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Abstract

The rise of the Cloud creates enormous business opportunities for companies to provide

global services, which requires applications supporting the operation of those services

to scale while minimizing maintenance costs, either due to unnecessary allocation of

resources or due to excessive human supervision and administration. Solutions designed

to support such systems have tackled fundamental challenges from individual compo-

nent failure to transient network partitions. A fundamental aspect that all scalable large

systems have to deal with is the membership of the system, i.e, tracking the active compo-

nents that compose the system. Most systems rely on membership management protocols

that operate at the application level, many times exposing the interface of a logical overlay

network, that should guarantee high scalability, efficiency, and robustness.

Although these protocols are capable of repairing the overlay in face of large numbers

of individual components faults, when scaling to global settings (i.e, geo-distributed

scenarios), this robustness is a double edged-sword because it is extremely complex for

a node in a system to distinguish between a set of simultaneously node failures and a

(transient) network partition. Thus the occurrence of a network partition creates isolated

sub-sets of nodes incapable of reconnecting even after the recovery from the partition.

This work address this challenges by proposing a novel datacenter-aware membership

protocol to tolerate network partitions by applying existing overlay management tech-

niques and classification techniques that may allow the system to efficiently cope with

such events without compromising the remaining properties of the overlay network. Fur-

thermore, we strive to achieve these goals with a solution that requires minimal human

intervention.

Keywords: Geo-Distributed Systems, Gossip Protocol, Membership Protocol, Network

Partitions, Location Inference.
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Resumo

O crescimento de serviços na Cloud criam grandes oportunidades de negócio para as em-

presas prestarem serviços globais, que requerem aplicações que suportem esses serviços

providenciado escalibilidade enquanto minimizam os custos de manutenção, devido à

utilização de recursos desnecessária ou devido a excessiva administração e supervisão

humana. As soluções existentes têm enfrentado desafios fundamentais, desde a falha de

componentes individuais a partições (temporárias) de rede. Uma característica fundamen-

tal é que todos os grandes sistemas escaláveis têm de gerir a filiação, i.e, gerir a informação

relativa aos componentes que materializam o sistema. A maioria dos sistemas recorre a

protocolos de filiação que funcionam ao nível da aplicação e expõem a topologia de redes

sobreposta que garantem a alta escalabilidade, a eficiência e a robustez do sistema.

Apesar destes protocolos serem capazes de reparar a topologia de rede na presença de

um grande número de faltas em componentes independentes, quando utilizados à escala

global (e.g distribuídos geograficamente), esta vantagem é uma lamina de dois gumes

porque é extremamente complexo para um nó num sistema distinguir entre um conjunto

de falhas e partições (temporárias) na rede. Por isso a ocorrência de partições de rede

força o sistema a subdividir-se em dois conjuntos isolados incapazes de comunicar entre

si, mesmo após a reparação da partição.

Este trabalho propoe um novo protocolo de gestão de filiação que tolere partições na

rede através da aplicação das abordagens existentes de gestão de rede sobreposta e de

técnicas de classificação que permitam ao sistema reagir adequadamente ao problema

sem comprometer as propriedades da topologia de rede. Por fim, pretende-se alcançar

uma solução que utilize o mínimo de intervenção humana.

Palavras-chave: sistemas geo-distribuidos, protocolos epidémicos, protocolos de filiação,

tolerância a partições na rede, inferência de localizações.

ix





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Word 5

2.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Essential Management Services . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Failure detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Distributed Storage Systems . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Gossip Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Peer-to-Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Message Dissemination . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Overlay Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Fundamental properties and metrics . . . . . . . . . . . . . . . . . 20

2.3 Network Partition Tolerant Distributed Systems . . . . . . . . . . . . . . . 21

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Partition Tolerant Membership Service 23

3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Location Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Static Label Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.3 IP Address Clustering and Latency Oracle . . . . . . . . . . . . . . 27

3.5.4 Anchor Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.5 Dynamic Label Oracle . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



CONTENTS

3.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Partition Tolerant Membership Service . . . . . . . . . . . . . . . . . . . . 30

3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6.2 Partial View Management Policies . . . . . . . . . . . . . . . . . . 30

3.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Implication on message dissemination . . . . . . . . . . . . . . . . . . . . 32

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Evaluation 35

4.1 Components implementation . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Oracle’s classification accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 IP Address Clustering with Latency Oracle . . . . . . . . . . . . . 36

4.2.2 Anchor Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Dynamic Label Oracle . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 LHView’s evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 In-Degree and Out-Degree . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Crash failure recovery . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Network partition recovery . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 45

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

xii



List of Figures

3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Anchor Oracle and anchor servers’ deployment . . . . . . . . . . . . . . . . . 28

4.1 Average longest common IP prefix size per scenario. . . . . . . . . . . . . . . 37

4.2 Percentage of correct classifications in each tested scenario . . . . . . . . . . 38

4.3 Number of distinct labels over time per deployment scenario. . . . . . . . . . 39

4.4 Node in and out degree of HyParView and LHView. . . . . . . . . . . . . . . 41

4.5 Reliability of HyParView and LHView under crash failure scenario. . . . . . 41

4.6 Reliability of the LHView in face of a network partition. . . . . . . . . . . . . 42

xiii





List of Tables

4.1 Deployment configuration for each scenario(rows). . . . . . . . . . . . . . . . 36

4.2 Average round trip time between all datacenters. . . . . . . . . . . . . . . . . 37

4.3 Memberships and dissemination parameters. . . . . . . . . . . . . . . . . . . 40

xv





C
h
a
p
t
e
r

1
Introduction

1.1 Context

In recent years, as the World progresses into a more highly connected place, many global

level business opportunities have appeared. These businesses intend to have their services

reaching as many customers as possible and therefore must be able to operate at global

scale. In order to provide global services, organizations resort to geo-distributed systems

usually deployed on datacenters around the globe.

Systems designed for large-scale such as Cloud settings, must be prepared to han-

dle all kind of network anomalies, component failures, and software errors by design.

Ideally, the system should be able to deal with such faults autonomously, in order to

provide a trustworthy, satisfactory, and cost efficient service. Modern systems rely on

specialized modules that are responsible for managing the membership of components

(e.g nodes) that materialize the system to allow a (high) control over data partitioning

and load balancing while providing fault-tolerance by tracking and addressing (i.e, re-

configure the system) nodes’ failures. These membership services many times resort to

Peer-to-Peer(P2P) techniques that along the years have proved their value when design-

ing distributed protocols that must be highly scalable, efficient, and fault-tolerant. To

guarantee that those systems does not compromise themselves, theirs decision must be

based on most recent membership’s state which on a planetary level is extremely difficult

to accomplish, having into account the network’s asynchronous message delivery model.

A solution consists on using Gossip-based protocols, designed to provide high reliability

for communications and dissemination of information.

As an example consider a geo-replicated cloud-based storage system such as Cassan-

dra[16], Dynamo[8], ChainReaction[1], or Cops[23]. These systems require up-to-date
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CHAPTER 1. INTRODUCTION

membership information to many decisions regarding the processing of application re-

quests, namely to infer the location of each data object maintained by the system. The

lack of robust and partition-tolerant membership services has lead all these solutions to

rely on human-centered control, which can lead to delays in handling faults while at the

same time incurring in additional human cost on highly specialized system operators and

administrators which are susceptible to human errors[26][34].

Gossip, or epidemic protocols, use a pattern of messages’ dissemination usually on top

of a logical network provided by membership services denominated overlay networks that

resembles the propagation of a biological virus on a population. In the context of the P2P

model, a node propagates a message to its neighbors, the nodes to whom it is connected at

the overlay level. The receiving nodes will perform the same procedure to their neighbors

and so on until all nodes receive the message. The dissemination behaviour explained not

only has high scalability because all nodes cooperate on the process and the load is evenly

distributed among them but also high fault-tolerance and reliability as a consequence of

the high level of redundancy due to the multiple propagation paths that emerge from this

process.

Protocols such as HyParView[19] provide a membership management service that

guarantees high global connectivity due to its self-healing properties even in cases of

catastrophic failures as high as 80% of simultaneous node failures. Leveraging this proto-

col it was shown that one could build highly efficient and robust message dissemination

mechanisms[18]. Following this, the protocol leverages information management strate-

gies that combined with the use of TCP as (unreliable) failure detector, provides a fast

failure detection mechanism that allow it to take quick action for repairing the overlay in

presence of node failures.

However, the HyParView’s impressive self-healing capability is a double-edge sword

when scaling to a global scale. The reason for this derives from the protocol’s incapabil-

ity to distinguish simultaneously node failures from (transient) network partitions. In

face of network partitions, protocols similar to HyParView will reconfigure themselves

extremely fast by replacing all the unresponsive nodes by nodes that are currently respon-

sive while forgetting information about nodes that previously were active. This results

on the creation of distinct sub-sets of nodes without any information about the others,

making the protocol lose its global connectivity and consequently, its reliability. This sce-

nario originates from the occurrence of the inevitable network partitions that often affect

global-scale applications[3]. Therefore there is a necessity for a membership protocol

that takes geo-distributed systems to the global scale while providing the fundamental

guarantees necessaru to ensure the correct operation of these systems while the network

is partitioned as well as after the partition is healed.

2



1.2. MOTIVATION AND SOLUTION

1.2 Motivation and Solution

Systems deployed in Cloud settings that provide geo-distribute services are composed

of thousands of nodes that require precise management by its infrastructure adminis-

trators. However, the unpredictable occurrence of failures can affect considerably their

performance. Moreover, if these systems require manual management even for small

tasks such as permanently decommissioning a node[16][8] the system can operate with a

sub-optimal configuration for too long. Furthermore, the error-prone tendencies of hu-

mans may comprise the system even more[26][34]. Additionally, the time necessary for a

human to solve a problem combined with its working schedule, and cost of these highly

specialized administration and operations experts has started to lead organizations to in-

vest on automation. By doing so, organizations aim for autonomously managed systems

to achieve a robust base for supporting the operation of their services while reducing

maintenance cost.

Current solutions rely on internal components to track service’s membership and those

capable of tolerating a partition need to maintain at each node the global information

about the cluster’s state, i.e, the system deployment. A solution that scales requires great

amount of resources for monitoring and that does not exclude faulty nodes which affect

the performance and correction of the monitoring mechanism. Other solutions focus

on tracking just a fraction of the system state at each individual component and can

efficiently handle dynamic environments by being capable of fast self-recovery. However,

this class of solutions are unable of distinguish multiple failures from network partitions

due to the lack of global information that would potentially allow to perform co-relation

analysis on detected failures. Thus inaccessible nodes are excluded from the system

permanently. However, network partitions divide the system into two or more disconnect

components incapable of communicating with each other and so neither will attempt to

reconnect because nodes in each component assume the remaining nodes(i.e, nodes in

the other components of the partition) to be permanently faulty.

