
Francisco Perdigão Fernandes

Licenciado em Engenharia Informática

Improving Web-Caching Systems with
Transparent Client Support

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Doutor João Carlos Antunes Leitão, Assistant Professor,
Faculdade de Ciencias e Tecnologia da Universidade
Nova de Lisboa

Júri

Presidente: Doutora Margarida Paula Neves Mamede, Assistant Professor
Arguentes: Doutor Hugo Alexandre Tavares Miranda, Assistant Professor

Doutor João Carlos Antunes Leitão, Assistant Professor

December, 2017

Improving Web-Caching Systems with Transparent Client Support

Copyright © Francisco Perdigão Fernandes, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculdade de Ciências e Tecnologia and the Universidade NOVA de Lisboa have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Acknowledgements

The work presented in this thesis was partially supported by the NOVA LINCS laboratory

under the grant (UID/CEC/04516/2013) and by Microsoft Azure for Research Grant

attributed to Prof. Dr. João Leitão. I want to sincerely thank all the support of my advisor

Prof. Dr. João Leitão, for the hours he spent helping me to understand the path I had

to take to achieve the goals proposed in this dissertation. His experience in the area of

Distributed Systems helped me a lot to realize some points that were fundamental to the

accomplishment of the work described in all these pages. I would also like to thank the

PhD student Albert Linde, who was relentless in helping me during the months of both

preparation and elaboration of this dissertation. It is relevant to mention that one of the

components used in this work (Legion framework) was the result of his Master thesis

[53].

Finally, I would like to thank all my family, my parents and brother, and close friends,

specially to my girlfriend Andreia Monteiro, for always believing in me and supporting

me at the most difficult times during the realization of this thesis, which supported me

throughout my academic years.

v

Abstract

The increase in popularity of Web applications has lead to a significative increment

on the load imposed on their supporting servers. To deal with this, and with the need

to provide fast response to users, there has been an effort on deploying Web caching

systems, which significantly reduce the end user perceived latency and the load on origin

servers. Since these systems have a limit on how many content they can effectively cache

and serve, large-scale providers have begun to explore the use of peer-to-peer techniques

to greatly alleviate the burden on (dedicated) cache servers.

The goal of this work is to developed a solution that enriches distributed cache archi-

tectures with transparent client support in the browser. This way, the caching horizon will

be transparently extended towards the clients, offering the opportunity to have clients

serving content directly among them in a peer-to-peer fashion. Additionally, such system

can be readily incorporated in existing applications without requiring Web applications

operators to pay for specialized distributed caching services, which might not be viable

for operators of small and medium scale applications.

Keywords: Web caching, peer-to-peer, transparent client support.

vii

Resumo

O aumento da popularidade das aplicações Web tem levado a um aumento significa-

tivo na carga imposta nos servidores de suporte. Para lidar com isto, e com a necessidade

de dar uma resposta rápida aos utilizadores, tem havido um esforço na implantação de

sistemas de cache Web, os quais reduzem significativamente a latência percecionada pelos

utilizadores finais e a carga nos servidores de origem. Visto que estes sistemas têm limites

na quantidade de conteúdo que podem efetivamente armazenar e servir, fornecedores

de larga escala têm começado a explorar o uso de técnicas de peer-to-peer para aliviar

substancialmente a carga dos servidores (dedicados) de cache.

O objetivo deste trabalho é desenvolver uma solução que enriqueça arquiteturas de

cache distribuídas com suporte transparente ao cliente no navegador. Deste modo, o

horizonte de cache será estendido transparentemente para os clientes, oferecendo a opor-

tunidade de ter clientes a servirem conteúdos diretamente entre eles de uma forma peer-
to-peer. Adicionalmente, tal sistema pode ser prontamente incorporado em aplicações

existentes sem exigir aos operadores de aplicações Web que paguem por serviços especia-

lizados em cache distribuída, que pode não ser viável para os operadores de aplicações de

pequena e média escala.

Palavras-chave: Web caching, peer-to-peer, suporte transparente ao cliente.

ix

Contents

List of Figures xiii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Proposed Solution . 2

1.3.1 Main Contributions . 3

1.4 Document Organization . 3

2 Related Work 5

2.1 Peer-to-peer systems . 5

2.1.1 Overlay networks . 6

2.1.2 Query Dissemination Techniques 8

2.1.3 Concrete System and Framework Examples 10

2.2 Web Cache . 11

2.2.1 Different Levels of Caching . 13

2.2.2 Caching Architectures . 14

2.2.3 Replacement Strategies . 17

2.2.4 Performance Metrics . 23

2.2.5 Relevant Distributed Cache Systems 24

2.3 Recent Technologies . 26

2.3.1 WebRTC . 26

2.3.2 HTML5 . 26

2.4 Summary . 27

3 Proposed Work 29

3.1 Proposal . 29

3.2 Design . 31

3.3 Implementation . 32

3.4 Local Storage . 35

3.4.1 Adopted Cache Replacement Strategy 36

3.5 Peer-to-peer network . 36

3.5.1 Search . 38

xi

CONTENTS

3.5.2 Bloom filters . 38

3.6 Summary . 40

4 Evaluation and Results 43

4.1 Setup test . 43

4.1.1 Web application . 44

4.1.2 Clients . 45

4.2 Parameters . 47

4.3 Metrics . 49

4.4 Tests conditions . 51

4.5 Origin server not overloaded . 52

4.5.1 Images fit in local storage . 52

4.5.2 Images do not fit in local storage 54

4.6 Origin server overloaded . 55

4.6.1 Images fit in local storage . 56

4.6.2 Images do not fit in local storage 57

4.7 Discussion . 58

4.8 Summary . 59

5 Conclusion 61

5.1 Future Work . 62

Bibliography 63

xii

List of Figures

2.1 Internet Users in the World [45] . 12

2.2 Overview of Different Levels of Caching . 13

2.3 Hierarchical Caching - Pyramidal Representation 15

2.4 Distributed Caching Representation [17] . 16

2.5 Proposed Hybrid Architecture [17] . 16

3.1 Design overview for the proposed solution . 31

3.2 Web layers representation of the proposed framework 32

3.3 Comparison of the average weight of elements in web pages in 2015 [1] . . . 33

3.4 Javascript function that converts an image located remotely to data URL . . . 34

3.5 Before proposed framework has been loaded 34

3.6 After proposed framework has been loaded 35

3.7 Visualization of the Moodle logo’s entry and its metadata entry (that is se-

lected) in the browser’s local storage . 36

3.8 Example of peers pinging an end-point (end-point icon downloaded from [42]) 37

3.9 Visualization of an element testing in a bloom filter (used online simulator at

[27]) . 39

3.10 Example of a peer’s bloom filter propagation 40

4.1 Representation of the navigation sequence executed by every client instance. 46

4.2 Representation of the interactions between Selenium, Geckodriver, and Firefox 46

4.3 Visualization of a piece of code from the developed Java program 47

4.4 Visualization of the developed Bash script . 48

4.5 Server network throughput comparison . 53

4.6 Server network throughput comparison . 55

4.7 Server network throughput comparison . 57

4.8 Server network throughput comparison . 58

xiii

C
h
a
p
t
e
r

1
Introduction

1.1 Context

Several web applications that operate on large scale use services that rely heavily on Web

caching infrastructures. These systems temporarily store website’s and web application’s

contents in order to improve their access, resulting in overall reduced bandwidth usage,

server load, and user-perceived latency. The main advantage of using these systems is to

provide a better user experience, without compromising server-side reliability. Nowadays,

this solution is widely adopted due to the natural growth of web services that have to

provide content quickly and efficiently to a large amount of users simultaneously. This

requires efficient software and, specially, efficiency on network and hardware manage-

ment.

Distributed cache systems can be configured properly to improve efficiency of differ-

ent services. One example is a well-known simple memory caching solution: MemCached

[79], which is an open-source implementation of an in-memory hash table, which pro-

vides low latency access and shared storage at a low cost. This solution is an attractive

component in a large scale distributed system. There are other solutions of this type such

as Redis [26] - also used as a database and message broker.

When we talk about content distribution systems two architectures have been tra-

ditionally adopted: CDNs (networks based on content delivery infrastructures) where

clients download content directly from dedicated, centralized servers; and peer-to-peer

CDNs, where clients download content from other clients. Recently a combination of

these two systems was adopted - Peer-Assisted CDNs, which is an example of a system

combining both approaches. This type of system depends on a controlled infrastructure

but includes a peer-to-peer element to provide the content to the users. An example of

this is Akamai NetSession, being a product from Akamai, a huge commercial CDN that

1

CHAPTER 1. INTRODUCTION

exploits this architecture.

1.2 Motivation

Web caching has become a desirable solution for everyone. In addition to its advantages

referred in the previous section, a relevant motivation for users that visit websites with ef-

ficient caching systems (i.e., local cache) is the fact that they significantly save mobile data,

provided by their operators. This results in less financial expenses due to a reasonable

reduction of network usage.

Even relying on a distributed architecture, such systems have a limit on how many

content they can cache, penalizing the access to those that are eventually removed. Some

Web caching services use systems such as Akamai NetSession that require users to install

their software on their computers. For example, to use NetSession the required software

is the NetSession Interface, which runs in the background and whenever an object needs

to be downloaded this software will download it from edge servers, and in parallel obtains

and controls a list of the nearest peers (i.e., other clients running NetSession) that have a

copy of that object. The dependence on a software to enjoy this type of service negatively

affects the user experience, first because they have to install something on their computers

and second because even running in background there will always be other variables

going on, such as software security, corrections, updates, etc. Additionally, small to

medium scale web application operators might not have the financial resources to invest

in paid services such as Akamai’s CDN, while having an interest in exploiting cache layers

at the edge of the network.

In order to combat this dependency, it would be beneficial and advantageous to de-

velop new cache solutions that are totally transparent and enjoy the same properties of a

Peer-Assisted CDN system (similar to NetSession), for instance, by exploiting the user’s

browser local storage. Such solutions would be realized and enriched through the use

of WebRTC connections, so that it can be fully integrated in any browser (that supports

this technology, which is true for most modern browsers), without the need to install any

extension, plugin, or additional software.

1.3 Proposed Solution

To overcome network load problems on Web servers and the resulting slow access by end

users, in this dissertation we propose to develop a Javascript framework that optimizes

Web caching between clients, as detailed in Section 3.1. This solution can leverage on

components of the Legion [54] system and WebRTC connections, which offers the possi-

bility of using clients memory and local storage to temporarily store (cache) content, and

share it in a transparent way with other users within a peer-to-peer network.

The goal is to make users’ web applications access faster, making fundamental re-

source sharing by forming a cooperative cache between clients. This is more likely to be

2

1.4. DOCUMENT ORGANIZATION

achieved when the origin servers are overloaded, where the cost of sending and receiving

requests to them is potentially higher than asking peers who are active on the network,

potentially close by.

This solution will encounter several challenges, in particular the interaction of the

proposed framework with the Document Object Model (DOM), since elements of the

DOM will be manipulated during loading of web pages, while at the same time sharing

web content between clients and consequently storing these in the browser local cache.

1.3.1 Main Contributions

In summary, the main contributions of this dissertation are as follows:

• Design and implementation of a framework running transparently in the clients

browser that perform caching between users through peer-to-peer techniques (lever-

aging existing components in Legion and WebRTC connections).

• A peer-to-peer search mechanism tailored for our WebRTC network to locate.

• Browser’s local storage management through caching replacement strategies.

• Evaluation of the proposed solution and comparison to existing alternatives.

1.4 Document Organization

The remainder of this document is organized in the following manner:

- Chapter 2 describes relevant related work. Existing peer-to-peer technologies, and

Web caching systems and policies are discussed. Recent technologies are also referred

and briefly discussed.

- Chapter 3 describes the proposed solution.

- Chapter 4 presents the evaluation and results.

- Chapter 5 discusses and conclude this dissertation. It also suggests possible features

to be implemented in the proposed solution as future work.

3

C
h
a
p
t
e
r

2
Related Work

This dissertation faces the challenges of enriching distributed web caching systems with

transparent client support in the browser. However, some aspects must be considered.

The following sections cover these relevant subjects:

In Section 2.1 we briefly explain how peer-to-peer systems work, describing central-

ized and decentralized systems also discussing relevant solutions in this domain.

In Section 2.2 we study web cache systems, and existing web caching replacement

strategies, and recent developments. Also, we discuss existing implementations of dis-

tributed cache systems (e.g. Memcached and Redis).

In Section 2.3 we give an overview of some recent technologies which serve as back-

ground to address challenges faced by the work presented in the thesis.

2.1 Peer-to-peer systems

Peer-to-peer systems have attracted significant interest in recent years, but they emerged

around 2000. Projects like Napster [59], which is a music-sharing system, Freenet [22],

which is a platform for censorship-resistant communication, and SETI@home [7], which

was a volunteer-based scientific computing project, became the firsts peer-to-peer systems

that took a big impact on the Internet and most of them still operate nowadays.

Peer-to-peer is a distributed application architecture with a high degree of decentral-

ization, since most of the communication is done between the peers (i.e., client applica-

tions) directly. More specifically, system’s state and tasks are spreaded over them. Peers

have equal privileges, and they form a peer-to-peer network that is leveraged by those

applications. These participant nodes share their resources, such as network bandwidth

and disk storage, to other participants. Typically, they don’t need central coordination by

servers, however centralized states may exist but on a smaller scale, and is used mostly

5

CHAPTER 2. RELATED WORK

as fallback, being managed by a few dedicated nodes.

When a node is introduced to the system, little or no manual configuration is needed

to maintain the system. The participating nodes do not depend of a single organization

or control point, since they’re operated by an independent set of individuals who join the

system on their own.

In opposition to client-server systems, peer-to-peer systems have a low barrier to

deployment. This means the investment needed to deploy a P2P service tends to be

low, as the resources are contributed by the participating nodes. These systems grow

in a organic way and tend to be resilient to faults since there are few, if any nodes, that

are critical to ensure the system operation. Moreover, peer-to-peer systems tend to be

resilient to attacks because there is no centralized server or operation to be attacked that

could shutdown the entire system. Also, there is an abundance and diversity of resources

in P2P systems, that’s why it is easier to scale this type of services.

P2P systems can take different forms of serving content as a service. The most success-

ful and popular systems address sharing and distribution of files (e.g. eDonkey [86] and

BitTorrent [68]), streaming media (e.g. PPLive [80] and CoolStreaming [101]), telephony

(e.g. Skype [11]), and volunteer computing (e.g. SETI@home [7]). P2P systems have

also been designed for other proposes like distributed data monitoring [78], management

and data mining [20], massively distributed query processing [97], serverless email [57],

archival storage [70], bibliographic databases [33] and cooperative backup [31], but did

not have as much development and stability as the popular ones. Also, technology devel-

oped for P2P applications has been included in other types of systems, such as Akamai

Netsession [102], which uses P2P downloads to increase performance and reduce the cost

of delivering streaming content.

2.1.1 Overlay networks

An overlay network is a computer network built on top of another network. Peer-to-peer

systems usually resort to overlay networks, which are defined as directed graphs G=(N,E),

where N is a set of participant nodes (computers) and E is a set of overlay links. A connect

pair of nodes share their IP addresses so they can communicate with each other via the

Internet. These communications between peers fuels a peer-to-peer system by allowing

the system to have a natural organic growth when more nodes join the system.

2.1.1.1 Degree of centralization

The presence of centralized components allows to classify a peer-to-peer system, which

can be centralized, decentralized, or a combination of these two, which we name hybrid

system.

6

2.1. PEER-TO-PEER SYSTEMS

2.1.1.2 Partly centralized

These type of peer-to-peer systems provide a reliable and fast resource location, being rel-

atively simple to build, characterized by centralized components that coordinate system

connections and facilitate communication between peers. The centralized component

can be materialized by a set of dedicated nodes or a single central server. Due to this,

scalability is affected because some single points of failure might emerge. Examples of

these systems include most P2P BitTorrent protocols, that have a website, also know as

tracker, that keeps all information about peers activity and periodically provides each

peer in a swarm with a new set of peers they can (attempt to) connect to. However, as

soon as sharing begins, communication between peers will continue without the need of

constantly communicating with the centralized tracker. Another example is Napster, a

digital audio file sharing service that (in its origin server) maintained membership and

a content index in their centralized component (website); and BOINC [6], which is an

open-source middleware system that supports volunteer computing, consisting on a cen-

tral server system and a client software that communicates with the central component

in order to process work units and return the results of these computational tasks.

2.1.1.3 Decentralized

Decentralized peer-to-peer systems will typically spend more time and resources for lo-

cating resources due to the lack of a central entity that supports this operation. However,

by avoiding the existence of this central unit, they avoid single points of failure. Peers

have equal rights and duties and each one has only a partial view of the network. Scala-

bility, robustness, and performance are the main reasons why decentralized peer-to-peer

systems are very desirable.

