
Filipe Alexandre Pereira Luís

Licenciado em Engenharia Informática

Distributed, decentralized, and scalable
Coordination Primitives

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: João Leitão, Assistant Professor, Faculdade de Ciências
e Tecnologia da Universidade Nova de Lisboa

Júri

March, 2018

Distributed, decentralized, and scalable Coordination Primitives

Copyright © Filipe Alexandre Pereira Luís, Faculdade de Ciências e Tecnologia, Universi-

dade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

To my family and friends.

Acknowledgements

I would like to thank my advisor Prof. Dr. João Leitão and to my colleagues Albert Linde

and Dr. Valter Balegas, which gave me all the support that i needed during this phase

of my life. They gave me the opportunity to develop this work and closely contact with

their experience and knowledge in this area. Despite all the adversities they do not let

me down, encouraging me and making all this work possible.

My thanks go also to all my friends and to all of my colleagues in the computer science

department for their support. Finally, i would like to thank all my family, especially to my

mother, father, and my brother which closely contacted with me during the elaboration

of this work. Their support, motivation and patience were crucial to my performance in

this work.

vii

Abstract

Nowadays, the Internet presents itself as a dynamic environment that changes accord-

ing to the behaviour of its users. These users follow a centralized communication model

with most of the services currently available on the Internet, since many of them only

allow interaction with the servers. This distributed architecture paradigm brings some

associated drawbacks, since in the eventuality of a failure (overload) in its centralized

component (server) the whole service becomes unavailable.

This work addresses this problem by proposing to solve specifically the challenges

associated with failures caused by exhaustion of resources. These happen, for example

when the number of requests issued by clients is greater than the number of requests that

the server (or the centralized architecture as a whole) can handle. To avoid these situations

and make web applications more robust (greater availability and fault tolerance), this

work proposes the construction of a system that implements coordination algorithms

and mechanisms over a peer-to-peer model that allows direct communication between

clients. It allows to achieve a more efficient and scalable management of the resources

made available by the existing web applications.

Keywords: Coordination, resource management, peer-to-peer, web applications, avail-

ability, fault tolerance.

ix

Resumo

Hoje em dia, a Internet apresenta-se como um ambiente dinâmico que se altera conso-

ante o comportamento dos seus utilizadores. Estes seguem um modelo de comunicação

centralizado com a maior parte dos serviços actualmente disponibilizados na Internet,

uma vez que muitos deles permitem apenas a interação com os servidores. Este paradigma

arquitectural trás algumas desvantagens associadas, uma vez que na eventualidade de

existir uma falha (a exaustão de recursos) no seu componente centralizado (servidor) todo

o serviço fica inacessivel.

Este trabalho vai de encontro a essa problemática propondo-se a resolver os desafios

associados a falhas provocadas por esgotamento de recursos. Estas acontecem, por exem-

plo quando o número de pedidos dos clientes é maior que o número de pedidos que o

servidor (ou a infraestrutura centralizada) consegue processar. Para evitar estas situações

e tornar as aplicações web mais robustas (maior disponibilidade e tolerancia a falhas), este

trabalho propõe a construção de um sistema que implementa algoritmos de coordenação

em cima de um modelo peer-to-peer que permite a comunicação entre clientes. Permi-

tindo assim obter uma gestão mais eficiente e escalável dos recursos disponibilizados

pelas aplicações web actualmente existentes.

Palavras-chave: Coordenação, gestão de recursos, peer-to-peer, aplicações web, disponi-

bilidade, tolerancia a falhas.

xi

Contents

List of Figures xv

List of Tables xvii

Listings xix

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Contributions . 2

1.4 Document Organization . 3

2 Related Work 5

2.1 Distributed Systems Architectures . 6

2.1.1 Centralized Architectures . 6

2.1.2 Partially Centralized . 7

2.1.3 Partially Decentralized . 9

2.1.4 Decentralized . 10

2.1.5 Relevant examples . 13

2.1.6 Discussion . 15

2.2 Communication Primitives . 15

2.2.1 Message-oriented Communication 16

2.2.2 Stream Oriented Communication 18

2.2.3 Multicast Communication . 19

2.2.4 Relevant examples . 21

2.2.5 Discussion . 22

2.3 Coordination Primitives . 22

2.3.1 Mutual Exclusion . 23

2.3.2 Elections . 24

2.3.3 Consensus . 24

2.3.4 Relevant examples . 25

2.3.5 Discussion . 26

2.4 Used Technologies . 26

xiii

CONTENTS

2.4.1 WebRTC . 26

2.4.2 Legion Framework . 28

2.5 Summary . 29

3 System Architecture 31

3.1 Design Overview . 32

3.2 Network layer . 33

3.2.1 Overlay Network Logic - Architecture 34

3.2.2 Communication Module . 40

3.3 Application layer . 42

3.3.1 Request Capture protocol . 44

3.3.2 Coordination protocol . 45

3.3.3 Fault Tolerance Protocol/Resource owners management 47

3.4 Summary . 49

4 Evaluation and Results 51

4.1 Network Layer Evaluation and Results . 53

4.1.1 Message maximum hops Test . 53

4.1.2 Join Stabilization Time Test . 54

4.2 Application Layer Evaluation and Results 55

4.2.1 SMoodle vs TMoodle . 56

4.2.2 SMoodle vs TQMoodle . 60

5 Conclusion 63

5.1 Future Work . 64

Bibliography 65

xiv

List of Figures

2.1 Client-Server Architecture . 7

2.2 Cloud Computing Architecture . 8

2.3 Geo-Distributed Architecture . 9

2.4 Peer-to-Peer Architecture . 11

2.5 Publish/Subscribe topic-based Architecture [44] 18

2.6 Streaming communication Client/Server Architecture [58] 19

2.7 Legion Architecture [36]. 28

3.1 Client-server and Proposed model . 31

3.2 Proposed model design. 33

3.3 Stable overlay with 4 peers. 36

3.4 Overlay after peer 15 joins the overlay. 37

3.5 Stabilization process after peer 15 joined the network. 37

3.6 Overlay after peer 15 effectivelly joins the network. 38

3.7 Overlay after peer 20 leaves the network. 39

3.8 Overlay after network stabilization. 39

3.9 Network with neighbours connections. 41

3.10 Changes made in Moodle root directory . 43

3.11 Request Capture protocol flow . 45

3.12 Coordination mechanism example illustration 48

3.13 Evolution of network state at join process . 48

3.14 Evolution of network state at leave process . 49

4.1 Experimental scheme . 52

4.2 P2P Networks formed during the experiments 52

4.3 CPU usage of tests SMoodle and TMoodle . 57

4.4 Number of requests of tests SMoodle and TMoodle 57

4.5 Page load latency of tests SMoodle and TMoodle 58

4.6 CPU usage of tests SMoodle and TQMoodle 61

4.7 Number of requests of tests SMoodle and TQMoodle 61

4.8 Page load latency of tests SMoodle and TQMoodle 62

xv

List of Tables

3.1 Network state I . 36

3.2 Network state II . 36

3.3 Network state III . 38

3.4 Network state after peer 20 leaves. 39

3.5 Network state after stabilization. 40

4.1 Message maximum hops . 54

4.2 Join Stabilization Time results . 54

4.3 Moodle results (SMoodle) . 58

4.4 Throttle allowing 1 client per resource (TMoodle1) 58

4.5 Throttle allowing 3 clients per resource (TMoodle3) 58

4.6 Throttle-Queue allowing 1 client per resource (TQMoodle1) 60

4.7 Throttle-Queue allowing 3 clients per resource (TQMoodle3) 60

xvii

Listings

3.1 index.html . 43

3.2 Request Capture Protocol . 44

3.3 Coordination Structure . 46

xix

C
h
a
p
t
e
r

1
Introduction

1.1 Context

Nowadays the Internet is not based on sharing static pages hierarchically organized from

the home page of a website as it was once. Today, the Internet has become a dynamic envi-

ronment which changes depending on the user behaviour. This environment is leveraged

by the advances suffered on browsers which help to build more interactive and powerful

web applications. In the same line of thought, the evolution of HTML also contributes to

the choice of web applications in detriment of desktop applications. In both approaches,

the interaction with servers is strictly necessary, since direct communication between

users is not typically possible in the context of web applications. This behaviour, in web

applications, can be contradicted by some recent API’s such as WebRTC [56], which en-

ables clients to act as a peer in a distributed peer-to-peer architecture effectively creating

a browser-to-browser network. This has been shown in practice in the design of Legion

framework [35, 36] that provides abstraction to enable direct interactions among clients

running on user’s browsers.

Decentralized architectures have gained prominence over more centralized architec-

tures and many examples can be found in current and past peer-to-peer systems and

systems that delegated some functionalities to a peer-to-peer architecture. They have

aroused much interest and are currently used in several areas, such as telephony, file-

sharing, streaming media, and also in volunteer computing. The most prominent and

known systems that leverage it (or did so in the past) are Skype [8], BitTorrent [15],

Napster [42], and BOINC [4].

The combination of powerful centralized components with peer-to-peer approaches

can be very interesting and has not yet been much explored in the past. For instance, web

applications could take advantage of peer-to-peer architectures in applications that need

1

CHAPTER 1. INTRODUCTION

coordination to avoid having their (centralized) resources exhausted while saving money

and maintaining their availability for clients.

1.2 Motivation

Typically the architecture of web applications is based on the client-server approach in

which clients are mostly browsers and most of the times every coordination or commu-

nication required by clients must be performed by or through the server. In order to

ensure the continuous operation of a web application, the server must be prepared to

cover all the possible surges in user’s activity. Resource allocation is responsibility of the

service provider and often results from a bad estimate that does not address peak usage

periods, which might lead the system to become resource exhausted and ultimately fail.

The alternative of over-provisioning resources, can lead to waste of computational power

and money.

Existing technologies, such as peer-to-peer systems and existing distributed coordina-

tion primitives offer the opportunity for the construction of solutions that allow users to

directly coordinate their actions in order to never exceed the estimated capacity threshold

of the centralized infrastructure resources, which would enable service providers to save

money and resources. Ensuring that in the case that a user wants to access one of the

resources of a service, it will eventually access it without exhausting server resources.

1.3 Contributions

This work proposes to design, build and evaluate a coordination system using as its

foundation a novel distributed architecture to support web applications, which offers

properties similar to that encountered today in a cloud architecture, however with lower

monetary cost for application operators. The main contributions of the system are the

following:

• Logical peer-to-peer network which enabled coordination between clients (i.e., browsers),

based on a DHT design. Designing such overlays in the browser domain is a signifi-

cant challenge due to the limitations of WebRTC [56] interactions.

• Coordination protocols used to control surges in clients activity, preventing failures

caused by resource exhaustion in the centralized component (i.e., server).

• An experimental evaluation of the system, comparing with typical client-server

architectures, based on a simple use case using Moodle [41] as web application.

In this coordination system, users communicate in a peer-to-peer fashion, coordi-

nating the access to the centralized component of Moodle’s web application [41]. In a

general mold, our system captures all POST requests made by users to Moodle’s web

2

1.4. DOCUMENT ORGANIZATION

application, controlling the access rate of users in periods of major activity over the web

application. With this requests coordination, our system reduce CPU load in the main

server, mitigating exhaustion of centralized resources (i.e., Moodle’s server).

1.4 Document Organization

The document is structured as follows:

Chapter 2 - Related Work - This Chapter begins with an overview of the existing

architectures, being followed by existing communication and coordination primitives

found in the literature, which are a fundamental aspect of the work proposed in this

document.

Chapter 3 - System Architecture - Describes in detail the architecture of the devel-

oped system. Starts by describing the design overview of the developed system. We then

divide the developed system in two layers, the network layer which explains in detail

the peer-to-peer network architecture; and the application layer which explains how this

work coordinates the access to the centralized component.

Chapter 4 - Evaluation and Results - This chapter explains in detail experimental

evaluation, where we compare our peer-to-peer leveraging design to the use of a typical

client-server architecture over Moodle’s web application [41].

Chapter 5 - Conclusion - This chapter presents the main conclusions of this work,

and also gives a brief preview of the work to be developed in the future.

3

C
h
a
p
t
e
r

2
Related Work

This chapter presents and discusses relevant related work. In order to better understand

the origin of lack of reliability and availability in centralized architectures such as the

mentioned on Chapter 1 and the proposed solution presented on Chapter 3, which uses

a peer-to-peer network formed by clients to avoid the exhaustion of resources.

The next Sections cover the following three topics:

• 2.1 Distributed Systems Architectures: This Section discusses the spectrum of dis-

tributed systems architectures starting on centralized architectures and finishing on

completely decentralized ones. We discuss in detail client-server, cloud computing

(partially centralized and partially decentralized), and peer-to-peer models, since

they are the classical (and relevant) approaches to design distributed systems.

• 2.2 Communication Primitives: This Section deals with communication primitives

that make interaction between two or more components in distributed systems

possible. Communication is an essential aspect of any distributed architecture, and

hence understanding the different existing alternatives is essential to build adequate

distributed and scalable coordination primitives.

• 2.3 Coordination and Agreement Primitives: This Section covers existing coordi-

nation primitives and techniques that have been proposed and are correctly used

in the design of distributed systems. We also discuss why existing approaches are

unsuitable to achieve the goals of the work to be conducted in the context of this

thesis.

5

CHAPTER 2. RELATED WORK

2.1 Distributed Systems Architectures

The evolution of hardware, software, and network infrastructures allowed the develop-

ment of more complex systems. Nowadays users expect an ubiquitous access to systems,

which require to become increasingly fault-tolerant, available, resilient, and scalable.

Due to the pervasiveness of computers on everybody’s life, the need to make them more

resilient and available has became even greater. Thus, the architectures of distributed

systems had to evolve from more centralized designs to more decentralized ones, which

is an important aspect to lower the dependency on centralized single points of failure

and contention points, which is essential for improving fault-tolerance and availability.

We start by discussing client-server model that is the main representative of central-

ized architectures. Moving then to the cloud computing design that is able to spread

server operations across more machines improving availability, scalability, and fault-

tolerance.

Cloud-based architectures where all resources are in a single geographic location can

have latency issues, for instance if only Asia had server infrastructures for a determined

service, the clients in America would experience more latency than the clients in Asia. To

overcome this latency issue we discuss geo-distributed cloud-based architectures, where

servers are spread across different geographical areas, bringing them closer to clients. We

finally address more descentralized architectures, where clients interact directly with

each other avoiding central components. This type of architectures make systems more

resilient, fault-tolerant, scalable and available. We will focus on these type of architectures

in order to solve the challenges presented on Chapter 1.

2.1.1 Centralized Architectures

The more traditional and simple centralized architecture is the Client-Server model, that

can be viewed as two main separate entities as the name itself indicates, Clients and

Servers. From the Client perspective, the system allows it to access a resource or a set of

resources; and from the other perspective, the server is responsible for processing and

managing access to the provided resource or resources.

This model is characterized as centralized due to the fact that the control of the system

fully resides on the server side. The server provides a service and all users that want to

access that service must interact with it. A simple illustration of this model is presented

in Figure 2.1.

In this model clients are unable to interact directly with each other, in fact each indi-

vidual client is typically not aware of other clients, thus they can only interact indirectly,

with each other through the service provided by the server. The scalability of this ar-

chitecture is limited when the number of clients is greater than the number that can be

handled by the server.