Our solution integrates into exiting gossip-based membership protocols a mechanism

for automatic location inference. These mechanism is highly adaptive and can exploit the

API provided by the Cloud virtualization services or, when these are not available, mon-

itor environment properties, such as the latency between nodes, to automatically infer

the relative location of nodes in a system deployment, offering additional information for

the system to deal with network partitions. This empowers the membership service to re-

join connectivity by reconfiguring itself after the healing of a network partition, without

human intervention.

1.3 Contributions

The main contributions of this thesis are:

• It proposes novel location inference techniques for nodes in large-scale systems.

3



CHAPTER 1. INTRODUCTION

• A membership service that leverages epidemic/gossip protocols capable of fast self-

regeneration in the presence of faults while being tolerant to network partitions.

• A experimental evaluation of the precision of the location inference mechanisms

and their impact on the robustness of the gossip-based membership services.

We present a membership protocol that addresses network partitions, a major chal-

lenge for large-scale services without compromising the robustness, scalability, and reli-

ability of the whole system. The LHView achieves such feats by extending the member-

ship protocol HyParView[19] with location inference components, Oracles. The ability

to distinguish nodes from different locations allow LHView to apply specific recovery

procedures to different categories of failures that previous protocols could not.

The evaluation of our work consisted of evaluating the location-inference accuracy of

the oracles proposed in this thesis in three deployment scenarios and on a comparative

analysis of LHView with HyParView. The comparison focused on demonstrating that

LHView maintains the same guaranties of its predecessor and on LHView equipped with

oracles allow it to succeed in network partitions scenarios while its predecessor can not.

1.4 Document structure

The remainder of this document is organized as follows:

Chapter 2 presents the related work. In more detail, section 2.1 describes distributed sys-

tems and the technologies that support their essential services. Section 2.2 presents

fundamental properties of gossip protocols and the diverse overlay networks that

support them. Section2.3 discusses briefly some systems that could benefit from

the proposed work in this thesis.

Chapter 3 describes our solution and its components in detail.

Chapter 4 presents the evaluation of each component and the integrated membership

system.

Chapter 5 presents our conclusions and proposes future work directions on this domain.

4
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2
Related Word

This thesis focus on proposing a novel design and implementation for a membership

protocol that is tolerant to transient network partitions. Such solution can be integrated

in multiple systems that are now-a-days highly used in practice. This chapter discusses

fundamental concepts and related technologies that inspired the solution and systems

that could benefit from it, in particular:

Section 2.1 overviews distributing computing and essential services and techniques that

are employed in the design of distributed systems.

Section 2.2 describes gossip/epidemic protocols and overlay networks used to support

the application-level membership and communication services of large-scale dis-

tributed systems.

Section 2.3 discusses concrete systems that could benefit from partition tolerant, highly

robust membership systems as the one proposed in this thesis while being also able

to leverage robust and scalable dissemination protocols that can be built on top of

these systems.

2.1 Distributed Systems

A distributed system is a set of networked computers coordinated through the exchange

and sharing of information, typically messages (message passing model). Organizations

build, on top of these systems products and/or services that exploit the Internet to reach

clients across the globe. As the number of clients increases, systems must be able to

scale accordingly and handle the occurrence of unpredictable network anomalies. In

order to handle the workload without investing on bleeding edge equipment, organiza-

tions many times resort to architectures where the load of the system is (approximately)

5



CHAPTER 2. RELATED WORD

evenly spread across nodes/computers that materialize a system. Therefore, nodes con-

tribute and share their computational resources to cooperate on solving a problem or

providing a concrete service, such that the nodes can be perceived as a single entity that

has an amount of computational resources that corresponds to the aggregation of every

individual computer resource.

The resulting cumulative computational power and storage space on a system as the

described above allow to achieve a performance (for parallel programs) that can surpass

bleeding edge super computers while being cheaper, more scalable, and robust that those

solutions. Through cooperation, nodes can address problems by dividing the workload

evenly among them and when facing large-scale challenges the systems can be scaled

by augmenting the number of nodes that materialize the system (we will call such set of

nodes, a cluster). Note that each cluster member is fundamentally similar to the other

elements of the cluster, which also enables one to address the failure of any node by

simply replacing it with a new one.

Although these models offer better load-balancing and fault-tolerance, they have to

handle several challenges that have a high impact on their performance:

Network latency: As a consequence of delay introduced by communications there might

exist delays on the computations and readiness of the data required by individual

components. This can translate into delays for providing responses to end users,

which has been shown to have a direct translation to loss of revenue for service

operations[31].

Coordination: To efficiently leverage the available resources, nodes have to synchronize

fractions of their executions, which on a decentralized model may require excessive

exchange of messages and have an excessive amount of time. The alternative is

to resort to the centralized model, through the use of a coordinator node, which

inherently is a single point of failure (and potential bottleneck). Furthermore, the

coordination may require up-to-date global information about the system which

is not trivial to gather in a timely and efficient fashion in a large-scale distributed

system.

Resources Management: Control over the entities in the system that can manipulate and

use resources of the system. This can increase the complexity of the system and

lead to the introduction of errors in its behaviour.

Failures: Components and network links may fail independently and arbitrary. The

occurrence of failures should not cause the complete shutdown or unavailability

of the system, i.e, compromise system availability, nor compromise the data/state

maintained in it, i.e, compromise the system correctness.

Manual management: As the number of nodes increases, the management of the cluster

will become significantly more difficult due to the increase in individual reuse of

6
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the components and possible interface between them. Distributed system should

support autonomously node and resources management in order to reduce the man-

agement cost and avoid human errors.

Large-scale distributed systems have been used to process and/or store large volumes

of data, therefore it is necessary that these systems cope with the previously mentioned

challenges. These system address a fraction of those issues by incorporating a member-

ship service that track the status of the nodes of these systems. The class of distributed

systems branch into the following categories:

Distributed Data Processing: Used to process large volumes of data using a cluster in-

frastructure in order to achieve a particular goal, such as infer data patterns or

co-relate large amounts of data with different provenances. In these systems, the

problem is divided into smaller tasks which will be distributed among the nodes

by a coordinator which plays a crucial role of scheduling the computations across

the available resources. Furthermore, intermediate and final computation results

are stored on a distributed file system to guarantee the data’s availability. Exam-

ples of implementations of systems for distributed data processing include Google

MapReduce[7], Apache Hadoop[2] and Apache Spark[38], among others. Such sys-

tems need to keep track of available resources in the cluster, which can be seen as

a membership related challenge while at the same time they are required to track

available resources, which is a form of monitoring that can be achieved through a

reliable metadata dissemination system.

Distributed Storage: Used to store great volumes of data, and usually designed to scale

as the workload increases by sacrificing strong consistency or availability. Unlike

traditional storage system, the query model of many of this systems is simpler

exposing an interface that is similar to a key-value store. An example is the storage

system Dynamo[8] that uses data partitioning scheme combined with replication

techniques in order to provide availability and efficiency. Spanner[6] goes even

further by relying on centralized management schemes per geographical region to

provide strong consistency on client access to the stored data objects. This sort of

system needs to maintain control information about the nodes of the deployment

that are available at each time, as to make decisions regarding routing of requests

and to manage the life-cycle of replicas. This again can be achieved by using a robust

membership system based on partial views, and then use the data dissemination

mechanism to build complete membership information. This approach is used by

the Riak-KV[29] distributed storage system.

Distributed Cluster Resources Management Used to manage the sharing of resources,

maximizing the cluster utilization. Most distributed systems don’t use all the re-

sources available on every computational task, thus the free resources may be

allocated to computations from others systems or clients (Multi-tenancy model).

7



CHAPTER 2. RELATED WORD

YARN[36] and Mesos[11] are management systems that simplify achieving these

goals. These systems to provide a high quality service, efficiently share resource

among multiple tenant, which, similar to distributed data processing system, could

benefit from robust and fault-tolerant membership services combined with a data

dissemination mechanism that is both robust and efficient, enabling all nodes to

build a common and global view of the whole system state.

2.1.1 Essential Management Services

As the scale of a system increases in terms of number of components and distributed lo-

cations where these components are hosted, the complexity of managing that distributed

system also increases. To deal with such increasing complexity many distributed systems

rely on some of the following essential management services:

Coordination: Controls the access to shared state without breaking consistency invari-

ants. Examples of instances of such service are Zookepeer[13] and Chubby[5], which

use the consensus algorithm Paxos[17] to coordinate the execution of operations in

replicated system.

Resource Management: Provides the discovery, selection, scheduling tasks, executing

jobs, and monitoring to a distributed system in a similar way to what the operating

system offers in the context of a single machine. This service usually requires a

global view of the system and strives to optimize the distributed system resources

usage, while at the same time it uses that information to ensure the completion of

concrete tasks in useful time despite node failures[38].

Monitoring and Control: Provides instrumentation that offers administrators ways to

diagnosis the state of a distributed system at a local and global level, which allows

to assess the overall correctness of the system. The control component usually

empowers an administrator to reconfigure parts of the system if the system deviates

from a correct and efficient operation/configuration.

2.1.2 Membership

Many distributed systems require the most up-to-date information about its aggregated

computational resource’s state in order to manage and use them efficiently and correctly.

The information about the active nodes on the system is provided by a membership

service. While such services can be materialized by a centralized component, many large-

scale systems resort to membership services that leverage on peer-to-peer technology to

share the nodes’ state and trace membership events through epidemic/gossip protocols.

We discuss this class of decentralized services in more detail in section 2.2.

8



2.1. DISTRIBUTED SYSTEMS

2.1.3 Failure detection

The occurrence of network anomalies and component failure are unpredictable, thus dis-

tributed system must be prepared to handle these events by design. This can be achieved

by employing failure detection[27] and recovery mechanisms. The membership compo-

nent is typically used as a failure detector[19] by classifying nodes’ unresponsiveness as

failures by performing periodic monitoring tasks and through the execution of automatic

recovery procedures to exclude faulty nodes and move their tasks to other connected

nodes, when required.

FALCON[22] is a system that relies on a different approach to achieve such goal.

It relies on specialized complementary components, named spy modules that monitor

and report the status of every software layer at each node of the system. The FALCON

approach is limited to one datacenter and it adds spy modules on at least on four layers:

Application, Operative System, Virtual Machine, and Network Switch. The spy modules

can communicate with each other and with the component layer that they monitor. The

components are arranged in a chain to maximize failure detection surface and avoid

disruption such that the lowest layer L component can query the L+ 1 spy module, which

allow the system to restart just the compromised components. To judge the status of

a component spies require that each component implements a custom procedure that

evaluates it according to its functionality.