Regarding the design of these systems, there are two dimensions [89]. Concerning to

the structure, these systems can be classified as flat (single-tier) or hierarchical (multi-tier),

and concerning to the logical network topology it can be structured or unstructured. The

difference between these two designs significantly affects the operation and interaction

among peers. For instance, it has a notorious impact in the way resource location queries

are propagated:

• Structure

– Flat: consists in a single layer of routing structures, being the load uniformly

distributed among all peers. This structure composes most decentralized sys-

tems.

– Hierarchical: consists in multiple layers of routing structures, providing effi-

cient caching, bandwidth saving, and fault isolation. Examples of this category

are Crescendo [38] and super-peer architectures [94]).

• Logical Network Topology

7

CHAPTER 2. RELATED WORK

– Structured Overlays: typically data is placed under the control of a DHT (dis-

tributed hash table), requiring more resources to maintain the overlay but

being more efficient on resolving exact match queries. Example of protocols

that form and maintain a structured overlay network (i.e., DHT) include Chord

[84], where queries are propagated to node’s successor through a ring of con-

nected nodes; and Pastry [75], which has slightly different routing tables at

each node.

– Unstructured Overlays: there is no mapping between the identifiers of objects

and peers, with each peer keeping information about only its own (and pos-

sible its direct neighbours) resources. Usually, this is intended as to protect

the user’s and publisher’s anonymity. Thus, queries are propagated among

all participants to get all possible results. An example of a popular unstruc-

tured peer-to-peer system is FreeNet [22], which is a platform for censorship-

resistant communication, that consists on distributing encrypted information

around the network and storing it on several different nodes, without using

any central servers or dedicated nodes.

2.1.1.4 Hybrid

The goal of these type of peer-to-peer system architectures is to obtain the best of both

centralized and decentralized architectures. To overcome the scalability issue on central-

ized systems, there are no servers. Peers considered more powerful are named super peers

and will act as servers to provide resources to a fraction of peers. Thus, resource location

can be made by a combination of decentralized and centralized search techniques (e.g.

centralized by communicating with super peers), where most of the traffic and consump-

tion of resources happens at the super-peers layer that interact with each other using

decentralized approaches.

2.1.2 Query Dissemination Techniques

Many popular peer-to-peer services face a critical problem: resource location. It is not

hard to locate popular resources, but less popular content that users want can become an

hard challenge. Query dissemination techniques [15, 51] consist of routing algorithms

that try to address this challenge on P2P systems. Centralized systems use a central

component that exchange information with users to speed up the location of required

resources, so there is no need to resort to these distributed query dissemination tech-

niques. In decentralized systems, structured overlays do not require them either, as they

are based on DHTs, which have efficient routing mechanisms for identifiers in each node,

for example by contacting a peer whose identifier is closest to the target resource iden-

tifier. On the other hand, in unstructured overlays there is an effective need to exploit

these techniques, since there is no direct correlation between the identifiers of objects

and peers and their location in the network.

8

2.1. PEER-TO-PEER SYSTEMS

2.1.2.1 Flooding

Flooding technique consists on disseminating queries among participants. This method is

simple to implement but scales poorly, working well on small networks with few requests.

Complete Flooding disseminates each query among all participants, this can cause

overhead with an extremely large number of possible returned answers for each query.

An example of a system using this technique is the Coral content distribution network

[25].

Flooding with Limited Horizon is a variant of flooding, which basically consists

on propagating a query but limited to a certain fraction of the overlay, with a time to

live (TTL) value that is decremented on each retransmission of the query. This strategy

reduces overhead introduced by the Complete Flooding, while allowing to miss relevant

hits for the query.

2.1.2.2 Random Walks

The random walk technique is an alternative to flooding, that consists on forwarding

(walking) the query message (walker) to a single randomly chosen overlay neighbor at

each step of the algorithm, also known as Blind Random Walk. When the resource is

found the walk stops. There are some extensions of this technique:

Guided Random Walks: employed to improve query efficiency, through exchange of

information between overlay neighbors in order to guide the random walk in the overlay.

A possible implementation of this technique relies on the use of Bloom Filters [13], where

each peer exchanges summarized information with its neighbors about their local indexes

in the form of bloom filters.

Biased Random Walks: each step of the algorithm is affected by information kept by

neighbors or that was previously obtained. This information is potentially imprecise.

Parallel Random Walks: initiates with k random walks in parallel that stop when the

resource is found.

Limited Random Walks: defines a threshold on the amount of total random walks

that the algorithm will use, and stops even if the resource is not found.

2.1.2.3 Gossip-based

Gossip-based techniques consists on the use of interest communities to locate user re-

sources, through a collaborative process between them. The routing process addresses

the communication of the source peer with one or more neighbors, to forward a query

request. This query is disseminated randomly to other peers, and this process is repeated

until the query covers all (or most) of the nodes in the system.

Appropriate degree gossip search algorithm (ADGSA) is a gossip-based technique,

proposed in [40]. The authors of this work prove that, with a user profiling method

based on the characteristics of peers and the similarity built from an interest community,

9

CHAPTER 2. RELATED WORK

performance can be improved dramatically, including the success rate, recall rate, and

search response time, as compared to other resource location techniques in P2P systems.

2.1.3 Concrete System and Framework Examples

There are several web services that use peer-to-peer systems and frameworks to scale,

which improve user experience and reduce network load, without compromising system

reliability.

2.1.3.1 Legion

Legion [54] is a framework that allows client web applications to replicate data from

servers and propagate those among other clients through peer-to-peer interactions. Mes-

sages are propagated through the overlay network, where a communication module ex-

poses an interface with point-to-point and multicast primitives. This allows a client to

send a message to another client or to a group of clients, where these messages are secured

using a symmetric cryptographic algorithm.

This framework allows the use of extensions to leverage existing web platforms, an

example is that they implement an extension that interacts and exports the same API as

Google Drive Realtime (GDriveRT). This allows the interaction and sharing of the same

objects between legacy clients accessing GDriveRT directly and enriched clients using

Legion. In the referred paper, an experimental evaluation shows that this framework

provides much lower latency for update propagation among clients and a decrease of the

network traffic load on servers.

In short, Legion offers shared mutable data and replication, while handling all con-

currency issues, with clients interacting with each other automatically through WebRTC

or by using client-server only interactions, ensuring reduced server load and scalability.

2.1.3.2 Akamai’s NetSession

Akamai’s NetSession [102] is a famous peer-to-peer CDN system. It operates since 2010

and has more than 25 millions users in 239 countries. The goal of NetSession is to dis-

tribute content, provided by content providers, such as software and media publishers,

to Akamai users, improving their download efficiency and speed. This system is com-

posed by an infrastructure of edge servers operated by Akamai, and users that participate

through a software called NetSession Interface. The edge servers also support critical

functions, such as content integrity verification, by generating and keeping secure content

IDs and hashes of each file piece; and authorization, by providing HTTPS connection that

will authenticate peers before they can receive content from other peers. The software

allows Akamai to use user’s idle bandwidth and computing resources to upload files to

other Akamai users, by joining a peer-to-peer network. A drawback of this service is the

obligation that users have to install and use additional software on their computers.

10

2.2. WEB CACHE

Concerning peer coordination and accounting, it is independent from Akamai edge

servers, being exclusively done by a specialized group of globally-distributed servers

called the NetSession control plane [102]. Each control plane server has the task of run-

ning some components. They can run Connection Nodes (CNs), which are the endpoints

of the TCP connections peers open when they become active; Database Nodes (DNs),

which keeps a database with details about peers activity and their objects availability;

STUN, which is a component that peers periodically exchange information with about

their connectivity, that is stored in the DNs, which enable Network Address Translation

(NAT) traversal; and Monitoring Nodes, which is a component that receives peer infor-

mation about operations and failures, such as application crash reports, thus helping to

monitor the network in real-time and gathering useful information to solve user issues.

2.1.3.3 Peer5

Peer5 [65] is a peer-to-peer Content Distribution Network (CDN) for massively-scaled,

high-quality streaming. It consists on an elastic mesh network based on WebRTC that

provides resources for users to load video content from each other. Its hybrid switch-

ing algorithm decides if a viewer should load either from the P2P network or from the

publisher’s alternative delivery system, reducing the provider’s average bandwidth us-

age, while improving user experience. As the P2P layer is built on top of a client-server

distribution system, it is less likely for peak demand issues to ocurr, increasing reliability

of the service and reducing failures in other critical situations. Regarding the system’s

security, Peer5 uses WebRTC data channel to transfer data between users and every single

communication is secured with SCTP protocols and TLS encryption, and with the Peer5

backend, the information exchanged is secured with WebSocket that also uses TLS.

2.2 Web Cache

The Web has been constantly growing, particularly during the last decade. Web service

bottlenecks and an increase of load on the Internet have led to a search for solutions

to attenuate negative effects of this growth such as server overload and increased user

perceived latency. Although there have been big improvements on websites itself and

Web servers, this was not enough to keep up with this kind of growth.

As it is shown in Figure 2.1, in 1995 the Internet already had approximately 44 million

users, in 2005 the users increased to approximately 1 billion, and last year (2016) the

user base had grown to approximately 3.4 billion users, which corresponds to 46% of

the world’s population. This represents a growth of almost 8000% of Internet users

during the last decades. Imagine that if we had not taken steps to manage this growth, it

would probably be impossible to have fast access to websites nowadays. Thus, different

techniques have been adopted to minimize network load and improve quality of service

11

CHAPTER 2. RELATED WORK

Figure 2.1: Internet Users in the World [45]

as to provide a better user experience. Web caching has proven to be an effective solution

in this matter, making possible a sustained web scalability.

Web caching allows to temporarily store and serve (cache) data, like HTML pages,

images, videos and other files types, at locations that are close to the clients, so they can

get faster access to them. Since it’s not possible to cache every web server’s objects due to

space availability and cache size, usually popular objects are the ones that are stored in

this architectures. Web caching has a directly impact on the reduction of user-perceived

retrieval latencies or delays, loads on the origin server (the number of requests effectively

reaching and being processed by it), and overall network activity. This mechanism is

very desirable for users, who avoid traffic congestion or delays issues when accessing

websites. Other entities take great advantage of this, such as network administrators and

people who create contents and manage their own websites. However, this solution is no

panacea, as it faces an ambiguous problem: replacement strategy. From the point of view

of cache management, the replacement strategy is fundamentally the policy that refers

to the process of evicting old objects from the cache when it’s full, so that it is possible

to make free space to store new objects. Finding and choosing the best one, or a mixture

of the existing ones, can be a hard challenge because different strategies have different

design rationales and optimize different resources and aspects of systems.

Another fundamental question in Web caching is which objects should be cached or

not, for example, is it worth to cache all popular objects? A good solution may be finding

a trade-off between the number of references to certain objects and the time those objects

are maintained in the cache. Dynamic websites have increased difficulty in measuring

these situations because the content changes frequently and the number of requests to

12

2.2. WEB CACHE

objects has huge variations.

2.2.1 Different Levels of Caching

Cache infrastructures are widely spread and located in many places across the Web. They

can be referred as proxy servers, acting as intermediaries between clients and servers

intercepting all Web requests at the boundaries of networks. Traffic that flows through a

proxy server can be analysed, filtered, cached, modified, and secured when needed. There

are two types of proxy servers: Forward and Reverse. A forward proxy provides services

to a single client or a group of clients, and usually works with a firewall to provide more

security to an internal network by controlling traffic from its clients that are directed to

origin servers. In opposition to what a forward proxy does, a reverse proxy acts in the

behalf of servers, typically as their load balancers and hiding their identities from the

Internet. These proxies can act as proxy-cache servers, which in addition to the standard

features of standalone proxy servers, store (cache) content to allow Web services to share

those resources. Squid [81] is an example of a web caching proxy that can function as

a forward proxy (default operation mode) and can also be configured to function as a

reverse proxy.

However, proxy servers are not optimized for caching. They are in the way of all user

traffic, which may cause some negative effects, such as network bottlenecks in the pres-

ence of heavy network loads, additionally, software or hardware failures can compromise

the entire network operator. Also, this might require configuration of each user’s Web

browsers. Network caches [5] or Transparent caching [28] are solutions that optimize the

Web caching process. They are designed to achieve transparency to clients through the

WCCP (Web Cache Communication Protocol) [63], by intercepting and analyzing HTTP

requests, and redirecting them to Web cache servers. Contrarily to proxy servers, this

web caching solution does not require any configuration of users’s Web browsers.

Figure 2.2: Overview of Different Levels of Caching

In terms of application-specific cache management, caches can be either implicit or

13

CHAPTER 2. RELATED WORK

explicit. Implicit cache means that all decisions are made automatically by the caching

infrastructure, which usually is dependent on the network’s activity and on applications

in the environment that influence the traffic flow. It doesn’t allow developers, with their

applications, to take control of the cache. For example, Web browsers and most network

cache infrastructures (e.g. proxies) manage their cache automatically, without accepting

control of applications/extensions in the network. On the other hand, explicit cache

means that applications can manually take control of the cache. For example, Web Storage,

which is the client local storage, allows it by granting applications code privileges to

manage this layer of caching. Using this application interfaces developers can optimize

caching by choosing adequate replacement strategies for their application purposes.

As shown in Figure 2.2, there are different locations throughout the Web where objects

can be cached. On the client side we have the Web browser’s cache and Web storage.

Proxy/cache servers can be located near the clients in local networks (e.g. institutional

networks), inside ISPs networks, across the Internet and near origin servers (reverse

proxies).

When a requested object is found on a cache server at some level, it is sent to the

client and can be propagated to all previous intermediate proxy/cache servers. Thus, the

next time the same object is requested, it is returned faster, as it now resides closer to the

client.

This work will focus on cache infrastructures that allow developers to manage its

decisions - explicit caches on the client side.

2.2.2 Caching Architectures

In the beginning of the Internet, Web caching was a solution naturally undeveloped.

From local cache by a single browser to a shared cache serving all clients from a insti-

tution, caching architectures have been developed continuously. There are hierarchical,

distributed, and more recently, hybrid architectures. Caching architectures allow coopera-

tion between cache proxies. A web object present in the cache is a result of the probability

of users wanting to access it. These architectures will help to ensure a structure so some

form of coordination or communication might be required to exist between these different

levels of caching.

2.2.2.1 Hierarchical Caching

The caching hierarchy, shown in Figure 2.3, denotes different cache layers at several levels

of the network: bottom, which is the lower level of the hierarchy are the client caches,

followed by institutional, regional, and national layers. If a document request is not

satisfied at a certain cache level, it is redirected to the layer above it and if it is not found

at any level, the national level contacts directly the origin server. When a document is

found it goes down the hierarchy, potentially inserting a copy at each of the intermediate

caches (this depends on the policies governing each cache layer). Several approaches

14

2.2. WEB CACHE

based on this architecture were designed, such as the Adaptive Web caching [100] and

the Access Driven cache [95].

Figure 2.3: Hierarchical Caching - Pyramidal Representation

2.2.2.2 Distributed Caching

This architecture, illustrated in Figure 2.4, manages a cooperation between caches on the

bottom level of the network. No intermediate copies are stored in the network, and there

are only institutional caches which serve each others misses. These institutional caches

store a copy of all locally requested objects. To share object copies between them, they

keep metadata information of all objects of others institutional caches that are cooper-

ating, to decide which cache will be chosen to retrieve a missing object. When a new

object is fetched in any cache, its metadata is immediately updated at all cooperating

institutional caches. Several instances of this architecture were designed, such as Internet

Cache Protocol (ICP) [91], which sustain object finding and retrieval from neighbors as

well as from parent caches, and Cache Array Routing protocol (CARP) [24].

2.2.2.3 Hybrid Caching

This architecture embodies aspects from both previously described caching architectures,

where certain caches cooperate at the same or higher level of a caching hierarchy using

distributed caching. Several approaches of this architecture were designed, such as in [90],

where the authors propose to "employ the hierarchical distribution mechanism for more

efficient and scalable distribution of metadata". In [5], the authors focus on designing "an

hybrid-caching architecture for improving caching that has the lowest latency delivery

15

CHAPTER 2. RELATED WORK

Figure 2.4: Distributed Caching Representation [17]

time for popular documents". In [17], the authors propose "a cooperative caching system

that aims to achieve a broadband-like access to users with limited bandwidth, constructed

from the caches of the connected clients as the base level, and a cooperative set of proxies

on a higher level", as captured by Figure 2.5.

Figure 2.5: Proposed Hybrid Architecture [17]

2.2.2.4 Discussion

According to [73], hierarchical caching can be used to provide object search efficiency.

