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ABSTRACT

Nowadays, the Internet presents itself as a dynamic environment that changes accord-
ing to the behaviour of its users. These users follow a centralized communication model
with most of the services currently available on the Internet, since many of them only
allow interaction with the servers. This distributed architecture paradigm brings some
associated drawbacks, since in the eventuality of a failure (overload) in its centralized
component (server) the whole service becomes unavailable.

This work addresses this problem by proposing to solve specifically the challenges
associated with failures caused by exhaustion of resources. These happen, for example
when the number of requests issued by clients is greater than the number of requests that
the server (or the centralized architecture as a whole) can handle. To avoid these situations
and make web applications more robust (greater availability and fault tolerance), this
work proposes the construction of a system that implements coordination algorithms
and mechanisms over a peer-to-peer model that allows direct communication between
clients. It allows to achieve a more efficient and scalable management of the resources

made available by the existing web applications.

Keywords: Coordination, resource management, peer-to-peer, web applications, avail-

ability, fault tolerance.
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REsumMmo

Hoje em dia, a Internet apresenta-se como um ambiente dinamico que se altera conso-
ante o comportamento dos seus utilizadores. Estes seguem um modelo de comunicagao
centralizado com a maior parte dos servigos actualmente disponibilizados na Internet,
uma vez que muitos deles permitem apenas a interagao com os servidores. Este paradigma
arquitectural tras algumas desvantagens associadas, uma vez que na eventualidade de
existir uma falha (a exaustao de recursos) no seu componente centralizado (servidor) todo
o servico fica inacessivel.

Este trabalho vai de encontro a essa problematica propondo-se a resolver os desafios
associados a falhas provocadas por esgotamento de recursos. Estas acontecem, por exem-
plo quando o numero de pedidos dos clientes ¢ maior que o numero de pedidos que o
servidor (ou a infraestrutura centralizada) consegue processar. Para evitar estas situagoes
e tornar as aplicagoes web mais robustas (maior disponibilidade e tolerancia a falhas), este
trabalho propde a construgao de um sistema que implementa algoritmos de coordenagao
em cima de um modelo peer-to-peer que permite a comunicacao entre clientes. Permi-
tindo assim obter uma gestao mais eficiente e escalavel dos recursos disponibilizados

pelas aplicagoes web actualmente existentes.

Palavras-chave: Coordenacao, gestao de recursos, peer-to-peer, aplicacoes web, disponi-

bilidade, tolerancia a falhas.
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CHAPTER

INTRODUCTION

1.1 Context

Nowadays the Internet is not based on sharing static pages hierarchically organized from
the home page of a website as it was once. Today, the Internet has become a dynamic envi-
ronment which changes depending on the user behaviour. This environment is leveraged
by the advances suffered on browsers which help to build more interactive and powerful
web applications. In the same line of thought, the evolution of HTML also contributes to
the choice of web applications in detriment of desktop applications. In both approaches,
the interaction with servers is strictly necessary, since direct communication between
users is not typically possible in the context of web applications. This behaviour, in web
applications, can be contradicted by some recent API’s such as WebRTC [56], which en-
ables clients to act as a peer in a distributed peer-to-peer architecture effectively creating
a browser-to-browser network. This has been shown in practice in the design of Legion
framework [35, 36] that provides abstraction to enable direct interactions among clients

running on user’s browsers.

Decentralized architectures have gained prominence over more centralized architec-
tures and many examples can be found in current and past peer-to-peer systems and
systems that delegated some functionalities to a peer-to-peer architecture. They have
aroused much interest and are currently used in several areas, such as telephony, file-
sharing, streaming media, and also in volunteer computing. The most prominent and
known systems that leverage it (or did so in the past) are Skype [8], BitTorrent [15],
Napster [42], and BOINC [4].