Although FALCON approach provides fine-grained control, it is still subject to issues

such as incorrect timeout parametrization. Moreover, the deployment is not trivially

replicable and the solution cannot make adequate decisions on the occurrence of network

partitions. Furthermore, this is a platform-specific solution, which has a non-negligible

cost to integrate in any particular system, i.e, it cannot be used in systems deployed in

public clouds such as Amazon EC2 as the virtualization and network components cannot

be (directly) monitored.

2.1.4 Distributed Storage Systems

Many large-scale distributed storage systems are designed to scale as the workload in-

creases by sacrificing either data consistency or availability. Unlike traditional storage

system such as relational databases, the data model is simpler and follows the idea of a

key-value store that exposes GET and PUT operations. Data is attributed to nodes through

a data partitioning scheme that enables any cluster node to answer if it is responsible over

the data or forward the request to an appropriated node. A method that increases the

overall availability of the system while spreading the load of the system among the multi-

ple nodes that compose it. As other distributed systems it is necessary to track the active

nodes in order to avoid incorrect decisions, handle unpredictable network anomalies,

and rebalance/replicate data. To achieve the required control, storage systems combine

autonomous membership management components and failure detection mechanisms

9
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that allow the system to recover from failures and reconfigure itself when external events

occur, such as nodes being added to the system and (permanently) decommissioned.

Bellow we discuss in more detail some relevant examples of distributed storage sys-

tems, that require information about the system’s membership, and hence suffer from the

problems being addressed in the context of this thesis.

Dynamo[8] uses a ring-based overlay to handle the system membership where each

node has an unique identifier that results from the use of a modified version of the

consistency hashing combined with the use of virtual nodes, where each physical machine

hosts a set of virtual (independent) nodes with different identifiers. Data is partitioned

across the cluster by attributing the responsibility over requests to virtual nodes whose

identifier’s hash match or is the closest to the data object key. The number of virtual nodes

are distributed per physical node according to each node capacity. Furthermore, nodes

join the system by contacting special contact nodes called Seeds, which can be defined

through a configuration file or provided by an external independent service.

Dynamo’s membership management lacks automation, additions and removals are

explicit and performed by human operators or system administrators and upon change

the modification is propagated through all nodes using a dissemination protocol. Addi-

tionally, each node cooperates with others in an exchanging their view of the system to

guarantee that it is up-to-date and because every node will eventually exchange its view

of the system with a seed node, which avoid logical partitions. The occurrence of node

failures have no consequence on the membership because every modification is explicit

but Dynamo forwards request to back up nodes until the failed node recovers.

Cassandra[16] is a storage system inspired on Dynamo however, Cassandra uses a hash

function that takes into consideration the load of cluster node. To this end the identifier

of a node is assigned by a key coordinator. This allows the system to move lightly loaded

nodes on the ring to alleviate heavily loaded nodes, which provides a deterministic load.

The membership is based on Scuttlebut[28], an anti-entropy protocol that offers efficient

CPU utilization by analysing gossip updates and the local resources available. Similar to

Dynamo’s membership, addition and removal of nodes are explicit, thus no re-balance of

partitions or repair procedure for unreachable nodes is automatically performed by the

system.

Cassandra handles failures following the same guidelines defined by Dynamo, but it

relies on an additional failure detection mechanism that outputs a nodes’s suspicious of

failure degree and upon failure detection Cassandra resorts to a hinted handoff strategy.

While performing the hinted handoff strategy requests are forwarded to a backup node

that will periodically check if the faulty node has recovered. When a node recovers, all

messages stored by the backup node are sent to it.

10



2.2. GOSSIP PROTOCOLS

Riak [29] is another storage system inspired by Dynamo that inherited most of its de-

sign decisions related to the membership management, the failure detection and handling.

It differs on the key distributed scheme by using a pre-calculated partition list instead

of a variant of consistent hashing. The failure detection and handling follows the same

guidelines that Dynamo combined with the hinted handoff strategy employed on Cassan-

dra. For message dissemination, Riak uses a latency-optimized version of the PlumTree

protocol[18](whose details can be found in section 2.2.3.5). This message dissemination

mechanism is used to build a robust and efficient metadata dissemination system that is

used to propagate control information(including membership information) throughout

all nodes of a deployment. We follow this design choice to get the motivation for building

a membership system based on partial information that can support a highly robust and

efficient metadata dissemination service.

2.1.5 Summary

Many businesses that try to reach a extremely high number of customers have to deploy

geo-distributed services across the planet, a scale that brings management and mainte-

nance challenges. Those services must handle, by design, component failures, network

anomalies, and provide high level of automation without increasing organizations’ main-

tenance costs unreasonably. To achieve these goals, distributed systems rely on essential

services that monitor, coordinate, and manage resources in the infrastructure. However,

these essential services require knowledge about nodes’ status to track the membership

and efficiently disseminate information (namely relevant control and membership meta-

data) throughout the system. To support such membership and dissemination mech-

anism, systems can leverage very efficient and scalable gossip protocols that provide

fault-tolerance and reliability. However, such (well known) approaches still lack the ad-

equate level of automation that is necessary for large-scale dynamic environments and

that can cope adequately with network partitions. In particular, we have shown that most

NoSQL distributed storage systems still employ a very simple membership service that

was first introduced in Dynamo. Due to the limitations discussed above, in the thesis we

plan to push forward the design of such membership services enabling the operation of

efficient and robust metadata dissemination services on top of them.

2.2 Gossip Protocols

Gossip or epidemic protocols are used, among other purposes to disseminate information

across large number of participants in distributed systems. The message propagation

pattern resembles the propagation of a biological virus on a population. In the context of

Peer-to-Peer (P2P) architectures, a node propagates each message to a predefined number

of its neighbors (a parameter usually named fanout, t, typically with a value logarithmic

with the total number of nodes in the system). The nodes to which each node propagates

11
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messages are selected among its neighbors in the overlay network. The receiving nodes

will perform the same procedure to their neighbors and so on until all nodes receive the

message. Nodes only forward messages that they receive for the first time, which implies

that each node maintains information about messages previously propagated in the sys-

tems. This transmission pattern allows the system to distribute the load evenly among

nodes and leads to the emergence of multiple independent dissemination paths (depend-

ing on the employed fanout), which is crucial to provide the necessary redundancy which

is essential to provide failure tolerance and high message delivery reliability.

2.2.1 Peer-to-Peer

Peer-to-peer (P2P) systems have arisen as an alternative model that offers better scalabil-

ity, fault-tolerance, and load balance properties than the classical Client-Server model.

The Client-Server model follows a centralized architecture that attributes different roles

to each host. This model, in order to scale, requires to increase the number of servers

where sub-sets of those are designed for specific tasks, however the new equipment has

an undesirable added cost and servers’ specialization might lead to unbalanced load dis-

tribution. The load distribution problem results from the tasks’ frequency as well as the

amount of resources required to execute each task. Consequently, some servers might

consume all their resources while others might be mostly idle. Additionally, some servers

might be stalled while waiting for the completion of sub-tasks in overloaded servers. This

leads to sub-optimal resource utilization. Additionally, servers specialization introduces

points of failure in the system because a service, or ever the whole system, can be com-

promised if a sub-set of specialized servers fail simultaneously. Although some systems

apply a fail-over strategy that requires additional equipment, it results on additional

maintenance costs and potentially leading to an increase of idle hardware resources.

A system that follows the P2P model assigns to each node both roles of Client and

Server. Thus each node contributes to the system progress by sharing resources and

cooperating on task execution. As every member is equal from the system perspective, it

is easier to distribute tasks across the available resources and on a failure occurrence, the

system can replace the node by any other without additional equipment or significative

management overhead. The described behaviour allows this kind of system to be resilient,

robust, and to scale due to its use of a decentralized architecture unlike the Client-Server

model.

2.2.2 Message Dissemination

An essential aspect of distributed systems, that was already mentioned previously, is the

exchange of information among nodes, and in particular the dissemination of data to

large number, or even all, components of a system.

Message dissemination strategies affect the delivery reliability, the redundancy of

messages (i.e, the overhead associated with network usage), and when the information
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being disseminated is membership control information it might also have a direct impact

on the overlay regeneration speed. The fundamental communication mechanism that are

employed to design gossip protocols can be classified as:

Eager push Nodes send new messages to their neighbors as soon as they received it for

the first time. This strategy allow a fast message dissemination but a high number of

selected neighbors(fanout) for the procedure may increase the message redundancy

considerably and increase the overhead imposed on the communication links.

Pull Nodes request their neighbors for information about new messages periodically

and if they have any, the node requests its payload explicitly. Although it reduces

the amount of bytes exchanged on the network (for messages with large payloads),

the rounds’ frequency may cause nodes to congest the network with unnecessary

messages if the interval between rounds is too small or slow down the propagation

otherwise.

Lazy push it’s similar to the pull approach however nodes, similar to the push strategy,

send the identifier of a message to its neighbors as soon as it receives that message

payload. Receivers can then explicitly request the message payload if required

(for the firsts time). It has the advantage of reducing the amount of information

exchanged in the network.

Hybrid while there are multiple possible combinations of the strategies discussed above,

one of the most common is to combine the eager push with the lazy push. It uses

the first as the primary message dissemination strategy for a fast delivery and com-

plements it with the second strategy for failure recovery.

2.2.3 Overlay Network

Connectivity relationships among P2P nodes form overlays that may be used to dissemi-

nate messages related to the system’s service or its self management. These overlays are

networks composed by logical links that abstract the characteristics of the underlying

network, which may be another overlay or the physical network topology. An overlay can

be categorized concerning its topological properties[21] as: Structured, Non-Structured,

and Partially-Structured. In the following sections, we discuss the properties of each

overlay type and provide the description of relevant examples found in the literature.

2.2.3.1 Structured Overlays

Structured overlays are networks where the connections among nodes follow a pre-

defined structure. P2P protocols force structure on the overlay to provide better rout-

ing and resources localization primitives. The most relevant protocols of this kind are

Chord[33], Pastry[30], and Tapestry[4]. Although structuring the overlay improves search
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primitives, it decreases the flexibility to handle churn1 scenarios because it requires nodes

to be routed to a specific logical position in the network when they join the system and

conversely when a node is detected as failed, only a small subset of nodes in the system

can be used to replace its previous logical partition in the overlay. Therefore structured

overlays aren’t as resilient as unstructured overlays because of the lack of flexibility in-

herent to the operation of healing mechanisms.