This is because object metadata is distributed between caches and contains information

about their location. By using intermediate caches in the network, such solutions are

able to reduce the bandwidth usage and network distance to hit (i.e., find) an object.

16

2.2. WEB CACHE

However, they need sophisticated load balancing algorithms or powerful intermediate

caches to overcome situations as high peaks of load that will cause high latencies visible to

clients. This architecture can be less desirable for having redundancy of objects, by having

multiple copies of the same object stored at different cache levels, as higher cache levels

may turn into bottlenecks and may have long queuing delays. Distributed caching resides

on traffic flowing through low network levels, which are less congested, providing better

load sharing and fault tolerance. However, by only using cache at the edge of the network,

administrative issues may arise. Also, large-scale deployment of this architecture may

encounter some problems, such as high bandwidth usage and large network distances.

A proper hybrid architecture can combine the advantages of both these alternatives, by

reducing the connection and transmission time.

2.2.3 Replacement Strategies

Replacement strategies are important because they are essential to optimize caching

mechanisms. Effective solutions need to adopt policies that determine the relative value

of caching different objects, predicting next-request times. These decisions have to be

reconciled with the type of service that is made available to customers, to provide them a

better user experience. For each Web request, several different types of objects can be re-

quested and those can influence the replacement mechanism when a caching component

becomes full (i.e., has no more available space). Multiple characteristics of these objects

can be considered in the design of replacement strategies, namely:

• recency: time since last access to the object

• frequency: number of past requests for the object

• size: size of the object

• cost: cost to fetch the object from the origin server (e.g. latency or number of

network hops)

• modification time: time since last modification of the object

• expiration time: time when an object in the cache must be replaced (to avoid

continued access to outdated versions of the object)

According to [67], a replacement process is usually guided by two watermarks: H

(high) and L (low). On a cache miss (i.e., when one object is not present in the cache), the

cache acquires and stores the requested object. If the size of all stored objects exceeds

the cache size, some objects are removed, and if the size of all stored objects in the cache

exceeds H, objects are removed until the size of all the remaining objects is bellow L.

There are different proposals of replacement strategies classifications. In this work, we

follow a combined classification proposed by the authors of the referred paper, with a few

17

CHAPTER 2. RELATED WORK

adaptations: recency/frequency were moved to Combined Strategies (Section 2.2.3.11)

and a size-based category was added, given in [92].

2.2.3.1 Recency Based Strategies

Recency based strategies use recency as the main guiding factor to select objects for re-

placement. Most of these strategies are an extension of the Least Recently Used (LRU)

strategy, which discards the least recently used objects first. This strategy has two types

of locality: temporal, which refers to repeated accesses to the same object in small periods

of time; and spacial, which refers to access patterns where access to some objects imply

access to others (considering the past pattern of access to objects). These policies take into

account the time and size/cost of LRU. The rationale behind this category of replacement

strategies is that recently accessed objects have more probability to be accessed in the

near future.

The LRU strategy removes the least recently referenced object. The following strate-

gies are some well known variants of the LRU strategy:

• LRU-Threshold [2]: a certain object is not cached when the size of it exceeds a given

threshold, otherwise this strategy is equivalent to LRU.

• LRU-Min [2]: tries to minimize the number of removed/replaced documents, by

setting a threshold that is the size of the requested object, and applying LRU to all

objects whose size is equal to or larger than that threshold.

• HLRU [87]: based on the history of the number of references to a certain object. A

function hist defines the time of the past references to a specific cached object. This

policy replaces the object with the maximum hist value, and LRU is used if there

are many cached objects with hist=0.

• LRU-LSC [41]: uses a LRU list to determine the "activity" of different objects. This

value is measured by a function based on the factors: last request time, size, and

cost of retrieval of the object.

The SIZE strategy removes the biggest object and LRU is used for objects with the

same size, and the following strategies are variants of it:

• LOG2-SIZE [74]: results in computing the logarithm of the object size and then

applying the floor function, to sort objects and differentiate them with the same

value by LRU.

• Pitkow/Reckers [66]: objects requested on the same day are differentiated by their

size and the largest files are removed first, and LRU is used for objects that were not

referenced within the same period of time.

18

2.2. WEB CACHE

• PSS (Pyramidal Selection Scheme) [4]: makes a pyramidal classification based on

the size of the objects (e.g. higher level has only objects with size 1, in the level

bellow only objects with size 2 to 3, etc). Each level has a LRU list, and whenever

there is a replacement, the object values in each level are compared.

• Partitioned Caching [58]: similar to PSS strategy but classifies objects into three

groups: small, medium, and large. Each group has its own cache space and is

independently managed using the LRU strategy.

The following strategies use time as a factor to measure the importance of the objects:

• EXP1 [98]: LRU uses the time period between the current time and the time of the

last request time for each object.

• Value-Aging [99]: defines a function based on the time of a new request to an object,

and removes the smallest value.

2.2.3.2 Discussion

Recency based strategies are good when users desire the same Web object over the same

time period, since a recently referenced object is likely to be referenced again in the near

future. Most of these strategies use LRU lists, having good performance and low com-

plexity, due to the possibility to use an implementation based on lists, where an accessed

object is inserted at the head of the list and replacement takes place at the end. However,

LRU does not take into account the access frequency or size of the objects. Simple LRU

variants do not combine recency and size in a balanced way. In every replacement, size

should be considered because typically, objects with different sizes might have different

costs to be fetched from the origin and their existence in the cache takes space enough to

store multiple smaller objects. The SIZE strategy is too aggressive by giving exaggerated

importance to the objects size, LRU-Min also suffers from this effect in a smaller scale. A

good trade-off is found in the PSS strategy, where recency and size are well balanced, as

well as in a properly parametrized Partitioned Caching strategy.

2.2.3.3 Frequency Based Strategies

Frequency based strategies use frequency as the main decision factor when selecting

objects to be removed from the cache. Most of these strategies rely on variants of the

Least Frequently Used (LFU) strategy, that discards objects that are used least often first.

Thus, this policy is based on the popularity of objects, and this results in different objects

having different frequency values. This popularity reflects that most times, only a small

set of objects are responsible for most of the total requests, and ensures that these objects

are cached due to their regularity in being accessed.

19

CHAPTER 2. RELATED WORK

The LFU strategy has two possible implementations: Perfect LFU and In-Cache LFU.

The first one counts all requests to every object, and this counter is persistent over re-

placements, meaning all requests from the past are stored, which might incur in some

storage overhead. The second one is different from the first just in one aspect: the counter

only represents cached objects (not persistent as Perfect LFU) and therefore exhibits a

lower storage overhead.

The LFU strategy removes the least frequently referenced object. The following strate-

gies are some of the variants found in the literature:

• LFU-Aging [8]: this strategy introduces an aging effect to reduce space consumption

and avoid storage overhead. If the average value of all frequency counters exceeds

a threshold, these counters are divided by two.

• LFU-DA [8]: a problem of LFU-Aging is the dependency on the chosen parameters

(threshold and maximal frequency value). This strategy recalculates these parame-

ters whenever a request is made.

• α-Aging [98]: a method where a periodic aging function will decrease the value of

every object to α times its original value at each virtual clock tick.

• swLFU (Server-Weighted LFU) [48]: uses a weighted frequency counter, and the

weight for an object indicates how much the server appreciate the caching of it. LRU

is used as a tie breaker on objects with the same weighted frequency value.

• Aged-swLFU [48]: An extension of swLFU strategy. It removes the LRU-object

on every k replacement, with k=0 being the original swLFU strategy, k=1 a LRU

strategy, and k>1 a mixture of recency and frequency strategies.

2.2.3.4 Discussion

Frequency based strategies are good for websites and web applications which have objects

with consistent popularity and no significative changes or irregularities in access patterns.

However, in comparison with LFU-based strategies, they suffer from a particular down-

side, which is cache pollution. This issue is characterized by having a popular object

which then becomes unpopular, remaining in the cache for long periods of time without

being considered for removing. This is solved with the LFU-DA strategy, through the

dynamic aging technique. Although the LFU-Aging strategy includes an aging effect, it is

not a good solution because it always depends on the chosen parameters which might be

complex to fine tune in any arbitrary execution environment.

2.2.3.5 Size Based Strategies

Size based strategies use object size as the main factor when deciding which objects to

evict from a cache. Objects with larger sizes are removed first to make room for multiple

20

2.2. WEB CACHE

smaller ones. Objects are sorted by recency when they have the same size and the least

recently used object with larger size is replaced by the recently requested object when the

cache is full. This brings up a question: should bigger objects be removed first? If they’re

popular, they shouldn’t. Nowadays, it’s common that websites cache media files, which

are typically larger than other files.

The strategies of this category were already explained on the previous categories,

since they’re presented in recency/frequency based policies: SIZE, LRU min, Partitioned

Caching, PSS, CSS, and LRU-SP.

2.2.3.6 Discussion

These strategies work well in information-based websites that cache small files (e.g. news

and articles sites) that contain mostly text and few media files. However, this strategy has

poor performance for media based websites.

2.2.3.7 Function Based Strategies

Function based strategies use a particular function that computes an utility value to

each object, based on their frequency, size, cost, and other weighting parameters. These

strategies choose the object with the smallest value to be evicted from the cache first.

GD(Greedy Dual)-Size [18] is a simple operation policy: each object has a value H

and at each object request this value is recalculated. The algorithm chooses the objects

with the lowest H values to be replaced first, which are the objects with less cost (time

or resources) or that have not been accessed for a long time. Objects with the biggest H

values should stay in the cache longer. Nevertheless, there is an efficient implementation

of this strategy using a priority queue, keeping an offset value for future settings of H.

The remaining strategies have GD-Size as their representative policy. For example,

Server-assisted cache replacement [23], which proposes a caching policy that uses statis-

tics on resource inter-request times, that can be collected either locally or at the ori-

gin server, and then forward to the proxy. They use a price function framework, that

"values the utility of a unit of cache storage as a function of time". Their results show

that "server knowledge of access patterns can greatly improve the effectiveness of proxy

caches". Other example policies include GDSF [8], GD* [47], TSP(Taylor Series Prediction)

[96], Bolot/Hoschka’s strategy [14], MIX [60], HYBRID [93], LNC-R-W3 [76], LRV [72],

LUV [10] and LR(Logistic Regression)-Model [35]. Many of these strategies use similar

factors and weighting schemes, and choose the object with the smallest value for eviction.

2.2.3.8 Discussion

While function based strategies don’t use fixed factors, considering many factors to handle

different workload situations they are highly adaptive to multiple scenarios. However, it

is difficult to implement a function based strategy due to its heavily parametrized nature

that might require complex data structures. Additionally, complex functions might have

21

CHAPTER 2. RELATED WORK

operational overhead. Functions that consider the latency associated with fetching an

object can introduce noise on replacement decisions, since they are influenced by many

factors on the path between proxy servers/clients and origin servers.

2.2.3.9 Randomized Strategies

Randomized strategies use the randomness of decisions, without requiring data structures

to support replacement procedures.

RAND is the simplest randomized strategy, which evicts an object from the cache

randomly using a uniform distribution (all documents have the same probability of being

evicted). The following policies consist of additional factors:

• HARMONIC [41]: where RAND uses a uniform distribution, this strategy instead

evicts an object at random with a probability inversely proportional to the cost of

retrieving it.

• LRU-C, CLIMB-C, LRU-S and CLIMB-S [83]: randomized versions of LRU policy,

with assigned probabilities to evict each object depending on the cost of retrieving

it.

• RRGVF (Randomized Replacement with General Value Functions) [69]: selects

randomly N objects and evicts those that have the lowest utility value. This value

is a result of a utility function and it can be selected according with the execution

environment, application, or workload (e.g. based on the cost of retrieving it), since

the algorithm is indifferent of the function.

2.2.3.10 Discussion

In randomized strategies, CPU and memory utilization are significantly reduced, since

there is no ranking on objects and all eviction decisions are made essentially in a ran-

dom fashion. These strategies avoid the use of complex data structures, further avoiding

sources of overhead. Unfortunately, simple randomized policies do not have good perfor-

mance, which can be solved by using utility functions to rank objects in the cache.

According to [39], the workload driven simulations have shown that to maximize the

Hit Ratio (HR) the HARMONIC replacement policy obtains the best performance, but

obtains a poor performance on Byte Hit Ratio (BHR). In the BHR test, RRGVF obtains

the best performance for all cache sizes. In short, HARMONIC is better for caches located

near the user and RRGVF more bandwidth efficient for a proxy cache-origin server path.

2.2.3.11 Combined Strategies

Combined strategies use two or more Web object characteristics as the main factors (e.g.

recency and frequency). As a result, most of them introduce additional complexity.

22

2.2. WEB CACHE

Recency/frequency based strategies use recency and frequency, and try to combine

spatial and temporal locality. Example policies include Segmented LRU (SLRU) [9], LRU*

[16], LRU-SP [21], Generational Replacement [62] and Cubic Selection Scheme (CSS)

[85]). Among these strategies, only LRU* and Generational Replacement use simple LRU

with frequency counts. HYPER-G [3] use recency, frequency, and size as factors in their

replacement selection, which is an attempt to combine LRU, LFU and SIZE policies.

2.2.3.12 Discussion

These strategies, designed properly, may avoid some problems present in the individual

strategies that they try to combine, effectively achieving the best of both worlds. For

example, Recency/Frequency strategies avoid problems of recency based strategies and

of frequency based strategies. However, they incur in additional complexity due to com-

bination of multiple factors in their operations, which might make it extremely hard to

reason about the eviction decisions taken by them.

2.2.3.13 Developing Strategies

There are several developments regarding Web caching replacement strategies. These

policies are not commonly used on current caching systems. However, they represent

modern ways of managing caching components that might be used in a large scale in

the future. For example, Adaptive replacement [55] was shown to be a "self-tuning, low-

overhead, scan-resistant ARC cache-replacement policy that outperforms LRU. Thus,

using adaptation in a cache replacement policy can produce considerable performance

improvements in modern caches". Other example is Coordinated replacement, the

authors of [49] have observed experimentally that this strategy "significantly improve

performance compared to local replacement algorithms particularly when the space of

individual caches is limited compared to the universe of objects". Other examples in-

clude Combination of cache replacement and cache coherence [50], Multimedia cache

replacement [32], and Differentiated cache replacement [67].

A more recent paper [52] has introduced a new cost-aware replacement policy called

GD-Wheel, which is an implementation of the GD (Greedy Dual) algorithm that supports

a limited range of costs. The authors of this paper describe an implementation of this

strategy in the Memcached key-value store. This strategy integrates recency of access and

cost of recomputation efficiently. The results of this approach demonstrates that this new

replacement policy improves the performance (average latencies) of web applications.

2.2.4 Performance Metrics

Two conventional metrics can be used to compare the replacement strategies efficiency:

Hit Ratio (HR): is defined as the total number of object requests that were found in

the cache (cache hits), considering the caching management policies and mechanisms

23

CHAPTER 2. RELATED WORK

(e.g. replacement strategies), divided by the total number of requests. It is appropriate to

use if the objects are similar in size. This metric indicates the reduction of user-perceived

latency, with an high value indicating that the cache mechanisms are effective.

Byte Hit Ratio (BHR): the ratio of the number of bytes loaded from the cache versus

the total number of bytes accessed. It is appropriate to use if the objects vary in size. This

metric indicates the saved bandwidth between the proxy cache and the origin servers.

Other relevant metrics that evaluate the performance of Web caching:

Bandwidth Consumption: the goal is to reduce the amount of bandwidth utilization.

Cache Server Load: CPU and disk (I/O operations) utilization, that can affect nega-

tively end users with higher latencies.

Latency: there are several ways to measure latency: access latency for an object in

a cache, end user latency, latency between two proxy servers, etc. It is hard to evaluate

since this can be significantly affected by external factors to the cache (e.g. network usage).

This metric can be studied through the use of a cumulative distribution function (CDF).

As pointed out, several measurements can be applied to evaluate Web caching systems.

Although, it is important to realize that some of them are not very accurate due to external

factors.

2.2.5 Relevant Distributed Cache Systems

Distributed cache systems [30] came to replace the traditional cache concept in a single

location. A distributed cache can scale in size and might also offer transactional opera-

tions across multiple servers. Typically, this type of caching systems are used to speed up

dynamic websites by relieving their database load, caching objects in the main memory of

dedicated (cache) machines. This reduces the need to resort to slower accesses paths such

as databases and hard disks. Nowadays, machines can have huge main memory capacity,

since memory is becoming cheaper. Contrarily to conventional hard disks, main memory

can potentially be boosted by high performance storage, such as flash memory. Network

connection speeds are increasing in a way that bandwidth is no longer a significative

problem. These observations reinforce the rationale behind distributed cache systems,

since the aim is to improve caching efficiency, in order to provide faster responses to

user’s requests.