The combination of powerful centralized components with peer-to-peer approaches
can be very interesting and has not yet been much explored in the past. For instance, web

applications could take advantage of peer-to-peer architectures in applications that need



CHAPTER 1. INTRODUCTION

coordination to avoid having their (centralized) resources exhausted while saving money

and maintaining their availability for clients.

1.2 Motivation

Typically the architecture of web applications is based on the client-server approach in
which clients are mostly browsers and most of the times every coordination or commu-
nication required by clients must be performed by or through the server. In order to
ensure the continuous operation of a web application, the server must be prepared to
cover all the possible surges in user’s activity. Resource allocation is responsibility of the
service provider and often results from a bad estimate that does not address peak usage
periods, which might lead the system to become resource exhausted and ultimately fail.
The alternative of over-provisioning resources, can lead to waste of computational power
and money.

Existing technologies, such as peer-to-peer systems and existing distributed coordina-
tion primitives offer the opportunity for the construction of solutions that allow users to
directly coordinate their actions in order to never exceed the estimated capacity threshold
of the centralized infrastructure resources, which would enable service providers to save
money and resources. Ensuring that in the case that a user wants to access one of the

resources of a service, it will eventually access it without exhausting server resources.

1.3 Contributions

This work proposes to design, build and evaluate a coordination system using as its
foundation a novel distributed architecture to support web applications, which offers
properties similar to that encountered today in a cloud architecture, however with lower
monetary cost for application operators. The main contributions of the system are the

following:

* Logical peer-to-peer network which enabled coordination between clients (i.e., browsers),
based on a DHT design. Designing such overlays in the browser domain is a signifi-
cant challenge due to the limitations of WebRTC [56] interactions.

* Coordination protocols used to control surges in clients activity, preventing failures

caused by resource exhaustion in the centralized component (i.e., server).

* An experimental evaluation of the system, comparing with typical client-server

architectures, based on a simple use case using Moodle [41] as web application.

In this coordination system, users communicate in a peer-to-peer fashion, coordi-
nating the access to the centralized component of Moodle’s web application [41]. In a

general mold, our system captures all POST requests made by users to Moodle’s web
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1.4. DOCUMENT ORGANIZATION

application, controlling the access rate of users in periods of major activity over the web
application. With this requests coordination, our system reduce CPU load in the main

server, mitigating exhaustion of centralized resources (i.e., Moodle’s server).

1.4 Document Organization

The document is structured as follows:

Chapter 2 - Related Work - This Chapter begins with an overview of the existing
architectures, being followed by existing communication and coordination primitives
found in the literature, which are a fundamental aspect of the work proposed in this

document.

Chapter 3 - System Architecture - Describes in detail the architecture of the devel-
oped system. Starts by describing the design overview of the developed system. We then
divide the developed system in two layers, the network layer which explains in detail
the peer-to-peer network architecture; and the application layer which explains how this

work coordinates the access to the centralized component.

Chapter 4 - Evaluation and Results - This chapter explains in detail experimental
evaluation, where we compare our peer-to-peer leveraging design to the use of a typical

client-server architecture over Moodle’s web application [41].

Chapter 5 - Conclusion - This chapter presents the main conclusions of this work,

and also gives a brief preview of the work to be developed in the future.






CHAPTER

RELATED WORK

This chapter presents and discusses relevant related work. In order to better understand
the origin of lack of reliability and availability in centralized architectures such as the
mentioned on Chapter 1 and the proposed solution presented on Chapter 3, which uses

a peer-to-peer network formed by clients to avoid the exhaustion of resources.

The next Sections cover the following three topics:

* 2.1 Distributed Systems Architectures: This Section discusses the spectrum of dis-
tributed systems architectures starting on centralized architectures and finishing on
completely decentralized ones. We discuss in detail client-server, cloud computing
(partially centralized and partially decentralized), and peer-to-peer models, since

they are the classical (and relevant) approaches to design distributed systems.