6

2.1. DISTRIBUTED SYSTEMS ARCHITECTURES

Figure 2.1: Client-Server Architecture

Clients and server communicate with each other through a server provided API. This

API lists all available server methods and specify the type of reply that is emitted by the

server. This API is accessed by clients using some communication primitives. In the next

Section we discuss such communication primitives.

A main disadvantage of this model is that the server is a single point of failure, so

when it becomes unavailable the whole system/service becomes unavailable. Next, we

discuss how cloud computing paradigm addresses this problems.

2.1.2 Partially Centralized

We classify cloud computing architectures (with all servers in the same geographic loca-

tion) in partially centralized systems because their organization is logically centralized,

within the scope of what we call cloud. Computations are distributed over more than one

machine in opposition to classical client-server model. Rather than having a single ma-

chine serving one or more clients, in cloud computing we have a centralized component

(cloud), where all users are able to connect. Although client-server and cloud computing

are two distinct architectures, the clients are unable to distinguish them.

This centralized component is at the same time distributed, since clouds are typically

implemented on cluster’s1 to provide properties such as resource elaticity, high perfor-

mance, ubiquity, availability, and fault tolerance [16]. An illustration of this model is

presented in Figure 2.2.

The elasticity of resources allows developers to adapt their needs with a better cost-

benefit trade off. They do not need to be concerned about resource overprovisioning,

when their service does not have the expected popularity or resource underprovisioning

when they did not predict a service sudden increase in popularity for their service. They

are not required to know anything specific about cloud computing design to connect

their computers to cloud server and use it. Thus, it is possible to develop and test their

applications and services faster, without wasting costly resources with this architecture

1set of interconnected computers that cooperate closely to provide single and high performance comput-
ing capability.

7

CHAPTER 2. RELATED WORK

Figure 2.2: Cloud Computing Architecture

design. Developers are able to choose how much resources they need as the service grows,

often called the pay-as-you-go model [6].

The virtualization of the resources made by the cloud computing model allows the

elasticity of resources previously discussed. This virtualization is achieved through soft-

ware that makes possible the interaction and coordination between computers, masking

their physical separation [51].

This resource virtualization aspect is very important since for instance, if we have 2

machines where only 30% of each one capacity is being used, we committed an overes-

timated error and resources are being wasted. In cloud architecture we easily overcame

this problem by virtualizing two machines over a single physical machine achieving 60%

of utilization without requiring the other machine to be wasting resources.

Cloud service providers offer certain service guarantees, called service-level agree-

ments (SLA). Typically, the SLA is a service agreement between client and service

provider that includes the quality, availability, and responsibility of the service being

offered by the provider [57]. For instance, the Amazon S3 plan [2] of Amazon Web Ser-

vices (AWS) offers a storage service that can be up to 5 terabytes in size and is committed

to a monthly uptime percentage greater than 99% of the time. Anything below this

guarantee leads Amazon to pay to the service user 25% of his bill [3] as a compensation.

Cloud computing also offers ease of setup, since it is possible to easily configure a

system by outsourcing computations to cloud service providers, instead of maintaining

computational infrastructure and managing complex software stacks [25].

We conclude that this type of cloud architecture differs from the classical client server

model, since each offers different properties. For instance, in the client-server model,

if the server fails, the service provided becomes inaccessible, and clients are unable to

access it, making the service useless, the same does not happen in the cloud model. Cloud

architecture easily masks this type of failures and migrate the service to another machine,

making the system more fault-tolerant. We consider that this property is an evidence

that the cloud architecture has a distributed component, categorizing it in the partially

centralized designs.

8

2.1. DISTRIBUTED SYSTEMS ARCHITECTURES

2.1.3 Partially Decentralized

According to Jakob Nielsen [47], users may notice the delay of any response from servers

that takes more than 100 milliseconds. Anything below 100 milliseconds will create

the illusion that the system is reacting instantaneously to clients inputs. Systems based

on Cloud Computing that maintain their hardware components in a single geographic

location (as partially centralized architecture) can present latency values above 100 mil-

liseconds for users that are distant to the data center location. In order to reduce perceived

latency, multiple cloud servers could be placed geographically closer to the clients, which

is commonly referenced as geo-distribution. Additionally, if we want to offer access to

data with lower latency regardless of their location we can replicate it among the cloud

sites which is defined as geo-replication.

For instance, Google Drive service uses geo-distribution providing lower latency. They

also implement geo-replication, since users that access this Google service in Europe

servers observe the same content as if they access it through servers located in America.

Thus, adding the geographic arrangement of servers and the replication of their data we

can get low latency in multiple locations. The model of geo-distribution is presented in

Figure 2.3.

Figure 2.3: Geo-Distributed Architecture

We classify cloud computing architectures which implement geo-distribution as par-

tially decentralized models since the system is composed by multiple servers distributed

across the globe. However we do not consider it as fully decentralized because users must

interact with the central component (data center servers) in a logical centralized location.

Placing servers geographically near to the clients reduce response latency, and data

replication can provide enhanced performance, high availability, and increased fault

tolerance, particulary to catastrophic failures that render a datacenter inoperable or ina-

cessible [16]. Typically, the majority of distributed systems aim of having these properties,

9

CHAPTER 2. RELATED WORK

since that makes them more robust while providing better user experience.

2.1.4 Decentralized

In order to overcome the limitations of centralized architectures engineers proposed alter-

native architectures that evolved from the client-server model. This lead systems to start

transitioning from a centralized to a decentralized model, in order to make them more

fault tolerant, available, and scalable. For instance, to overcome single points of failure

or availability issues, models were introduced that distribute the service through more

servers. And to overcome performance issues, models choose to spread computations

over more machines, simulating an entity with more computational power. This Section

presents and discusses the main aspects of decentralized systems, more precisely, the

architecture of Peer-to-Peer systems.

Peer-to-Peer (P2P) is considered a promising model that focus on exploitating existing

resources at the edge of the Internet. These resources include computation, storage,

and bandwidth, with costs handled by end-users and embracing at the same time many

desirable properties, as scalability, availability, and autonomy [55]. An illustration of this

architecture is presented in Figure 2.4.

The interest on P2P systems was significantly influenced by the Napster [42] music-

sharing system, the Freenet [14] anonymous data store, and the SETI@home [5] volunteer-

based scientific computing projects in 1999. They are mainly used for sharing and dis-

tributing files, streaming media, telephony, and volunteer computing [49].

In [49] P2P architectures are characterized by three main aspects:

- High degree of decentralization: Each participant acts as server and client at the

same time, distributing server computation, bandwidth, and storage consumption across

all nodes. The state and tasks of the system are allocated over peers and few, if any, dedi-

cated nodes

- Self-organization: The system is able to adapt to new joining nodes, with little or

no manual configuration needed. The same is true for nodes that depart or fail.

- Multiple administrative domains: The participants of the system are typically man-

aged and owned by individuals which voluntarily join the system.

Descentralized solutions are also desirable due to their organic growth, as the re-

sources are contributed by peers, meaning that an increase in the number of users in

the system does not require a continuously infrastructure upgrade; their low barrier for

deployment compared with client-server systems; the investment needed to deploy a P2P

10

2.1. DISTRIBUTED SYSTEMS ARCHITECTURES

service tends to be low; resilience to faults and malicious attacks; and its diversity of

systems as resources tend to be diverse among all participants.

Figure 2.4: Peer-to-Peer Architecture

P2P systems can be classified in two different categories in terms of decentralization

degree, partially centralized and fully decentralized. To categorize them we must take

into account the presence or absence of centralized components in their designs.

Partially Centralized P2P Systems

In this type of P2P systems, there usually exists a central component similar to the client-

server model (discussed in Section 2.1.1), where one or more dedicated controllers help

peers to locate their desired resources, or act as task schedulers to facilitate coordination

actions among clients [55].

The existence of centralized components can make this type of systems more simple

to build and maintain. Since the information about resources is maintained by one or

few dedicated controllers, which is more easy to manage compared with a fully decen-

tralized model. It also has some drawbacks, as the presence of potencial bottlenecks

on controller nodes and potential failure points on these components. For a very large

number of peers, the dedicated controllers are not able to manage all the requests making

the system slower, depending on how fast they can respond to peers. This issue of scala-

bility is raised and this type of P2P architecture must not be recommended for very large

applications. Some examples of this model are Napster [42], that relies on a central server

for peer discovery and content lookup [55], and BOINC [4], which has a central server

that maintains information about applications, platforms, versions, work units, results,

accounts, etc. BitTorrent [15] is also an example of a partially centralized P2P system,

since it relies on central servers that index contents distributed across the network.

Fully Decentralized P2P Systems

Unlike partially centralized P2P systems, this design completely avoids the use of cen-

tralized nodes for supporting special tasks. Thus, the state of the system and even infor-

mation about the system membership is distributed across a logical network connecting

11

CHAPTER 2. RELATED WORK

all nodes. Each peer plays the same role, with each one having the same rights and re-

sponsibilities. This distributed approach has no native bottlenecks, having the potential

to be more resilient to failures while being more scalable, since centralized components

can have their resources exhausted. Additionally, coordination in these fully decentral-

ized systems is more difficult to achieve, for instance if participants must reach any form

of consensus. Algorithms such as Paxos [28, 30], that helps participants of a system to

reach consensus (which are discussed later on Section 2.3) are known to have low scala-

bility and being sensitive to continuous/frequent membership changes. An example of

a fully decentralized system is Gnutella [48], where there is no central authority control-

ling the system organization and all the participants connect directly with each other [55].

Overlay Network

An overlay network is a logical network (e.g. operating at the application level) that en-

ables peers to communicate with each other directly. These networks can be classified as

unstructured or structured, according to the constraints imposed on the topology formed

by the links among peers. In terms of overlay structures, there are flat architectures

(single-tier) where peers are all at the same (logical) level and hierarchical architectures

(multi-tier) where peers are organized into groups and each group has one or more intra-

groups [55]. For instance, in flat designs the lookup process can be supported by any

set of nodes that are part of the system, such as Chord [52] discussed further ahead. In

hierarchical models, a search by the group of the target peer for that key it is made at

the top-level overlay and are mostly supported by peers operating at that level. However,

sometimes it is necessary to find the peer responsible for that key in the intra-group level.

An example of these models is Crescendo [22], which merges Chord rings in multiple

layers and routes through them hierarchically.

Unstructured Overlays

This type of overlay avoids the use of any specific arrangement structure among peers,

effectively generating overlay topologies that are random.

When a node wants to find some resource in the network (e.g. a file), he must know

which peers have that data. In order to obtain such information, a typical solution is

to flood the overlay with a query. This search behaviour causes a tremendous message

overhead in the system, since the messages are sent to all peers (most of the time un-

necessarily). Also, this type of overlays is more vulnerable to malicious flooding attacks,

when malicious nodes floods the network with queries. Many of them are very difficult to

detect since these operate at the application level [55]. Applications that use this type of

overlay include FreeNet [14], that forward requests node by node (unicast based) until a

target is reached and returns a reply through the same (inverse) path, and Guntella [48],

that uses flood-based techniques. This communication techniques are discussed in detail

in Section 2.2.

12

2.1. DISTRIBUTED SYSTEMS ARCHITECTURES

Structured Overlays

In opposition to unstructured overlays, in structured approaches, the overlay logic im-

poses some constraints on node connections. These constraints shape the structure of the

network graph and therefore it is common to speak about a specific structure, as its name

suggests.

Typically in this type of overlay, each node has a unique identifier (chosen using

a policy that makes them uniformly distributed over a key space) that identifies him

in the network. This identifier is many times used to govern the arrangement of the

overlay topology (e.g. a ring that respects the ordering of these identifiers). Thus, each

node can know where another node is on the structure and, in opposition to the random

organization strategy, target resources (that have a unique well known identifier) can be

found easily using for instance, consistent hashing [49]. Examples include Chord [52]

and Pastry [50] that use key based routing mechanisms to efficiently locate any desired

content.

2.1.5 Relevant examples

Chord [52] - is a protocol that addresses the problem of lack of efficiency on finding the

node that stores a particular data item in peer-to-peer applications. It is a fully decentral-

ized architecture since all nodes play the same role, having all the same responsibilities

over the attributed keys. It can be mapped on structured overlays since each chord node

has an unique identifier based on node’s IP address and maintains a link to its successor2.

As the node with lower identifier points to the one with higher identifier, a ring topology

is formed.

To achieve fault-tolerance, each node maintains a list of its first r successors nodes.

When their direct successor does not responds, he contacts the next successors in order

until one responds. Assuming p as the probability of a peer to fail, pr is the probability of

all peers in that list to fail simultaneously. Thus, increasing r makes the system increas-

ingly more fault tolerant. In order to achieve efficient lookups, a finger table is stored

on each node n. A finger table stores at most m entries, where m is the number of bits

in the key/node identifiers. Each entry is a successor node of n, that succeeds n (on the

node identifier space) by at least 2i−1, where i corresponds to ith entry on the finger table

and 1 ≤ i ≤ m. Thus, each node is aware of their nearest successors and can traverse the

graph not only walking one peer at a time, but jumping through his finger table entries,

increasing lookup efficiency.

2The next node in the ordered ring with the lowest identifier of the set of identifiers larger than the local
node.

13

CHAPTER 2. RELATED WORK

Gnutella [48] - Gnutella is a peer-to-peer decentralized protocol that builds an overlay

network, typically used to find files shared by each peer. Its overlay network is charac-

terized as unstructured since nodes are only aware of peers to which they are directly

connected through TCP connections, which are established at random. Queries in this

type of overlays are disseminated using a flooding technique, in which a source node

propagates the query to his connected nodes, and the connected nodes propagate the

query among their connections and so on. The response, when ready, is propagated back

up to the source node. This type of query dissemination can lead to some lack of security,

since Distributed Denial of Service (DDOS) attacks are easy to be performed. As referred

before, decentralized overlays improve fault tolerance since they are not dependent of a

single point or component of the system.

Skype [8] - Skype is a system mainly used for VoIP communication between users. In

its early version, Skype had a peer-to-peer registration system, where each user should

be registered to be able to communicate with other registered users. This registry system

was a partially centralized network, since not all nodes had the same responsibilities. It

had two types of nodes, ordinary hosts and super nodes. An ordinary host is a general

user of the client Skype application, additionally the super nodes are peers with higher

bandwidth, computation power, and memory. This design had login servers used for

storing names and passwords of users. The requirement of hosts to be connected to that

type of servers and to a super node also complement this partially centralized architec-

ture. This mandatory connections generates a specific structure, thus this architecture

relied on a structured overlay. Fault tolerance in this peer-to-peer architecture could be

achieved increasing of the number of super-nodes.

Diamond [59] - Diamond is a recent cloud storage service that provides reactive data

management and reliable synchronization across several devices. When a node updates a

piece of data, these changes are automatically propagated though other nodes.

Diamond architecture adopts a cloud computing design, in which clients interact

with cloud servers through Diamond’s library. The Cloud component consists in a Key

value store database, which employs strategies as replication and partitioning to achieve

fault-tolerance and scalability. The clients are connected to stateless front end servers

through Diamond’s library. Additionally, this front end servers are connected with the

key value stores servers. The architecture presented by Diamond includes four main

components, reactive data types (RDT), reactive data maps, read-write transactions, and

reactive transactions. The reactive data types are application data structures that are

shared and persisted through Diamond. The reactive data map allows developers to link

their RDT’s and application with data keys and the diamond key value store. Read-write

transactions are used to update shared RDT’s, with ACID guaranties. Finally, reactive

transactions are used to propagate shared application variables into local variables, mak-

ing them visible to users on their own devices. This architecture allows the absence of

14

2.2. COMMUNICATION PRIMITIVES

notification mechanisms and reactive code mechanisms at server-side, since application

reactive code is in the client side.