In these systems, objects can be replicated for achieving some combination of avail-

ability and locality-of-reference, partitioned for splitting data into sub-sets and allocating

them into different machines, to consequently route the requests for the right sub-sets of

machines, and invalidated to deal with object updates at the application layer.

2.2.5.1 Memcached

Memcached [34] is a free and open-source, high-performance, distributed memory object

caching system, developed by Brad Fitzpatrick in 2003 for the LiveJournal website. It is

an in-memory key-value store for strings and objects, resulting from database calls, API

24

2.2. WEB CACHE

calls, or web page rendering. This system is used by high-traffic websites such as already

refereed LiveJournal, a blogging and social networking system with more than 2.5 million

users and running more than 70 servers; and Wikipedia, the worldwide most used free

and online encyclopedia with more than 30 million users.

Its design [64] consists on a simple key-value store, in which objects are composed by

a key, pre-serialized raw data, optional flags, and an expiration time. Its implementation

is split between the client and server, where clients know which server they must contact

in order to do read or write for a particular object. In case of connection failures, they also

know how to proceed. Servers know how to store and fetch objects, and when to evict or

reuse memory. There is no synchronization or other forms of communication between

Memcached servers, with additional servers meaning additional available memory in the

server farm. Operation complexity is very low, since they are implemented to be as fast

and as lock free as possible. LRU is the default and representative replacement policy

used in this system, and objects expire after a certain amount of time.

Memcached has been rewritten in C (the original implementation was in Perl) to

further boost its performance. The client/server interface is simple and lightweight, with

client libraries for Perl, PHP, Python, Java, C, and other programming languages. They

all support object serialization using their native serialization methods.

2.2.5.2 Redis

Redis [19], is an open source, in-memory data structure store, used as non-relational

database, cache, and message broker, developed by Salvatore Sanfilippo in 2009. It

supports replication to scale read performance, in-memory persistence storage on disk,

and client-side sharding [56] to scale write performance. Redis stores a mapping of keys

to five different types of values: strings, list, sets, hashes, and sorted sets. It supports

writing of its data to disk automatically in two different ways: dumping the dataset to

disk every once in a while (Snapshotting), which is not very reliable due to possible

system shutdowns or power fails, or by appending each command to a log (Append-only

file), which is a fully-durable and reliable strategy. Also, it supports publish/subscribe,

master/slave replication, and scripting (stored procedures).

Redis is written in C and works in most POSIX systems, such as Linux, *BSD and OS

X. It can be used through APIs for most programming languages, such as Java, C, C++, C,

PHP, among others.

2.2.5.3 Discussion

Since Redis has more features than Memcached, the best option most of the time is Redis.

However, it depends on the system and environment that we want to integrate. If most

content to be cached is small and static (e.g. HTML code), Memcached is potentially

the best option. It is more efficient in the simplest use cases because it requires less

memory resources for metadata. If most content is medium-large and/or dynamic (e.g.

25

CHAPTER 2. RELATED WORK

video content), Redis is the best fit. It can stores several types of data natively due to

data structures support, resulting in less serialization overhead. Regarding scalability,

Memcached can be superior because it has a multi-threaded design. With consistent

hashing it is possible to scale up without data loss. On the other hand, Redis is mostly

single-threaded. It can scale by adding additional instances without loss of data, but

requires more resources due to set up and operation complexity.

2.3 Recent Technologies

Recent technologies have contributed to the design of better protocols to provide efficient

services in the Web. For example, HTML5 replaced Flash for reproducing video streaming,

making it more efficient and lightweight to desktop and mobile Web browsers. In the

following sections we discuss some recent web technologies that are relevant for this

work.

2.3.1 WebRTC

WebRTC is an open-source project that makes possible for web applications to communi-

cate directly between two browsers, without the need of installing any additional browser

extension or software. This communication is possible to occur through peer-to-peer

channels, without the need of using web servers as mediator to transport data. This

project relies on Real-Time Communications (RTC) capabilities using appropriate APIs

(e.g. Javascript API), so that developers are able to implement their own RTC web ap-

plications. It is capable of supporting high-quality communications on the web, such as

audio and video chat applications, and is supported on most popular browsers, such as

Chrome, Firefox and Opera, and on mobile platforms, like Android and iOS.

In the demonstration given in paper [88], they propose a peer-to-peer content dis-

tribution architecture using WebRTC Data Channels [46]. Its design is composed by a

bootstrap server serving as a central instance for joining the network and the users Web

browsers acting as peers. Point-to-point Data Channels allow data transfers between

peers, and on top of this a protocol for joining the WebRTC network and managing user

communication was implemented.

WebRTC is used to support and provide resources for the solution and prototype

developed in this dissertation.

2.3.2 HTML5

HTML5 is a language for structuring and presenting content for World Wide Web (WWW),

originally proposed by Opera Software [61]. It provides new features with support for

the latest multimedia formats, that were only previously possible with the application

of other technologies (typically external to the browser). Among all new features, some

technologies were originally defined in HTML5 itself and are represented in separate

26

2.4. SUMMARY

specifications, such as Web Platform Working Group (WPWG) - Web Messaging, Web

Workers, Web Storage, WebSocket and Server-sent events. Among them, Web Storage is a

protocol that deserves special attention due to its potential usefulness in the context of

the work presented in the thesis.

Web Storage is a web application software protocol used for storing data in a Web

browser. Before HTML5, data had to be stored in cookies (and sent back to servers in

every interaction). Web Storage supports persistent data storage, storing data locally

without degrading the performance of websites, which are never transferred to the server.

In most browser, it has a limit by default on storage capacity. This limit can be changed

by users, but not by web applications. Using specific object abstractions, it can store data

with no expiration date, and data for one session only, which is immediately lost when

the Web browser is closed.

2.4 Summary

This chapter discussed previous work in the areas related to the development of this

dissertation.

In the peer-to-peer context we specified degrees of centralization, and concerning to

the logical network topology, described structured and unstructured overlays. These are

useful to build direct browser-to-browser network to realize our caching mechanisms

among clients.

In the Web caching context we described its replacement strategies, and discussed

examples of distributed cache systems. Such replacement strategies will have to be em-

ployed in our cache system at the client level. Furthermore, policies in the centralized

cache might need to be adapted to better leverage the cache at the edge of the system.

In the recent technologies context, some recent and commonly used technologies have

been explored, which will be essential to implement our solution.

The next chapter presents our solution which consists of a framework that can be

integrated into any web application, with the purpose of optimizing web caching through

the exchange of resources between clients in a peer-to-peer way, directly and transparently

in their browsers. As a result, our solution enhances the reduction of the vast majority of

traffic imposed on the origin servers, and potentially improves end user experience.

27

C
h
a
p
t
e
r

3
Proposed Work

In this chapter we present the proposed solution, in particular the developed framework,

explaining in detail its purpose, design, and implementation. This work attempts to

improve content access latency for users of small and medium scale web applications

through cooperative cache between the clients themselves, and as consequence, reducing

the load imposed on origin servers.

This chapter is divided as follows: Section 3.1 presents the proposal, and gives an

overview of the proposed solution, showing the expected flow during its operation. Sec-

tion 3.2 gives the design of the proposed framework. Section 3.3 provides details regard-

ing the implementation of our prototype. Section 3.4 explains how the local storage is

used in our implementation. Section 3.5 explains how the peer-to-peer network works in

the proposed solution, how it is organized, and how resource search is executed over it.

3.1 Proposal

The proposed solution aims at developing a framework to optimize web caching between

clients, running transparently in the client browser. This framework takes leverage of

some components of the Legion framework, which creates a peer-to-peer network that au-

tomates creating connections and propagates updates among clients running in browsers,

leveraging WebRTC to support direct browser-to-browser communication.

In a client-server model, typically each web content request and response have headers

associated with it, and it’s through these headers that the server can tell the client what

to cache and for how long. This cache is automatically managed by the browser, usually

stores these web contents in the client’s local disk cache (i.e., local storage) as long as

the server doesn’t explicitly prevent the contents from being cached based on settings in

the http headers, and, when requested multiple times in the same session are cached in

29

CHAPTER 3. PROPOSED WORK

memory and always fetched from there during that session. In contrast, our framework

manages and takes full control of the client’s local storage, using caching replacement

mechanisms when necessary (i.e., cache is full), and retaining contents there to send it to

other peers (when requested) in a peer-to-peer way.

This approach allows users to transparently share content directly among them, with-

out the need of installing any kind of software, browser extensions or plugins, which

favors the adoption of this solution.

Figure 3.1 shows an overview of the operations flow that can occur during execution

of the proposed solution. A web request can be satisfied, following this priority list of

execution, as follows:

1. by the user’s own local storage, or;

2. by requesting the content to a (nearby) peer that has the content in its own local

storage, or;

3. by a cache server (e.g., Memcached), or;

4. by a persistent storage server (i.e., record store of a database system).

Regarding the scheme depicted bellow, whenever an object is found in a key-value

store (cache hit), it is first sent to the application/framework and only then sent to the

key-value store that does not yet have it (if any). This favors a quick response to the client,

by updating caches outside the critical path of the reply for the client.

30

3.2. DESIGN

Figure 3.1: Design overview for the proposed solution

3.2 Design

The proposed framework was developed in Javascript to be easily integrated in the front-

end of web applications. It can be divided into two parts: one part that is implemented

at the web application level and the other part a web layer over it. In other words, the

upper layer (parent layer) is a static web page for all visitors, while the lower layer (child

layer) will change state while browsing. The parent layer contains the base elements of a

website: header and body, optionally a footer. As shown in Figure 3.2, the header contains

site metadata elements and the import of required scripts, such as jQuery and the Legion

framework scripts. The body contains the iframe that points to the remote URL of the web

application. The developed application is integrated into the web application, located

in the footer, in order to be loaded after all elements present in the DOM are loaded.

Returning to the body of the parent layer, after the iframe it contains code associated with

client settings of the Legion framework, where message events enable communication

with other peers and consequently communication between web layers, that is, between

the Legion framework and our application (inside the iframe).

These two layers can communicate while users navigate through the web application

so that P2P connections are not lost within the navigation window. This is necessary for

31

CHAPTER 3. PROPOSED WORK

Figure 3.2: Web layers representation of the proposed framework

users to be able to share resources with each other while browsing the web application,

taking advantage of the storage of these resources in their local disk cache (local storage).

Exceptionally, there is only one way that the two layers can no longer communicate or lose

their connection, which is the user forcing a page refresh, outside the web application’s

navigation space. In Figure 3.2, we show a simplified version of these web layers.

3.3 Implementation

Our implementation focuses on the concrete case of images, by caching and sharing this

type of web content. Note however that we believe that this work can be generalized

easily for other web content type, such as HTML code, CSS files, JSON files, etc.

As it is shown in Figure 3.3, on average images occupy over 60% of the total weight of

web pages. When multiple images requests occur to origin servers, the load imposed on

them is significant. Beyond this, images are typically static content on websites, which

are naturally located in common parts of all of these: headers, footers, and other locations

in their layout. There are other situations where images do not change very often, such

as in users profile pages where we can visualize their photos/avatars, and in pages like

FAQs, where instructional images do not change often. Anyway, our framework can be

integrated into any web application, and works with all image formats, such as png, jpg,

svg, gif, and others. However, the default limit of local storage’s capacity in most browsers

is reduced, not allowing to store too much of these content.

During the implementation of this framework some challenges have arisen. One of

them was the way browsers render websites. In particular, it is not feasible to change the

elements present in the DOM of the website before the DOM is processed by the browser,

that is, to somehow get a script to trigger DOM manipulation mechanisms before the

browser itself does so. The DOMContentLoaded event fires as soon as the DOM hierarchy

has been fully constructed, the scripts will load when all the images and sub-frames have

32

3.3. IMPLEMENTATION

Figure 3.3: Comparison of the average weight of elements in web pages in 2015 [1]

finished loading. Taking into account the focus of this work, which are the images, this

causes all images to be rendered before we can change their properties and update the

DOM. The problem is that we do not want all the images to be requested directly from

the source server of that website (through GET requests), but rather that we can retain

them and manipulate their source before being rendered.

To work around this problem, small changes had to be made to the frontend of the

web application, in particular across all image HTML tags, which the default name is

, were changed to a custom HTML tag, that we named <notcachedimg>. This

custom tag adopted by us ensures that browsers are not able to identify this tag as an

image tag, and therefore, do not request its contents to the origin server and immediately

render it at the first contact with the DOM. Now we can ensure that only our framework

knows that this tag is an image tag. In other words, the browser renders all the HTML

tags it knows, the standard HTML tags, and the ones it doesn’t know are then processed

by our framework.

Given this step, the next question is whether the images to be loaded are in the user’s

local storage or in the local storage of other users, active in the P2P network. How to

find the resources on the network is explained later. Requests that could not be satisfied

in these steps will be routed to the origin server or a cache server, depending on the

configuration of the web application in question.

33

CHAPTER 3. PROPOSED WORK

The last step before "allowing" the browser to render the images is to convert our

custom tag to the standard tag, thus making it recognized by the browser. The difference

is that now the source path present in each image element in HTML will be different.

This source path is a local URL (or string). This local URL can be obtained, as already

mentioned, through an active (peer) user in the network, or through the origin server,

carried out by the encoding of the image to Base64. As it is shown in Figure 3.4, the

image is loaded as a binary large object (blob) via a XMLHttpRequest, which enables a

Web page to update just part of a page without disrupting what the user is doing, and

then use the FileReader API to convert it to a data URL in Base64, which is a string. The

result is stored in a key-value store (i.e., local storage), where the new entry contains the

image URL as key, and its data URL as value.

Figure 3.4: Javascript function that converts an image located remotely to data URL

An example of this approach follows below, where we can visualize a part of the DOM

in the form of HTML that has the logo image tag of the Moodle web application. Moodle

is going to be used as web application in our experimental evaluation, as we will discuss

later in this dissertation. It is shown in Figure 3.5, at the time when the browser has not

yet loaded our framework, the source code showing the DOM presents the custom HTML

tag of the image and its source path points to the origin server, and then in Figure 3.6, at

the time when our framework had already been loaded, presenting the standard image

HTML tag and its source path points to the Base64 string (or data URL).

Figure 3.5: Before proposed framework has been loaded

To automate the change of these HTML image tags in every web page of the applica-

tion, we developed a small program that search them (i.e.,) and replaces

34

3.4. LOCAL STORAGE

Figure 3.6: After proposed framework has been loaded

with the custom tag (i.e., <notcachedimg src = "...">). In order to run this program, it is

only necessary to indicate which web application files have these HTML tags, which typ-

ically are the ones that represent the views in a Model–view–controller (MVC), to carry

out the replacements. This way we allow easy automation and preparation of integration

of the proposed solution in typical web applications.

3.4 Local Storage

As previously mentioned, this solution uses the browser’s local storage to store content

present on the application’s web pages and communicates with the Legion framework

to make it available to other users in the P2P network. Each user decides whether or

not to store the content in an almost random way. This is because we want to allocate

different content among the peers, in order to make nodes in the network useful to each

other but without incurring in high coordination overhead among the multiple clients.

This randomness consists of the result of generating a random number between 0 and

1, where a custom random seed [12] is previously generated. This seed consists of the

concatenation of two parameters related to the received content and also can be related to

the user information. If the content is obtained within the P2P network, the parameters

are: content key and user identification (i.e., imageURL + peerID), and the probability of

being stored is 30%, which the random number must be between 0 and 0.3; if obtained

directly from the origin server, the parameters are the content key and the current time

(i.e., imageURL + timestamp), and the probability of being stored in local storage is 90%,

so the random number must be between 0 and 0.9, which is very likely to happen.

These parameters can be changed according to the context of the application that is

intended for the proposed framework. We give these values to the stated probabilities

because we want to prioritize content that is downloaded from the server to avoid going

to the server requesting for the same content. This way, retaining as many requests as

possible among users within the network, potentially leaving a few remaining requests

to cross the client-server frontier.

Local storage capacity varies from browser to browser, typically the default value is 10

megabytes per origin (per domain and protocol), and it can be changed by users in a few

browsers. Since 10MB is a low threshold for the needs of many small and medium-scale

web applications, we had to think of a way to manage new content entries in the local

storage. One way to address this is to remove content that is less useful at the moment

for a specific user.

35

CHAPTER 3. PROPOSED WORK

3.4.1 Adopted Cache Replacement Strategy

As detailed in Section 2.2.3, there are many policies or strategies for caching replacement.

In this work, we chose to use a recency based strategy (see Section 2.2.3.1). For the

proposed solution, we used LRU strategy which removes the least recently referenced

object.