Chord[33] is a protocol that builds a structured overlay using Consistent Hashing to

provide efficient lookup primitives. Nodes are organized in a ring considering the relative

order of their identifiers (the identifiers space wrap around to allow this). Additionally

the membership maintains also a small list of node identifiers that provide shortcuts

in order to reduce the number of hops required to transverse the ring. The protocol

correctness relies on every node maintaining the correct successor. The incoherence of

the remaining overlay links only affects the routing performance. Concurrent additions

and removals to the membership may break the overlay. Thus, Chord applies periodically

a stabilization protocol at each node to correct the maintained overlay links. However this

mechanism is unable to repair an already partitioned overlays. Furthermore, all its fault-

tolerance is based on the stabilization protocol and it is not able to tolerate intense-failure

scenarios (i.e, scenarios where large amounts of nodes fail simultaneously).

Pastry[30] is a self-healing protocol that offers efficient location and wide-area routing

primitives by exploiting nodes’ locality. Similar to other protocols, it assigns random

identifiers to nodes and maintains a table that is used to support routing between nodes

(in the identifier space). This table uses substrings of the node identifier to select which

nodes to maintain links to. Additionally each node has 2 additional structures that

provide back-up nodes to handle failures. The routing algorithm for a node starts by

consulting the structure with its closest neighbors and if it can’t find the target id it

resorts to the table to forward the message to a node with the identifier closest to the

target of the message. Nodes join the system by contacting a contact node that will notify

the new node closest neighbors of its arrival and to finalize the process they exchange

their routing structures content. Nodes leave silently and Pastry handles them in a similar

fashion to the way it handles failures, by replacing failed nodes with nodes maintained

in its additional local structures. If the failure was detected on discovery, the message

is forwarded to another entry of the same level, otherwise it exchanges the structures

content with the closest node to the faulty one to update them.

Tapestry[4] offers location-independent routing that leverages locality while offering

self-organizing and fault-tolerant properties. Data is partitioned by assigning objects

to multiple nodes, which will be the object coordinators. If a request cannot be routed

1Churn is caracterized as a period of time when the frequency of arrival and departure of nodes in the
system is extremely high.
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to the adequate node, the node that is unable to further forward the message becomes

responsible for the object contained in it. To route messages nodes maintain a routing

map where each level points to nodes that match the route’s owner id suffix to a certain

degree. Closer nodes will have more id bits in common. Data is published by sending a

message to the root informing that it has a new object and along the way intermediate

nodes also store it. Queries return a set of nodes containing the data to which is applies a

selector operator to filter against locality metrics. As a self-healing procedure the protocol

periodically sends heartbeats to nodes that point to it to detect faulty nodes and corrupted

tables. To any faulty node, it is given a chance for recovering within a period of time and

if it fails to do so, it is simply removed from all routing structures. Additionally, every

entry on the table has two potential backup nodes as alternative paths to reduce the delay

upon the need to recover from a node failure.

2.2.3.2 Summary

Protocols that build structured overlay network support efficient routing primitives,

though the structured approach reduces their capacity to adapt to dynamic environments.

Furthermore, if the protocol operates over a global view of the system at all times then

it is difficult to enforce that all nodes have the most up to date information of the sys-

tem membership. Otherwise, nodes only require information about a few others which

scales better but it is also difficult to enforce the constraints on the topology that must be

maintained among nodes. Although protocols for building and maintaining structured

overlays may provide fault-tolerance and self-healing properties, the synchronization

overhead and the amount of information to track don’t allow these types of systems to

scale to thousands of nodes easily.

2.2.3.3 Unstructured Overlays

Unstructured overlays don’t impose significant restrictions on how links between nodes

are established. Nodes join the system through an external mechanism that provides a

contact node, upon receiving a request to join, the contact node may establish a connec-

tion with the new node and notifies some of the other members by flooding the overlay or

by using a set of random walks through the current overlay topology. Thus the resulting

overlay won’t have any specific structure having a topology that is essentially random

in nature, which provides high flexibility to churn, high resilience, and robustness. Al-

though these properties are fundamental to provide fault-tolerance, the randomness is

not ideal to construct routing and localization primitives that many file-sharing or data

storage systems require. However, these overlays are enough to manage memberships,

which may operate with partial information of the system. This concept is typically ex-

posed to applications as a peer sampling service that provides other modules a set of nodes

that might be used on their tasks. Those nodes come from the materialization of the par-

tial information in a set of node identifiers maintained at each node by the membership,
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named partial view. Examples of systems that build unstructured overlays are Scamp[10],

Cyclon[37] and HyParView[19].

SCAMP[10] is a simple peer sampling service and self-organizing protocol that builds a

randomized overlay which relies on partial views that contain slightly more nodes than c∗
log(n) where c is a constant related with the desired fault-tolerance and n is the maximum

number of nodes expected to join the system. The protocol was designed to ensure high

reliability and robustness. The authors affirm that using the mentioned threshold the

probability of all correct nodes receiving a message is close to 100%. Initially, a node joins

the system by sending a subscription message to an arbitrary member that will add it and

forward the message with the new node information to c randomly chosen nodes from

its view. A node that receives a forwarded copy of this message will add the new node

to its view according to some probability p, which depends on its local partial view size.

Otherwise, it will forward the message to a random node among its neighbors. Departing

nodes send an unsubscription message to their neighbors, which will remove the node

(if it was contained in their partial views). To avoid a logic partition which may happen

if all its neighbors fail or unsubscribe, each node will track the time between messages’

exchange and when it surpasses a predefined limit triggers a resubscription to the system.

Cyclon[37] offers better connectivity, average path length, average clustering coefficient

with high resilience, high failure tolerance, and fast self-healing compared with Scamp

by applying periodic shuffling of membership information among nodes of the system.

Unlike other protocols, Cyclon node’s identifier contains an additional value represent-

ing the number of shuffle rounds that have passed since the creation of that reference,

which is called the age of the identifier. The shuffle starts by incrementing the age of all

its neighbor’s identifiers and then selecting the oldest, to which it will send a message

containing a subset of its partial view after inserting in this message a new identifier for

itself with an age of zero. The neighbor upon receiving it, responds with a subset of its

view and then, both nodes proceed to execute the merge procedure where they integrate

the remotely received sample in their own partial views of the system. The participating

nodes will add nodes until their views are full and then replace the entries that they sent

by entries received remotely. The procedure offers good resilience and failure tolerance

because eventually all neighbors of each node are tested by establishing a connection dur-

ing the shuffle procedure however, failure detection in this fashion is only recovered in

the following successful round. Even on the occurrence of a massive failure, the surviving

nodes have a high probability of having others correct nodes on their views, thus at most

n cycles are necessary to discard all dead links, being n the size of the view.

HyParView[19] is a peer sampling service that offers high resilience and high delivery

reliability even in cases of extreme failure, which allows to achieve 100% reliability for

message dissemination when 80% of nodes failed simultaneously. To accomplish this, it
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relies on a hybrid approach that uses two partial view of different sizes and each with

different maintenance strategies. The principal view called active view represents the

active nodes (or neighbors) and it uses a reactive strategy that reacts to join/leave/failure

events. The other, named passive view, contains back-up identifiers to handle failures

and applies a cyclic strategy that periodically triggers an information exchange procedure

on each node. HyParView uses TCP as an unreliable failure detection mechanism that

it is used to transmit messages, thus testing at each connection if the neighbor in the

active view has failed. The hybrid approach applied allows the system to recover from

failures in fewer rounds that previous approaches and to guarantee the global overlay

connectivity, the reachability of all nodes and low clustering coefficient, which benefits

the latency and efficiency of message dissemination.

2.2.3.4 Summary

Unstructured overlays offer self-healing and reliable broadcast primitives capable of sup-

porting dynamic environments. Furthermore these require smaller partial views of the

system (at each node) and cooperate with low fanout, thus generating less redundancy

while guaranteeing atomic broadcast even when a high number of individual nodes fail

simultaneously (in the HyParView’s case). However, the lack of structure may cause the

overlay to mismatch the underlying topology, thus blocking the protocol capability to

leverage the full potential of the network. However to disseminate information in a reli-

able and efficient way, unstructured approaches are better suited and hence in this work

we focus on membership services that resort to an unstructured design.

2.2.3.5 Partial Structured Overlays

Partial structured overlays are obtained mostly from unstructured overlays in order to

leverage their fault-tolerance and adaptability guarantees. Typically over the networks

generated by unstructured overlay maintenance algorithms one applies an optimization

procedure. The optimization consists mostly on link’s exchange between nodes that

benefits the protocol according to a pre-defined metric, enabling for instance, the overlay

network topology to benefit from knowledge regarding the underlying network topology

to provide more efficient delivery mechanisms than would be possible with a completely

random unstructured overlay. Examples of such protocol are presented bellow.

T-MAN[14] uses a peer sampling service that provides random nodes and improves

the random overlay by applying a ranking function to the nodes. The function takes as

input node identifiers that unlike other protocols contain additional node’s profile data.

T-Man optimization operates periodically, each node selects a candidate to exchange local

information and then creates a collection with its identifier, its view’s content, and a list

of identifiers from nodes provided by the peer sampling service. The candidate after

receiving the message executes the same steps as the initiator of the process and after
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both nodes have received each other lists, they merge them with their view and finally

they select the best nodes for their local view by applying a specialized ranking function

to the resulting merge list. The usage of an underlying peer sampling service provides

robustness to the protocol, however the optimization does not maintain the nodes degree

which may cause unbalanced load distribution and even graph connectivity issues, as

shown in [20].

Araneola[24] optimizes the overlay by biasing the number of identifiers in a node’s

partial view in function to a parameterizable threshold. The overlay construction and

maintenance rely on three tasks that handle joins, leaves, and failures, which verify if

the partial view size oversteps the threshold and react accordingly. To guarantee that

the partial view has the most recent information each node exchanges random identifiers

from their views through piggyback periodically. The author propose an additionally

version that exploits the network proximity and bandwidth heterogeneity by adding

links to nearby nodes, which requires a specialized component to evaluate the links and

a task to establish these additional connections. On Araneola, message dissemination is

performed in gossip rounds, where each node floods the new message identifiers though

the overlay. Those messages may piggyback additional requests for instance, the payload

of the messages that the sender is aware that exist but have not yet received. By packing

messages and disseminate through gossip rounds the protocol reduces the bandwidth

overhead and it allows also a better control on messages delay by tuning the frequency of

these gossip rounds. The fine-grained control over the view size allows Araneola to offer

high delivery reliability and load balancing when parameterized correctly.

GoCast[35] was designed to tune/control nodes’ degree in order to offer reliable and

resiliency properties. Additionally, it bias the overlay in function to the nodes’ proximity

to offer better latency while allowing partial views to hold an additional small number of

random nodes to provide robustness in term of global overlay connectivity. Periodically,

nodes evaluate their neighbors by comparing the latency between links to these peers

and analyses the neighbors’ degrees. The analysis of these two factors allows to optimize,

without risking to remove or establish connections to nodes in critical situations, avoiding

the emergence of nodes with high or extremely lower popularity, i.e, translated into

the number of overlay neighbors. GoCast uses a hybrid dissemination approach that

allows to efficiently deliver messages and recover missing messages that are propagated

through the primary push-based strategy. Additionally, a special node designed root,

floods periodically the network with a heartbeat as a failure detection mechanism. GoCast

has a strict control over the node’s degree to efficiently distribute the load evenly among

all participants.