2.1.6 Discussion

In this Section we presented essentially four groups of architectures which could be used

by this work. Section 2.1.1, presented an architecture based on Client-Server paradigm

where all clients interact with a centralized component (server) responsible to control

all the system. These architecture major drawback is its server since when it fails, all

system becomes unavailable for its users. Another problem arise when the number of

client requests is higher than the number of requests supported by the centralized server.

Due to the presence of these points of failure, we rejected this architecture type to give

support to this work. Since centralized architectures were out of our solution scope we

tried to evolve to decentralized ones, Section 2.1.2 and Section 2.1.3 appear as boundary

between these of opposing architectures (centralized and decentralized). However these

boundary architectures are also not suitable for this work, because despite being scalable

and fault tolerant (Diamond [59]) they do not allow interactions between clients which

is an important aspect of this work.

We choose decentralized architectures (P2P) due to their common properties such as

scalability, fault tolerance, high degree of decentralization, self-organization, and allow

interaction between clients. In this architectures we choose structured (Chord [52]) in

detriment of non-structured overlays because we need to delegate special privileges to

a couple of peers (explained in Chapter 3). Eventually these special peers will need to

be located and structured overlays are known for its efficient lookup mechanism (key

based routing). We discard systems like Gnutella [48], which does not enjoy an efficient

lookup mechanism since it has an unstructured overlay; and systems like Skype [8], that

despite having a structured overlay relies on super nodes that depend on users hardware,

potentially compromising the network structure.

2.2 Communication Primitives

The communication between two end-points in the network is built on top of two funda-

mental transport protocols, UDP and TCP. Both are used to transmit information between

two different points connected by a directed channel (at the IP level), using the sockets

intefac [16]. In this Section we focus on protocols that are build on top of these primitives,

since they offer a higher level of abstraction than the support offered by the interface of

the transport layer.

The exchange of messages between processes is easily achieved by implementing, send

and receive operations in both processes. In order to communicate, the sender process

invokes the send operation on a byte chain over the communication channel, and the

receiver invokes the receive operation on the channel in which the message was sent.

15

CHAPTER 2. RELATED WORK

In this communication process, both participants follow one of two different ap-

proaches in terms of blocking policies. They could be synchronous, in which the sender

process blocks until the receiver response arrives, or asynchronous, in which the sender

process sends the message and proceeds without receiving any response from the receiver

[54].

We divide this Section into message-oriented communication, which is based on the

exchange of discrete messages between processes, in stream oriented communication,

which is based on continuous message exchange, and finally, in multicast communication

that is the paradigm most used in the context of group communication.

2.2.1 Message-oriented Communication

Many distributed systems are based on message oriented communication, which is based

on the exchange of discrete message units, one at a time, and unrelated with the others.

In this communication type, the message queue and the event based messaging are the

two most representative approaches that will be discussed next.

Message Queuing communication

Typically, message queuing communication models are point-to-point asynchronous ser-

vices which enables persistent communication between two end-points. Thus, all the

messages involved in the communication process are stored and both participants do not

need to interact with the message queue simultaneosly. The sender have the guarantee

that his message will be enventually inserted in the receiver’s queue. This queue will be

responsible for storing the incoming messages when the receiver is not connected to the

communication channel [16].

They can be implemented in each application, one in the sender and one in the re-

ceiver, or can be shared by both applications. Thus, the sender and the receiver are decou-

pled in time, which would not be possible if the communication was transient/volatile. In

opposition, in the transient communication approach, the participants need to be on-line

simultaneously to exchange messages, since no message store mechanisms are offered

to manage non delivered messages. Sockets are example of transient communication,

since when one of the end-points is down, the messages that are still transversing the

transmission channel are lost [16].

A simple interface of a message queuing system only include this four primitives:

• Put - Appends a message to a queue.

• Get - Removes a message from the queue following a specific policy (e.g. FIFO,

priority pattern, match pattern) being typically a blocking call, since it will block if

16

2.2. COMMUNICATION PRIMITIVES

the receiver’s queue is empty.

• Poll - Non-blocking version of Get, since it will return immediately if the receiver’s

queue is empty.

• Notify - Mechanism invoked when a new message is placed in the queue.

In other systems, message queue mechanisms can be implemented following a central-

ized or a decentralized architecture. The centralized approaches typically implement a

centralized queue manager, where all the messages of the system are managed. Obviously,

this approach have the same advantages and disadvantages of a centralized system, due

to single point of failure and inherent bottlenecks in that queue manager. Additionally,

the decentralized implementations distribute the queues in order to overcome these prob-

lems. An example of the latter approach is the Java Message Service (JMS) [24] where

clients remove messages from the queues assigned to hold their messages.

Event-based Communication

Event-based [38] or Publish/Subscriber [7] systems are composed by publishers, sub-

scribers and an event dissemination system. Publishers are responsible for publishing

events to the event dissemination system, and subscribers are responsible for declaring

their interests regarding events published in the event dissemination system. The event

system can be topic-based, in which events are published to topics and subscribers re-

ceive the messages that correspond to the topics subscribed, or content based, where

subscribers are responsible for declaring their interests considering properties of events

(e.g. time, size, etc) and only the events that match their interest specifications are deliv-

ered to them.

This system is an implementation of one-to-many communication approach since one

topic can be delivery to many subscribers as represented in Figure 2.5.

Similarly to message queues, event-based systems can also be implemented using

a centralized or decentralized architecture. In the centralized models, the publishers

produce events into a single event manager, and subscribers consume the events from

that central manager. Contrarily, store and forward mechanisms can be implemented in

the publishers and subscribers, distributing the event manager load and eliminating the

single point of failure, and the inherent bottleneck.

Systems such as MEDYM [26], choose to distribute the event manager entity among

several servers. Each server maintains a data structure with the subscriptions and only

events that match their requirements, will be sent to this server. Choosing this mechanism

in opposition to fully replicate servers, allows to minimize event traffic load on that

servers, since only the interested ones will receive the event.

17

CHAPTER 2. RELATED WORK

Figure 2.5: Publish/Subscribe topic-based Architecture [44]

2.2.2 Stream Oriented Communication

This communication approach is typically associated with multimedia applications, since

a continuous generation and consumption of data is the normal behaviour. In these ap-

proaches, the time plays a crucial role, since all messages are related in time and must

be ordered. For instance, in a live streaming audio player application, the message con-

tent must be reproduced in the same order that it was produced by its original source,

otherwise the music will not sound as it should. Thus, messages delivered out of order

or too late are ignored leading to errors in the reception of the data stream [16]. The

TCP is a transport layer protocol that implements this type of communication, since the

destination receives the message with the same order as the source send it. However, TCP

cannot offer guarantees related to delivery times of messages.

These continuous transmission of data operates in three distinct modes [54]:

• Asynchronous mode: There are no time restrictions on point-to-point transmission.

For example, when transferring a file, it does not matter whether it takes more or

less time to transfer the file than to produce it.

• Synchronous mode: There exists an upper bound imposed on transmission time

delay, usually called maximum end-to-end delay. For instance, in a live video

streaming scenario, it is important that the transmission delay of messages to be

constant and below the rate of production of the content, otherwise the replay will

have frequent interruptions.

• Isochronous mode: Imposes an upper and a lower bound to the transfer time be-

tween the participants, entitled as minimum and maximum end-to-end delay.

18

2.2. COMMUNICATION PRIMITIVES

Centralized implementations of these communication abstractions resort to servers

which have the constraints and drawbacks associated with centralized solutions, such

as single points of failures, bottlenecks, etc. Although, some work has been done to

overcome the referred centralized problems as the case of bottleneck reduction presented

in [13, 20].

The centralized approach referred in [58] is based on streaming servers supported by

operating and storage systems which support continuous media storage and synchronous

transmissions. The clients implement specialized algorithms for audio and video decod-

ing. Besides that, both end-points implement QoS(Quality of service) controllers and the

necessary transport layer protocols to communicate over the Internet. An illustration of

this model is presented in Figure 2.6.

Figure 2.6: Streaming communication Client/Server Architecture [58]

Due to centralized architectures drawbacks, more decentralized architectures gained

popularity. Thus, the use of peer-to-peer networks has contributed to the evolution

of systems that use multimedia data diffusion thanks to their scalability and ease of

deployment. Gnustream [27], is an example of a peer-to-peer media system that uses

Gnutella [48] for routing media files between peers.

2.2.3 Multicast Communication

Multicast is a communication abstraction that follows the pattern of one-to-many com-

munication, since a message is sent from one process to a group of other processes. In

its simplest materialization, multicast communication does not provide guarantees of

message ordering or delivery [16]. Additionally, other multicast protocols are used in

systems that require stronger guarantees, as reliable multicast and ordered multicast.

19

CHAPTER 2. RELATED WORK

Reliable multicast ensures that the messages sent will be delivered to all group mem-

bers or will not be delivered to anyone, a property often called atomic delivery. Ordered

multicast ensures that messages will be delivered to all group members in the same (rela-

tive) order they were sent.

Multicast is used in multiple systems from the discovery of services on the Internet, to

the propagation of events. For example, it is used in publish subscribe systems, typically

as a mechanism to support the notification of subscribers. To make the dissemination of

information possible, this type of communication uses overlay networks, which can take

the shape of a tree or a mesh [18]. An overlay organized as a mesh offers more robustness

to the communication system since, when a node fails, there are more possible ways to

disseminate information. This does not happen in the tree structure, forcing its recon-

figuration [54]. In a tree based approach, the redundancy of messages does not exists,

making this type of arrangement less fault tolerant, although having a better resource

usage. Protocols such as that are presented in [32], combines both approaches. It uses a

tree-based approach to achieve low message overhead and a gossip based mechanism, or-

ganized into a mesh, in order to provide better fault tolerance by transmitting redundant

control information to assist on masking node failure and message omissions in a timely

fashion.

Gossip Data Dissemination

This data dissemination technique reproduces the behaviour of the communication used

by people in social interactions and also the dissemination of diseases in population,

hence these approaches are also called epidemic-based protocols. Instead of disseminat-

ing diseases, this protocol spreads messages (i.e., information) through the network with

the aim of delivering them as quickly as possible among a large collection of nodes [16].

Fundamentally, the node containing the information randomly chooses a set of other

nodes in the network and passes the information that it has to them. Then, these nodes

that become aware of the (new) information, randomly choose other nodes and propa-

gate the information they have received, and so on. This process guarantees, with high

probability, that all nodes will eventually become aware of the disseminated information.

Systems that implement this type of protocols are more scalable, since additional nodes

added to the system will not affect the communication process [54]. Although, scalability

is affected by the requirement imposed by the randomly selection of nodes. In order to

select the nodes that will be the target of the propagation in each gossip round, the sys-

tem must know the entire network membership, and clearly this approach is not highly

scalable when we are in the presence of very large number of nodes. Thus, protocols such

as presented in [17, 19, 33, 43] suggests the use of partial views, that only stores a subset

of the system members in order to improve scalability.

20

2.2. COMMUNICATION PRIMITIVES

In Gossip there are typically three strategies to exchange information updates [32]:

• Eager push approach: Nodes send message payload to randomly selected nodes as

soon as they become aware of them.

• Pull approach: Nodes randomly select other nodes and query them for new infor-

mation. If those nodes have new information, they send it to the requester.

• Lazy push approach: Nodes send notification of new content to randomly selected

nodes as soon as they become aware of it. The nodes which receive these notifica-

tions for content that they do not are aware, explicitly request the payload.

2.2.4 Relevant examples

Scribe [10] is an infrastructure used to support the event-notification paradigm in a large

scale environments. It uses Pastry [50] to manage topics and to construct multicast trees

used to disseminate the published events. These trees are formed by joining the Pastry

routes from the root to each subscriber, considering the node that holds the topic as being

the root. Nodes can create, subscribe, unsubscribe, and publish events. When Scribe

creates a new topic, it calls Pastry route operation with a create message and topic identi-

fier as a key (e.g. route(CREATE,topicId)), then Pastry delivers the message to the node

identifier numerically closest to topicId. The same behaviour is applicable when Scribe

nodes want to subscribe a topic, routing a subscribe message (e.g. route(SUBSCRIBE,

topicId)). This message is routed by Pastry until it reaches the node that holds the topic

(root node), creating forward nodes in its path that will be used to disseminate the events

later. The unsubscribe method is analogous, since a unsubscription message with topicId

is routed through the multicast tree created removing the interest in the topic.

The utilization of Pastry as routing mechanism, ensures that the distance between

peers of the routes created are the closest possible, with respect to the proximity metric

used in this protocol. The fact that the list of subscribers is distributed contribute as a

fault tolerant mechanism and the tree/load balancing given by Pastry ensures the scala-

bility property.

Technically HyParView [33] is an unstructured overlay which can be used as message

dissemination protocol. Implements the gossip based communication paradigm and

proposes to disseminate data efficiently with high fault tolerance, achieved through the

use of two partial views of peers. A small active view is used to disseminate messages

efficiently through reliable TCP connections. This view is maintained using a reactive

strategy, which only changes in response to events, for instance when a peer detects a

faulty peer, it removes it from the local active view and adds a new peer from the other

view, the passive view. That passive view is larger and is used to replace faulty nodes of

the active view. It is managed by a cyclic strategy, which is updated periodically in time.

In this case, periodically a shuffle operation is performed by each peer in the system. Due

21

CHAPTER 2. RELATED WORK

to having small active views, it achieve better performance concerning message overhead

than other approaches. The cyclic management of the passive view enables the passive

view to contain a large sample of nodes, where the majority is correct.

2.2.5 Discussion

Following the communication primitives discussed in the presented sections of this Chap-

ter, we decided to adopt an approach based in gossip data dissemination. The participants

of the structured overlay need to communicate to particular peers in the network, and

despite they do not know where these particular peers are, the network is able to locate

them (using an indirect communication primitive based on gossip based approach, where

the message is sent from peer to peer until it reaches its final destination).

In this Chapter we also discussed message-oriented communication primitives (Sec-

tion 2.2.1) in which we presented two models of communication, message queuing com-

munication (a persistent point-to-point message service) and event-based communication

including publish-subscribe event dissemination systems. We reject both of these com-

munication models since we do not need a persistent mechanism to exchange messages

between P2P network participants and event-based communication mechanisms are gen-

erally used to contact multiple entities with that have same purpose (which is not our

goal, since we want to coordinate the access to the server following a point-to-point

communication strategy and not a point-to-multipoint). We also reject stream oriented

communication model (Section 2.2.2) since it is mostly used to give support to multimedia

applications which is out of the scope of this work.

2.3 Coordination Primitives

In distributed systems, it is very common that participants need to reach agreement

on some aspect of the system operation, for instance electing a new leader to govern

their actions. These activities are typically easy to implement in centralized approaches,

in which a single unit is in charge of controlling and coordinate the whole system. In

opposition to that, the decentralized architectures have an added difficulty, where the

contribution of all participants must be taken into account.

In this Section we focus on topics related to coordination, ordering, and mutual ex-

clusion that resolves problems raised from resource sharing. This resource sharing imply

that only one process should have access to a resource of the distributed system, which

is considered to be critical, in order to maintain the system consistency. Election algo-

rithms are also referred latter, in order to overcome problems similar to resource sharing

and other challenges related with centralized coordinators failure. Finally, we discuss

consensus, that is widely used when a group must agree on something (e.g system’s next

operation) to ensure the correct progress of the system.