¢ 2.2 Communication Primitives: This Section deals with communication primitives
that make interaction between two or more components in distributed systems
possible. Communication is an essential aspect of any distributed architecture, and
hence understanding the different existing alternatives is essential to build adequate

distributed and scalable coordination primitives.

* 2.3 Coordination and Agreement Primitives: This Section covers existing coordi-
nation primitives and techniques that have been proposed and are correctly used
in the design of distributed systems. We also discuss why existing approaches are
unsuitable to achieve the goals of the work to be conducted in the context of this

thesis.



CHAPTER 2. RELATED WORK

2.1 Distributed Systems Architectures

The evolution of hardware, software, and network infrastructures allowed the develop-
ment of more complex systems. Nowadays users expect an ubiquitous access to systems,
which require to become increasingly fault-tolerant, available, resilient, and scalable.
Due to the pervasiveness of computers on everybody’s life, the need to make them more
resilient and available has became even greater. Thus, the architectures of distributed
systems had to evolve from more centralized designs to more decentralized ones, which
is an important aspect to lower the dependency on centralized single points of failure
and contention points, which is essential for improving fault-tolerance and availability.

We start by discussing client-server model that is the main representative of central-
ized architectures. Moving then to the cloud computing design that is able to spread
server operations across more machines improving availability, scalability, and fault-
tolerance.

Cloud-based architectures where all resources are in a single geographic location can
have latency issues, for instance if only Asia had server infrastructures for a determined
service, the clients in America would experience more latency than the clients in Asia. To
overcome this latency issue we discuss geo-distributed cloud-based architectures, where
servers are spread across different geographical areas, bringing them closer to clients. We
finally address more descentralized architectures, where clients interact directly with
each other avoiding central components. This type of architectures make systems more
resilient, fault-tolerant, scalable and available. We will focus on these type of architectures

in order to solve the challenges presented on Chapter 1.

2.1.1 Centralized Architectures

The more traditional and simple centralized architecture is the Client-Server model, that
can be viewed as two main separate entities as the name itself indicates, Clients and
Servers. From the Client perspective, the system allows it to access a resource or a set of
resources; and from the other perspective, the server is responsible for processing and
managing access to the provided resource or resources.

This model is characterized as centralized due to the fact that the control of the system
fully resides on the server side. The server provides a service and all users that want to
access that service must interact with it. A simple illustration of this model is presented
in Figure 2.1.

In this model clients are unable to interact directly with each other, in fact each indi-
vidual client is typically not aware of other clients, thus they can only interact indirectly,
with each other through the service provided by the server. The scalability of this ar-
chitecture is limited when the number of clients is greater than the number that can be

handled by the server.
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Figure 2.1: Client-Server Architecture

Clients and server communicate with each other through a server provided API. This
API lists all available server methods and specify the type of reply that is emitted by the
server. This API is accessed by clients using some communication primitives. In the next
Section we discuss such communication primitives.

A main disadvantage of this model is that the server is a single point of failure, so
when it becomes unavailable the whole system/service becomes unavailable. Next, we

discuss how cloud computing paradigm addresses this problems.

2.1.2 Partially Centralized

We classify cloud computing architectures (with all servers in the same geographic loca-
tion) in partially centralized systems because their organization is logically centralized,
within the scope of what we call cloud. Computations are distributed over more than one
machine in opposition to classical client-server model. Rather than having a single ma-
chine serving one or more clients, in cloud computing we have a centralized component
(cloud), where all users are able to connect. Although client-server and cloud computing
are two distinct architectures, the clients are unable to distinguish them.

This centralized component is at the same time distributed, since clouds are typically
implemented on cluster’s! to provide properties such as resource elaticity, high perfor-
mance, ubiquity, availability, and fault tolerance [16]. An illustration of this model is
presented in Figure 2.2.