X-BOT[20] is a protocol that optimizes random unstructured overlay networks in func-

tion to a predefined criteria. It combines a 4-node optimization technique and a local
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oracle that outputs the link cost according to the target criteria (e.g. lower latency, high

bandwidth, etc). X-BOT was built on top of HyParView and it has the directive of preserv-

ing the properties that the initial overlay had except during the optimization procedure,

where it attempts to periodically exchange some links in the overlay by better ones, only if

the node has a full active view. Furthermore, the protocol does not bias a parameterizable

number of neighbors to provide robustness and the passive view contains only unbiased

nodes. The 4-node coordination strategy to exchange overlay links, after its conclusion,

guarantees that the nodes’ degree remain the same, a characteristic that allows the over-

lay to have low clustering coefficient, balanced load, and be robust in face of failures.

Additionally, X-BOT’s conditions to perform optimizations make it impose low overhead

on the system, by avoiding sudden changes over all neighbors of a node in the context of

a single optimization round.

Plumtree[18] results from the use of a deterministic tree-based broadcast with an epi-

demic protocol, in order to achieve low overhead, while providing high fault-tolerance

and high reliability. It uses the hybrid dissemination strategy and the first message propa-

gation is used to build a spanning tree which is reused on future propagations until some

node or link fails. Furthermore, each dissemination operates over two distinct neighbor

sets that apply the following policy. A node when receives a new message (i.e, payload)

adds the sender to the set of the first phase (eager push dissemination) and informs the

sender to guarantee the link’s symmetry, otherwise the sender is added to the other set

(lazy push dissemination). This policy allows the protocol to remove redundant links

(from the first phase). Additionally, nodes assign timers for the payload as soon as they

receive the message identifier (by lazy push) to detect slow links or faulty nodes. In that

scenario the node that provides the identifier of a message whose payload is not received

within the timeout takes the place of the faulty node and on the next message dissemina-

tion any redundant links created, due to independent decisions taken by all nodes that

perceived the failure, will be removed effectively ensuring that the links used for eager

push form a tree. Although Plumtree is resilient and has self-healing properties, it is

only optimized for the first sender. Alternatively each node can maintain a spanning tree

optimized for itself but it imposes additional overhead on the system and restricts the

solution scalability to large system sizes.

2.2.3.6 Summary

Protocols that build partially-structured overlays provide efficient delivery mechanisms

but there are several situations to be avoided to ensure that the resulting overlay network

maintains important properties of completely random unstructured overlays. It is impor-

tant to maintain some unbiased neighbors to provide additional robustness and global

connectivity as well as to maintain the nodes’ degree to provide better reachability and
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throughput. Furthermore, optimizations should only be performed under stable opera-

tional conditions and through small modification to avoid accidental logical partitions to

occur.

2.2.4 Fundamental properties and metrics

The efficiency of gossip protocols depends on the quality of the underlying overlay on

which it operates. A high quality overlay must satisfy several graph’s properties which

are listed below accompanied with associated evaluation metrics used to verify these and

related properties in practical systems:

Connectivity: States that there is a path that connects every pair of node. It guarantees

that messages sent from any node are (or at least can be) received by every other

node.

Degree Distribution: It states that the nodes’ degree (the number of neighbors main-

tained by each node) must be evenly distributed. The distribution affects the reach-

ability (in-degree), which for a node corresponds to the number of nodes that have

it as a neighbor. The out-degree corresponds to the contribution of a node for

maintaining the overlay connectivity, which is equal to the number of its outgoing

neighbors. Solutions where overlays links are symmetric have similar in-degree and

out-degree.

Clustering Coefficient: A metric that evaluates the density of the nodes neighboring

relationships redundancy and is related with the probability of a subset of nodes

becoming isolated from the rest of the network on the presence of failures. The

value corresponds to the average of all nodes’ clustering coefficient. For a node, it is

number of edges between its neighbors divided by the maximum possible number

of edges across its whole neighborhood.

Average Path Length: Value obtained by calculating the average of shortest paths be-

tween all pairs of nodes. This metric affects the message dissemination time, thus

lower values make the dissemination more efficient (and usually faster).

Accuracy: The accuracy of a node allows to analyse the reliability of the membership

protocol in selecting gossip targets used by the dissemination protocol. It is funda-

mentally defined, for a node, as the fraction of nodes in the partial view of that node

that are correct. The overlay accuracy is the average of all node’s accuracy values.

Reliability: Value that measures the fraction of correct nodes that can receive a message

disseminated by a gossip protocol. Atomic broadcast corresponds to the successful

delivery of a message to all active node, which corresponds to a reliability of 100%.

Relative Message Redundancy: A metric that analyses the overhead imposed by the

message redundancy of a gossip dissemination protocol, applicable when at least
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two nodes receive the message. The value is calculated by (m/n− 1)− 1, where for a

message the value corresponds to total of messages transmitted m and the total of

nodes that received it n. Note that this metric does not take into account any control

messages exchanged during the dissemination procedure.

2.3 Network Partition Tolerant Distributed Systems

Different distributed system mentioned on this chapter, depending on their category, rely

on different mechanisms to tolerate network failures, namely network partitions.

Distributed Data processing system such as Apache Spark[38] resorts to the recompu-

tation of tasks upon the unresponsiveness of worker nodes. Therefore, unless the network

partition affects the distributed file system and thus the data availability, these system

can make progress at the expense of duplicated work. Furthermore, these system leverage

the Multi-Master strategy that allows the replacement of the master if the current master

is affect by the network partition (i.e, becomes unresponsive), unless the distributed coor-

dination system that accompany the system is affected as well, for instance by becoming

impossible to gather a majority quorum at this subsystem, which forces the whole system

to stop until the partition is healed.

Distributed storage systems deploy data partitioning schemes and data replication

strategies that many times require any node to know every other node in the system. The

high importance of data loss avoidance require that these systems, in face of failures,

do not misclassify unresponsive nodes as failed, hence the cluster topology is manually

defined and deployed by a human administrator[16][8][29]. Therefore, these system tol-

erate the network partition in exchange of non-negligible operational cost, by leveraging

human operators. The solution proposed in this work can avoid such costs by automat-

ing the recovery process, because, and as we futher detail in the following chapter, our

solution does not discard information about faulty nodes due to the location awareness

aspect of our membership protocol design.

Mesos[11] is a Distributed Cluster Resources Management system that explicitly ter-

minates all nodes that attempt any communication after missing the health check message

transmission, hence all nodes affected by a network partition that are marked as unrespon-

sive by the leader become unable to resume their normal operation without explicitly

rejoining the system, which might lead to undesirable overhead[25]. Similar to other

types of systems, Mesos relies on coordination systems, such as Zookeeper[13], to elect

leaders if the current leader misses its health check. Depending on the distribution of the

nodes affected by a network partition, the protocol present in this work can maintain the

availability of this system, if both sides of the partition have potential leader nodes. Our

solution can be used by these systems to simplify the management of their membership

and avoid the premature trigger of failure detection by nodes. Regarding the coordina-

tion subsystem, our solution can potentially assist these nodes to detect that previously

inaccessible nodes that have again become available.
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Coordination systems such as Zookeeper[13] are integrated into diverse distributed

system to address coordination issues, thus they are services of extreme importance.

These system track the node’s membership with periodic health checks and tolerate par-

titions on the side of the partition with a majority quorum of nodes. The side with the

quorum can operate as normal and if the leader was affected the majority of nodes can

elect a new leader. In contrast the non-quorum side ceases all operation or just allows

read operations until the network partition is fixed and the system state converges[12].

While the protocol presented in this work cannot allow the quorum and non-quorum side

to operate as independent systems as to avoid safety violations, it can be used to detect

the recovery of the partition and accelerate the merge of the system state, as long these

system support data conflict resolution mechanism such as CRDT[32].

2.4 Discussion

To guarantee the correctness of distributed system and to allow reliable and efficient ser-

vices to be built on top of them requires the use of fundamental mechanisms to, among

other, monitor, coordinate, and manage resources in the infrastructure. A frequent way

to ensure these systems are scalable it to employ peer-to-peer solutions for instance, to

track the system membership. In particular gossip protocols that allow the management

of the system’s membership and provide efficient information dissemination strategies

across all nodes. Furthermore, gossip protocols are a building block for designing and im-

plementing fault-tolerant, reliable, and highly adaptable unstructured overlay networks.

However, the lack of structure of these overlays may result in scenarios of topology mis-

match that may disrupt the information dissemination efficiency.

Modern distributed system still rely on very primitive structured overlays that still

lack some desired autonomous management mechanisms and that still present some lim-

itations in terms of scalability potential. Additionally, existing solutions still own very

simple, if any, mechanisms to efficiently and reliably tolerate (transient) network parti-

tions. Our proposed solution tackles these limitations of large-scalable distributed system

by enriching unstructured overlays partial view management leveraging techniques to

infer the location of nodes to obtain the necessary robustness to handle and recover from

network partitions.
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3
Partition Tolerant Membership Service

This chapter presents and discusses our solution for a distributed membership protocol

(based on partial views) that is tolerant to network partitions. We start by explaining the

main objectives of this work followed by the assumed system model of the system, the

intuition behind our protocol, and the component architecture, on sections 3.1, 3.2, 3.3,

and 3.4 respectively.

Section 3.5 introduces location oracles, starting with a general description of an oracle,

followed by subsections where we present the details related with the heuristics that allow

nodes to infer locations for each of the proposed Location Oracles. Section 3.6 presents

the extension for the protocol HyParView and discusses how it leverages the previously

mentioned Location Oracles to enable the membership protocol to converge to a correct

configuration after the recovery from a partition.

Finally this chapter ends with a discuss on the implications for the message the dis-

semination mechanism and an overview of the presented contributions, on sections 3.7

and 3.8 respectively.

3.1 Objective

The objective of the work presented in this thesis is to develop a membership service

that tolerates network partitions in an automatic and operational cost-free fashion. Net-

work partitions cause distributed system nodes to temporarily become isolated into sub-

groups that are incapable of exchanging information among each other. In face of such

scenario, many current systems, i.g, Cassandra[16], Dynamo[8] and Riak[29], resort to

manual membership management, while some resort alternatively to the Master-Slave

architecture with multiple nodes serving as backup. These last ones rely on on configured

timeouts to suspect on the failure of the current leader, and elect another one. However,
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these last solutions are typically employed by systems that require strong consistency,

whereas in our work we focus on system that operate under weaker forms of consistency,

i.e, causal[1][23] or eventual consistency[8][16][29]. However, both of the two alterna-

tives mentioned above have non-negligible costs in terms of operation(e.g, human system

administrator) and recovery speed.