22

2.3. COORDINATION PRIMITIVES

2.3.1 Mutual Exclusion

Mutual exclusion is used to deal with problems of consistency over shared resources.

Consider a situation where we want to control the number of cars over a certain bridge

using two controllers, one at each end. When a car leaves the bridge, the counter must

be decreased by one, and when a car enters in the bridge, the counter must be increased

by one. If there is one car leaving and another one entering the bridge at the same time,

then we have a problem since both controllers are accessing the shared counter, and

the counter can be decreased by two or one. As the counter is critical, since it must be

accessed by only one process at a time, we define operations that manipulate its value as

critical sections [16].

Adding a server that controls the access to the counter would be applicable, but it

would be more efficient and fault tolerant if we enable communication between the pro-

cesses. This latter approach is the most implemented in distributed mutual exclusion

protocols [16], discussed next. All of them must ensure safety, liveness, and fairness

properties. Safety ensures at most one process enters the critical section at a time, live-

ness promises that all processes that require access to the critical section will eventually

access it, and fairness ensures that none of the processes that requires access to the critical

section will be waiting forever.

Typically, distributed mutual exclusion protocols are divided in two main groups [46],

token-based and permission-based protocols:

• Token-based protocols [40, 45, 53] : In these protocols, the access to the critical

section is guaranteed by the existence of a unique token. The process in possession

of that token, is able to access the critical section. There are two main approaches

to transfer the token, or the process that has it transfers to other process, even if the

receiver does not want it, causing high message overhead. Or it can be transferred

after an explicit request by an interested process, hence a search token mechanism

must exists. In the presence of failures, the token can be lost inducing a deadlock

situation [46].

• Permission-based protocols [1, 29, 37] : The access to the critical section is granted

by a quorum of permission votes. The process that wants to enter in the critical

section must require permission from all of other participants. In conflict situations,

a priority event mechanism ensures that only one will have the permission to access

the critical section. In this type of distributed mutual exclusion protocols it can be

difficult to gather a quorum of responses [46].

Some of those algorithms are detailed in Section 2.3.4, in order to exemplify the

covered topics.

23

CHAPTER 2. RELATED WORK

2.3.2 Elections

The permission-based protocols, in distributed mutual exclusion is closely related with

the elections primitives, since both have as objective the choice of a unique process to

play a specific role in the system. In fact permission-based protocols are concrete imple-

mentations of this agreement paradigm.

The election mechanism can be triggered by some process, for instance when it thinks

that the coordinator process has failed. However, a single process can not trigger more

than one election process at a time. During the algorithm execution the safety and liveness

properties must be ensured. In this particular case, safety ensures that in concurrent

elections run, only one process will be elect (e.g. the process with highest identifier). And

liveness ensures that all the process eventually will vote. In order to understand better

the elections approach we present the ring-based and bully algorithms in Section 2.3.4.

2.3.3 Consensus

It is often necessary for all network processes to reach agreement. For instance, in a repli-

cated synchronous system, to choose which will be the next operation to be performed by

all replicas.

Initially all the participants are undecided and propose a temporary value, that can be

modified during the execution of the consensus process. Then, the communication takes

place and they exchange their proposals, and after that, they achieve a final decision which

may no longer be changed. To ensure the normal consensus execution, those algorithms

must respect the following properties [16]:

• Integrity: If all correct processes proposed the same value, then this value will be

chosen in the decision state by any correct process. This definition of integrity is

sometimes lightened, not strictly requiring that all processes have decided the same

value, thus accepting criteria of choice such as majority, minimum and maximum.

• Agreement: If two correct and different processes, p and q, reached the decision

state then the decided value is the same for both.

• Termination: Eventually all processes will reach a decision state.

In utopian environments, in which no processes crash, no messages can be lost and

all processes behaviour is correct, the consensus is always reachable. The same is not true

in real world environments, in which the occurrence of failures is a possibility. Relatively

to each process, we are in the presence of failures when it crashes or change its normal

behaviour (e.g. omitting messages, transmitting wrong values, etc.) also defined as Byzan-

tine. The famous FLP [21] result determines that consensus is impossible to achieve by a

deterministic algorithm in asynchronous systems where a node fails.

In a synchronous sytem and in presence of crash failures, Lamport [31] proved that if

the system has 2f + 1 correct processes working then consensus is achievable, where f is

24

2.3. COORDINATION PRIMITIVES

the maximum number of faulty processes. Additionally, if the failures are Byzantine they

proved, using the Byzantine generals problem, that if the number of processes is greater

or equal than 3f + 1 processes then the consensus is also achievable.

We are able to distinguish failures where processes crashes (fail, stop) and arbi-

trary(Byzantine) failures where processes do not follow their specified behaviour, as

message omission and transmission of wrong values.

2.3.4 Relevant examples

The Ring based algorithm [11] is a non fault tolerant election algorithm, in which the

processes are disposed in a ring design connected one by one through reliable communi-

cation channels in order to elect a coordinator in an asynchronous way.

Initially, all the processes are set as non-participants in an election process and anyone

is able to start an election. When it happens, the process in question marks as partic-

ipant and sends an election message to its clockwise neighbour with its own identifier.

The receiver, if is not participating in any election, sets as participant and compares the

identifier of the election message received. If its identifier is greater than the identifier in

the received election message, then it is changed by its own identifier and forwards the

message to its left neighbour, else it simply forwards the original received message. If

it is already a participant it will not forward the message. Now, if the message was not

forwarded, it means that an elections with larger identifier was already being propagated,

which will effectively elect the coordinator. Then the coordinator sets as non participant

and sends an elected message to its neighbour with the coordinator identifier. The same

behaviour of traversing the ring until there are no participants in the election process is

then repeated.

The Bully algorithm [23] is a election algorithm tolerant to crash failures which works

in synchronous systems. In this type of systems, is possible to detect crash failures since

we are able to make time assumptions and construct a reliable failure detector.

The election begins when one or more participants of the system (peers) detect that

the coordinator has crashed. It is possible to detect when another peer failed if it does not

responds between the time interval stipulated for message communication. Since all the

peers know other peers, if a peer realizes that its identifier is currently the greatest, then

itself declares as the new coordinator and sends a coordinator message to the others with

lower identifier. Otherwise, a peer with lower identifier can send an election message

to other peer with higher identifier, if no answer arrives, that peer will consider itself as

the new coordinator and send a coordinator message to other peers with lower identifiers.

Each peer that received election messages must answer with a message to the emitter,

and begins another election, unless it has begun one already. The peers that received a

coordinator message set their election variable equal to the new coordinator identifier in

order to deal with it as new leader.

25

CHAPTER 2. RELATED WORK

Additionally, if the time communication bound is incorrectly set to a value that is too

low, the system might degenerate to high message overhead due to false positives from the

failure detector component. This algorithm have problems when dealing with transmis-

sion delays, since peers are able to elect themselves as leaders concurrently, potentially

disrupting safety properties. Property which ensures that in the end of an election only

the peer (non-crashed) with higher identifier is elected.

Chubby [9] is a distributed lock service, in which clients are able to synchronize their

activities and to agree in some information about their environment, for instance agreeing

on a new leader. Typically a Chubby cell consists in a group of five replicated servers,

that uses a consensus algorithm to elect a master and to propagate updates. To achieve

that, the master must receive votes from the majority of the replicas. They also promise

to the master that they will not start a new election process for a given time interval.

Once elected, the clients interact directly only with the master. Thus, all the interaction

with the system database is made by the elected master and the other replicas restrict

themselves to copying updates performed by clients from the master replicas. Bigtable

[12] is a distributed data storage that uses Chubby to elect masters.

2.3.5 Discussion

In this Section we presented three different coordination primitives. In Section 2.3.1, we

presented the problem of accessing shared resources without any access control over it.

This was the approximation used by the developed system presented in Chapter 3. We

consider server as the critical section, thus we can avoid the exhaustion of its resources

controlling the access rate to it, hence saving CPU load. The other two Sections, which

presented elections (Section 2.3.2) and consensus (Section 2.3.3) strategies were not used

in this work, but they can be seen as alternatives to future upgrades to the presented

coordination system.

2.4 Used Technologies

This Section is dedicated to present two important technologies used in this work, We-

bRTC [56] and Legion framework [35, 36].

2.4.1 WebRTC

WebRTC [56] is a plugin-free open source project which enables real time communication

(RTC) in Web and native apps. The creation of this project was motivated by the chal-

lenges imposed by web services such as Skype, which forces users to download a native

application to be able to use its Voip system. WebRTC enables real time communication

without heavy native app installations or extensions, it enables live communication by

26

2.4. USED TECHNOLOGIES

simply opening a web page in your browser (transparently). Actually Chrome, Firefox,

Opera, Android and iOS support WebRTC technology.

Real time communication between browsers is now possible with WebRTC [56], en-

abling applications to connect its users via audio or video calling through the RTCPeer-

Connection API; exchange generic data through RTCDataChannel’s API and to record/-

capture audio or video through the MediaStream API in a P2P fashion. Although WebRTC

was designed to support P2P applications, the real applications requires the use of some

servers not only to provide the Javascript and HTML files, but also to enable applications

to circumvent firewalls and NAT boxes while establishing direct connections.

The different types of server interactions which can occur in WebRTC are:

• WebRTC clients exchange personal information (i.e., identifiers) before any connec-

tion made between them.

• WebRTC clients exchange network information following the signaling protocol

(explained below).

• For media connection, WebRTC clients must exchange (and agree) data and session

information such as video format and resolution.

• WebRTC clients often access clients that are behind firewalls or NAT gateways, and

these may have to be traversed using TURN (Traversal Using Relays around NAT)

servers or STUN (Session Traversal Utilities for NAT).

Signaling is a mechanism used to coordinate communication and to send control

messages among two client applications that wish to communicate via WebRTC. When

two clients want to establish a connection, both connect to a known signaling server and

exchange information to enable the establishment of a direct connection. The information

exchanged by this mechanism is listed below.

• Session control messages: These messages are used to initialize or close communi-

cation channels and to report errors.

• Network configuration: Messages containing network data, such as host’s IP ad-

dress and port observable by the outside world.

• Media capabilities: Messages containing media metadata and settings such as sup-

ported codecs, media types, etc.

Peers can only start a connection when the exchange of information via the signaling

process has been completed successfully.

27

CHAPTER 2. RELATED WORK

2.4.2 Legion Framework

Legion is a framework [35, 36] that allows data sharing and communication among clients,

and could be easily used over browsers. Legion architecture allows reducing dependency

on server, since the centralized component is not responsible to spread messages with

information regarding the activity of clients for all clients, letting most of this work to be

distributed across peers over the network. The client side of this framework is divided

into five main modules as illustrated in Figure 2.7.

Figure 2.7: Legion Architecture [36].

• Legion API - This layer allows other applications to interact with the Legion frame-

work exposing the framework interface.

• Communication Module - The Communication Module offers two main communi-

cation primitives: point-to-point and point-to-multipoint, used by a client to com-

municate with other(s) through a logic overlay maintained by the Overlay Network

Logic module.

• Object Store - This module allows other applications to create and maintain shared

objects. It uses the Communication Module to replicate and maintain objects up-to-

date among web clients.

• Overlay Network Logic - This module establishes logical connections between

clients, forming a topological structure which on the available Legion framework is

unstructured. These logical connections allows clients to communicate with each

other when they maintain a WebRTC connection between them.

• Connection Manager - This module manages client-client and client-server connec-

tions that are used by the Legion framework.

We are not focused on the Object Store module, since our goals are not to share up-

dated objects among clients as this module offers. Connection manager is also excluded

from our scope, since peer-to-peer and peer-to-server connections do not be modified by

28

2.5. SUMMARY

our work, being formed by WebRTC connections offered by default by Legion framework

[35, 36].

Considering Legion modules previously presented, we are only focused in the Overlay

Network logic and Communication Module. Since Overlay Network logic is responsi-

ble for the overlay topology, in this case we extended the Legion framework by adding a

structured overlay, explained in Section 3.2.1; and Communication Module express how

peers communicate with each other, allowing efficient communication between peers as

explained in Section 3.2.2.

2.5 Summary

In the previous Sections we discussed existing distributed architectures. We have started

in the centralized models, such as client-server which is the most used by existing web

applications. We also referred a recent architecture that enables an ubiquitous access and

the illusion of infinite resources, as it is the case of cloud computing architectures. Cloud

servers could be placed in the same geographic location, or geographically distributed

which contributes to lower the latency experienced by users. Finally we addressed decen-

tralized designs with greater emphasis in the context of the peer-to-peer model, in which

the participants organize themselves into a logical structured or unstructured overlay.

After the discussions of system architectures, we focused on communication prim-

itives that includes multi-process communication paradigms such as multicast based

models. Message queuing and streaming communication are also referred, in a context

of end-to-end paradigm.

In Section 2.3, we addressed coordination primitives widely used in current systems,

such as election primitives which allows a group to reach an agreement on a new coor-

dinator (e.g. leader). Mutual exclusion is also discussed as a mechanism for managing

shared resources maintaining system’s consistency. Closing this Section is the consensus

paradigm which is a very important aspect regarding coordination in distributed systems.

In the last Section of this Chapter we presented two important technologies used by

this work, WebRTC and the Legion framework. WebRTC is not directly used in this work,

but instead it is indirectly used through the Legion framework. Finally we introduced

the Legion framework, which is used by this work to create a structured P2P network to

give support to our coordinated system explain in the next Chapter.

29

C
h
a
p
t
e
r

3
System Architecture

This Chapter presents the system implemented to resolve the lack of availability in cen-

tralized architectures as discussed on Chapter 1. The model proposed in this work, pre-

sented in Figure 3.1b, follows a different architecture than the classical client-server

architecture as most web applications do, presented in Figure 3.1a.

a Client-server architecture b Proposed Model

Figure 3.1: Client-server and Proposed model

We propose a distributed model to achieve great availability levels with lower mone-

tary costs required by cloud scale solutions. Combining a peer-to-peer network, formed

by clients, with coordination primitives we can save CPU load of the centralized com-

ponent, avoiding the exhaustion of resources with lower hardware monetary costs. In

this case browsers play the role of clients and together create a network which coordi-

nate the access to the central component avoiding the exhaustion of server resources and

potentially increasing server availability.

The Legion framework was used to create P2P connections between clients of a web

application, forming a connected network of browsers. This network has special partic-

ipants which coordinate the access to resources of the web application. These special

31

CHAPTER 3. SYSTEM ARCHITECTURE

participants need to be easy to locate by other clients. Unfortunately, the unstructured

overlays offered by Legion does not offer efficient among participants. Thus, we extended

Legion, creating a DHT over it which enables two relevant functionalities to our proposes:

i) deterministically assigning the responsibility of managing resource access to a given

participant and ii) enabling any participant that wants to access a given resource to route

requests to the client that is responsible for that resource. This DHT network was inspired

by the Chord protocol [52] which was not trivial to implement in Legion framework since

all connections between peers need to be mediated by a signaling server as explained in

Section 2.4. This connection behaviour introduces significant restrictions in the way that

peers can inter-connect among them to maintain the DHT topology (a discussion on the

complexity of this can be found in [34])

This Chapter is divided in three Sections:

• 3.1 Design Overview - Provides a high level overview of the designed system archi-

tecture.

• 3.2 Network Layer - Explains, how the P2P network is organized (i.e., the DHT),

how clients are disposed in the network (architecture) and how they communicate

with each other (communication).