The elasticity of resources allows developers to adapt their needs with a better cost-
benefit trade off. They do not need to be concerned about resource overprovisioning,
when their service does not have the expected popularity or resource underprovisioning
when they did not predict a service sudden increase in popularity for their service. They
are not required to know anything specific about cloud computing design to connect
their computers to cloud server and use it. Thus, it is possible to develop and test their
applications and services faster, without wasting costly resources with this architecture

Iset of interconnected computers that cooperate closely to provide single and high performance comput-
ing capability.
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Figure 2.2: Cloud Computing Architecture

design. Developers are able to choose how much resources they need as the service grows,
often called the pay-as-you-go model [6].

The virtualization of the resources made by the cloud computing model allows the
elasticity of resources previously discussed. This virtualization is achieved through soft-
ware that makes possible the interaction and coordination between computers, masking
their physical separation [51].

This resource virtualization aspect is very important since for instance, if we have 2
machines where only 30% of each one capacity is being used, we committed an overes-
timated error and resources are being wasted. In cloud architecture we easily overcame
this problem by virtualizing two machines over a single physical machine achieving 60%

of utilization without requiring the other machine to be wasting resources.

Cloud service providers offer certain service guarantees, called service-level agree-
ments (SLA). Typically, the SLA is a service agreement between client and service
provider that includes the quality, availability, and responsibility of the service being
offered by the provider [57]. For instance, the Amazon S3 plan [2] of Amazon Web Ser-
vices (AWS) offers a storage service that can be up to 5 terabytes in size and is committed
to a monthly uptime percentage greater than 99% of the time. Anything below this
guarantee leads Amazon to pay to the service user 25% of his bill [3] as a compensation.

Cloud computing also offers ease of setup, since it is possible to easily configure a
system by outsourcing computations to cloud service providers, instead of maintaining

computational infrastructure and managing complex software stacks [25].

We conclude that this type of cloud architecture differs from the classical client server
model, since each offers different properties. For instance, in the client-server model,
if the server fails, the service provided becomes inaccessible, and clients are unable to
access it, making the service useless, the same does not happen in the cloud model. Cloud
architecture easily masks this type of failures and migrate the service to another machine,
making the system more fault-tolerant. We consider that this property is an evidence
that the cloud architecture has a distributed component, categorizing it in the partially

centralized designs.
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2.1.3 Partially Decentralized

According to Jakob Nielsen [47], users may notice the delay of any response from servers
that takes more than 100 milliseconds. Anything below 100 milliseconds will create
the illusion that the system is reacting instantaneously to clients inputs. Systems based
on Cloud Computing that maintain their hardware components in a single geographic
location (as partially centralized architecture) can present latency values above 100 mil-
liseconds for users that are distant to the data center location. In order to reduce perceived
latency, multiple cloud servers could be placed geographically closer to the clients, which
is commonly referenced as geo-distribution. Additionally, if we want to offer access to
data with lower latency regardless of their location we can replicate it among the cloud
sites which is defined as geo-replication.

For instance, Google Drive service uses geo-distribution providing lower latency. They
also implement geo-replication, since users that access this Google service in Europe
servers observe the same content as if they access it through servers located in America.
Thus, adding the geographic arrangement of servers and the replication of their data we
can get low latency in multiple locations. The model of geo-distribution is presented in
Figure 2.3.

Los Angeles Taipei

6ol s

Figure 2.3: Geo-Distributed Architecture

We classify cloud computing architectures which implement geo-distribution as par-
tially decentralized models since the system is composed by multiple servers distributed
across the globe. However we do not consider it as fully decentralized because users must
interact with the central component (data center servers) in a logical centralized location.

Placing servers geographically near to the clients reduce response latency, and data
replication can provide enhanced performance, high availability, and increased fault
tolerance, particulary to catastrophic failures that render a datacenter inoperable or ina-

cessible [16]. Typically, the majority of distributed systems aim of having these properties,

9
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since that makes them more robust while providing better user experience.