To implement this strategy we had to have some place to store this factor associated

with the objects. For this, whenever we store an image into local storage, its metadata

is also stored into it (see Figure 3.7), which contains its recency value, and time-to-live

(TTL) value, in the respective order. The value of recency is a timestamp in milliseconds,

when updated its value is replaced by a current timestamp. The value of TTL is also a

timestamp, when updated its value is replaced by the result of a current timestamp plus

a timestamp of how long we want the content to be cached (e.g. current timestamp + one

year timestamp). This metadata is also stored into a data structure in memory, for faster

readings access during a session. When a session starts, each image metadata is loaded

into memory. Every time an already cached image is accessed, its metadata is updated in

memory and on disk, keeping information persistent.

Figure 3.7: Visualization of the Moodle logo’s entry and its metadata entry (that is se-
lected) in the browser’s local storage

3.5 Peer-to-peer network

As already pointed in this chapter, the P2P network is managed and automated by the

Legion’s framework components. Whenever a user wants to join the network, it is first

redirected to the server where Legion centralized component is executing. Then it is con-

nected to other peers according to its latency to a certain end-point. This way, the network

is organized into user groups that are close to each other, leveraging fast communications

between them and potentially reducing end-user latency when accessing cached contents

in peers through the Legion overlay network.

Legion framework uses a small API called HTTP Pinger [43] to measure each peer’s

average latency to a certain end-point, in order to get an approximate notion of relative

proximity between peers. If the difference of these peers average latencies to a certain

end-point is equal to or less than a certain interval (e.g. 50 ms), the Legion framework

assumes that peers are close to each other and can establish a connection. This latency

interval can be configured as desired by the web application owner. This way, it can be

tuned depending on the number of users that are accessing the web application on a

global scale. For example, considering only users located in Europe, if there are many of

36

3.5. PEER-TO-PEER NETWORK

them concentrated in Western Europe then a low latency interval is effective as there will

be more good matches between them. That is, the probability of improving their access

to the web application will be higher because the latency between them is likely to be low

when sharing resources. On the other hand, if users are more widely spread in the world,

a low latency interval will cause them to fail to connect, and a high latency interval may

cause web application access less efficient since latencies between them are likely to be

higher. In turn, it might be more rewarding for them to connect directly to the server

instead of fetching resources from the P2P network.

An example of this approach is shown in Figure 3.8, where 3 peers ping an HTTP

end-point. Peers P1 and P2 will establish a connection, since the latency interval between

them is about 36ms, so less than 50ms. The peer P3 is relatively far away from the

end-point, so it will not connect to P1 or P2.

Figure 3.8: Example of peers pinging an end-point (end-point icon downloaded from
[42])

Therefore, peers within the P2P network are essentially organized by their distance.

Also, it is possible to configure some relevant aspects related to their close (neighbors)

and far peers. These belongs to the options of the Legion overlay protocol:

• MIN_CLOSE_NODES - the minimum number of close peers;

• MAX_CLOSE_NODES - the maximum number of close peers;

• CLOSE_NODES_TIMER - time that takes for the network to update the peers con-

nected to a certain peer in case the number of close peers is less than the minimum

or greater than the maximum number of close peers. This avoids unnecessary fluc-

tuations on the overlay due to the transit arrival and departure of a node.

A similiar set of parameters is used to take the management of distant peers, which

are MIN_FAR_NODES, MAX_FAR_NODES and FAR_NODES_TIMER.

These overlay protocol parameters are relevant to the performance of the providing

service. These must be suited to the dimension of the system where it is operating, taking

into account its potential scalability.

37

CHAPTER 3. PROPOSED WORK

3.5.1 Search

The way resources are located within the network plays an heavy role in the overall

performance of a P2P service. In the proposed solution we use Bloom Filters [13] to know

what peers have in their local cache, thus peers search is not performed in a random way.

This technique allows peers to search for resources by acquiring previous feedback from

their nearby peers (i.e., neighbours) and thus be able to send requests directly to them,

through the communication module of the Legion framework that allows point-to-point

communications.

As said, bloom filters are used to get a peripheral view of user content over the peer-

to-peer network, which results in the use of a space-efficient probabilistic data structure,

for instance, to know if a peer (potentially) has a certain web object, or definitely does not.

This reduces complexity in searches and potentially improve end user perceived latency.

3.5.2 Bloom filters

In the proposed framework, we used a simple implementation [27] of bloom filters, devel-

oped by Jason Davies. This implementation uses the non-cryptographic Fowler–Noll–Vo
hash function [36] for speed, being appropriate in this solution context, where we only

care about the uniform distribution of hashes.

In this implementation, the basic bloom filter supports two operations: test and add.

Test operation is used to check whether a given element is in the set or not. If it returns

false then the element is definitely not in the set, if it returns true then the element is

potentially in the set. Add operation simply adds an element to the set. The false positive

rate is a function of the bloom filter’s size and the number and independence of the hash

functions used. The bloom filter consists of a bit vector of length m, and when adding

an item to the bloom filter, it is fed to k different hash functions and set the bits at the

positions denoted by the result of each hash function. Sometimes the hash functions

introduce overlapping positions, so less than k positions may be set (i.e., if it had already

been set by a previous element added to the bloom filter).

In Figure 3.9, it is shown an example of element testing in a bloom filter containing

10 elements, where it checks if image3 is in the set. The result is true since it may be in

one of the three buckets of the bloom filter.

In our system, users exchange information (bloom filters) to optimize and possibly

reduce the number of future requests among them. For example, if a given peer needs

10 specific web objects, it is not reasonable to place requests containing these 10 objects

identifiers for all his neighbors. Most of them may only have one or two, or may not have

any of those objects available locally. In the worst case, it would not even be necessary

to send any message or request to them. This shows that the use of bloom filters can be

advantageous when applied to this framework.

Each peer’s bloom filter is always updated when new objects are stored in his local

storage. This update consists on removing the current bloom filter and creating another

38

3.5. PEER-TO-PEER NETWORK

Figure 3.9: Visualization of an element testing in a bloom filter (used online simulator at
[27])

.

one, adding all the current objects present in his local storage. This is necessary because

during browsing certain objects can be replaced by others, and since it is not possible

to remove elements from bloom filters (though this can be addressed with a "counting"

filter technique) each peer’s bloom filter must be re-created. As we’ll see later, not all

downloaded objects are stored in each peer’s local storage. After updating his bloom filter,

he sends it to all of his neighbors, and these neighbors will send it to their neighbors,

ending this propagation within the network (i.e., bloom filters are only propagated with

an horizon of two hops).

This approach allows peers to maintain updated information of their neighbors and

also the neighbors of their neighbors. A peer will only send requests to peers which

bloom filter validates the presence of at least one of his desired web objects. This way,

bloom filters can reduce potential network overhead and clearly solves the problem of

needless requests among peers who do not match with desired web objects. As it is shown

in Figure 3.10, peer P1 sends his updated bloom filter to all of his neighbours (P2, P3

and P4), then P2 and P3 send it to all of their neighbours, ending there P1’s bloom filter

propagation.

39

CHAPTER 3. PROPOSED WORK

Figure 3.10: Example of a peer’s bloom filter propagation

3.6 Summary

This chapter presented and explained the proposed solution, in particular the design and

implementation of the proposed framework.

In the proposal context we explained the purpose and characteristics of our solution,

and gave an overview of it with the expected flow during its operation.

In the proposed framework context we presented its design, explaining how our frame-

work can be integrated into any web application, explaining how it interacts with the

Legion framework in order to leverage peer-to-peer communications. Following this, we

explained in detail how the proposed framework was implemented in this work, pointing

out all the challenges encountered during its entire process.

In the local storage context we explained how it is used and leveraged by our frame-

work, in particular the decisions we take to cache content which depends on where the

content comes from (i.e., P2P network or origin server), and described the caching mecha-

nism adopted to evict contents from the local storage in case it reaches its storage capacity

limit.

In the peer-to-peer context we explained how peers connect to each other based on the

relative distance between them, how resource searching is performed within the network,

and how bloom filters are implemented and improve the process of obtaining resources

from other peers.

The next chapter presents the results and evaluation of this work, the setup environ-

ment in which the tests were run, which consists of a system with three type of nodes:

clients, the Legion server and the origin server (that hosts the web application). It de-

scribes the chosen web application, how clients are simulated in the experimental tests,

40

3.6. SUMMARY

the test conditions and used parameters. It also presents and explains the metrics used

to evaluate the proposed solution.

41

C
h
a
p
t
e
r

4
Evaluation and Results

This chapter presents the evaluation and validation of the proposed solution. The per-

formed evaluation focuses on the end user experience and on the load imposed on origin

servers. We verify our optimizations on web caching through resource sharing in a peer-

to-peer fashion.

This chapter is divided as follows: Section 4.1 describes all the setup environment

where the tests were run. Section 4.2 gives and explains the used parameters in the

experimental tests. Section 4.3 provides and explains the used metrics to evaluate our

solution and also the alternative one. Section 4.4 describes the test conditions, how were

they categorized/divided. In the following sections are the results obtained in each of the

test conditions.

4.1 Setup test

Experiments were performed in a system composed by three types of nodes: clients,

the Legion server, and the origin server. In this context, we refer to clients as multiple

automated browser instances running on virtual machines globally distributed (in our

setting we chose Europe and United States), simulating users navigating on their browsers

into a specific web application. This machines were provided by Microsoft Azure Cloud

Services. We refer to Legion server as a virtual machine that hosts the Legion centralized

component, located in an European data center, also provided by Azure. We refer to

origin server as a virtual machine that hosts the web application, located in an Australian

data center provided by Google Cloud Services, as we wanted clients to be as far away as

possible from the origin server. To measure if, in fact, it is more efficient for clients who

are nearby to share resources between them than go directly to the server that is more

distant to get those resources.

43

CHAPTER 4. EVALUATION AND RESULTS

These three elements are the main elements in the system but we have notion that

there are other factors that can influence the results of the performed tests, such as net-

work usage (see Section 2.2.4). In order to test our proposed solution and the currently

commonly used solution for comparison purposes, we needed to set up an equal envi-

ronment for both. In our experiments we rely on a simple client-server architecture as

baseline to access the of benefits of using our solution.

Since multiple client instances needed to be executed at the same time on each virtual

machine, it was necessary that virtual machines had enough computing power to avoid

loss of performance or running out of memory, while executing multiple automated

browser instances in parallel, this way we ensure that our evaluation is conducted in a

fair manner to both settings. Thus, we allocated a few virtual machines for clients, with

20 CPU cores and 64GB of RAM each. For the Legion centralized component, we chose

a virtual machine with 8 CPU cores and 32GB to host it. Regarding the server that hosts

the web application, we chose a virtual machine with little computing power (with 1

shared vCPU and only 1.7GB of RAM), since we wanted at one point to quickly exhaust

the server resources, so as to be able to compare the solutions in an overloaded state. This

in some sense captures the runtime environment of a small web application.

4.1.1 Web application

It was important to choose an easy to setup web application, which allowed us to change

its frontend code in a practical and clear way, to integrate the mechanisms of the devel-

oped framework within. We tried to install the Reddit web application and integrate our

solution into it, but there were some problems related to its setup. This is because we

have not been able to run this application in a remote domain, this being a recurring issue

identified by many users over the Internet. This is due to Reddit using a proxy (HAProxy)

at the front of the application, which is difficult to configure to work properly with a

non-local domain. Hence, we chose the web application Moodle [37], which was easy to

setup and has an easy to understand implementation.

Moodle is a web application widely used for academic purposes and in several situa-

tions its web pages contains multimedia contents, such as images. This way, we think this

web application is suitable for evaluation purposes of the proposed solution. For testing

purposes, it is relevant to try to make client behavior similar to the actual behavior of

users that regularly access Moodle in their universities. Moodle also brings multiple

ready-to-use modules of in-memory cache systems, such as Memcached. This way, it is

easy to setup the backend with a cache server operating in front of the origin server, po-

tentially decreasing page delivery latency when requests have to be served by the central

component of the application.

To install it in the available virtual machine, we used Apache as web server and

PostgreSQL as database server, since this is the required setup indicated in Moodle’s

installation guide. As described in Section 3.1, for the proposed solution we had to

44

4.1. SETUP TEST

slightly modify parts of the Moodle’s frontend code in order to integrate the developed

framework. We needed to test the proposed solution within the adapted Moodle web

application and compare to an existing solution. Thus, we chose as existing solution the

one that does not use a cooperative cache between users in a P2P fashion, that is, the base

Moodle web application without any code changes and without our integrated framework.

Both solutions were hosted in the same virtual machine, so that comparisons between

them could be reliable, as both run in the exact same setting.

4.1.2 Clients

The client side plays a key role in evaluating the proposed solution, since the proposed

framework is integrated into the application’s web pages and loaded transparently in the

client’s browser.

For the proposed solution, tests relied on two types of clients: seeders and leechers.

The seeders are the clients that run first and get some content of the web pages and

possibly cache them into their local storage, and remain active. Later, the leechers run

concurrently and join the P2P network, communicating with these seeders, in order to

obtain at least some content from them. This increases the likelihood that much of the

traffic passes through the clients (leechers), potentially reducing the burden imposed on

the origin server. So, leechers are the clients which we will focus on and evaluate.

For all tests, we decided that 10% of the number of leechers are seeders. For exam-

ple, for every 30 leechers that will run concurrently, 3 seeders will provide them some

resources. This means that on average, 1 seeder can send resources to 10 leechers at most.

We want the seeders to be peers that can satisfy many leechers, that is, could be a kind of

"super peers". Obviously, there is a probability of leechers connecting to other leechers,

and it is not possible to have guarantees that they are only connecting to seeders or to

more seeders than leechers. Note however, that a leecher access content they can start to

cache and serve that content themselves. This translates into what can happen in a real

world scenario.

Each experiment boils down to obtaining metrics directly related to client (leecher)

actions on the web application pages, that is, monitoring their navigation. This navigation

has been defined by us, which includes visiting/opening 10 pages in total since the client

starts and ends their navigation in the web application, as shown in Figure 4.1. Therefore,

this navigation starts on the home page, logs into the application and goes through several

pages, including "Random" pages, until the user logs out of the application. A Random

page is a page chosen (randomly) from 3 possible pages: Panel, Calendar, and Private

Files. We decided to use this to introduce some randomness in the middle of the clients’

navigation, so that the requests are not exactly equal to each user.

When this navigation sequence starts, we set a waiting time of approximately 5 sec-

onds in the initial page, so that clients have time to connect, in order to share resources

among them. This is a limitation imposed by the Legion prototype, but in any case it is

45

CHAPTER 4. EVALUATION AND RESULTS

not necessary in a real setting because even with clients entering the application while

some are in the middle of the navigation sequence, it will not impact others and still

manage to provide resources.

Figure 4.1: Representation of the navigation sequence executed by every client instance.

To automate a client’s navigation through the web application, we developed a Java

program which uses a software-testing framework that automate browsers, called Sele-

nium [77]. This software allowed us to define an automated navigation sequence within

web application Moodle. Since Mozilla Firefox supports Selenium and WebRTC connec-

tions, required for P2P connections to work leveraging the Legion framework, we ended

up choosing Firefox as web browser for the evaluation. This browser also has a headless

mode available, in order to run without its graphic interface running within the virtual

machines. In addition to Selenium, a driver was used to control the UI of the web applica-

tion: Marionette. This driver can remotely control either the UI or the internal JavaScript

of a Gecko platform, such as Mozilla Firefox. As shown in Figure 4.2, Selenium uses the

W3C Webdriver protocol to send requests to Geckodriver, which translates them and

uses the Marionette protocol to send them to Firefox.

Figure 4.2: Representation of the interactions between Selenium, Geckodriver, and Fire-
fox

In Figure 4.3, we can visualize a piece of code of the developed program. This code

shows some aspects of Firefox settings, namely the association of a Firefox profile to

be loaded when this browser is started, and the local storage’s parent directory. This is

due to each instance of Firefox being able to cache content in its own directory. In this

way, each client instance loads a Firefox profile with a specific path for the local storage,

not allowing resource sharing between Firefox instances running at the same time on the

same machine. We want each instance to correspond to an independent client, as if it were

real-life users, accessing from their personal computers in their homes or elsewhere. In

the mentioned figure, we can also observe the addition of certain capabilities in order to

allow the browser to run the web application features, as well as bypass unsafe certificates

46

4.2. PARAMETERS

in test mode (this does not disable security but enables us to run our evaluation without

acquiring certificates), and enable the headless mode.