Current membership protocols, such as HyParView[19] offers a fast recovery, scalable,

and robust membership solution even in face of high rates of failure. These membership

services can support very efficient and robust gossib-based dissemination protocols that

achieve 100% delivery reliability in scenario with levels of failures (as high as 80% simul-

taneous node failures). However, HyParView is too eager to classify unresponsive nodes

as failures and discards their information because it’s not equipped with mechanisms

that allow it to distinguish between simultaneous node failures and a transient network

partition. Therefore, it is unable to correctly and automatically recover from this type of

failures. However, its overlay properties can be leveraged to develop solutions that can

cope with network partitions. The work presented in this thesis offers such solution, by

extending the functionality of the HyParView protocol and incorporating into it compo-

nents that assist on decisions related with fault handling, attempting in some high level

sense to detect network partitions and distinguish them from simultaneous node failures.

3.2 System Model

Our solution focus on distributed system that aim to provide services globally (i.e, large-

scale systems) with decentralized characteristics(many of whom can be found on peer-to-

peer systems and in distributed data storage systems) where the load should be (evenly)

distributed and faulty nodes easily replaced by the remaining available nodes. The mem-

bership protocol developed offers a membership service to be integrated on existing

systems, such as data storage systems that have nodes distributed across multiple data-

centers.

Our solution, as it will become apparent in the following text, further assumes that

nodes behave correctly(i.e, they are not malicious), that faults that modify the communica-

tions content are infrequent, and network partition occurs essentially on communication

links across data-centers. Therefore, under our model nodes are grouped in clusters(one

per data-center) and network partitions will essentially make communication temporarily

impossible between nodes in (some of) these groups.

3.3 Insight

The central challenge of tolerating partitions in membership protocols such as HyParView

consists on distinguish simultaneous node failures from unresponsive nodes due to a par-

tition under the asynchronous communication model. This however is fundamentally
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impossible[9]. However, if a system had knowledge about each node location, such in-

formation can be leverage to infer that simultaneous nodes failures from a particular

location can be consequence of a network partition and trigger the adequate recovery

procedures to handle that situation. However, such information may not be available for

the system since large-scale deployments should strive to avoid individual node configu-

ration to lower management cost. We can however infer such information by monitoring

and collecting metadata related with the system deployment.

Following this insight, our solution incorporates a component, named Oracle, that

is responsible for collecting and processing the metadata related to the communications

among different nodes of the distributed system, in order to infer different locations of

these nodes and assist them on failure related decision making. Oracles allow member-

ship services, in face of partitions, to handle faulty nodes differently and equip member-

ship protocols with better tools for fast recovery procedures to repair system that had

been partitioned.

3.4 Architecture

The membership is a component implemented bellow the application as shown in Figure

3.1 and it can be further divided into two subcomponents: The data dissemination mech-

anism and membership service. The membership service manages all the state related

to the nodes activity status and provides samples of nodes to the other components for

use on their activities. The data dissemination mechanism leverages the information

provided by the membership to efficiently disseminate the data (or metadata) for the

application across all nodes, typically following a gossip-protocol strategy and using the

dissemination strategies mentioned on Section 2.2.2.

The membership component operates over TCP. These connections are managed by

the Operating System, ensuring the symmetry of the partial views managed by the mem-

bership when these views imply the existence of an active TCP connection. Furthermore,

and similar to the original design of the HyParView[19], we rely on TCP as an unreliable

failure detector that assists the membership protocol in recovering efficiently and timely

from failures.

To assist on the decisions related to recovery from failures, our protocol has an ad-

ditional component, named Oracle, that is an intermediary between the OS and the

membership. It analyses and processes metadata related to the communication among

nodes of the system in order to extract useful information to attribute a location label to

each node, enabling the local clustering of nodes among different locations(i.e, a node

can infer with some precision if two nodes are co-located). It has also the ability to pig-

gyback metadata into messages exchanged by the overlay management protocol or the

dissemination protocol as a way to transmit and receive information for oracles on other

nodes (if the oracle design requires exchange of information to operate).
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Figure 3.1: System Architecture

3.5 Location Oracles

In this section we present an overview of Location Oracles design and further explain how

they are relevant to our solution. Furthermore, we present the design of four different

Location Oracles based on four distinct heuristics that enable the inference of a node

location or proximity. We conclude this section with a discussion comparing aspects of

our different oracle proposals. The three different Location Oracles proposed in the thesis

are: Static Label Oracle (SLO), IP Address clustering and latency Oracle (IPCLO), Anchor

Oracle (AO), and Dynamic Label oracle (DLO).

3.5.1 Overview

Oracles are inner (in relation to the membership) components that collect and process

metadata with the purpose of extracting meaningful information that provide to nodes

additional information related with the relative location of nodes in a large-scale deploy-

ment. In our context they operate on membership messages exchanged between nodes,

with the purpose of inferring the proximity between them. This information is then asso-

ciated to the identifiers of the nodes as labels, which already contain information about

IP and the port which are essential to the correct operation of the membership service.

An oracle exposes the following API:

getLabel(Identifier id): Method that given a node identifier (which is dependent on the

membership protocol logic). The oracle, returns the location label for that node

according to the metadata collected.
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3.5.2 Static Label Oracle

The Static Label Oracle (SLO) uses a label that is configured during the deployment pro-

cess and is immutable throughout the life of the node. The label configuration can be

performed manually, however it increases the burden on the person accountable by the

system configuration and deployment since it’s prone to misconfiguration. An alternative

it is to use external services if these are available. Cloud services providers typically

expose an API that allow systems using their infrastructures the functionality to deter-

mine the data-centers allocated to them, which reduces the burden on the administrators

while offering accurate location inference, under the assumption that the cloud managed

services are correct. On the Amazon cloud platform obtaining the location label using the

SDK can be done using the Regions.getCurrentRegion()1 API call, which does not require

the application to have any administrative permission to access such information.

3.5.3 IP Address Clustering and Latency Oracle

The IP-based Clustering and Latency Oracle (IPCLO) extends the technique presented

in [15] that monitors latency communication between nodes to infer if another node is

close or distant. Contrary to what is suggested in[15] we aim to be able to distinguish

if two distant nodes are themselves in the same location or not. To that end we take

into consideration the common IP prefix between nodes. We do this because we expect

that nodes on two different locations will have considerably different IP prefixes and

latencies making possible to infer that such nodes are not co-located. This technique can

be generalized to any number of different locations, even if the latencies are similar across

multiple locations.

The technique leverages the longest common IP prefix length (LCPL) and the latency

among nodes to generate different location labels for nodes. This is achieved based on a

rule that establishes the minimal LCPL and the maximum average latency between two

nodes for them to be classified by each other as having the same pre-configured label. For

clarity we provide a rule structure and an example:

Rule’s structure: (Min number of common bits on the IP, Max average latency) =>

Labeli

(16, 20) => LabelA

(8, 60) => LabelB

(0, 10000) => LabelC

The set of rules allow to classifying nodes, the values in each node need to be tunned

to each deployment case to enable distinguishing between different far way locations.

Furthermore, among nodes of a cluster there has to be some level of similarity over the

1https://aws.amazon.com/blogs/developer/determining-an-applications-current-region/
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IP prefix, otherwise if the IP address are attributed randomly this technique will not be

able to infer correct locations.

3.5.4 Anchor Oracle

The Anchor Oracle(AO) is similar to the SLO but instead of using the cloud platform

API or the manual configuration by the system administrator, it uses an external service

that is agnostic to the infrastructure. This service is composed of several servers that

accompany every cluster of nodes, named Anchors, as depicted in 3.2. The oracle operates

by measuring the latency to each of these servers periodically by sending a ping request.

It then selects the anchor with the lowest latency and sets the local node label with the

label of the chosen anchor. Alternatively, if the anchors don’t have a label pre-defined, its

IP prefix can be used because every membership node will converge to the same set of

labels. These labels are then integrated into the node identifier used (and propagated) by

the membership service, in a similar way to the SLO.

The Anchor Oracle exchanges the configuration burden for the burden of maintaining

the additional anchor servers. Furthermore, to avoid misclassification, there has to exist

more than one anchor server in each deployment location, otherwise the failure of one of

these servers might lead to the incorrect inference of a node location.

Figure 3.2: Anchor Oracle and anchor servers’ deployment

3.5.5 Dynamic Label Oracle

The Dynamic Label Oracle (DLO) is an oracle that leverage communication between nodes

to extract information that is used by that node to decide to keep its current location label
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or to adopt the label currently used by another node. At the beginning, each node oracle

generates a unique identifier that is used as his initial location label. Periodically, all nodes

ping their neighbors to measure the latency between them, upon which they decide to

exchange their label if the latency measured is below a pre-defined threshold value, a

parameter that establish that every node whose communications latencies are below that

value are in the same exact location. As a consequence of updating a label, the nodes must

inform theirs neighbors about the change, in order to allow every node of that particular

region to converge to the same label. Additionally, upon detecting that a neighbor of the

same region changed its label, a node also adopts the new location label.

As opposed to previous oracle, the DLO has the advantage of not requiring any exter-

nal service, however, the label convergence is not instantaneous and hence, during initial

period there will be incorrect classifications, but the periodic interaction between oracles

will ensure convergence guarantees the convergence.

3.5.6 Discussion

The Location Oracles presented have different trade-offs and operate under different as-

sumptions, being therefore unable to operate in every possible settings. The SLO has the

advantage of offering perfect classification since the location label is defined at deploy-

ment time. It shifts the operational and administration cost to the deployment but it is

highly susceptible to misconfiguration, which is the main cause of failure on many sys-

tems, if the execution environment does not provide an automatic and robust mechanism

to obtain a location label. As alternative, the SLO can be configured to leverage the cloud

infrastructure API if available, which will nullify the operation cost mentioned, how-

ever this may not be a option for in-house infrastructures(i.e, infrastructures operated by

companies themselves).

Alternatively the IPCLO is promising for infrastructures where the administrator has

total control over the IP attribution of each machine. However, such solution requires an

empiric analysis over the setup in order to define enough and correct rules that partition

the nodes across the desired locations.

The AO shifts the manual operation cost to the cost of maintaining the external service

(anchor servers) and guarantee its availability. However, message delays may create

periods of misclassification due to peak latency values, which is a phenomenon that

might also affect negatively the IPCLO.