2.1.4 Decentralized

In order to overcome the limitations of centralized architectures engineers proposed alter-
native architectures that evolved from the client-server model. This lead systems to start
transitioning from a centralized to a decentralized model, in order to make them more
fault tolerant, available, and scalable. For instance, to overcome single points of failure
or availability issues, models were introduced that distribute the service through more
servers. And to overcome performance issues, models choose to spread computations
over more machines, simulating an entity with more computational power. This Section
presents and discusses the main aspects of decentralized systems, more precisely, the

architecture of Peer-to-Peer systems.

Peer-to-Peer (P2P) is considered a promising model that focus on exploitating existing
resources at the edge of the Internet. These resources include computation, storage,
and bandwidth, with costs handled by end-users and embracing at the same time many
desirable properties, as scalability, availability, and autonomy [55]. An illustration of this
architecture is presented in Figure 2.4.

The interest on P2P systems was significantly influenced by the Napster [42] music-
sharing system, the Freenet [14] anonymous data store, and the SETI@home [5] volunteer-
based scientific computing projects in 1999. They are mainly used for sharing and dis-

tributing files, streaming media, telephony, and volunteer computing [49].

In [49] P2P architectures are characterized by three main aspects:

- High degree of decentralization: Each participant acts as server and client at the
same time, distributing server computation, bandwidth, and storage consumption across
all nodes. The state and tasks of the system are allocated over peers and few, if any, dedi-

cated nodes

- Self-organization: The system is able to adapt to new joining nodes, with little or

no manual configuration needed. The same is true for nodes that depart or fail.

- Multiple administrative domains: The participants of the system are typically man-

aged and owned by individuals which voluntarily join the system.

Descentralized solutions are also desirable due to their organic growth, as the re-
sources are contributed by peers, meaning that an increase in the number of users in
the system does not require a continuously infrastructure upgrade; their low barrier for

deployment compared with client-server systems; the investment needed to deploy a P2P

10
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service tends to be low; resilience to faults and malicious attacks; and its diversity of

systems as resources tend to be diverse among all participants.

Figure 2.4: Peer-to-Peer Architecture

P2P systems can be classified in two different categories in terms of decentralization
degree, partially centralized and fully decentralized. To categorize them we must take

into account the presence or absence of centralized components in their designs.

Partially Centralized P2P Systems
In this type of P2P systems, there usually exists a central component similar to the client-
server model (discussed in Section 2.1.1), where one or more dedicated controllers help
peers to locate their desired resources, or act as task schedulers to facilitate coordination

actions among clients [55].

The existence of centralized components can make this type of systems more simple
to build and maintain. Since the information about resources is maintained by one or
few dedicated controllers, which is more easy to manage compared with a fully decen-
tralized model. It also has some drawbacks, as the presence of potencial bottlenecks
on controller nodes and potential failure points on these components. For a very large
number of peers, the dedicated controllers are not able to manage all the requests making
the system slower, depending on how fast they can respond to peers. This issue of scala-
bility is raised and this type of P2P architecture must not be recommended for very large
applications. Some examples of this model are Napster [42], that relies on a central server
for peer discovery and content lookup [55], and BOINC [4], which has a central server
that maintains information about applications, platforms, versions, work units, results,
accounts, etc. BitTorrent [15] is also an example of a partially centralized P2P system,

since it relies on central servers that index contents distributed across the network.

Fully Decentralized P2P Systems
Unlike partially centralized P2P systems, this design completely avoids the use of cen-
tralized nodes for supporting special tasks. Thus, the state of the system and even infor-

mation about the system membership is distributed across a logical network connecting
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all nodes. Each peer plays the same role, with each one having the same rights and re-
sponsibilities. This distributed approach has no native bottlenecks, having the potential
to be more resilient to failures while being more scalable, since centralized components
can have their resources exhausted. Additionally, coordination in these fully decentral-
ized systems is more difficult to achieve, for instance if participants must reach any form
of consensus. Algorithms such as Paxos [28, 30], that helps participants of a system to
reach consensus (which are discussed later on Section 2.3) are known to have low scala-
bility and being sensitive to continuous/frequent membership changes. An example of
a fully decentralized system is Gnutella [48], where there is no central authority control-

ling the system organization and all the participants connect directly with each other [55].