Figure 4.3: Visualization of a piece of code from the developed Java program

In order to paralize multiple instances of this program in a virtual machine, we devel-

oped a small script in Bash to generate multiple processes by the operating system instead

of using Java’s threads management for this purpose. We tested these two options and in

fact we noticed that the parallelization using the Bash script is capable to manage system

resources much better than using Java. As we can observe in Figure 4.4, firstly a new

directory is created for storing the cached content, and for each instance a Firefox profile

is created and the developed Java program (with Browser/Selenium actions) is executed,

in parallel with the others. Also, as we can see in the code, it is generated a specific driver

(Geckodriver) for each Selenium instance to use, this is because we encountered problems

running when we shared the same driver between different instances of browsers and

Selenium.

4.2 Parameters

Our solution, which integrates the Legion framework, has several parameters which are

relevant for a given application:

End-point address(es): a parameter that defines the address(es) of the end-point(s)

to which the peers will ping, and thus the Legion centralized component is able to obtain

the relative distance between them. We used an end-point of httpbin, which the address

is https://eu.httpbin.org.

Maximum latency interval for connecting peers: a parameter that defines the prox-

imity that the connected peers will have (explained in Section 3.5). If it is a very low value

the Legion framework will only connect peers that are very close, if it is too high it will

connect the majority of the peers present in the network. We chose 50ms for this parame-

ter, since we want only users from the same continent to connect among them, potentially

avoiding high latencies between them in data transfers. The smaller this value, the more

likely the data transferred between them to take less time, but on the other hand it can

47

CHAPTER 4. EVALUATION AND RESULTS

Figure 4.4: Visualization of the developed Bash script

cause many peers to not be able to connect to anyone, which would render our framework

ineffective.

Reset timer to perform peer search: a parameter that sets the wait time until it per-

forms a restart on peer searches within the network. We chose 15 seconds for close peers

and 55 seconds for distant peers. This are default values in the Legion overlay settings. A

small value forces the network management to perform peer searches more often, which

may cause unnecessary network traffic.

Maximum and minimum number of close and far peers for each peer: a parameter

that defines the range of number of peers close and far, for each peer in the network. For

close peers we chose 10 as maximum and 3 as minimum, this means that if the number

of close peers is between this range the Legion network will not attempt to connect to

more when the reset timer to perform peer search fires. For distant peers we chose 0

for minimum and maximum, since we don’t want peers that are far from each other to

connect (we don’t want to wait for the latency to traverse long distances and this could

have a negative impact on the user experience, which would make a centralized system

probably faster in this case).

Timeout for P2P network responses after requests are made: a parameter that de-

fines the window of time that our framework waits for the resources coming from the P2P

network. It can be tuned according to number of neighbors that a peer has at the moment,

including not only his closest neighbors but also the neighbors of his closest neighbors

(two layers of neighbors, as explained in Section 3.5.2), and/or the number of images

48

4.3. METRICS

to be requested. We set the following values for this parameter: 0.5 seconds when the

number of images to be requested is bellow five, one second when the number of images

is between six and fifteen, and a maximum of two seconds when the number of images is

above fifteen. What happens is that the framework after each request continually checks,

every 50 ms, the current state of the incoming answers, and if all requests are satisfied or

all neighbors have already answered before the timeout has ended, it will stop the wait

and if possible load the respective images. If there is no neighbor or neighbor’s neighbor

that have the content that has been requested, no request messages are sent to them and

all the requests are forwarded directly to the origin server. This is possible by checking

the neighbor’s bloom filters (detailed in Section 3.5.2), preventing overloading the P2P

network with non-useful messages.

Bloom filter instantiation: a parameter that defines how the bloom filter of each peer

is created, which requires per application tuning of the total amount of content present

in its web pages in order to maximize its search and space efficiency. It can be set by two

parameters: m and k, as explained in Section 3.5.2. We used an online calculator [44]

to find the appropriate values for these parameters, that given the maximum number of

elements that can be inserted into the bloom filter and the probability of false positives

that can occur, it gives the correct parameters for m and k. This enabled us to set up a

generic bloom filter based on the total number of unique images that will be displayed

on web pages when our solution is tested. As we will see later in this chapter, for the

94-images tests the resulting values were m = 2703 and k = 20, and for the 144-images

tests the resulting values were m = 4141 and k = 20. Regarding the probability of false

positives, we chose the default one given in this online calculator: 1.0E-6. This value

tells us that the probability of the bloom filter telling us that an element is present, but

actually not being present, is very low. This is an acceptable value because we are almost

sure that the element we are checking for is available in that peer if the test over that peer

bloom filter returns true.

4.3 Metrics

We used the following metrics to evaluate the proposed solution:

• Average page load time: average loading time from the time the user clicks until

the web page is completely displayed (including all web content loaded, such as

html, images, scripts, etc);

• Success ratio: we consider three values: the percentage of requests satisfied by the

user’s own local storage, the percentage of requests satisfied by the P2P network

(i.e., local storage of user’s neighbours or linked peers), and, in the case the item is

not present in neither the local cache and in peers’ caches, the percentage of those

served by the origin server.

49

CHAPTER 4. EVALUATION AND RESULTS

• Server network throughput: the average outgoing and incoming traffic in the ori-

gin server, giving us the network load imposed on it while client browsers are

navigating through the application.

The average page load time and success ratio (for the proposed solution) were mea-

sured within our Javascript application after the web page is completely loaded (thus

integrated as a small script into the web application itself). The test program (developed

in Java) uses the interface JavascriptExecutor of the Selenium driver to return these val-

ues directly from the executing Javascript, which corresponds to the metrics of that web

page. To make sure that all of these values were final, that is, that the page had loaded

completely and the executing Javascript had reached the end of its execution, we wait for

two events to happen/fire within the browser:

1. DOMContentLoaded event has fired: meaning the initial HTML document has

been completely loaded and parsed. However this event does not wait for scripts,

stylesheets, and images to finish loading.

2. Boolean variable at the end of our executing Javascript has returned true: mean-

ing our framework has reached the end of its execution. Since our executing Javascript

is the last element to load on the DOM of each page, we are sure that everything

else has already loaded completely (including images).

The "boolean variable event" was only used for evaluating the proposed solution. In

order to make sure that in the existing solution all images were completely loaded, we

used a Javascript library called imagesLoaded [29] which detects when images have been

completely loaded. We did not use this library in the proposed solution because it already

uses, in our Javascript framework, a function (see Figure 3.4) that sends XMLHTTPRe-

quests with the images URLs and waits for the responses (images) to load.

The network throughput was measured by nload [71], which is a monitor network

traffic and bandwidth usage in real time, available on Unix based systems. It can be used

to measure incoming and outgoing traffic and provides additional info like total amount

of transferred data, average, minimum, and maximum network usage.

For the existing solution, we do not measure the success ratio. This is because it is

a solution that does not have a decentralized component, consisting of a simple client-

server model. This means that all contents present on web pages are always satisfied

by the origin server when it is first requested. Instead of what happens in our solution,

where most of these first time requests can be satisfied by (nearby) peers that have these

requested contents in their local storage. This situation also happens when the requested

contents are no longer in the local cache because they have been replaced. So, although it

is not the first time that these contents are being requested, it is as if they were, because

they are no longer locally available.

50

4.4. TESTS CONDITIONS

4.4 Tests conditions

The tests were carried out in a system with two distinct states:

• Origin server not overloaded: it did have sufficient resources to satisfy all the

incoming requests;

• Origin server overloaded: it did not have sufficient resources to satisfy incoming re-

quests. This overloading of to the origin server was achieved through the execution

of a simple Java program [82] that generates load on the CPU and memory of the

machine, thus not allowing it to respond to many end user requests simultaneously

in a timely fashion.

For each of these origin server’s states, we tested two scenarios:

• One where it is possible to put all images in local storage: this translated into

having a quantity of images to be loaded that does not exceed the quota on it (which

is 10 MB in Firefox and other modern browsers). To achieve this we set a fixed

number of unique images to be loaded during navigation: 94, and the sum of the

weight of these images was approximately 9 MB;

• Another where it is not possible to put all images in local storage: this translated

into having a quantity of images to be loaded that exceed the local storage quota,

in order to evaluate the adopted cache replacement strategy (detailed in Section

3.4) for the proposed solution. To achieve this we also set a fixed number of unique

images to be loaded during navigation: 144, and the sum of the weight of these

images was approximately 16 MB;

These images did not all belong naturally to the Moodle web application, so we had

to manually add some of the images to the pages so that enough images were uploaded

to allow the execution of the evaluation in the desirable test conditions. More than 70%

of the images were added manually, because the images that were, by default, used by

Moodle were mostly icons and images located in the header, footer and other areas of the

layout of the application. Note that some of these images are repeated among web pages.

The manually added images comprise a weight between 50 KB and 200 KB.

For the test in which it is possible to put all images in local storage, the number

of images per web page varies between 10 and 20. This makes that the total weight of

images per web page does not go far beyond the average on most web pages, that was

previously mentioned in Section 3.1, which is 1310 KB (see Figure 3.3). For example, 10

images with 100 KB makes a total of 1000 KB weight per page, and with this, we want to

demonstrate that the tests performed try to follow the referred average (which mirrors

the real world).

For the test in which it is not possible to put all images in local storage, the number

of images increased naturally per web page because we simply added more images to the

51

CHAPTER 4. EVALUATION AND RESULTS

pages accessed in our tests with regard to the images added for the previously described

tests. This distribution of images was not linear between pages, since we wanted to

evaluate in a more dynamic way the operation of the content replacement mechanism in

the cache layer introduced and managed by our framework.

Regarding clients (leechers), we made tests where we ran 16, 32, and 64 simultane-

ously. Each virtual machine ran a maximum of 16 clients at a time. We ran some tests

with clients located (only) in Europe, and some tests with clients located in Europe

and United States, equally divided by the two locations (e.g. 64 clients EU/US means 32

clients in EU and 32 clients in US).

The average page load time is the average of the page load time obtained from the

clients’ navigation. To get this, we first had to get the average page load time of each

client (adding the latencies obtained from the pages and dividing it by the total number

of pages browsed). After obtaining these latencies from all clients, we could reach the

average page load time, present in the results tables (presented further ahead).

The following results are an average of the execution of the tests three times under

the above conditions.

4.5 Origin server not overloaded

In these experiments the load on the origin server allows it to respond to multiple requests

without major delays, since it is not overloaded and thus has enough processing power

and memory available. The following results were obtained under these conditions.

4.5.1 Images fit in local storage

Server Network Throughput

Clients Average Page Load Time (s)
Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 2.152 9.5 780
32 EU 3.580 19.17 1041
64 EU 3.910 28.35 1120

16
8 EU 2.150

13.43 809
8 US 1.862

32
16 EU 3.477

18.02 971
16 US 3.311

64
32 EU 3.802

25.70 1004
32 US 3.503

Table 4.1: Existing solution

52

4.5. ORIGIN SERVER NOT OVERLOADED

Success Ratio
Server Network
Throughput

Clients (leechers)
Average
Page Load
Time (s)

Local
Cache
(%)

P2P
Network
(%)

Origin
Server
(%)

Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 2.726 49 31 20 2.7 230
32 EU 3.602 55 32 13 6.2 489
64 EU 4.309 52 34 14 8.98 610

16
8 EU 2.366 45 39 16

3.3 304
8 US 2.186 41 40 9

32
16 EU 3.587 60 30 10

5.02 414
16 US 3.804 48 39 13

64
32 EU 4.205 55 33 12

8.12 560
32 US 3.920 58 29 13

Table 4.2: Proposed solution

The proposed solution in terms of user experience shows to be worse than the existing

solution, with higher end user perceived latencies. This is probably due to the additional

execution time of our Javascript framework, which consists of several operations and

flows, which P2P connections by themselves already have some additional overhead. In

this case, it is better for clients to request all images directly to a central server, since

it has sufficient resources to respond to multiple requests. We note however that extra

latency increased in about 20% to 30%, which is not a huge overhead.

On the other hand, we can verify that in terms of load imposed on the server, the

proposed solution is clearly better for the web application. The difference in the average

outgoing and incoming traffic between solutions is significant. As we can see in Figure

4.5a, the proposed solution imposes about less 70% of load on the origin server than the

existing solution. A similar difference occurs in the average incoming traffic (see Figure

4.5b) to the origin server, where the proposed solution imposes about less 50% to 60 % of

load on the origin server, against the existing solution.

(a) Average Outgoing traffic (b) Average Incoming traffic

Figure 4.5: Server network throughput comparison

Relative to the graphs above, in the average outgoing traffic graph (Figure 4.5a) the Y

53

CHAPTER 4. EVALUATION AND RESULTS

axis has the units in megabits per second. This is because the traffic that effectively leaves

the server is high, since it is sending data (images) to the clients. In the average incoming

traffic graph (Figure 4.5b), the Y axis has the units in kilobits per second. This is because

the traffic that actually enters the server, contrary to what leaves, is low, since it is the

requests that the server is receiving (HTTP requests are usually small).

4.5.2 Images do not fit in local storage

Server Network Throughput

Clients Average Page Load Time (s)
Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 3.202 36.56 781
32 EU 4.221 44.9 1024
64 EU 4.660 63.7 1102

16
8 EU 3.090

32.1 720
8 US 2.064

32
16 EU 4.378

42.36 977
16 US 3.391

64
32 EU 5.732

58.31 1290
32 US 4.790

Table 4.3: Existing solution

Success Ratio
Server Network
Throughput

Clients (leechers)
Average
Page Load
Time (s)

Local
Storage
(%)

P2P
Network
(%)

Origin
Server
(%)

Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 4.454 35 22 43 15.4 291
32 EU 5.112 39 21 40 21.87 502
64 EU 6.625 31 25 44 38.01 789

16
8 EU 3.544 29 20 51

20.09 320
8 US 3.138 26 18 56

32
16 EU 5.389 31 24 45

24.22 537
16 US 4.130 35 12 53

64
32 EU 6.454 36 26 38

31.15 583
32 US 5.098 32 25 43

Table 4.4: Proposed solution

Regarding the results in the tables above, the proposed solution demonstrates that it has

a worse performance in terms of end user perceived latency. We can observe that the

existing solution has lower latencies, about one second to two seconds less of average

page load time compared to the proposed solution. The hit ratio of local storage, because

of the evictions made by the cache mechanism adopted in this solution, is actually much

54

4.6. ORIGIN SERVER OVERLOADED

smaller than under conditions where the cache does not became full. In addition, it is

possible to verify that the number of requests to the server has increased because peers

have not been able to satisfy so many requests among them (because they likely also

suffered substitution actions in their local caches).

(a) Average Outgoing traffic (b) Average Incoming traffic

Figure 4.6: Server network throughput comparison

As verified in the test results presented previously, the traffic imposed on the server is

also favorable in the proposed solution. Regarding this, the difference in the average out-

going and incoming traffic between solutions is also significant. As we can see in Figure

4.8a, the proposed solution imposes about less 40% to 50% of load on the origin server,

compared to the existing solution. A similar difference occurs in the average incoming

traffic (see Figure 4.8b) to the origin server, where the proposed solution imposes about

less 45% to 55% of load on the origin server, against the existing solution.

4.6 Origin server overloaded

In these experiments the origin server is overloaded which does not allow it to respond

to multiple requests in a timely way. The following results were obtained under these

conditions.

55

CHAPTER 4. EVALUATION AND RESULTS

4.6.1 Images fit in local storage

Server Network Throughput

Clients Average Page Load Time (s)
Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 4.759 5.3 260
32 EU 4.850 9.5 373
64 EU 5.910 19.75 920

16
8 EU 4.150

7.2 432
8 US 3.862

32
16 EU 4.477

8.65 510
16 US 5.311

64
32 EU 5.802

16.23 603
32 US 5.503

Table 4.5: Existing solution

Success Ratio
Server Network
Throughput

Clients (leechers)
Average
Page Load
Time (s)

Local
Storage
(%)

P2P
Network
(%)

Origin
Server
(%)

Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 3.322 46 39 15 2.4 225
32 EU 4.261 51 28 21 4.5 238
64 EU 5.122 49 31 20 7.3 401

16
8 EU 3.339 58 32 10

2.3 210
8 US 3.218 51 28 9

32
16 EU 3.912 52 39 9

3.7 290
16 US 3.892 62 31 7

64
32 EU 4.861 45 38 17

7.4 389
32 US 4.965 48 36 16

Table 4.6: Proposed Solution

The proposed solution in terms of user experience shows to be better than the existing

solution, with lower end user perceived latencies. We can verify that our solution has

average page load times with about 0.5 to 1.5 seconds less than the average page load times

obtained in the existing solution. This can be justified by the fact that the centralized

component is resource-exhausted and can not handle and respond to multiple requests

simultaneously, incurring of more delays and additional overhead. On the other hand, our

solution demonstrates that it can effectively overcome this issue through the leverage of

the decentralized component - the P2P network. Network peers respond in this way more

efficiently among them because they are not resource-exhausted as the central component.

