a.getIntervalDown() != 0) {

237 if (i >= execDowntimeCount.get(a)) {

238 int timesExecuted = execDowntimeCount.get(a) / a.getIntervalDown()

↪→ ;

239 result += "}�&>�/dev/null�\n";
240 if (timesExecuted % 2 == 0) {

241 result += "echo�\"Turning�server�" + a.getExec() + "�back�up\"\
↪→ nssh�root@" + a.getControl()

242 + "�’tc�qdisc�change�dev�eth0�root�netem" + "�delay�" + a.

↪→ getDelay()

243 + "000�0�loss�0%’\n";
244 } else {

245 result += "echo�\"Shutting�server�" + a.getExec() + "�down\"\
↪→ nssh�root@" + a.getControl()

246 + "�’tc�qdisc�change�dev�eth0�root�netem�" + "�delay�" + a.

↪→ getDelay()

247 + "000�0�loss�100%’\n";
248 }

249 result += "{\n";

250 execDowntimeCount.put(a, execDowntimeCount.get(a) + a.

↪→ getIntervalDown());

251 }

252 }

83

ANNEX II. ANNEX 2

253 }

254 }

255 result += "\necho�\"this�needs�to�be�here�in�case�this�final�part�has�no�
↪→ commands\"\n}�&>�/dev/null�\n";

256 for (Auth a : servers) {

257 result += "echo�\"Resetting�server�" + a.getExec() + "�packetloss�to�
↪→ zero\"\n";

258 }

259 return result;

260 }

261

262 private static double myRandom(double min, double max) {

263 Random r = new Random();

264 return (r.nextInt((int) ((max - min) * 10 + 1)) + min * 10) / 10.0;

265 }

266

267 }

84

	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	Introduction
	The Domain Name System
	Overview
	DNS Structure as a distributed system
	Replication

	Queries
	Performance
	Summary
	Related Work
	DNS Performance
	Authoritative server selection by the resolvers
	Least SRTT
	Statistical Selection
	Measurements

	Anycast
	Summary

	Test Bed
	Overview
	Necessary Machines
	Client
	Sniffer
	Authoritative Servers
	Resolvers

	Individual Tools
	DNSJit
	Query Generator

	Tests
	Standard Tests
	Latency Cut-off Tests
	Packet Loss Tests
	Network Topology Change Tests
	Random Query Rate Tests

	Results
	BIND
	Standard Tests
	Latency Cut-off Tests
	Packet Loss Tests
	Network Topology Change Test
	Random Query Rate Test

	PowerDNS
	Standard Tests
	Latency Cut-off Tests
	Packet Loss Tests
	Network Topology Change Test
	Random Query Rate and Interval Test

	Unbound
	Standard Tests
	Latency Cut-off Tests
	Packet Loss Tests
	Network Topology Change Test
	Random Query Rate and Interval Test

	Windows12
	Standard Tests
	Latency Cut-off Tests
	Packet Loss Tests
	Network Topology Change Test
	Random Query Rate and Interval Test

	Client POV and Conclusion

	Conclusions

	Bibliography
	Annex 1
	Bind Graphs
	PowerDNS Graphs
	Unbound Graphs
	Windows12 Graphs

	Annex 2
	Analyse Results
	Draw Graph
	Client POV

	Generate Tests