Overlay Network
An overlay network is a logical network (e.g. operating at the application level) that en-
ables peers to communicate with each other directly. These networks can be classified as
unstructured or structured, according to the constraints imposed on the topology formed
by the links among peers. In terms of overlay structures, there are flat architectures
(single-tier) where peers are all at the same (logical) level and hierarchical architectures
(multi-tier) where peers are organized into groups and each group has one or more intra-
groups [55]. For instance, in flat designs the lookup process can be supported by any
set of nodes that are part of the system, such as Chord [52] discussed further ahead. In
hierarchical models, a search by the group of the target peer for that key it is made at
the top-level overlay and are mostly supported by peers operating at that level. However,
sometimes it is necessary to find the peer responsible for that key in the intra-group level.
An example of these models is Crescendo [22], which merges Chord rings in multiple

layers and routes through them hierarchically.

Unstructured Overlays
This type of overlay avoids the use of any specific arrangement structure among peers,
effectively generating overlay topologies that are random.

When a node wants to find some resource in the network (e.g. a file), he must know
which peers have that data. In order to obtain such information, a typical solution is
to flood the overlay with a query. This search behaviour causes a tremendous message
overhead in the system, since the messages are sent to all peers (most of the time un-
necessarily). Also, this type of overlays is more vulnerable to malicious flooding attacks,
when malicious nodes floods the network with queries. Many of them are very difficult to
detect since these operate at the application level [55]. Applications that use this type of
overlay include FreeNet [14], that forward requests node by node (unicast based) until a
target is reached and returns a reply through the same (inverse) path, and Guntella [48],
that uses flood-based techniques. This communication techniques are discussed in detail

in Section 2.2.
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Structured Overlays
In opposition to unstructured overlays, in structured approaches, the overlay logic im-
poses some constraints on node connections. These constraints shape the structure of the
network graph and therefore it is common to speak about a specific structure, as its name

suggests.

Typically in this type of overlay, each node has a unique identifier (chosen using
a policy that makes them uniformly distributed over a key space) that identifies him
in the network. This identifier is many times used to govern the arrangement of the
overlay topology (e.g. a ring that respects the ordering of these identifiers). Thus, each
node can know where another node is on the structure and, in opposition to the random
organization strategy, target resources (that have a unique well known identifier) can be
found easily using for instance, consistent hashing [49]. Examples include Chord [52]
and Pastry [50] that use key based routing mechanisms to efficiently locate any desired

content.

2.1.5 Relevant examples

Chord [52] - is a protocol that addresses the problem of lack of efficiency on finding the
node that stores a particular data item in peer-to-peer applications. It is a fully decentral-
ized architecture since all nodes play the same role, having all the same responsibilities
over the attributed keys. It can be mapped on structured overlays since each chord node
has an unique identifier based on node’s IP address and maintains a link to its successor?.
As the node with lower identifier points to the one with higher identifier, a ring topology

is formed.

To achieve fault-tolerance, each node maintains a list of its first r successors nodes.
When their direct successor does not responds, he contacts the next successors in order
until one responds. Assuming p as the probability of a peer to fail, p” is the probability of
all peers in that list to fail simultaneously. Thus, increasing r makes the system increas-
ingly more fault tolerant. In order to achieve efficient lookups, a finger table is stored
on each node n. A finger table stores at most m entries, where m is the number of bits
in the key/node identifiers. Each entry is a successor node of 1, that succeeds n (on the
node identifier space) by at least 2/~!, where i corresponds to i*" entry on the finger table
and 1 <i < m. Thus, each node is aware of their nearest successors and can traverse the
graph not only walking one peer at a time, but jumping through his finger table entries,

increasing lookup efficiency.