• 3.3 Application Layer - Explains, how special clients in the network coordinate

the access to the centralized component, lowering its CPU load and increasing its

availability.

Before explaining how the proposed system operates, we present three definitions

inherent to the developed system, which will be useful to better understand its imple-

mentation:

• Resource owner - Client which is responsible for mediating the access to a resource

in the server.

• Resource solicitor - Client which wants to access a resource on the centralized

component.

• Pre-submited form - An HTML Form which was submitted by a client but stays in

an intermediary stage controlled by our system (Request Capture Protocol). Hence

not being directly (nor immediately) submitted to the server.

3.1 Design Overview

The system architecture is divided into two main layers, the application layer and the

network layer. The next Sections will explain these layers in detail, but essentially the

network layer (Section 3.2) is responsible for the organization of the network and for

32

3.2. NETWORK LAYER

message routing mechanisms; and the application layer (Section 3.3) is in charge of the

coordination between clients.

The proposed approach depicted in Figure 3.2, can be easily integrated with most

web applications, since all the application logic is de-coupled from the logic of the web

application. As explained further ahead, we encapsulate all web application logic into

an HTML iframe, and all the logic to coordinate the access to the server (Request capture

protocol, coordination protocol, and fault tolerance protocol) is outside of that iframe.

We use lists and queues as data structures to support the decentralized coordination

mechanisms to control the access to resources, and Legion [35, 36] is used for network

management and message routing mechanisms.

Figure 3.2: Proposed model design.

3.2 Network layer

The network layer is an important module of this work, since it shapes the network into

a specific topology, enabling communication between clients. Since we want to improve

server availability by distributing coordination responsabilities among clients, we choose

a partly centralized P2P topology between the decentralized architectures presented in

Section 2.1.4. The chosen network is not fully decentralized, since Legion [35, 36] relies

on a central server responsible for user authentication, key management, durability of

the application state, and for assisting clients in joining the system.

As stated before, to implement the P2P structured overlay we rely on the Legion frame-

work, developed in the NOVA LINCS laboratory where the work presented in this dis-

sertation was conducted and explained in detail in Section 2.4.2. The following sections

explain how we shape our overlay network (Section 3.2.1) and how peers communicate

with other peers using the overlay network (Section 3.2.2).

33

CHAPTER 3. SYSTEM ARCHITECTURE

3.2.1 Overlay Network Logic - Architecture

As stated before (Section 2.4.2), the Legion framework is divided in five main modules

and this Section focus on our work to enrich the Overlay Network Logic module. This

module offers the use of three types of network overlays, an all-to-all overlay, a random

graph overlay, and a geographic optimized random overlay.

As the name implies, the all-to-all overlay is formed by connecting all peers to all other

peers. Thus, if P is the total number of peers in the network, all peers have P-1 connections,

which is not scalable for large number of clients. The random graph overlay does not

have a particular topology since all connections are made in a random fashion, and the

geographic optimized overlay is built taking into account the geographical location of

peers, giving preference to peers which are geographically closer. These last topologies

(random and geographic optimized) can not efficiently locate which peers are responsible

for specific resources, since their topologies are random in nature, the network needs to

be flooded to locate a particular peer, which is not scalable for large number of clients.

Hence, as none of the offered topologies is suited to tackle our problem, we need to

extend the offered overlays and create a new overlay which fits better within our problem

context. We need an overlay which enables fast and effective searches of resources owners

over a distributed network. Inspired in an expression stated by Rodrigues et al. [49],

"structured overlays are good at finding "needles"", we created a structured overlay which

relies on unique identifiers to store data items and has as main advantage its key-based

lookup process. Our overlay is based on the design of Chord [52], since it uses unique

identifiers to form a ring topology enabling effective searches for a large number of

members in the network.

In the overlay implemented by our work, peer connections are not made directly

through TCP connections, but rather using connections managed by the Legion frame-

work, which are WebRTC connections between peers. Due to the fact that peers can not

be connected directly through TCP connections, each WebRTC connection must have the

mediation of a central component that will allow the creation of the connection between

the peers (explained in Section 2.4.1). Every peer has knowledge of its immediate suc-

cessor and its immediate predecessor, in order to form the ring topology. This topology

depends the behaviour of its participants, and to explain how the developed network is

formed, we distinguish join, stabilize, and leave as key components of the overlay man-

agement protocol. This is in line with the design of the original Chord protocol

Join mechanism

When a peer (i.e., a web application instance running on a client web browser) joins the

network, it communicates with a known Legion server to spread a Find Successor Request

(FSR) message in the network, in order to find its immediate successor. If the joining peer

is the first peer in the network then the join process finishes immediately, otherwise, all

network nodes which received FSR message verify if the joining peer is its immediate

34

3.2. NETWORK LAYER

successor (i.e., the peer with the lowest identifier in the group of peers with higher iden-

tifier than the joining peer is its immediate successor) and, if it is, then the peer starts a

connection with the Legion server in order to create a direct WebRTC connection to the

joining peer (which is achieved by performing the WebRTC signaling protocol). When

the joining peer is connected to its immediate successor in the network the stabilization

process starts, enabling the joining peer to find its immediate predecessor (i.e., the peer

with the highest identifier in the group of peers with lower identifier than the joining

peer is its immediate predecessor).

Stabilize mechanism

This mechanism is not only used when the join process ends but also occurs periodically,

so that the direct predecessor and successor of the peers are continuously updated accord-

ing to the arrival or departure of network participants in the system. In the stabilization

phase, peers ask their immediate successor who they perceive as being their immediate

predecessor by issuing a Successor Predecessor Request (SPR). Upon receipt of the re-

sponse, the peer checks whether the peer identifier of the response is between itself and

its direct successor. If so, it changes its direct successor and notifies (NOTIFY request)

its new successor of its own existence. If the peer which received the notification veri-

fies that the notifier is its predecessor, he updates its predecessor directly. This ensures

that, periodically, changes in the network (due to failures or newly entering nodes) are

correctly added to the overlay.

Leave mechanism

This mechanism is employed when a peer leaves the network, either by failure or simply

because the user terminates its client application. To deal with this behaviour, each par-

ticipant in the network stores a list of its close successors. Each peer asks periodically

who are the close successors of its immediate successor, keeping the n closest successors,

delimited by a network parameter called MAX_CLOSE_SUCCESSORS. Thus, when a peer

leaves the network, its predecessor connects to the peer that will be its new immediate

successor. Eventually, the stabilization process starts, refreshing all predecessors and

successors according to network participants context.

In order to understand better how these mechanisms interact among each other, we

present two examples, one demonstrating a peer joining the network and another exem-

plifying a peer departing the system.

Peer Joining Example

Figure 3.3 shows a P2P network with 4 peers and MAX_CLOSE_SUCCESSORS = 3. JP is the

joining peer and S is the Legion server responsible to mediate the creation of connections

between peers. Initially, each peer knows its two closest successors (besides its imediate

successor), its imediate successor and its imediate predecessor as shown at Table 3.1.

35

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.3: Stable overlay with 4 peers.

Table 3.1: Network state I

Peer Id Predecessor Successor Close Successors
10 40 20 [20,30,40]
20 10 30 [30,40,10]
30 20 40 [40,10,20]
40 30 10 [10,20,30]

Peer 15 wants to join the system, so it connects to S and spreads a FSR request trough

the network, in order to find its immediate successor. Peer with identifier 10 receives

a FSR request, but since it is not imediate successor of JP it re-sends FSR request to

its imediate successor (peer with unique identifier 20). Peer 20 verifies that is imediate

successor of JP, so it connects to peer 15 and network evovlves to the configuration

denoted in Table 3.2 and the shape illustrated in Figure 3.4.

Table 3.2: Network state II

Peer Id Predecessor Successor Close Successors
10 40 20 [20,30,40]
15 null 20 [20,30,40]
20 15 30 [30,40,10]
30 20 40 [40,10,20]
40 30 10 [10,20,30]

JP’s stabilization process starts when the join process ends, which is as soon as it

is connected to node 20. Figure 3.5 illustrates the stabilization process only for peers

directly affected by the join process. The joining peer (the peer 15) stabilizes, sending

a SPR request to its imediate successor (peer with identifier 20). Peer 20 replies with

36

3.2. NETWORK LAYER

Figure 3.4: Overlay after peer 15 joins the overlay.

the identifier 15, and since 15 is not the immediate successor of itself, nothing changes

(Figure 3.5a). Eventually, peer with identifier 10 will stabilize (Figure 3.5b), sending a

SPR request to 20 (its known imediate successor), and 20 replies with 15. Peer 10 verifies

that 15 is its actual successor and notifies 15 warning him about its existance (10 send a

NOTIFY request to peer 15). When peer 15 receives peer 10 NOTIFY request, it knows

that 10 is it actual predecessor, so it updates its predecessor value accordingly.

a - Peer 15 stabilizes b - Peer 10 stabilizes

Figure 3.5: Stabilization process after peer 15 joined the network.

Eventually, the P2P network stabilizes (i.e., when all network participants finish their

stabilization process the network stabilizes, assuming the ring shape) and assumes the

configuration represented in Figure 3.6 and the state presented in Table3.3.

37

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.6: Overlay after peer 15 effectivelly joins the network.

Table 3.3: Network state III

Peer Id Predecessor Successor Close Successors
10 40 15 [15,20,30]
15 10 20 [20,30,40]
20 15 30 [30,40,10]
30 20 40 [40,10,15]
40 30 10 [10,15,20]

Peer Departure Example

Starting now from the network shown by the Figure 3.6 and from the state denoted by

Table 3.3, we explain how the network stabilizes when peer with identifier 20 leaves the

system.

As soon as peer 20 leaves the network, peers who maintain a connection with it will

notice its departure as WebRTC connections, when dropped, notify the upper layer (Table

3.4 and Figure 3.7). Each peer, after realizing the departure of a connected peer has to

check if it was its successor, predecessor, or nothing (neither predecessor nor successor).

If it was nothing, it just disconnects from it; if the peer that departed was its predecessor

then it updates its predecessor value to null; if it was its successor, it initializes the value

of the variable successor to its own id, removes the peer that has left from its list of close

successors and tries to connect to the first candidate in that list.

In this case, peer 15 and peer 30 which maintained direct connections with peer 20

detect its departure. The peer with identifier 30, detects that 20 was its predecessor

and sets its predecessor variable to null. Peer with identifier 15 detects that 20 was its

successor, then sets itself as its successor, removes 20 from its list of close successors

and tries to connect to peer 30, since it is its first successor candidate. If 30 is alive,

38

3.2. NETWORK LAYER

Table 3.4: Network state after peer 20 leaves.

Peer Id Predecessor Successor Close Successors
10 40 15 [15,20,30]
15 10 15 [30,40]
30 null 40 [40,10,15]
40 30 10 [10,15,20]

Figure 3.7: Overlay after peer 20 leaves the network.

the connection is established and 30 its marked as the new successor of peer 15. After

stabilization, the peer with identifier 30 will be notified by peer 15 adopting it as its

predecessor and the network assumes the topology represented in Figure 3.8 and the

state denoted in Table 3.5.

Figure 3.8: Overlay after network stabilization.

39

CHAPTER 3. SYSTEM ARCHITECTURE

Table 3.5: Network state after stabilization.

Peer Id Predecessor Successor Close Successors
10 40 15 [15,30,40]
15 10 30 [30,40,10]
30 15 40 [40,10,15]
40 30 10 [10,15,30]

3.2.2 Communication Module

In addition to the way the network is formed, the way its participants communicate is

also a relevant aspect for the presented work. As Section 2.4.2 explained, the Legion

framework has a Communication module, that is dedicated to manage how peers com-

municate, which had to be extended to meet the requirements of this work. This Section

covers these modifications in two topics, Message Routing and Overlay Optimization

which explains how messages are disseminated in the developed network architecture

and Message Delivery which determines which peers in the network receives (and deliv-

ers) each message.

Message Routing and Overlay Optimization

The Legion framework offers flooding as the default message routing mechanism. Since

we do not consider this technique of message dissemination scalable, we decided to ex-

tend this module of the Legion framework. However we do not totally remove this

dissemination technique since it can be useful in some situations, as we will see further

ahead.

Now that we have a ring like network topology that is ordered by peer identifiers

(Section 3.2), we can build a more efficient way of communicating instead of flooding

the network each time a message is sent between two peers within the network. In this

mechanism, the message sender, instead of distributing it to all its direct neighbours

(flooding), it only sends the message to the neighbour with the closest identifier to the

message receiver identifier, reducing the overhead when exchanging messages in net-

works with many participants. For example in Figure 3.6, when peer 15 sends a message

with peer 40 as destination, the message would be sent to both peers 10 and 20, where

in our case we only send to peer 20 (since 20 has an identifier closer to 40 than peer 10) .

In this example, where we consider a small network, this does not seem to have a huge

impact, but it is easy to see that in networks with many participants (and more than one

neighbour), message transmission overhead can be reduced substantially.

With the ring-organized network, as shown in Figure 3.6, messages would have to tra-

verse almost all the ring (worst case), but we can lower the number of hops if there were

overlay links that could allow messages to skip large segments of the ring (i.e., network

jumps). Network jumps are connections with peers that are not successors or immediate

predecessors, in addition to the ring topology. Thus, messages pass through fewer peers,

40

3.2. NETWORK LAYER

being delivered in a more efficient way. The network architecture presented in Section

3.2.1 contains not only the direct connections between a peer and its successor and im-

mediate predecessor, but also contains connections to more distant peers, enabling such

jumps in the network. Although these connections are managed by the Overlay Network

Logic module, they are explained in this Section because they have become necessary

with the requirements imposed by this Communication module.

To manage these extra network connections, each peer periodically checks the number

of direct connections it has with other peers (called neighbours). If that value is below the

MIN_CONNECTIONS parameter, that peer chooses one of its neighbours and requests a list

with its own neighbours. Upon reception of the response the peer with fewer neighbours

than defined by MIN_CONNECTIONS will connect to a random chosen peer of the received

list of neighbours. We also control the maximum number of connections of this type with

the MAX_CONNECTIONS parameter. Similar to the management of the minimum connec-

tions, each peer also periodically checks if the number of its neighbours is greater than

the allowed maximum number of connections. If this is the case, the peer chooses one of

its neighbours (based on key distance) to eliminate the connection between them, giving

more value to the most distant and relatively close connections.

Figure 3.9: Network with neighbours connections.

For instance, considering MAX_CONNECTIONS = 5 in a network with more participants

as the one shown in Figure 3.9, peer with identifier 11 has as its successor peer 15 and as

its predecessor peer 50. Peers 15, 18, 20, 23, 30, and 50 are its neighbours. Since there

are more neighbours than allowed, one peer connection must be removed. The peer will

never cease a connection with its immediate predecessor and its immediate successor, so

peer 11 can only eliminate a connection with 18, 20, 23, and 30. But since we consider

the most distance and relatively close jumps must remain, the only connections that can

41

CHAPTER 3. SYSTEM ARCHITECTURE

be eliminated will be the connections with peer 18 or peer 30. From these two we choose

a random one and remove it from peer 11’s neighbours.

Communication between peers becomes more efficient with this type of architecture

which allows messages to be transmitted faster, since they can skip several peers instead of

traversing almost all peers in the ring (in the worst case). Because peer failures can occur

during message transmission, sending the message only to the nearest neighbour can be

dangerous, since if one of the peers in the path fails, the message may never be delivered.