In this case, it is better for clients to request images among them, since the origin server

is occupied handling and responding to waiting requests.

56

4.6. ORIGIN SERVER OVERLOADED

Additionally, we can verify that our solution imposes (again) much less load on the

origin server. As we can see in Figure 4.7a, the proposed solution imposes about less 50%

to 80% of load on the origin server than the existing solution. A similar difference occurs

in the average incoming traffic (see Figure 4.7b) to the origin server, where the proposed

solution imposes about less 20% to 50 % of load on the origin server, against the existing

solution.

(a) Average Outgoing traffic (b) Average Incoming traffic

Figure 4.7: Server network throughput comparison

4.6.2 Images do not fit in local storage

Server Network Throughput

Clients Average Page Load Time (s)
Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 5.012 21.04 525
32 EU 5.645 34.15 668
64 EU 6.483 48.01 800

16
8 EU 5.311

16.4 402
8 US 4.729

32
16 EU 5.424

30.69 513
16 US 4.650

64
32 EU 6.331

42.27 743
32 US 6.720

Table 4.7: Existing solution

57

CHAPTER 4. EVALUATION AND RESULTS

Satisfied Requests Ratio
Server Network
Throughput

Clients (leechers)
Average
Page Load
Time (s)

Local
Storage
(%)

P2P
Network
(%)

Origin
Server
(%)

Outgoing
(MB/s)

Incoming
(KB/s)

16 EU 5.451 31 20 49 5.76 292
32 EU 4.910 34 25 41 17.94 337
64 EU 7.640 26 18 56 25.12 695

16
8 EU 5.602 38 20 42

6.3 310
8 US 4.144 39 25 36

32
16 EU 4.833 35 19 46

19.8 284
16 US 4.870 37 21 42

64
32 EU 6.039 41 27 32

12.2 443
32 US 6.805 37 24 39

Table 4.8: Proposed solution

The results demonstrate that both solutions performed similiar in terms of end user

perceived latency, since for a certain number of clients the existing solution gives lower

values and for another particular number of clients gives values higher than the proposed

solution. As observed in the same test but with the origin not overloaded (see Table 4.4),

the cache hit ratio is lower than under conditions where the cache do not became full.

Regarding the server network throughput, our solution proves, once again, that im-

poses much less load on the origin server with a significant difference of traffic generated

between the two solutions.

(a) Average Outgoing traffic (b) Average Incoming traffic

Figure 4.8: Server network throughput comparison

4.7 Discussion

The results generally demonstrate that our solution performs better in terms of end user

perceived latency for cases where the centralized component (origin server) is depleted of

resources. In contrast, in systems where the origin server has the capability to respond to

58

4.8. SUMMARY

multiple requests simultaneously, our solution has proven to perform worse at end user

perceived latency, although with a small overhead.

Our solution clearly demonstrated that in all tests it "took" much of the burden (usu-

ally) imposed on the origin server of a web application and passed it to the clients (decen-

tralized component), which resulted in a cooperative cache between clients. This is a key

aspect for operators of small and medium sized web applications.

The parameters used can be adjusted to the context of the applications, so our solution

can perform better at some levels if they are properly adjusted and thus optimized. In

addition, it is important to note that the cache replacement strategy can be changed to a

different one (for example by considering additionally objects frequency and size factors)

and potentially be better suited to a given service and its network users (based on their

caching behaviour).

4.8 Summary

This chapter presented the results and evaluation of this work, in particular described all

the setup environment where the tests were run.

In the setup test context we described and explained the components of the system

where the tests were run, in particular the clients, the Legion server and the origin server

that hosts the Moodle web application.

In the parameters context we described and discussed the several parameters that are

relevant for a given web application, related to our framework and the Legion framework

that allows us to use a decentralized component - the P2P network.

In the metrics context we presented and described all the used metrics in the testing

and evaluation of the proposed and existing (alternative) solution.

In the test conditions context we explained that the tests would focus on a system

where the origin server would have two states (overloaded and not overloaded), and

within this category we would have two situations (test with and without the adopted

cache replacement based on the number of images to be allocated in the clients local

storage). We also mentioned the number of client that would be executed simultaneously

during the tests and their geographic location.

In the results context we presented tables and graphs with the obtained metrics from

the experiments, and discussed it.

The next chapter presents the conclusion and future work of this dissertation, where

we point out what we can draw from positive and negative from this work, and discuss

what can be done to improve it in the future.

59

C
h
a
p
t
e
r

5
Conclusion

Existing Web caching solutions require financial power to support the costs of services

such as Akamai, thus limiting the adoption by small and medium scale web applications.

Also, some solutions, like Akamai Netsession, require installation of additional software,

or plugins/extensions in the clients browsers.

In this dissertation, we propose a solution that is easy to adopt and integrate into

any web application, which allows optimizing web caching through a cooperative cache

between clients without having to spend money to support it.

In this work we implemented the proposed framework for a specific type of content:

images, since it is (usually) a static content and occupy more than half of the total weight

of web pages. Besides, our framework can be implemented and generalized to other types

of web content, such as HTML code, CSS files, scripts, JSON files, etc.

We can conclude that our solution is beneficial to small and medium-scale web ap-

plications that can not support the costs of existing web caching systems, and because

of the potential scalability of their services, their origin servers are unable to respond to

multiple requests efficiently, due to the increasing number of users.

On the other hand, our solution has some negative aspects, which emphasize in par-

ticular the overhead that our framework (developed in Javascript) incurs during its exe-

cution. This is mainly due to the inter-layer communication at the application layer level,

which is part of the design of our framework, access and updates to the disk (local storage)

that are due to the maintenance of the content metadata and the sending of that content

to other peers, and the additional overhead imposed on P2P communications, managed

by the overlay of the Legion framework.

We think that our work can be improved in some aspects, namely the parameters

that can be tested with other values in order to further optimize the access to given web

applications, as well as the mechanisms of cache replacement, which can be used other

61

CHAPTER 5. CONCLUSION

caching techniques based on the caching behavior of clients that are part of the network.

5.1 Future Work

Design and implementation of a light coordination mechanism between the caching layer

at the users and at the distributed caching system. For example, enrich Memcached

(available as integrated module in some web applications, such as Moodle) using Legion

based techniques. The distributed cache system can be modified to adapt to new caching

mechanisms, and some synchronization methods must be integrated in the client and

server side in order to establish and fulfill an appropriate and improved caching flow

between them.

These new mechanisms can be managed by points of control located in the boundaries

of their networks, called the Edge Control Points (ECP), a component which is naturally

distributed, and the Centralized Control Points (CCP), which periodically exchange in-

formation about their cached content. This way, it is possible to avoid that the server

unnecessarily caches content that is already present in the client’s local caches, and is

being shared among them directly. The distributed cache system chosen to integrate

this solution might need to be (slightly) modified in order to adapt to this idea of cache

synchronization between the center and the edge of the network.

An extra feature that can be integrated in this distributed solution is the use of a

centralized mechanism (running in the server) to assist clients in establishing new con-

nections with other clients that have local cached content that can be useful. The proposed

solution follows the criteria of relative distance between peers to link them. This would

be helpful by informing a peers that there are other peers that they do not know of, which

potentially have content of their interest (based on previous requests). Therefore, they

will be able to connect which can probably satisfy more requests in the near future. This

approach would minimize load on cache server(s), and even reduce end user latency (in

case users are close to each other).

62

Bibliography

[1] url: https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/.

[2] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox. Caching
Proxies: Limitations and Potentials. Tech. rep. Blacksburg, VA, USA, 1995.

[3] M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams. “Removal

Policies in Network Caches for World-Wide Web Documents”. In: Conference
Proceedings on Applications, Technologies, Architectures, and Protocols for Computer
Communications. SIGCOMM ’96. Palo Alto, California, USA: ACM, 1996, pp. 293–

305. isbn: 0-89791-790-1. doi: 10.1145/248156.248182. url: http://doi.

acm.org/10.1145/248156.248182.

[4] C. Aggarwal, J. L. Wolf, and P. S. Yu. “Caching on the World Wide Web”. In: IEEE
Trans. on Knowl. and Data Eng. 11.1 (Jan. 1999), pp. 94–107. issn: 1041-4347.

doi: 10.1109/69.755618. url: http://dx.doi.org/10.1109/69.755618.

[5] B. M. Ahmed, T. Helaly, and S. Rahman. Prioritizing Documents and Applying
Hybrid Caching Strategy for Network Latency Reduction.

[6] D. P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”.

In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.

GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–10. isbn:

0-7695-2256-4. doi: 10.1109/GRID.2004.14. url: http://dx.doi.org/10.

1109/GRID.2004.14.

[7] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. “SETI@

home: an experiment in public-resource computing”. In: Communications of the
ACM 45.11 (2002), pp. 56–61.

[8] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. “Evaluating Content

Management Techniques for Web Proxy Caches”. In: SIGMETRICS Perform. Eval.
Rev. 27.4 (Mar. 2000), pp. 3–11. issn: 0163-5999. doi: 10.1145/346000.346003.

url: http://doi.acm.org/10.1145/346000.346003.

[9] M. Arlitt, R. Friedrich, and T. Jin. “Performance Evaluation of Web Proxy Cache

Replacement Policies”. In: Perform. Eval. 39.1-4 (Feb. 2000), pp. 149–164. issn:

0166-5316. doi: 10.1016/S0166-5316(99)00062-0. url: http://dx.doi.org/

10.1016/S0166-5316(99)00062-0.

63

https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/
http://dx.doi.org/10.1145/248156.248182
http://doi.acm.org/10.1145/248156.248182
http://doi.acm.org/10.1145/248156.248182
http://dx.doi.org/10.1109/69.755618
http://dx.doi.org/10.1109/69.755618
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1145/346000.346003
http://doi.acm.org/10.1145/346000.346003
http://dx.doi.org/10.1016/S0166-5316(99)00062-0
http://dx.doi.org/10.1016/S0166-5316(99)00062-0
http://dx.doi.org/10.1016/S0166-5316(99)00062-0

BIBLIOGRAPHY

[10] H. Bahn, K. Koh, S. L. Min, and S. H. Noh. “Efficient Replacement of Nonuniform

Objects in Web Caches”. In: Computer 35.6 (June 2002), pp. 65–73. issn: 0018-

9162. doi: 10.1109/MC.2002.1009170. url: http://dx.doi.org/10.1109/MC.

2002.1009170.

[11] S. A. Baset and H. G. Schulzrinne. “An Analysis of the Skype Peer-to-Peer Internet

Telephony Protocol”. In: INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings (Apr. 2006), pp. 1–11. issn: 0743-166X.

doi: 10.1109/infocom.2006.312. url: http://dx.doi.org/10.1109/infocom.

2006.312.

[12] D. Bau. Opera Software. url: https://github.com/davidbau/seedrandom.

[13] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”. In:

Communications of the ACM 13.7 (1970), pp. 422–426.

[14] J.-C. Bolot and P. Hoschka. “Performance Engineering of the World Wide Web:

Application to Dimensioning and Cache Design”. In: Comput. Netw. ISDN Syst.
28.7-11 (May 1996), pp. 1397–1405. issn: 0169-7552. doi: 10.1016/0169-

7552(96)00073-6. url: https://doi.org/10.1016/0169-7552(96)00073-6.

[15] J. Buford, H. Yu, and E. K. Lua. P2P networking and applications. Morgan Kauf-

mann, 2009.

[16] A. M. C. Chang and G. Holmes. The LRU*WWW proxy cache document replacement
algorithm. 1999.

[17] Caching Architectures. http://www.intechopen.com/books/computational-

intelligence - and - modern - heuristics / intelligent - exploitation - of -

cooperative-client-proxy-caches-in-a-web-caching-hybrid-architecture.

Accessed: 2017-01-11.

[18] P. Cao and S. Irani. “Cost-aware WWW Proxy Caching Algorithms”. In: Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems on USENIX
Symposium on Internet Technologies and Systems. USITS’97. Monterey, California:

USENIX Association, 1997, pp. 18–18. url: http://dl.acm.org/citation.

cfm?id=1267279.1267297.

[19] J. L. Carlson. Redis in Action. Greenwich, CT, USA: Manning Publications Co.,

2013. isbn: 1617290858, 9781617290855.

[20] H. Chen, S. S. Fuller, C. Friedman, and W. Hersh. “Knowledge management,

data mining, and text mining in medical informatics”. In: Medical Informatics.
Springer, 2005, pp. 3–33.

[21] K. Cheng and Y. Kambayashi. “LRU-SP: a size-adjusted and popularity-aware

LRU replacement algorithm for web caching”. In: Computer Software and Appli-
cations Conference, 2000. COMPSAC 2000. The 24th Annual International. IEEE.

2000, pp. 48–53.

64

http://dx.doi.org/10.1109/MC.2002.1009170
http://dx.doi.org/10.1109/MC.2002.1009170
http://dx.doi.org/10.1109/MC.2002.1009170
http://dx.doi.org/10.1109/infocom.2006.312
http://dx.doi.org/10.1109/infocom.2006.312
http://dx.doi.org/10.1109/infocom.2006.312
https://github.com/davidbau/seedrandom
http://dx.doi.org/10.1016/0169-7552(96)00073-6
http://dx.doi.org/10.1016/0169-7552(96)00073-6
https://doi.org/10.1016/0169-7552(96)00073-6
http://www.intechopen.com/books/computational-intelligence-and-modern-heuristics/intelligent-exploitation-of-cooperative-client-proxy-caches-in-a-web-caching-hybrid-architecture
http://www.intechopen.com/books/computational-intelligence-and-modern-heuristics/intelligent-exploitation-of-cooperative-client-proxy-caches-in-a-web-caching-hybrid-architecture
http://www.intechopen.com/books/computational-intelligence-and-modern-heuristics/intelligent-exploitation-of-cooperative-client-proxy-caches-in-a-web-caching-hybrid-architecture
http://dl.acm.org/citation.cfm?id=1267279.1267297
http://dl.acm.org/citation.cfm?id=1267279.1267297

BIBLIOGRAPHY

[22] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. “Freenet: A distributed anony-

mous information storage and retrieval system”. In: Designing Privacy Enhancing
Technologies. Springer. 2001, pp. 46–66.

[23] E. Cohen, B. Krishnamurthy, and J. Rexford. “Evaluating Server-Assisted Cache

Replacement in the Web”. In: Proceedings of the 6th Annual European Symposium on
Algorithms. ESA ’98. London, UK, UK: Springer-Verlag, 1998, pp. 307–319. isbn:

3-540-64848-8. url: http://dl.acm.org/citation.cfm?id=647908.740142.

[24] J Cohen, N Phadnis, V Valloppillil, and K. Ross. “Cache array routing protocol v1.

1”. In: Sep 29 (1997), pp. 1–8.

[25] Coral CDN. url: http://www.coralcdn.org/.

[26] V. Das. Learning Redis. Packt Publishing, 2015. isbn: 1783980125, 9781783980123.

[27] J. Davies. Bloom Filter. url: https://www.jasondavies.com/bloomfilter/.

[28] D. R. c. Deepak Sachan. Performance Improvement of Web Caching Page Replacement
Algorithms. 2014.

[29] desandro. url: https://github.com/desandro/imagesloaded.

[30] Distributed cache systems. url: https://www.quora.com/What-is-distributed-

caching.

[31] S. Elnikety, M. Lillibridge, M. Burrows, and W. Zwaenepoel. “Cooperative backup

system”. In: The USENIX Conference on File and Storage Technologies. 2002.

[32] J. Famaey, F. Iterbeke, T. Wauters, and F. De Turck. “Towards a predictive cache re-

placement strategy for multimedia content”. In: Journal of Network and Computer
Applications 36.1 (2013), pp. 219–227.

[33] C. H. Fenichel. “The Process of Searching Online Bibliographic Databases: A

Review of Research.” In: Library Research 2.2 (1980), pp. 107–27.

[34] B. Fitzpatrick. “Distributed caching with memcached”. In: Linux journal 2004.124

(2004), p. 5.

[35] A. P. Foong, Y. H. Hu, and D. M. Heisey. “Essence of an Effective Web Caching

Algorithm.” In: International Conference on Internet Computing. 2000, pp. 269–

276.

[36] G Fowler. “Fowler/Noll/Vo (FNV) hash”. In: ONLINE http://isthe. com/chon-
go/tech/comp/fnv (1991).

[37] M.-A. Free. Open Source Course Management System for Online Learning. 2008.

[38] P. Ganesan, K. Gummadi, and H. Garcia-Molina. “Canon in G major: design-

ing DHTs with hierarchical structure”. In: Distributed computing systems, 2004.
proceedings. 24th international conference on. IEEE. 2004, pp. 263–272.