2The next node in the ordered ring with the lowest identifier of the set of identifiers larger than the local
node.
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Gnutella [48] - Gnutella is a peer-to-peer decentralized protocol that builds an overlay
network, typically used to find files shared by each peer. Its overlay network is charac-
terized as unstructured since nodes are only aware of peers to which they are directly
connected through TCP connections, which are established at random. Queries in this
type of overlays are disseminated using a flooding technique, in which a source node
propagates the query to his connected nodes, and the connected nodes propagate the
query among their connections and so on. The response, when ready, is propagated back
up to the source node. This type of query dissemination can lead to some lack of security,
since Distributed Denial of Service (DDOS) attacks are easy to be performed. As referred
before, decentralized overlays improve fault tolerance since they are not dependent of a

single point or component of the system.

Skype [8] - Skype is a system mainly used for VoIP communication between users. In
its early version, Skype had a peer-to-peer registration system, where each user should
be registered to be able to communicate with other registered users. This registry system
was a partially centralized network, since not all nodes had the same responsibilities. It
had two types of nodes, ordinary hosts and super nodes. An ordinary host is a general
user of the client Skype application, additionally the super nodes are peers with higher
bandwidth, computation power, and memory. This design had login servers used for
storing names and passwords of users. The requirement of hosts to be connected to that
type of servers and to a super node also complement this partially centralized architec-
ture. This mandatory connections generates a specific structure, thus this architecture
relied on a structured overlay. Fault tolerance in this peer-to-peer architecture could be

achieved increasing of the number of super-nodes.

Diamond [59] - Diamond is a recent cloud storage service that provides reactive data
management and reliable synchronization across several devices. When a node updates a
piece of data, these changes are automatically propagated though other nodes.

Diamond architecture adopts a cloud computing design, in which clients interact
with cloud servers through Diamond’s library. The Cloud component consists in a Key
value store database, which employs strategies as replication and partitioning to achieve
fault-tolerance and scalability. The clients are connected to stateless front end servers
through Diamond’s library. Additionally, this front end servers are connected with the
key value stores servers. The architecture presented by Diamond includes four main
components, reactive data types (RDT), reactive data maps, read-write transactions, and
reactive transactions. The reactive data types are application data structures that are
shared and persisted through Diamond. The reactive data map allows developers to link
their RDT’s and application with data keys and the diamond key value store. Read-write
transactions are used to update shared RDT’s, with ACID guaranties. Finally, reactive
transactions are used to propagate shared application variables into local variables, mak-

ing them visible to users on their own devices. This architecture allows the absence of
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notification mechanisms and reactive code mechanisms at server-side, since application

reactive code is in the client side.

2.1.6 Discussion

In this Section we presented essentially four groups of architectures which could be used
by this work. Section 2.1.1, presented an architecture based on Client-Server paradigm
where all clients interact with a centralized component (server) responsible to control
all the system. These architecture major drawback is its server since when it fails, all
system becomes unavailable for its users. Another problem arise when the number of
client requests is higher than the number of requests supported by the centralized server.
Due to the presence of these points of failure, we rejected this architecture type to give
support to this work. Since centralized architectures were out of our solution scope we
tried to evolve to decentralized ones, Section 2.1.2 and Section 2.1.3 appear as boundary
between these of opposing architectures (centralized and decentralized). However these
boundary architectures are also not suitable for this work, because despite being scalable
and fault tolerant (Diamond [59]) they do not allow interactions between clients which
is an important aspect of this work.