Thus, instead of choosing the neighbour with nearest identifier to the identifier of the

message destination, we add some redundancy and choose the two closest neighbours

overcoming issues that could arise more frequently otherwise.

The network architecture is important to allow efficient communication between peers.

Since this point-to-point communication technique is based on the order of peer unique

identifiers, peers that are entering in the network (i.e., which are not positioned in the

right place in the ring) imposes some problems. Thus, the peers that are not well posi-

tioned in the ring, trade messages using flooding as communication protocol. The peers

that are already in the correct position in the ring communicate using the point-to-point

protocol described above.

Message Delivery

In the given examples, the message receiver is always a network member, so it is obvious

who is the responsible for receiving the message. But, when the message receiver is not a

network member who is responsible for receive that message? To answer this question, we

decided that the successor of the non existing member should be responsible for receiving

the message. Resuming the Figure 3.9, if a message is routed for peer 21, since it does

not exists in the network the responsible for its messages is its virtual successor, peer

with identifier 23. Thus, if the peer does not exists in the network, the responsible of its

messages is its immediate successor which is a network member that always is bound to

be available. Notice that, contrary to the Chord protocol, in our solution, messages can

be routed in any direction over the ring.

3.3 Application layer

As stated in Section 3.1, the application layer gives support to coordination primitives

which contribute to increas server availability. This application layer is implemented

within the front page of a chosen web application. In this particular work, Moodle [41]

was chosen as a use case and test application, since it is open source and normally is man-

aged by educational institutions. Most of these educational institutions often have low

monetary resources to maintain robust, and reliable systems to support web applications

with high access rate. Note however that the design choices apply to many applications,

detailing the use of Moodle in our design here is to ease the reader’s understanding of

the system as a whole.

42

3.3. APPLICATION LAYER

Our system logic can be easily integrated in this web application by inserting a script

inside Moodle’s front page. The index page (index.php in the web application root folder)

which works as starting point for its users, can be encapsulated inside a new index (in-

dex.html created by us), containing a HTML iframe with all original web application

logic. The change made in Moodle’s directory are represented in Figure 3.10, with the

only notable difference is the creation of index.html. The contents of this file are sum-

marized in Listing 3.1, in which Request Capture Protocol captures all POST requests

made by Moodle users; Coordination Protocol gives responsibility to resource owners

for coordinate the access made by resource solicitors to a Moodle resource (e.g., Login,

User Creation); and Fault Tolerance Protocol is responsible for maintain the consistency

of coordination lists in the presence of failures (i.e., when a resource owner fails).

a Original Moodle Structure b Changed Moodle Structure

Figure 3.10: Changes made in Moodle root directory

Outside the iframe we incorporate the logic to capture the requests made by users, and

the logic to coordinate the accesses to the server, thus achieving the coordination desired

in the application. We also use Legion enriched (simply by importing its Javascript

file in the index.html file) with the network protocols described previously to provide

the adequate peer-to-peer support required in the client side. The main structure of

index.html (used to encapsulate the original web application’s logic) is summarized in

Listing 3.1.

Listing 3.1: index.html

1 <!DOCTYPE html>

2 <html>

3 //Import Legion Framework

4 <body role="document">

5 <iframe id="moodle_iframe" src="moodle/index.php"></iframe>

6 <script type="application/javascript">

7 //Request Capture Protocol {}

8 //Coordination Protocol {}

9 //Fault Tolerance Protocol {}

10 </script>

11 </body>

12 </html>

43

CHAPTER 3. SYSTEM ARCHITECTURE

3.3.1 Request Capture protocol

Most web applications follow a client-server architecture in which clients communicate

with the server via HTTP requests (POST, GET, etc), and Moodle is not an exception.

Moodle uses HTML forms to send data to the server via HTTP POST requests and to

control the access rate to the centralized component of Moodle, we need to capture all the

requests made and then coordinate them by deciding which requests should be (or not)

sent to the server. Thus, we create this request capture protocol which is responsible for

capturing all HTML POST forms that were pre-submitted by Moodle’s web application.

HTTP POST requests performed by HTML forms cease to be direct to the server, since

they are caught by this intermediary layer and passed to our coordination protocol. The

coordination protocol is in charge of decide which requests should be sent to the server.

After the coordination protocol ends, if approved, the request it is passed again to the

request capture protocol to be sent to the server for processing. Thus, we maintain an

identifier of this forms to effectively send them later. This capture protocol is show in

Listing 3.2.

Following this context, we are only focused on HTTP requests which induce more

server side processing effort, such as POST, PUT, and DELETE requests, since usually

they are used to change the state of application database (usually considered a slow

operation when compared to GET requests, which are also often resolved by a cache).

Listing 3.2: Request Capture Protocol

1 <!DOCTYPE html>

2 <html>

3 <body role="document">

4 <iframe id="moodle_iframe" src="moodle/index.php"></iframe>

5 <script type="application/javascript">

6 //Request Capture Protocol

7 $(’#moodle_iframe ’).load(function() {

8 $(this).contents().find(’form’).submit(function(e) {

9 form = this

10 if(form method == "POST"){

11 create formId for form

12 resource = sha1(form.action)

13 If (resource_owner != me){ //Coordination Protocol (remote)}

14 else{ //Coordination Protocol (local)}

15 }

16 });

17 });

18 //Coordination Protocol {}

19 //Fault Tolerant Protocol {}

20 </script>

21 </body>

22 </html>

44

3.3. APPLICATION LAYER

This request capture protocol is also responsible for creating resource unique iden-

tifiers. Essentially, clients have unique identifiers which identifies them in the network,

such as resources. Client identifiers are generated by the sha1 hash function applied to a

random number managed by the network layer while resource identifiers are generated

by the application of the same sha1 hash function to the URL of the pre-submitted form.

Both key spaces starts in 1 and ends in 99999.

Figure 3.11 presented below, summarizes the role of the request capture protocol in

our system, using as example the Login action in Moodle’s web application. When an

user wants to login in Moodle web application, he must fill the login form fields and

then submit the form through a click on the ”Login” button. As stated before, the form

data will not be submitted to server immediately, but it will be captured by our request

capture protocol.

Figure 3.11: Request Capture protocol flow

After determining the process that is responsible for managing the resource being

accessed by the client (i.e., the resource owner) and sending a message requesting access

to the resource, the request capture protocol ends and the coordination protocol begins.

3.3.2 Coordination protocol

At this stage, we have presented the request capture protocol responsible to capturing

all HTTP POST requests made by the web application. Once these HTTP POST requests

(pre-submitted by clients) are captured, they will be processed by the coordination layer

and routed to the resource owners through the P2P network described previously. In

45

CHAPTER 3. SYSTEM ARCHITECTURE

order to achieve a decentralized coordination model, clients (i.e., peers) coordinate and

communicate with each other using the following messages:

• CanI - Used by resource solicitor to request access to a resource.

• YYCan - Used by resource owner to grant access to the resource.

• Release - Used by resource solicitor when released the resource (i.e., after perform-

ing its operation over the centralized component).

The coordination protocol is responsible for coordinating the access to the web ap-

plication’s server, and assign to resource owners (i.e., assignment of resources to peers

in the network). Access coordination is achieved by maintaining a list of the clients that

are currently using a resource of the web application. Each peer maintains, for each re-

source identifier managed by it, a list with the identifier of the resource solicitor and the

time-stamp of the access granted to that resource. Additionally, it maintains a queue that

operates as a waiting list, for refused requests. When a request is refused, it is placed in

the waiting queue, and when a client releases its access over a resource, the first peer in

the queue is notified and granted access to the desired resource. The structure of data at

a resource holding peer is summarized in Listing 3.3.

Listing 3.3: Coordination Structure

1 {resourceId:

2 { accesses: [{Rsolicitor: integer, timeOfAccess: integer}],

3 waitingQueue: [{message: message}]

4 };

5 };

Ignoring the request captured by the request capture protocol, the coordination pro-

tocol behaviour can be divided in three phases: the access request, the decision process,

and the release phase.

Access Request - The coordination layer is responsible to verify if the resource solic-

itor and the resource owner are the same client or not. If they are different clients, the

resource solicitor must send a CanI request (through the Legion DHT network) to the

resource owner. Once received a CanI request, the resource owner must decide if the

resource solicitor can or can not access the pretended resource. In fact this request not

always exists, because if the resource solicitor and the resource owner are the same client

the decision is made locally (without sending a request through the Legion DHT network).

Decision process - The decision whether or not to access the resource is based on the

number of clients that are using the given resource. In the coordination layer we define

a specific threshold that controls the number of simultaneous clients that can access the

46

3.3. APPLICATION LAYER

resource. Thus, when the resource owner receives a CanI request he simply needs to ver-

ify if the number of clients currently accessing the resource is greater than the threshold

defined. If it is lower, the resource owner sends a YYCan request to the resource solicitor.

Otherwise, the resource owner puts the resource solicitor in a waiting list, which is being

served as clients accessing the resource release the resource.

Release - After a resource solicitor accesses the intended resource and does not need

it anymore, he sends a Release request to resource owner, warning him that it is not

occupying the resource anymore, letting other clients access the resource in the future.

The resource owner has a timeout to release the resource if this Release request is not

received (for instance due to a crash of the client which is accessing the resource).

Detailed Example

The network used in this example is formed by three peers, represented in Figure 3.12 as

Client _1, Client _2, and Client _3. Client _1 is being used by the user "admin"to login

in the system and Client_2 is the resource owner which manages the access to the Login

resource. Since admin wants to login in Moodle’s web application, he fills the login form

fields and then click on the ”Login” button. This action will trigger the request capture

protocol of Client_1 which captures the request (1) and delivers it to local coordination

protocol(2). The local coordination protocol of Client_1 verify’s that it is not the owner

of the Login resource. Thus Client_1 sends a CanI request through the Legion P2P

network, which will find that Client_2 is the Login resource owner (3). Once Client_2

received the CANI request (sent by Client_1), its coordination protocol instance checks

that Client_1 can access the Login resource and sends him a YYCan message (4). When

Client_1 receives the YYCan request he can effectively submit the HTTP POST to the

server since he has access granted (5).

3.3.3 Fault Tolerance Protocol/Resource owners management

The coordination structures need to be consistent to maintain a correct access rate to

the server allowing savings of its CPU load. We note that the coordination structure is

affected by when clients join or leave the network, thus we consider Join and Leave events

into the coordination protocol and we explain how to deal with these two events next.

Join - When a client joins the network he could be or not, a resource owner depending

on its position on the DHT ring. In this case we only focus on the case of clients joining

and becoming resource owners, since they need to obtain an updated coordination list of

the resource (or resources) that they become owners of. This join operation will trigger an

event on other clients that will check if the new client is its predecessor. If the stated con-

dition is true, it should means the new client needs to update its coordination structure

(which initially is empty). Thus, the new client receives a coordination structure of its

47

CHAPTER 3. SYSTEM ARCHITECTURE

Figure 3.12: Coordination mechanism example illustration

network successor to verify which resources are now in his charge, becoming a resource

owner. Imagine a part of the network containing two peers as Figure 3.13 illustrates. Peer

with identifier 10 is owner of resources 9 and 10, and the peer with identifier 20 is owner

of resources 12,15 and 20 (Figure 3.13a). Now, when a new peer with identifier 15, joins

the network the peers 10 and 20 will check if peer 15 is their predecessor. This condition

is only true for peer 20, thus the peer with identifier 20 sends its coordination structure

and the new peer chooses which resources are now in his charge, which are the resources

with identifier 12 and 15 (Figure 3.13b).

a - Before peer 15 joins b - After peer 15 joins

Figure 3.13: Evolution of network state at join process

Leave - This event may also cause a change on resource owners, depending on the

leaving peer. If the leaving peer was a resource owner, then its resources must be held

by some other peer, otherwise no change to resource management structure is required.

In order to overcome possible peer leavings we use a simple fault tolerance protocol that

replicates coordination structures. This protocol plays an important role in the context

48

3.4. SUMMARY

of our system since it is responsible for maintaining the consistence of the coordination

structure among clients, when something wrong happens (e.g., peer failure). We use

a proactive strategy to maintain the coordination structure consistent in the event of

peer failures, since we replicate these structures over successor peers periodically. Thus,

when a resource owner fails or leaves the network, its immediate successor will have an

updated coordination structure, and is thus able to maintain a correct access rate to the

server even as the original owner of the resource failed. It is possible to define how many

successors must have the resource owner list in order to grant a greater fault tolerance, by

changing an application parameter called REPL_SUCCESSORS. Thus, each peer does not

only maintains its coordination structure, but also maintains an updated coordination

structure of each close predecessors.

Keeping in mind the network example used to explain the join process (Figure 3.14a),

REPL_SUCCESSORS = 1 and peer with identifier 15 leaves the network. Now, each peer

maintains its coordination structure and the updated coordination structure of its im-

mediately predecessor. Peer 15 has its own coordination structure which contains the

resources with identifier 12 and 15, and the coordination structure of its immediately

predecessor. Similarly peer 20 has its own coordination list which contains the resource

with identifier 16, and the coordination structure of its immediately predecessor which

contains the resources with identifiers 12 and 15 (Figure 3.14a). When peer 15 leaves the

network, the resources controlled by it must be controlled by other peer which should

maintain an updated coordination list of the resources concerned. This is the case of peer

20, which understands the departure of peer 15 and becomes the resource owner of the

peer 15 resources, as illustrated by Figure3.14b.

a - Before peer 15 leaves b - After peer 15 leaves

Figure 3.14: Evolution of network state at leave process

3.4 Summary

In this Chapter we have presented how the network and application layer are organized.

The network presented, was created with a framework developed in our academic lab-

oratory (Legion), it assumes a ring shape, ordered by the identifier of its participants

49

CHAPTER 3. SYSTEM ARCHITECTURE

(peers). Each peer is not only aware of its immediate neighbours (successor and predeces-

sor), but also maintains a connection to peers further away in the network (neighbours).

This connection type with peers which are more distant in the ring, allows messages

to be exchanged in a more efficient way, since it makes possible jumps in the network

when routing messages among peers. These jumps on the network are randomly cre-

ated as the network grows and are controlled by two network parameters, known as

MIN_CONNECTIONS and MAX_CONNECTIONS. For the case of peer failure, each participant

also keeps a list of potential successors (close successors), connecting to one of them when

its direct successor fails. We have also seen that peers enter the network through Find

Successor Request requests sent with a flooding policy while network participants (i.e.,

peers that already belong to the network) directly communicating with others following

a protocol based on the proximity of the identifier of the destination node of the message.

Thus, messages are always propagated to the two neighbours with the nearest identifier

of the message destination (instead of one, for fault tolerance). Lastly in the network

layer, we saw how the messages are delivered to its responsible peer, and in the case of

a message which has a destination that does not exist, the responsible peer for that mes-

sage will be the peer that acts as direct successor of this non-existent peer (i.e., resource

allocation is done by delivering to the closest peer id above resource id). This overlay is

highly based on the design of the Chord protocol.

Related to the application layer, we have seen how the application coordinates the

access to the centralized server. The web application resources are managed by special

peers in the network formed by web application clients. These peers, called resource

owners, verify if resource solicitors can access the pretended resource. This process starts

when a resource solicitor wants access to a resource. Our system captures the request

made by this resource solicitor and routes a message to the resource owner. The resource

owner verifies if the resource solicitor can access the pretended resource by checking

how many clients are using it in that precise moment. If that number is less than the

maximum clients allowed, the resource owner will grant access to the resource solicitor,

otherwise the resource solicitor it will be placed in a waiting queue.