Finally, the DLO offer the most autonomous management of all oracle because it

does not have any external dependency, however, it may have an initial period where it

provides wrong classification if the label assignment has not converged yet.
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3.6 Partition Tolerant Membership Service

3.6.1 Overview

In this work we employ our Location Oracles as a building block to enrich the Hy-

ParView[19] membership protocol. The HyParView protocol is a membership protocol

that leverage Peer-to-Peer technology to scale and be fault-tolerant. The protocol support

efficient message dissemination offering 100% message delivery reliability for levels of

failure as high as 80% of crash failures, even though it only requires every node to main-

tain a partial view of the system membership with the length of log(n) nodes, being n the

(maximum) total number of nodes in the system, named Active View. However, in face

of a transient network partition this protocol classifies the unresponsive nodes as crash

failures which means that both sides of the partition will discard the nodes on the other

side in an attempt to find replacements to the faulty nodes and effectively recover the

overlay network defined by the elements of the active view maintained by each individual

node. Furthermore, after the network partition is recovered, both sides of the partition

become unable to reconnect because neither has the information required to do so, in

particular no node will retain information for any node from other partition.

The LHView(which stand for Location Aware Hybrid Partial View) is a extension of

the HyParView protocol that does not suffers from the mentioned problem. It is a mem-

bership protocol than integrates an oracle with the purpose of adding location/proximity

inference to the operations of the protocol. The oracle assist the membership in its view

management operation and adds extra functionality to manage unresponsive nodes from

other locations. The new membership view management policies of the LHVIEW are

presented below.

3.6.2 Partial View Management Policies

The LHView bias its active view using the information provided by the oracle and parti-

tions the active view. The protocol attempts to maintain a pre-defined number of node

identifiers belonging to the same location as itself and a pre-defined number of identifiers

of different(known) locations. However, the X-Bot[20] protocol which bias the network

to reduce the latencies among neighbors shows that to maintain the robustness of the

overlay it requires that their view maintains at least one identifiers with elevated laten-

cies to avoid the partition of the overlay, but in order reach the overlay stability as soon

as possible it uses at least two remote identifiers per location, since the priority of join

request is defined by the number of neighbors of the target location.

In order to manipulate the active view according to the location bias and its config-

uration, the following changes were made on the joins priority, insertion, removal, and

replacement procedures of the original HyParView protocol. Furthermore, a new periodic

status verification procedure is triggered for faulty nodes for which a suitable replace-

ment was not found, as a way to eventually regain global connectivity after the recovery
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of a network partition.

Joins Priority The joins request on the HyParView had only into account if the node

had other neighbors or not, however, since LHView attempts to bias the partial view in

function of the location, the priority associated with a join request should capture this. A

join should have high priority if the node partial active view has no other identifier of the

same location of the join target identifier, otherwise the node sends a join request with

low priority.

Replace its executed every time a communication failure occurs and it replaces the

faulty node identifier on the active view by one extracted from the passive view. In the

original algorithm the selection of the replacement node is performed uniformly at ran-

dom. LHView adds one more step which consists on filtering the passive for identifiers

of the same location as the faulty node, in order to maintain the connectivity between

different locations. However in the presence of a network partition all attempts to find

a substitute will fail and in that situation the identifiers of that location are moved to a

temporary data structure, which will be used periodically to try and recover communica-

tions with that location. This avoids the algorithm to lose information about inaccessible

locations during network partitions.

Insertion it is similar to the original mechanism employed by the HyParView protocol

with an additional step. If a successful insertion on the active view is performed, it will

additionally scan the data structure storing the faulty identifiers and move all from the

same location of the identifier inserted to the passive view. This happens because the

goal of these is to enable the recovery from isolation among different transient network

partitions. The successful addition of a node from a different location implies that the

goal was (at least partially) achieved.

Removal on the original HyParView protocol, when a node need to remove an identifier

from its active view it selects identifiers randomly from its active view, which reduces the

network partition robustness, as this can lead a node to lose its only connection to a given

location. LHView attempts to have more control over its management by ensuring there

is at least one identifier from each different locations on each node partial view at all

times. It achieves this degree of manipulation by determining if there is any location that

exceeds the limits imposed by the initial configuration and if the case, the node drops a

random node of that location. Otherwise it drops a random identifier.

Periodic status verification Additionally, the membership scans the set of identifiers

faulty nodes and attempts to reconnect in order to regenerate the overlay after a partition

due to a transient network failure.
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3.6.3 Discussion

The LHView extends the HyParView functionality while leveraging its scalability, fast-

recovery and robustness properties. Our solution strives to not compromise these key

properties of the original algorithm. On the other hand, to guarantee strong connectivity

it is required to maintain larger active view, log(n) + (k ∗ d) being n the (maximum) total

number of nodes in the system, k the number of identifiers from a remote location, and d

the number of estimated locations of a deployment, or alternatively it can be a dynamic

parameter that captures the number if different location labels observed by a node during

its lifetime or a long enough time window.

This solution also requires also that the interval of time between the execution of the

periodic activity that attempts to establish connections to the nodes in the faulty nodes

set to be tunned adequately. If it is small it will congest the communication channel and

cause frequent interruption on the main flow of execution of the system, otherwise it

will slow the recovery of the network overlay after a network partition. Alternatively, the

interval can have exponential growth per faulty identifier and remove it completely after

days of failed attempts to reconnect. Measuring the impact of such technique is however

left for future work.

3.7 Implication on message dissemination

Distributed system rely on diverse strategies to disseminate data across nodes, which were

previously discussed on Section 2.2.2. Systems that incorporate the protocol proposed

in this work to manage the membership can configure the data dissemination strategies

to target locations/groups. For instance, distributed storage system can leverage such

strategy as a data partitioning scheme and reduce the distance between the data source

and its consumer. Distributed cluster resources management systems can extend the

characteristics of the resources offers to their clients with location-based offers that would

provide lower latencies among those resources. Distributed data processing system are a

example that would certainly benefit from this tailored offers.

More importantly, we expect that LHView will have no visible impact on the per-

formance or operation of a gossip-based dissemination scheme configured to propagate

data across the whole system. This is useful for systems that require global membership

information[8][16][29].

3.8 Summary

This chapter presented an oracle-assisted membership protocol that we named LHView,

and its sub-components that contribute to implement a partial-view based membership

service that can automatically recover from network partitions. Furthermore, we present

four location oracles for different deployment scenarios, each with different trade-offs that
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must be taken into account in function of the deployment environment characteristics.

Finally, we ended the chapter with potential implications that the location inference

can have for data dissemination mechanisms and systems that leverage them. In the

following chapter we evaluate the proposed membership protocol. We start however, by

studying the precision of the classification of each location oracle in different deployment

scenarios.
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4
Evaluation

This chapter presents the experimental evaluation of our Location Oracles, where we

focus on their precision on assigning location labels according with the real location

of nodes (Section 4.2). We then follow with a study on the impact of the use of these

Location Oracles in the operation of LHView, the HyParView protocol variant that was

introduced in the last chapter that aims at providing self-healing capabilities for network

partitions (Section 4.3). Each of these sections begin with the characterization of each

experiment and also reports the concrete configuration of the components employed in

each experiments.

We start this chapter by discussing our implementations of the Location Oracles,

LHView, and our own Java implementation of HyParView, which we made to ensure a

fair comparison with LHView (Section 4.3.2).

4.1 Components implementation

All the components presented in this thesis were implemented in Java employing the

library New-IO (NIO), which exposes network primitives to handle network operation in

a non-blocking way. The Static Label Oracle version that obtains location labels from the

Amazon cloud infrastructure required the AWS SDK core.

4.2 Oracle’s classification accuracy

In this section we report on our experiment whose goal was to evaluate the capability

of each oracle to classify nodes correctly regarding their location on a deployment. We

consider a classification to be correct if it matches the node’s datacenter label. All oracles
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results are presented and discussed on the following subsections, except for the Static

Label Oracle because its correctness is ensured by the deployment or environment.

The experiments were conducted on the Amazon Cloud Platform using m4-xlarge

virtual machine instances using 30 and 300 nodes. In all experiments we ensured that the

number of nodes were evenly distributed across datacenters. The experimental scenarios

that we explored are summarized in Table 4.1:

Number of datacenters Europe USA Asia Label

5 2 2 1 5DC

3 1 1 1 3DC-Distant

3 0 3 0 3DC-Near

Table 4.1: Deployment configuration for each scenario(rows).

To conduct these experiments we used the following datacenters in each region. For

Europe we used the datacenters in Frankfurt and Ireland. For USA we used the datacen-

ters in California, Virginia, and Oregon, and for Asia we used the datacenter located in

Tokyo.

4.2.1 IP Address Clustering with Latency Oracle

We start by reminding the reader that the IP Address Clustering and Latency Oracle de-

pends on two distinct aspects to attribute a location label to a node, the latency measured

from the node assigning the label to the node being classified and the longest common

IP prefix length(lcpl) between nodes. To configure the oracle appropriately we start by

conducting a set of measurements to assert these values for each of our 3 experimental

deployment setups.

Table 4.2 shows the results of executing pings between all nodes deployed in data-

centers that belong to the three mentioned deployment scenarios. As shown, the round

trip time between datacenters allow one to define rules than partition each datacenter

except when those datacenters are near each other, for instance, nodes from Tokyo can

not clearly distinct nodes of California from nodes of Oregon. Another situation that may

induce to misclassification is when a node has the same average latency to two distant

datacenters, for example, nodes from Virginia can not distinguish nodes of California

from nodes of Ireland.

Complementary to the latency rules, the IP Address Clustering and Latency Oracle,

defines rules over the IP prefixes, however as shown in Table 4.1 the average lcpl values

among nodes of the same are extremely low and some nodes can not distinguish the other

datacenters, e.g, Frankfurt can not distinguish nodes of Tokyo from those of California

in scenario 3DC-Distant. The apply for Oregon and Virginia on scenario 3DC-Near.

Furthermore, there is a similar case for every datacenter on scenario 5DC.
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Overall, even though it is possible to create rules over the latency and lcpl values that

partition the nodes per datacenter, these rules will easily generate false positives and

false negatives unless there was a significant interval among them. Additionally, one

would expect that the LCPL values among nodes of the same datacenter would be more

similar, however this is not the case for the Amazon cloud infrastructure. This implies

that this oracle is not applicable for this scenarios, as the assumptions node omits design

regarding the distinguishing factors of the different locations do not hold.

Datacenter Ireland Frankfurt California Virginia Oregon Tokyo

Ireland 0.667 22.303 148.243 72.087 133.079 206.791

Frankfurt 22.309 0.579 159.216 91.110 171.966 234.148

California 148.602 159.143 0.530 74.873 21.565 109.745

Virginia 72.124 91.130 74.586 0.645 81.573 151.612

Oregon 133.024 171.968 21.427 81.517 0.734 95.059

Tokyo 206.968 234.129 109.429 151.770 95.060 0.621

Table 4.2: Average round trip time between all datacenters.