We choose decentralized architectures (P2P) due to their common properties such as
scalability, fault tolerance, high degree of decentralization, self-organization, and allow
interaction between clients. In this architectures we choose structured (Chord [52]) in
detriment of non-structured overlays because we need to delegate special privileges to
a couple of peers (explained in Chapter 3). Eventually these special peers will need to
be located and structured overlays are known for its efficient lookup mechanism (key
based routing). We discard systems like Gnutella [48], which does not enjoy an efficient
lookup mechanism since it has an unstructured overlay; and systems like Skype [8], that
despite having a structured overlay relies on super nodes that depend on users hardware,

potentially compromising the network structure.

2.2 Communication Primitives

The communication between two end-points in the network is built on top of two funda-
mental transport protocols, UDP and TCP. Both are used to transmit information between
two different points connected by a directed channel (at the IP level), using the sockets
intefac [16]. In this Section we focus on protocols that are build on top of these primitives,
since they offer a higher level of abstraction than the support offered by the interface of
the transport layer.

The exchange of messages between processes is easily achieved by implementing, send
and receive operations in both processes. In order to communicate, the sender process
invokes the send operation on a byte chain over the communication channel, and the

receiver invokes the receive operation on the channel in which the message was sent.
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In this communication process, both participants follow one of two different ap-
proaches in terms of blocking policies. They could be synchronous, in which the sender
process blocks until the receiver response arrives, or asynchronous, in which the sender
process sends the message and proceeds without receiving any response from the receiver
[54].

We divide this Section into message-oriented communication, which is based on the
exchange of discrete messages between processes, in stream oriented communication,
which is based on continuous message exchange, and finally, in multicast communication

that is the paradigm most used in the context of group communication.

2.2.1 Message-oriented Communication

Many distributed systems are based on message oriented communication, which is based
on the exchange of discrete message units, one at a time, and unrelated with the others.
In this communication type, the message queue and the event based messaging are the

two most representative approaches that will be discussed next.

Message Queuing communication
Typically, message queuing communication models are point-to-point asynchronous ser-
vices which enables persistent communication between two end-points. Thus, all the
messages involved in the communication process are stored and both participants do not
need to interact with the message queue simultaneosly. The sender have the guarantee
that his message will be enventually inserted in the receiver’s queue. This queue will be
responsible for storing the incoming messages when the receiver is not connected to the
communication channel [16].

They can be implemented in each application, one in the sender and one in the re-
ceiver, or can be shared by both applications. Thus, the sender and the receiver are decou-
pled in time, which would not be possible if the communication was transient/volatile. In
opposition, in the transient communication approach, the participants need to be on-line
simultaneously to exchange messages, since no message store mechanisms are offered
to manage non delivered messages. Sockets are example of transient communication,
since when one of the end-points is down, the messages that are still transversing the

transmission channel are lost [16].

A simple interface of a message queuing system only include this four primitives:

* Put - Appends a message to a queue.

* Get - Removes a message from the queue following a specific policy (e.g. FIFO,

priority pattern, match pattern) being typically a blocking call, since it will block if
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the receiver’s queue is empty.

* Poll - Non-blocking version of Get, since it will return immediately if the receiver’s

queue is empty.

* Notify - Mechanism invoked when a new message is placed in the queue.

In other systems, message queue mechanisms can be implemented following a central-
ized or a decentralized architecture. The centralized approaches typically implement a
centralized queue manager, where all the messages of the system are managed. Obviously,
this approach have the same advantages and disadvantages of a centralized system, due
to single point of failure and inherent bottlenecks in that queue manager. Additionally,
the decentralized implementations distribute the queues in order to overcome these prob-
lems. An example of the latter approach is the Java Message Service (JMS) [24] where

clients remove messages from the queues assigned to hold their messages.

Event-based Communication
Event-based [38] or Publish/Subscriber [7] systems are composed by publishers, sub-
scribers and an event dissemination system. Publishers are responsible for publishing
events to the event dissemination system, and subscribers are responsible for declaring
their interests regarding events published in the event dissemination system. The event
system can be topic-based, in which event