65

http://dl.acm.org/citation.cfm?id=647908.740142
http://www.coralcdn.org/
https://www.jasondavies.com/bloomfilter/
https://github.com/desandro/imagesloaded
https://www.quora.com/What-is-distributed-caching
https://www.quora.com/What-is-distributed-caching

BIBLIOGRAPHY

[39] F. González-Cañete, J Sanz-Bustamante, E Casilari, and A Triviño-Cabrera. “Eval-

uation of randomized replacement policies for web caches”. In: Proceedings of the
IEEE INFOCOM. 2007.

[40] M. He, Y. Zhang, and X. Meng. “Gossip-Based Resource Location Strategy in

Interest Community for P2P Networks”. In: Chinese Journal of Electronics 24.2

(2015), pp. 272–280.

[41] S. Hosseini-Khayat. “Investigation of Generalized Caching”. UMI Order No.

GAX98-07761. PhD thesis. St. Louis, MO, USA, 1998.

[42] HTTP End-Point Icon. url: http://www.nanoscale.io/wp-content/uploads/

2016/09/icon-http.svg.

[43] HTTP Pinger. url: https://github.com/JensRantil/http-pinger.

[44] T. Hurst. Bloom Filter Calculator. url: https://hur.st/bloomfilter.

[45] Internet Users. url: http://www.internetlivestats.com/internet-users/.

[46] R Jesup, S Loreto, and M Tuexen. “Rtcweb data channels”. In: IETF ID: draft-ietf-
rtcweb-data-channel-05 (work in progress) (2013).

[47] S. Jin and A. Bestavros. Temporal Locality in Web Request Streams: Sources, Charac-
teristics, and Caching Implications. Tech. rep. Boston, MA, USA, 1999.

[48] J. S. KELLY T. and J. K. MACKIE-MASON. “Variable QoS from shared Web caches:

User centered design and value-sensitive replacement.” In: 1999.

[49] M. R. Korupolu and M. Dahlin. “Coordinated placement and replacement for

large-scale distributed caches”. In: IEEE Transactions on Knowledge and Data
Engineering 14.6 (2002), pp. 1317–1329.

[50] B. Krishnamurthy and C. E. Wills. “Proxy cache coherency and replacement-

towards a more complete picture”. In: Distributed Computing Systems, 1999. Pro-
ceedings. 19th IEEE International Conference on. IEEE. 1999, pp. 332–339.

[51] J. Leitao. “Topology Management for Unstructured Overlay Networks”. In: Tech-
nical University of Lisbon (2012).

[52] C. Li and A. L. Cox. “GD-Wheel: a cost-aware replacement policy for key-value

stores”. In: Proceedings of the Tenth European Conference on Computer Systems.
ACM. 2015, p. 5.

[53] A. van der Linde. “Enriching Web Applications with Browser-to-Browser Com-

munication”. PhD thesis. Universidade Nova de Lisboa, 2015.

66

http://www.nanoscale.io/wp-content/uploads/2016/09/icon-http.svg
http://www.nanoscale.io/wp-content/uploads/2016/09/icon-http.svg
https://github.com/JensRantil/http-pinger
https://hur.st/bloomfilter
http://www.internetlivestats.com/internet-users/

BIBLIOGRAPHY

[54] A. van der Linde, P. Fouto, J. a. Leitão, N. Preguiça, S. Castiñeira, and A. Bieniusa.

“Legion: Enriching Internet Services with Peer-to-Peer Interactions”. In: Proceed-
ings of the 26th International Conference on World Wide Web. WWW ’17. Perth,

Australia: International World Wide Web Conferences Steering Committee, 2017,

pp. 283–292. isbn: 978-1-4503-4913-0. doi: 10.1145/3038912.3052673. url:

https://doi.org/10.1145/3038912.3052673.

[55] N. Megiddo and D. S. Modha. “Outperforming LRU with an adaptive replacement

cache algorithm”. In: Computer 37.4 (2004), pp. 58–65.

[56] A. Merchant, M. Kallahalla, and R. Swaminathan. Sharding method and apparatus
using directed graphs. US Patent 7,043,621. 2006.

[57] A. Mislove. “POST: a secure, resilient, cooperative messaging system”. In: Notes
20 (2003), p. 22.

[58] C. D. Murta, V. Almeida, and W. Meira Jr. “Analyzing performance of partitioned

caches for the WWW”. In: Proceedings of the 3rd International WWW Caching
Workshop. 1998.

[59] Napster. url: http://www.napster.com.

[60] N. Niclausse, Z. Liu, P. Nain, et al. “A new efficient caching policy for the World

Wide Web”. In: Proceedings of the Workshop on Internet Server Performance. 1998,

pp. 119–128.

[61] Opera Software. url: https://www.opera.com.

[62] N. Osawa, T. Yuba, and K. Hakozaki. “Generational Replacement Schemes for

a WWW Caching Proxy Server”. In: Proceedings of the International Conference
and Exhibition on High-Performance Computing and Networking. HPCN Europe ’97.

London, UK, UK: Springer-Verlag, 1997, pp. 940–949. isbn: 3-540-62898-3. url:

http://dl.acm.org/citation.cfm?id=645561.659042.

[63] J. W. O’Toole Jr and D. M. Bornstein. Method and apparatus for transparent dis-
tributed network-attached storage with web cache communication protocol/anycast
and file handle redundancy. US Patent 7,254,636. 2007.

[64] Overview of Memcached. url: https://github.com/memcached/memcached/

wiki/Overview#how-does-it-work.

[65] Peer5. url: https://www.peer5.com.

[66] J. Pitkow and M. Recker. “A Simple Yet Robust Caching Algorithm Based on

Dynamic Access Patterns”. In: Electronic Proceedings of the Second World Wide Web
Conference ’94: Mosaic and the Web. 1994. url: http://www.ncsa.uiuc.edu/

SDG/IT94/Proceedings/DDay/pitkow/caching.html.

67

http://dx.doi.org/10.1145/3038912.3052673
https://doi.org/10.1145/3038912.3052673
http://www.napster.com
https://www.opera.com
http://dl.acm.org/citation.cfm?id=645561.659042
https://github.com/memcached/memcached/wiki/Overview#how-does-it-work
https://github.com/memcached/memcached/wiki/Overview#how-does-it-work
https://www.peer5.com
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/pitkow/caching.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/pitkow/caching.html

BIBLIOGRAPHY

[67] S. Podlipnig and L. Böszörmenyi. “A Survey of Web Cache Replacement Strate-

gies”. In: ACM Comput. Surv. 35.4 (Dec. 2003), pp. 374–398. issn: 0360-0300.

doi: 10.1145/954339.954341. url: http://doi.acm.org/10.1145/954339.

954341.

[68] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. “The bittorrent p2p file-sharing

system: Measurements and analysis”. In: International Workshop on Peer-to-Peer
Systems. Springer. 2005, pp. 205–216.

[69] K. Psounis and B. Prabhakar. “A randomized web-cache replacement scheme”.

In: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE. Vol. 3. IEEE. 2001, pp. 1407–1415.

[70] S. Quinlan and S. Dorward. “Venti: A New Approach to Archival Storage.” In:

FAST. Vol. 2. 2002, pp. 89–101.

[71] R. Riegel. nload. url: http://www.roland-riegel.de/nload/.

[72] L. Rizzo and L. Vicisano. “Replacement Policies for a Proxy Cache”. In: IEEE/ACM
Trans. Netw. 8.2 (Apr. 2000), pp. 158–170. issn: 1063-6692. doi: 10.1109/90.

842139. url: http://dx.doi.org/10.1109/90.842139.

[73] P. Rodriguez, C. Spanner, and E. W. Biersack. “Analysis of web caching archi-

tectures: Hierarchical and distributed caching”. In: IEEE/ACM Transactions on
Networking (TON) 9.4 (2001), pp. 404–418.

[74] S. Romano and H. ElAarag. “A Quantitative Study of Recency and Frequency

Based Web Cache Replacement Strategies”. In: Proceedings of the 11th Communi-
cations and Networking Simulation Symposium. CNS ’08. Ottawa, Canada: ACM,

2008, pp. 70–78. isbn: 1-56555-318-7. doi: 10.1145/1400713.1400725. url:

http://doi.acm.org/10.1145/1400713.1400725.

[75] A. Rowstron and P. Druschel. “Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems”. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing. Springer.

2001, pp. 329–350.

[76] P. Scheuermann, J. Shim, and R. Vingralek. “A Case for Delay-conscious Caching

of Web Documents”. In: Comput. Netw. ISDN Syst. 29.8-13 (Sept. 1997), pp. 997–

1005. issn: 0169-7552. doi: 10.1016/S0169-7552(97)00032-9. url: http:

//dx.doi.org/10.1016/S0169-7552(97)00032-9.

[77] Selenium. url: http://www.seleniumhq.org/.

[78] I. Sharfman, A. Schuster, and D. Keren. “A geometric approach to monitoring

threshold functions over distributed data streams”. In: ACM Transactions on
Database Systems (TODS) 32.4 (2007), p. 23.

[79] A. Soliman. Getting Started with Memcached. Packt Publishing, 2013. isbn: 1782163220,

9781782163220.

68

http://dx.doi.org/10.1145/954339.954341
http://doi.acm.org/10.1145/954339.954341
http://doi.acm.org/10.1145/954339.954341
http://www.roland-riegel.de/nload/
http://dx.doi.org/10.1109/90.842139
http://dx.doi.org/10.1109/90.842139
http://dx.doi.org/10.1109/90.842139
http://dx.doi.org/10.1145/1400713.1400725
http://doi.acm.org/10.1145/1400713.1400725
http://dx.doi.org/10.1016/S0169-7552(97)00032-9
http://dx.doi.org/10.1016/S0169-7552(97)00032-9
http://dx.doi.org/10.1016/S0169-7552(97)00032-9
http://www.seleniumhq.org/

BIBLIOGRAPHY

[80] S. Spoto, R. Gaeta, M. Grangetto, and M. Sereno. “Analysis of PPLive through

active and passive measurements”. In: Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1–7.

[81] Squid-Cache. url: http://www.squid-cache.org/.

[82] SriramKeerthi. url: https://gist.github.com/SriramKeerthi/0f1513a62b3b09fecaeb.

[83] D. Starobinski and D. Tse. “Probabilistic Methods for Web Caching”. In: Perform.
Eval. 46.2-3 (Oct. 2001), pp. 125–137. issn: 0166-5316. doi: 10.1016/S0166-

5316(01)00045-1. url: http://dx.doi.org/10.1016/S0166-5316(01)00045-

1.

[84] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord:

A scalable peer-to-peer lookup service for internet applications”. In: ACM SIG-
COMM Computer Communication Review 31.4 (2001), pp. 149–160.

[85] I. Tatarinov. “An efficient LFU-like policy for Web caches”. In: Tech. Rep. NDSU-
CSORTR-98-01 (1998).

[86] K. Tutschku. “A measurement-based traffic profile of the eDonkey filesharing

service”. In: International Workshop on Passive and Active Network Measurement.
Springer. 2004, pp. 12–21.

[87] A. Vakali. “LRU-based Algorithms for Web Cache Replacement”. In: Proceedings
of the First International Conference on Electronic Commerce and Web Technologies.
EC-WEB ’00. London, UK, UK: Springer-Verlag, 2000, pp. 409–418. isbn: 3-540-

67981-2. url: http://dl.acm.org/citation.cfm?id=646160.680189.

[88] C. Vogt, M. J. Werner, and T. C. Schmidt. “Leveraging WebRTC for P2P content

distribution in web browsers”. In: Network Protocols (ICNP), 2013 21st IEEE
International Conference on. IEEE. 2013, pp. 1–2.

[89] Q. H. Vu, M. Lupu, and B. C. Ooi. Peer-to-peer computing: Principles and applica-
tions. Springer Science & Business Media, 2009.

[90] J. Wang. “A Survey of Web Caching Schemes for the Internet”. In: SIGCOMM
Comput. Commun. Rev. 29.5 (Oct. 1999), pp. 36–46. issn: 0146-4833. doi:

10.1145/505696.505701. url: http://doi.acm.org/10.1145/505696.505701.

[91] D. Wessels and k. claffy. IETF RFC 2186: Internet Cache Protocol (ICP), version 2.

1997.

[92] K.-Y. Wong. “Web Cache Replacement Policies: A Pragmatic Approach”. In:

Netwrk. Mag. of Global Internetwkg. 20.1 (Jan. 2006), pp. 28–34. issn: 0890-8044.

doi: 10.1109/MNET.2006.1580916. url: http://dx.doi.org/10.1109/MNET.

2006.1580916.

69

http://www.squid-cache.org/
https://gist.github.com/SriramKeerthi/0f1513a62b3b09fecaeb
http://dx.doi.org/10.1016/S0166-5316(01)00045-1
http://dx.doi.org/10.1016/S0166-5316(01)00045-1
http://dx.doi.org/10.1016/S0166-5316(01)00045-1
http://dx.doi.org/10.1016/S0166-5316(01)00045-1
http://dl.acm.org/citation.cfm?id=646160.680189
http://dx.doi.org/10.1145/505696.505701
http://doi.acm.org/10.1145/505696.505701
http://dx.doi.org/10.1109/MNET.2006.1580916
http://dx.doi.org/10.1109/MNET.2006.1580916
http://dx.doi.org/10.1109/MNET.2006.1580916

BIBLIOGRAPHY

[93] R. P. Wooster and M. Abrams. “Proxy Caching That Estimates Page Load Delays”.

In: Comput. Netw. ISDN Syst. 29.8-13 (Sept. 1997), pp. 977–986. issn: 0169-7552.

doi: 10.1016/S0169-7552(97)00041-X. url: http://dx.doi.org/10.1016/

S0169-7552(97)00041-X.

[94] B. Yang and H. Garcia-Molina. “Comparing hybrid peer-to-peer systems”. In:

Proceedings of the 27th Intl. Conf. on Very Large Data Bases. 2001.

[95] J Yang, W Wang, R Muntz, and J Wang. “Access driven Web caching”. In: UCLA
Technical Report# 990007 (1999).

[96] Q. Yang and H. Zhang. “Taylor Series Prediction: A Cache Replacement Pol-

icy Based on Second-Order Trend Analysis”. In: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences (HICSS-34)-Volume 5 - Volume 5.

HICSS ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 5023–. isbn:

0-7695-0981-9. url: http://dl.acm.org/citation.cfm?id=820757.821888.

[97] C. T. Yu and C. Chang. “Distributed query processing”. In: ACM computing
surveys (CSUR) 16.4 (1984), pp. 399–433.

[98] I. R. R. D. Zhang J. and M. Ott. “Web caching framework: Analytical models and

beyound”. In: Internet Applications, 1999. IEEE Workshop on. 1999.

[99] J. Zhang, R. Izmailov, D. Reininger, and M. Ott. “Web caching framework: An-

alytical models and beyond”. In: Internet Applications, 1999. IEEE Workshop on.

IEEE. 1999, pp. 132–141.

[100] L. Zhang, S. Floyd, and V. Jacobsen. “Adaptive Web Caching”. In: In Proceedings
of the NLANR Web Cache Workshop. 1997, pp. 9–7.

[101] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. “CoolStreaming/DONet: a data-driven

overlay network for peer-to-peer live media streaming”. In: Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications Societies. Vol. 3.

IEEE. 2005, pp. 2102–2111.

[102] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs, B.

Wishon, and M. Ponec. “Peer-assisted content distribution in akamai netsession”.

In: Proceedings of the 2013 conference on Internet measurement conference. ACM.

2013, pp. 31–42.

70

http://dx.doi.org/10.1016/S0169-7552(97)00041-X
http://dx.doi.org/10.1016/S0169-7552(97)00041-X
http://dx.doi.org/10.1016/S0169-7552(97)00041-X
http://dl.acm.org/citation.cfm?id=820757.821888

	List of Figures
	Introduction
	Context
	Motivation
	Proposed Solution
	Main Contributions

	Document Organization

	Related Work
	Peer-to-peer systems
	Overlay networks
	Query Dissemination Techniques
	Concrete System and Framework Examples

	Web Cache
	Different Levels of Caching
	Caching Architectures
	Replacement Strategies
	Performance Metrics
	Relevant Distributed Cache Systems

	Recent Technologies
	WebRTC
	HTML5

	Summary

	Proposed Work
	Proposal
	Design
	Implementation
	Local Storage
	Adopted Cache Replacement Strategy

	Peer-to-peer network
	Search
	Bloom filters

	Summary

	Evaluation and Results
	Setup test
	Web application
	Clients

	Parameters
	Metrics
	Tests conditions
	Origin server not overloaded
	Images fit in local storage
	Images do not fit in local storage

	Origin server overloaded
	Images fit in local storage
	Images do not fit in local storage

	Discussion
	Summary

	Conclusion
	Future Work

	Bibliography