In order to avoid lack of consistency in coordination structures (which can happen

when nodes who are responsible for some resource leave the network), we also imple-

mented a simple fault tolerance protocol, which is in charge of replicating the coordi-

nation lists to a predefined number of successors, controlled by the REPL_SUCCESSORS

parameter.

50

C
h
a
p
t
e
r

4
Evaluation and Results

To evaluate the system developed in this work, we created specific experimental setups

that are explained later in this chapter. Since the present work acts at two different layers

(application/coordination layer and network architecture layer), we created different tests

to evaluate each layer individually. We dedicate Section 4.1, to report the experiments

and results regarding execution of the network architecture layer. And Section 4.2, ex-

plains the experiments and the obtained results for the coordination layer scope, which

is the main focus of this work.

All reported experiments in Section 4.1 and Section 4.2, were executed three times

in a distributed environment (4 cluster clients and 2 servers) supported by Microsoft

Azure platform [39]. Following we present the list of hardware resources used in these

experiments to maintain each component of our tests:

• Clients - Standard D8s_v3 (8 vcpus, 32 GB memmory)

• Moodle Server - Standard D2s_v3 (2 vcpus, 8 GB memory)

• Legion Server - Standard D2s_v3 (2 vcpus, 8 GB memory)

The tests conducted on the work developed were not trivial and involved the use of

multiple technologies. Since the application was developed in a web environment, we

used the java version of the SeleniumHQ (Web driver), which is a framework that au-

tomates all interactions with a browser (in this case Firefox). This type of interaction

includes navigation in the Moodle web application, collection of metrics, launching fire-

fox instances, etc. In this way, the experiments explained further ahead were conducted

following the scheme presented in Figure 4.1.

51

CHAPTER 4. EVALUATION AND RESULTS

Figure 4.1: Experimental scheme

Moodle users are represented by multiple instances of firefox browsers running in

each Microsoft Azure [39] client machine and perform the same operations type over the

web application (which implementation is different for each test). These operations over

the web application produce two different groups of outputs for each test; one regarding

to experimental metrics and another used to validate the structure of the DHT formed by

the clients of each test (i.e., DHT Validation).

The outputs regarding DHT validation were used to recreate and to visualize the

network formed by the clients of each test. Each DHT validation file contained all peer

identifiers and their respective neighbours (i.e., immediate predecessor, immediate suc-

cessor and network jumps), which allowed us to recreate the network formed during the

test. Figure 4.2 illustrates two networks formed during the experiments, in which peers

are represented by green color and the Legion server is represented by the red color.

a - P2P network with 16 clients b - P2P network with 32 clients

Figure 4.2: P2P Networks formed during the experiments

52

4.1. NETWORK LAYER EVALUATION AND RESULTS

Each test consists in a executable jar (containing the user behaviour for each test)

which was run in each client machine separated by three seconds. Considering for in-

stance, an experiment which launch four peers and t represents the starting time of jar

execution, client 1 launches one peer (result of dividing four peers to launch by four

clients) at t + 0 seconds, client 2 launches one peer at t + 3 seconds, client 3 launches one

peer at t+6 seconds and client 4 launches one peer at t+9 seconds. Each peer is launched

between 1 and 4 seconds in all the tests presented in this Chapter, meaning that we do

not have a fixed time to separate the launch of each peer.

4.1 Network Layer Evaluation and Results

This Section is dedicated to the tests conducted to evaluate the P2P structured overlay

network, both at performance and structural levels. To evaluate network efficiency we

conducted two different tests, one for counting the maximum number of hops given by a

message exchanged between two peers, and other to count the network stabilization time

after a new peer joins the system. In the end of each test we verified network structure

by running validation program created by us, ensuring the ring shape. The setup of each

test is explained below.

4.1.1 Message maximum hops Test

This test consists in counting the maximum number of required peers to spread a message

changed between two peers (maximum hops). The test started launching a fixed number

of peers (16, 24, or 32 peers), after that we waited 1 minute to ensure network stabiliza-

tion, and then we choose 100 random pairs of peers (one peer to send and another peer

to receive a message). Each message had a counter which was incremented each time the

message passed through a peer that was not the message receiver.

For this test setup we do not performed tests for networks with 4 and 8 peers since we

had MIN_CONNECTIONS set to 5 and MAX_CONNECTIONS set to 8, ensuring a full connected

network with high probability. A full connected network is a network where all peers are

connected with all other peers, resulting in maximum number of hops of one, since all

message are changed directly.

For networks with 16, 24 or 32 peers the probability of a full connected network,

with the used parameters is low. Since connections between peers are made randomly

as the network grows, as explained in Section 3.2.2, we cannot predict the maximum

number of hops for all possible networks. However, we conducted this test to get closer

to values which allows us to evaluate the transmission efficiency of messages, this values

are presented in Table 4.1.

Note that random network jumps were introduced to increase the efficiency in the

transmission of messages, relatively to a network which would only be composed of a

53

CHAPTER 4. EVALUATION AND RESULTS

Table 4.1: Message maximum hops

Clients Max Hops
16 4
24 6
32 9

single ring topology. In this network, where each peer would only have knowledge of

its predecessor and its successor, a message could be dissipated in three different ways:

predecessor in predecessor, successor in successor or both. For instance, in a network

with 32 peers, the maximum number of hops for the worst case of each dissemination

perspective would be 29, 29 and 15 respectively. Compared with the maximum number

of hops obtained for a network of 32 peers (Table 4.1), we saved about 7 hops (comparing

to the best scenario of the dissemination processes presented). These results allow us to

conclude that this optimization has an impact on the transmission of messages, making

the dissemination process more efficient with the presented random jumps.

4.1.2 Join Stabilization Time Test

This test evaluates the average time taken by a peer when joining the system. We started

by launching a fixed number of peers (4, 8, 16, 24, or 32 peers). Then we waited for 1

minute after all peers were launched to ensure network stabilization. After that minute

we launched the new peer. In the end of the test we collected the time when the last peer

connected to the Legion server (the moment when peer enters the network) and the time

of the peer when it connects to its predecessor (meaning that it is corrected positioned in

the network ring).

A periodic task that allows network stabilization is part of our overlay management

protocol, similarly to the Chord protocol presented in [52], and the period between the

execution of this network stabilization can be parameterized. In this test, the stabilization

task was executed every three seconds and the results of the new peer entry times in the

network are presented in Table 4.2, according to the setup presented previously.

Table 4.2: Join Stabilization Time results

Clients Time (s)
4 0,72
8 1,86

16 1,74
24 1,38
32 2,49

54

4.2. APPLICATION LAYER EVALUATION AND RESULTS

Comparing the results obtained with the periodicity of the network stabilization, we

can verify that the entry time of the new peer in the network, is always lower. This

leads us to conclude that it takes only one stabilization phase to fit the peer into the ring-

structured network. The times presented in Table 4.2 do not follow any trend (ascending

or descending) because they are related with the instant the peer enters the system. For

example, if the peer enters 2 seconds before the stabilization task runs, the network will

take 2 seconds plus the time taken by the peer to connect to its direct neighbours, to

stabilize. But since the network has a maximum of 32 peers, the connection time of the

new peer to its direct neighbours is very low. For networks with a lot more participants,

this time of connection to the direct neighbours would present an upward trend because

it would be more difficult to find the successor of the joining peer.

4.2 Application Layer Evaluation and Results

This Section is dedicated to the tests conducted to evaluate the developed system perfor-

mance. The goal of our system is to avoid the exhaustion of the centralized component

(Moodle server), distributing its CPU load along the time. To evaluate our goal we con-

ducted two types of tests, one in which our system was not integrated with Moodle’s web

application and other which we integrated our system with Moodle’s web application. In-

serted in the second category, we conducted two experiments; one where we established a

maximum number of simultaneous client accesses to a Moodle resource, ignoring all the

other requests by dropping them and requiring clients to attempt again later (i.e., throttle

the maximum number of requests in a decentralized way); and other where was also

established a maximum number of simultaneous client accesses, but the rejected ones

were placed in a waiting queue which ensures that resource solicitors will be eventually

served according to a FIFO policy (Throttle with queue). Each test collects the GET and

POST requests made to Moodle’s web application, the CPU load of Moodle’s server, the

average latency added by legion, and average of page load latency.

Contrary to the tests performed to evaluate the overlay network topology, over which

was not imposed a fixed duration of time, the tests that evaluate the coordination scheme

at the application level were limited to 5 minutes. During these 5 minutes, each clien-

t/peer creates a user in Moodle’s web application every 5 seconds. Clients also wait

for server response (at maximum of 3 seconds) before continue to the next operation.

Note that this clients behaviour was the same for all the following tests, varying only the

implementation of the web application.

The Moodle’s web application was modified in each test, resulting in three different

tests: i) Moodle without modifications; ii) Moodle with our coordination system in throttle

mode; and iii) Moodle with our coordination system in throttle with queue mode. These

tests are henceforth referred as SMoodle, TMoodle and TQMoodle respectively. Note

that, each one of the latter two tests allow one client simultaneously per resource or allow

55

CHAPTER 4. EVALUATION AND RESULTS

three clients simultaneously per resource, thus henceforth we refer them as TMoodle1,

TMoodle3, TQMoodle1 and TQMoodle3 respectively.

4.2.1 SMoodle vs TMoodle

Here we compare SMoodle with TMoodle, two different tests conducted to evaluate the

coordination scheme at the application level. These tests simulate resource concurrency,

since all clients attempt to access the same resource, which is the user creation resource.

We limited this concurrency, by allowing only one or three simultaneous clients accessing

the resource at any given time, depending on the test. Imagining the scenario of allow-

ing only one client per resource, each client tries to create a user in the Moodle’s web

application, if the resource is available, the resource owner gives access to the resource

solicitor and all other requests to this resource are rejected while the resource solicitor

do not free the resource (or the 2 seconds timeout expires). If the request of a resource

solicitor is rejected the resource solicitor is warned and can perform another operation in

the Moodle’s web application.

The results obtained by these tests (SMoodle, TMoodle1, and TMoodle3) are shown in

Figure 4.3 which represents the percentage of CPU load of the Moodle’s server per number

of clients; Figure 4.4 represents the number of requests (GET and POST) executed in the

Moodle’s server per number of clients (the requests rejected are not represented here);

and Figure 4.5 represents the page load latency per number of clients, measuring the

time which clients wait for a page after a request has been submitted. All this figures join

three different tests representing by three different color bars. The orange bars represent

the TMoodle1 test (which allows one client per resource), the gray bars represent the

TMoodle3 test (which allows three clients per resource) and blue bars represent SMoodle

(Moodle without any changes to its original version (Moodle 3.2)).

Tables 4.4, 4.5, and 4.3 summarize the data illustrated in Figures 4.3, 4.4 , and 4.5 in

table form, adding the number of rejected requests, and making the distinction between

POST and GET requests, and latency due to the communication used for coordinating

accesses through the Legion network.

Note that the data presented in the tests refers to requests made on the server, they do

not represent the total requests made by the clients. Thus, the total number of requests

made by clients will be equal to TotalRequests plus Rejected ones. Since the data pre-

sented reflects only the work done by the server, for example for 4 clients in the Table 4.4,

we can assert that of 411 requests (382 + 29) about 29 were rejected, and should not be

interpreted as, at of 382 requests 29 were rejected.

56

4.2. APPLICATION LAYER EVALUATION AND RESULTS

Figure 4.3: CPU usage of tests SMoodle and TMoodle

Figure 4.4: Number of requests of tests SMoodle and TMoodle

57

CHAPTER 4. EVALUATION AND RESULTS

Figure 4.5: Page load latency of tests SMoodle and TMoodle

Table 4.3: Moodle results (SMoodle)

Clients Total Requests GET POST %GET Page Load Latency (s) % Server Load
4 424 317 107 74,76 1,24 18,52
8 853 638 215 74,79 1,31 38,89

16 1554 1162 392 74,77 1,87 76,48
24 1829 1365 463 74,63 3,54 92,82
32 1900 1414 486 74,42 6,15 94,69

Table 4.4: Throttle allowing 1 client per resource (TMoodle1)

Clients Total Requests GET POST Rejected %GET Page Load Latency (s) Legion Latency (s) % Server Load
4 382 305 77 29 79,84 1,16 0,01 16,35
8 696 580 116 102 83,33 1,28 0,02 29,21

16 1192 1047 145 279 87,84 1,51 0,07 57,32
24 1548 1408 140 439 90,96 1,95 0,07 80,92
32 1738 1610 128 555 92,64 2,88 0,09 93,08

Table 4.5: Throttle allowing 3 clients per resource (TMoodle3)

Clients Total Requests GET POST Rejected %GET Page Load Latency (s) Legion Latency (s) % Server Load
4 417 317 100 0 76,02 1,17 0,02 16,93
8 840 639 201 3 76,07 1,29 0,03 35,88

16 1461 1151 310 80 78,78 1,65 0,05 69,30
24 1812 1483 329 206 81,84 2,23 0,07 89,84
32 1873 1594 279 323 85,10 3,47 0,06 95,40

In Figure 4.3, we can observe that the objective of reducing the load in the centralized

server was achieved, since in both tests of TMoodle (TMoodle1 and TMoodle3) the per-

centage of CPU utilization is always below the percentage of CPU utilization presented

58

4.2. APPLICATION LAYER EVALUATION AND RESULTS

by the original version of Moodle (i.e., SMoodle). The CPU load percentage is lower in

Moodle’s Throttle versions because we are rejecting requests above a given threshold (1

client or 3 clients), making fewer requests to the centralized component, as can be seen

in Figure 4.4. Consequently, page load latency is also smaller in the TMoodle tests, since

the server in these tests is less overloaded than the original version of Moodle.

In the Tables 4.4, 4.5 and 4.3 we can also relate the percentage of GET and POST

requests made in all tests. Since Moodle’s original version accepts all requests that are

made, the ratio of GET requests is more or less constant assuming a value of about 75%.

The same does not happen in the Throttle versions (i.e., TMoodle1 and TMoodle3), since

the P2P network/resource owners block some requests made to the server, saving CPU

load on the centralized component.

In the TMoodle1 (Table 4.4), the contention generated to access the resource is greater,

since only one client at a time can access it. In this way, TMoodle tests present a higher

number of GET operations (i.e., higher percentage of GETs) than the number of GET oper-

ations presented in the SMoodle test, due to the rejection of POST operations by resource

owners in this high contention environment. This percentage increases with the increas-

ing of network participants, this tendency reaches the value of about 93% in a 32 clients

network. Note that, in the TMoodle3 test the percentage of GET operations also presents

a increasing tendency, but at a lower rate than TMoodle1 GET operation percentage (table

4.5). This is due to the fact that the contention for accessing the resource is lower than the

contention present in TMoodle1, since there can be 3 clients simultaneously accessing

the resource (instead of only one as TMoodle1) decreasing the number of rejected POST

operations.