Datacenter Tokyo Frankfurt California

Tokyo 7 3 6

Frankfurt 3 17 3

California 6 3 10

(a) 3DC-Distant.

Datacenter Virginia California Oregon

Virginia 6 7 6

California 7 10 6

Oregon 6 6 9

(b) 3DC-Near.

Datacenter Tokyo Frankfurt Ireland Virginia California

Tokyo 7 3 3 5 6

Frankfurt 3 16 7 3 3

Ireland 3 7 15 3 3

Virginia 5 3 3 6 6

California 7 3 3 6 9

(c) 5DC.

Figure 4.1: Average longest common IP prefix size per scenario.
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4.2.2 Anchor Oracle

In this experiment the anchor servers required by the Anchor Oracle were deployed across

the different datacenters, one for each location. The Figure 4.2 shows the percentage of

nodes that correctly classified itself until 60 seconds after the system deployment. On all

the scenarios, the oracle dynamic classification nature is impacted by the latency variation

as can be observed on the firsts 20 seconds where the accuracy is low. Overall, the oracle

performs well for every deployment scenario, achieving 100% accuracy after the firsts 20

seconds.
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Figure 4.2: Percentage of correct classifications in each tested scenario

4.2.3 Dynamic Label Oracle

In this experiment we tested the convergence characteristics of the Dynamic Label oracle

by determining the number of distinct labels at each second since the system deployment,

as shown in Figure 4.3. The required latency threshold was set to 10 milliseconds, which

by the values observed on Figure 4.2 is ideal to partition local nodes from remote nodes.

As expected, at the beginning the number of labels correspond to the number of nodes

but as Figure 4.3 shows, that number rapidly decreases to the number of locations per

scenario. However, in some occasions in the 5DC scenario using 300 nodes was observed

that some datacenters converged to two labels instead of one, as can be observed in the

Figure 4.3 at 120 seconds. Again, this happens due to the concurrent joins during the

system initialization but the convergence on the labels is guaranteed since every node

periodically pings its neighbors and shuffles information with random nodes.
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Figure 4.3: Number of distinct labels over time per deployment scenario.

4.3 LHView’s evaluation

In this section, we evaluate the fault-tolerance of our HyParView and LHView implemen-

tation. All experiments on this section were deployed on 15 m4-xlarge AWS instances

on which 300 nodes were evenly distributed across 3 datacenters (Ireland, Frankfurt,

California). Each membership protocol parameterization is presented on Table 4.3.

First, we compare both implementations in relation to their behaviour under differ-

ence levels of simultaneous crash-failures and then we study the effects of membership

in the reliability of a gossip-based dissemination protocol. Later we compare again both

implementation in a scenario where a transient network partition occurs by studying

the effects on the reliability of message dissemination using each implementation before,

during, and after the network failure.

39



CHAPTER 4. EVALUATION

Component Parameter Value

HyParView

Active View(AV) Size 5
Passive View(PV) Size 30
Active Random Walk Length 6
Passive Random Walk Length 3

Number of Shuffle elements from
AV 3
PV 4

LHView

Active View(AV) Size 7
Passive View(PV) Size 30
Local View Size 3
Remote View Size 2
Active Random Walk Length 6
Passive Random Walk Length 3

Number of Shuffle elements from
AV 3
PV 4

Dissemination Fanout 7

Table 4.3: Memberships and dissemination parameters.

4.3.1 In-Degree and Out-Degree

We start by evaluating the impact on node degree (we measure node out-degree and

in-degree to check the correctness of the solution). We remind the reader that in a well

balanced and fault-tolerant system, node degree should be similar across the large major-

ity of all nodes. Results are reported in Figure 4.4 for the original HyParView protocol

and for our own variant of the protocol using the LHView with Static Label Oracle. The

results show that HyParView’s essential active view symmetry property holds for our

implementation and for LHView because the in and out degree of every node matches.

Furthermore, we observe that most HyParView’s nodes have their active view full as

shown in the original paper, which shows that its overlay is balanced and the same holds

for LHView, hence demonstrating that it doesn’t break these property of the HyParView.

4.3.2 Crash failure recovery

On this experiment we compare the fault-tolerance of our Java implementation of the

HyParView protocol, that served as a base for the extended implementation of LHView

against the simulation results originally presented in [19]. The experiment consisted on

two phases: The creation and stabilization of the network overlay and the injection of

crash-failures on nodes.

The results presented on the figure 4.5 show the reliability before and after the failure

induction for HyParView and LHView with SLO. As expected the HyParView implemen-

tation shows high delivery reliability in face of crash failures, 100% delivery reliability

for all levels of failure tested. The LHView reaches the same levels as was expected, since

it guarantees the same properties as its predecessor, therefore it is as robust in face of

crash failure scenarios as HyParView.
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Figure 4.4: Node in and out degree of HyParView and LHView.
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Figure 4.5: Reliability of HyParView and LHView under crash failure scenario.

4.3.3 Network partition recovery

The test of the extended membership combined with the Location Oracles mentioned

on the previous consisted of three phases: The creation and stabilization of the network

overlay; Injection of a network partition between each pair of datacenters; Reparation of

the network partition after 60 seconds.

For this experiment, LHView used the configurations from the previous test experi-

ment. To simulate a network partition during phases 2 of the experiment, we resorted to

the IP Tables configuration of each node, such that nodes became partitioned by datacen-

ter.
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The Location Oracles evaluated were the Static Label Oracle(SLO), Anchor Oracle(AO),

and Dynamic Label Oracle, which demonstrated the best classification accuracy. Figure

4.6 reports the effect of the partition in the reliability of the dissemination mechanism in

different moments of the experiment. On phase 1, that correspond to the creation and

stabilization period, every version of the protocol show high levels of delivery reliability,

100%. On phase 2 all protocol version were under a network partition (every datacenter

become unable to communicate with any of the other datacenters), and was expected no

message reach more than 33% of the nodes.

The last phase, shows that every version was capable of a complete recovery after the

network partition healed except the original HyParView protocol. This was expected due

to HyParView lacking any location aware procedure that allows it to detect partitions.
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Figure 4.6: Reliability of the LHView in face of a network partition.

4.4 Summary

In this chapter we evaluated the components proposed in the thesis in different deploy-

ment scenarios. First we studied the classification capabilities of each Location Oracle

that has no knowledge about their locations at deployment time. Our experiments showed

how the IP address Clustering and Latency Oracle is unreliable for Amazon Cloud in-

frastructure, which can be generalized to any scenario where the assumption regarding

latency and IP distribution related with locations do not hold. In contrast, the Anchor

Oracle and Dynamic Label were promising due to their precision, specially the last, since

it does not require any external service which reduces the operation management cost.

Before evaluating the LHView in face of a network partition, we studied its node

degree balance, which showed that its partial active view is fully symmetric and that the

degree is (slightly) not as balance across nodes of the system, as in the case of its predeces-

sor HyParView. Latter, we tested the perfect oracle, Static Label Oracle for different levels
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of crash-failure, which allowed us to observe the resiliency of LHView protocol and verify

that it holds the properties of its predecessor. Finally, we tested under the main challenge

of this thesis, where it performed well. The LHView protocol equipped with the Static

Label Oracle, the Anchor Oracle, or the Dynamic Label Oracle, can recover successfully

from network partition to the same reliability levels for the dissemination mechanism

than before the network partition.

Overall, the LHView guarantees all the overlay properties that the HyParView, such as

the global connectivity and robustness, and when equipped with the proposed oracles, it

can tolerate transient network failures that the previous partial view based membership

protocols could not.
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Conclusion

Many distributed system that support large-scale services have to efficiently manage their

resources and disseminate crucial information in order to operate globally. These system

rely on membership services that create overlay networks with important properties, such

as global connectivity, robustness, scalability, and reliability. The membership service is

a sub-component of these systems that provides information about the activity of nodes

by tracking their health status, detect failures on nodes or on communication links, and

upon failure detection on such components employ recovery mechanism to correct the

operation of distributed systems. However, many membership protocols can’t tolerate

a network partition, which temporarily separates nodes into disconnected components

that cannot communicate neither can recover the global connectivity of the system after

the recovery of the network failure.

In this thesis we proposed a new membership protocol that extends the hybrid par-

tial view membership protocol, HyParView, while its maintaining its properties. The

HyParView is the most fault-tolerant protocol in the class of fully decentralized mem-

bershp service based on partial views, however to tolerate network partitions it would

need to distinguish simultaneous node failures from network partitions. Our protocol

targets this challenge by equipping the HyParView with an oracle that collects and pro-

cess metadata to offer assistance to the membership services. In this work we propose

four different oracle implementation that infer the location of nodes, named Location

Oracles, and adapted the HyParView protocol to leverage these sub-components. Thus,

this combination resulted on the Location Aware Hybrid Partial View(LHView).

Location Oracles were evaluated in diverse deployment scenarios to study their accu-

racy and to understand which scenario would benefit or were adequate/incompatible for

each one. Furthermore, using the best oracles we analysed how the integrated solution,

LHView, would offer better robustness, recovery and enable message delivery reliability
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properties for gossip-based dissemination protocols operating on top of the membership

service. Our observations shown that the Static Label Oracle, Dynamic Label Oracle, and

the Anchor Oracle allowed the LHView to recover from the network partition and pro-

vide high message reliability after a network partition occurrence which is a significant

gain in relation to the original HyParView protocol without compromising its predecessor

overlay properties.

In summary the main contribution are:

1. A network partition tolerant membership protocol.

2. Four different implementations of Location Oracles that through the processing of

message’s metadata infer a node location.

3. A membership service that can be leverage to design gossip-based message dissemi-

nation mechanism that target specific locations in a deployment.

5.1 Future Work

We now discuss some potential directions for the future work. Our proposal would benefit

from partial view management policies that would maintain HyParView global connectiv-

ity. Furthermore, it could be optimized to stabilize faster by adapting neighbour requests

to be location aware. Additionally, a code migration of the current implementation to

a language without garbage-collection, in order to avoid uncontrollable behaviour even

though these are not malevolent can also improve the protocol operation in practice.

Since the IP Address Clustering and Latency Oracle classification accuracy assump-

tions don’t hold for the Amazon cloud infrastructure, it would be interesting to expand

the study to other cloud providers and to privately owned infrastructures. Furthermore,

communication between datacenters is costly, thus a solution that targets decrease of such

values could benefit the solution in a astonish way. The technique proposed on X-Bot[20]

can be a good start point for this endeavour.

Finally, membership are designed to assist other distributed system, hence, studying

how to integrate the LHView on an existing system such as Cassandra can be beneficial

to the distributed systems community.
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