It is possible to extract more interesting conclusions from the SMoodle and the TMoo-

dle results. From Tables 4.4, 4.5, and 4.3, and from Figure 4.5, observind data regarding

the Legion network latency and page load latency, we can observe that the time that the

P2P network takes to process the requests (Legion Latency) is residual, never reaching

values higher than 0,1 seconds and in conditions of greater contention (24 and 32 clients)

the page load latency of Moodle’s original version (i.e., latency perceived by clients when

executing the operations) is always higher than the one presented in both Throttled tests

(i.e., TMoodle1 and TMoodle3). This page load latency difference can be explained with

the percentage of GET operations since these operations require less server effort, hence

reducing its load. This implies that the higher the percentage of GET operations, the effort

imposed on the server (CPU Load percentage) and consequently the page load latency

will become lower, as shown in the last two rows of Tables 4.4, 4.5, and 4.3. For example,

in the case of 24 clients in the TMoodle1 test, the percentage of GET operations is around

91%, the page load latency is about 1,95 seconds and CPU usage is about 81%. For 24

clients in TMoodle3 test, the values for the same fields are about 82% of GET’s, 2,23

seconds of page load latency, and about 90% of CPU usage. For the original version of

59

CHAPTER 4. EVALUATION AND RESULTS

Moodle the values are 75%, 6,15 seconds and about of 95%. These values show the effect

of the percentage of GET operations on the effort imposed on the server and consequently

on page load latency.

4.2.2 SMoodle vs TQMoodle

Similar to the previous comparison, we compare the results of SMoodle test(i.e., Moodle’s

original version) with the results of the Moodle’s web application integrated with our coor-

dinate system, in this case TQMoodle. What changes from the tests previously presented

is the usage of the waiting queue, instead of simply reject requests. After each POST

request, clients wait for a maximum of 8 seconds to perform the next operation, until

this threshold is reached the clients are interested in the resource, after 8 seconds have

passed, clients ignore any response referring to the performed request. With this test we

wanted to improve the racio of accepted POST operations, adding a queue to all requests

made by clients that want to access a resource. Eventually the request for a given resource

will be answered positively and that client can use the resource or, if not interested in

the resource anymore, manifest its disinterest releasing it. In some way, the TQMoodle

test gives to the user the power to decide if he want to continue with other operation or

if he is willing to wait for the desired resource, since the access will eventually be granted.

Similar to the previous tests, this tests also collected server CPU load (Figure 4.6),

the total number of requests executed on the server (Figure 4.7), and page load latency

(Figure 4.8). Tables 4.3, 4.6, and 4.7 resume the values presented in the figures.

Table 4.6: Throttle-Queue allowing 1 client per resource (TQMoodle1)

Clients Total Requests GET POST Rejected %GET Page Load Latency (s) Legion Latency (s) % Server Load
4 416 316 100 45 75,96 1,26 0,29 17,43
8 801 608 193 151 75,91 1,44 0,85 35,94

16 858 777 81 336 90,56 1,79 9,99 44,75
24 1216 1143 73 464 94,00 1,89 10,17 68,26
32 1503 1428 75 599 95,01 2,67 10,88 85,04

Table 4.7: Throttle-Queue allowing 3 clients per resource (TQMoodle3)

Clients Total Requests GET POST Rejected %GET Page Load Latency (s) Legion Latency (s) % Server Load
4 415 315 100 1 75,90 1,41 0,03 18,94
8 830 631 199 6 76,02 1,44 0,05 39,22

16 1503 1142 361 126 75,98 1,95 0,28 76,62
24 1412 1157 255 448 81,94 2,35 8,05 80,27
32 1589 1398 191 567 87,98 3,03 9,43 87,92

In these tests, observing Figure 4.6 and Figure 4.8, the SMoodle test presents higher

CPU usage and page load latency than the TQMoodle1 and TMoodle3 test. Similarly to

the previous tests, these decreases are due to the fact that some of the POST operations

are being blocked by the P2P network, with fewer operations being performed on the

60

4.2. APPLICATION LAYER EVALUATION AND RESULTS

Figure 4.6: CPU usage of tests SMoodle and TQMoodle

Figure 4.7: Number of requests of tests SMoodle and TQMoodle

61

CHAPTER 4. EVALUATION AND RESULTS

Figure 4.8: Page load latency of tests SMoodle and TQMoodle

server in the throttle queue tests compared to the operations performed in the original

version of Moodle (Figure 4.7). Remembering the previous results shown in 4.2.1, the

results present here are roughly similar when considering periods of higher concurrency

(16, 24, and 32 clients); since TQMoodle results also present a lower CPU usage, lower

number of operations, and consequently lower page load latency than the SMoodle.

Note that, in TQMoodle test, the resource owner does not rejects the access requests

instead, it places the requests of clients in a queue that will eventually be servedby

having the resource owner respond affirmatively to the client who asked for the resource.

Passing the control to the resource solicitor, whether it still desires or not access the asked

resource, induces an increasing of the response time of the P2P network, reaching very

high values when the queue reaches large sizes. For instance, in Table 4.6 in periods

of high concurrency (16, 24, and 32 clients) the P2P network takes an average of over

9,99 seconds to respond to the resource solicitors. This time exceeds the 8 seconds that

the client in this test is willing to wait for accessing the resource, causing the number of

requests rejected by the resource solicitor to be very high, which consequently increases

the percentage of GET operations that the clients do. The same happens in TQMoodle3

clients version 4.7, in which periods of higher competition located in networks of 24 and

32 clients, accounting for a mean response latency above the waiting time of the clients.

62

C
h
a
p
t
e
r

5
Conclusion

Accessed anywhere and on any device with an Internet connection, web applications are

nowadays seen as a better alternative to desktop applications. Most of them follow a

client-server architecture, making its users follow this model of centralized communi-

cation. The availability of these services is inevitably associated with their centralized

components, if user activity overloads these components, then the web application may

become unavailable to all users.

This work proposed a new low-cost distributed system that can handle peaks of activ-

ity over web applications, maintaining server CPU load and allowing clients to continue

interacting with the web application. As an alternative to the conventional client-server

architecture, we proposed a system which coordinates access to the server in order to

minimize the load in the centralized component, using coordination primitives and a

Peer-to-Peer network. The proposed system was designed and implemented by taking

advantage of the advancements of technologies on the browser, which allow browser-

to-browser communication transparently (e.g., Javascript WebRTC API). The Legion

framework used to create the Peer-to-Peer network makes use of WebRTC to enable direct

connections between clients of the web application in a completely transparent way. We

have designed a DHT for Legion based on the design of Chord, where peers are organized

in a ring. The ring-shaped network allowed server resources to be distributed by network

participants, making them resource owners. These special participants were in charge of

deciding who can (or can not) access the centralized component based on a threshold set

by the programmer.

Our system was evaluated in two different aspects, the architecture part and the

application part. With respect to the architecture we evaluated the maximum number

of hops given by a message on the network and we verified the join stabilization time

of a peer. Connections between peers are restricted only by their position in the ring

63

CHAPTER 5. CONCLUSION

since peers must be connected to their successor and their predecessor. The rest of the

connections, called jumps in the network were made randomly, following a minimum

and maximum limit of connections. This randomness in the creation of this type of

connections (network jumps) allows the messages to be delivered in less steps.

At the application level we tested the system in two different ways. One test referred

as throttle (i.e., TMoodle), rejected the POST requests above a defined threshold (1 client

or 3 concurrent clients accessing one resource) and another test, the throttle queue (TQ-

Moodle), in which rejected requests were placed in a waiting queue and served as the

server becomes available. In both tests it was possible to verify that our system reduces

the CPU load on the server and the page load latency, at cost of a smaller number of

requests that our system serves. It was also verified that in the TMoodle test, the latency

added by the network P2P was insignificant, this is explained by the absolute rejection

of the requests that exceed the defined threshold. The same has not been observed in

the TQMoodle test, where latency imposed by P2P network is very high. This happened

because clients requesting access to the resource will be served only when the server can

serve them. Thus a client requesting access to the resource may not have immediately ac-

cess to the desired resource, being necessary to wait for a affirmative response, increasing

the latency of responses given by the P2P network.

5.1 Future Work

During the development of this work, we identified possible future improvements to

it. The network presented in Section 3.2.1 presents some limitations and a continuous

development is essential to keep its robustness according to the needs imposed by its

users. For instance, in this work we kept peers joining the system in a controlled rate

which is not always true in a deployed web application environment. In these type of web

applications, our network need to be robust enough to deal with peaks of peers joining

(or leaving) the system, maintaining the DHT consistent.

The current strategy to coordinate the access to the web application server resources,

revealed that the server usage could be saved in detriment of the number of requests

served. It would be interesting to test new coordination strategies in order to improve

the percentage of rejected requests. The results also demonstrated that the coordination

system implemented gives more relevance to GET requests in detriment of POST requests,

lowering its percentage in contention environments. In future work we want to explore

the combination of this work with strategies which aim to save CPU usage in contexts of

GET operations(i.e., cache).

The security of the information changed between users was totally ignored by this

work, since it was not its principal focus. In future work, we aim to explore security

mechanisms to improve the integrity and privacy of the data exchanged by users in the

context of this work.

64

Bibliography

[1] D. Agrawal and A. El Abbadi. “An efficient and fault-tolerant solution for dis-

tributed mutual exclusion”. In: ACM Transactions on Computer Systems (TOCS) 9.1

(1991), pp. 1–20.

[2] Amazon S3. url: https://aws.amazon.com/s3/details/.

[3] Amazon S3 SLA. url: https://aws.amazon.com/s3/sla/.

[4] D. P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”.

In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.

GRID ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–10. isbn:

0-7695-2256-4. doi: 10.1109/GRID.2004.14. url: http://dx.doi.org/10.

1109/GRID.2004.14.

[5] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. “SETI@Home:

An Experiment in Public-resource Computing”. In: Commun. ACM 45.11 (Nov.

2002), pp. 56–61. issn: 0001-0782. doi: 10.1145/581571.581573. url: http:

//doi.acm.org/10.1145/581571.581573.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A View of Cloud Computing”.

In: Commun. ACM 53.4 (Apr. 2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/

1721654.1721672. url: http://doi.acm.org/10.1145/1721654.1721672.

[7] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. “Content-based publish-

subscribe over structured overlay networks”. In: Distributed Computing Systems,
2005. ICDCS 2005. Proceedings. 25th IEEE International Conference on. IEEE. 2005,

pp. 437–446.

[8] S. A. Baset and H. Schulzrinne. “An analysis of the skype peer-to-peer internet

telephony protocol”. In: arXiv preprint cs/0412017 (2004).

[9] M. Burrows. “The Chubby lock service for loosely-coupled distributed systems”.

In: Proceedings of the 7th symposium on Operating systems design and implementation.

USENIX Association. 2006, pp. 335–350.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron. “SCRIBE: A large-

scale and decentralized application-level multicast infrastructure”. In: IEEE Journal
on Selected Areas in communications 20.8 (2002), pp. 1489–1499.

65

https://aws.amazon.com/s3/details/
https://aws.amazon.com/s3/sla/
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672

BIBLIOGRAPHY

[11] E. Chang and R. Roberts. “An Improved Algorithm for Decentralized Extrema-

finding in Circular Configurations of Processes”. In: Commun. ACM 22.5 (May

1979), pp. 281–283. issn: 0001-0782. doi: 10.1145/359104.359108. url: http:

//doi.acm.org/10.1145/359104.359108.

[12] F Chang, J Dean, S Ghemawat, W. Hsieh, D. Wallach, M Burrows, T Chandra, A

Fikes, and R Gruber. “Bigtable: A distributed structured data storage system”. In:

7th OSDI. Vol. 26. 2006, pp. 305–314.

[13] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.

“A Hierarchical Internet Object Cache.” In: USENIX Annual Technical Conference.

1996, pp. 153–164.

[14] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. “Freenet: A Distributed Anony-

mous Information Storage and Retrieval System”. In: Designing Privacy Enhancing
Technologies on International Workshop on Design Issues in Anonymity and Unobserv-
ability Berkeley, CA, USA, July 25–26, 2000 Proceedings. Ed. by H. Federrath. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2000, pp. 46–66. isbn: 978-3-540-44702-

3. doi: 10.1007/3-540-44702-4_4. url: http://link.springer.com/chapter/

10.1007/3-540-44702-4_4.

[15] B. Cohen. The BitTorrent protocol specification, version 11031. 2008.

[16] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems: Con-
cepts and Design. 5th. USA: Addison-Wesley Publishing Company, 2011. isbn:

0132143011, 9780132143011.

[17] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian, and S. Mehro-

tra. “Crew: A gossip-based flash-dissemination system”. In: Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on. IEEE. 2006,

pp. 45–45.

[18] A. El-Sayed, V. Roca, and L. Mathy. “A survey of proposals for an alternative group

communication service”. In: IEEE network 17.1 (2003), pp. 46–51.

[19] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Ker-

marrec. “Lightweight probabilistic broadcast”. In: ACM Transactions on Computer
Systems (TOCS) 21.4 (2003), pp. 341–374.

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary cache: a scalable wide-area

web cache sharing protocol”. In: IEEE/ACM Transactions on Networking (TON) 8.3

(2000), pp. 281–293.

[21] M. J. Fisher, N. Lynch, and M. S. Paterson. “Impossibility of distributed consensus

with one faulty process”. In: Journal of the ACM 32.2 (1985), pp. 374–382.

[22] P. Ganesan, K. Gummadi, and H. Garcia-Molina. “Canon in G major: designing

DHTs with hierarchical structure”. In: Distributed computing systems, 2004. pro-
ceedings. 24th international conference on. IEEE. 2004, pp. 263–272.

66

http://dx.doi.org/10.1145/359104.359108
http://doi.acm.org/10.1145/359104.359108
http://doi.acm.org/10.1145/359104.359108
http://dx.doi.org/10.1007/3-540-44702-4_4
http://link.springer.com/chapter/10.1007/3-540-44702-4_4
http://link.springer.com/chapter/10.1007/3-540-44702-4_4

BIBLIOGRAPHY

[23] H. Garcia-Molina. “Elections in a distributed computing system”. In: IEEE Trans.
Computers 31.1 (1982), pp. 48–59.

[24] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. “Java message service”.

In: Sun Microsystems Inc., Santa Clara, CA (2002), p. 9.

[25] B. Hayes. “Cloud Computing”. In: Commun. ACM 51.7 (July 2008), pp. 9–11. issn:

0001-0782. doi: 10.1145/1364782.1364786. url: http://doi.acm.org/10.

1145/1364782.1364786.

[26] K. M.L.P.a.G.A. e. Jean Bacon David Eyers. Middleware 2005: ACM/IFIP/USENIX
6th International Middleware Conference, Grenoble, France, November 28 - December
2, 2005. Proceedings. 1st ed. Lecture Notes in Computer Science 3790 : Program-

ming and Software Engineering. Springer-Verlag Berlin Heidelberg, 2005. isbn:

3540303235,9783540303237. url: http://gen.lib.rus.ec/book/index.php?

md5=13FBCD492D5C94E41F57FD68FC5B67EB.

[27] X. Jiang, Y. Dong, D. Xu, and B. Bhargava. “GnuStream: a P2P media streaming

system prototype”. In: Multimedia and Expo, 2003. ICME’03. Proceedings. 2003
International Conference on. Vol. 2. IEEE. 2003, pp. II–325.

[28] L. Lamport. “The part-time parliament”. In: ACM Transactions on Computer Systems
(TOCS) 16.2 (1998), pp. 133–169.

[29] L. Lamport. “Time, clocks, and the ordering of events in a distributed system”. In:

Communications of the ACM 21.7 (1978), pp. 558–565.

[30] L. Lamport et al. “Paxos made simple”. In: ACM Sigact News 32.4 (2001), pp. 18–

25.

[31] L. Lamport, R. Shostak, and M. Pease. “The Byzantine generals problem”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 4.3 (1982), pp. 382–

401.

[32] J. Leitao, J. Pereira, and L. Rodrigues. “Epidemic broadcast trees”. In: Reliable
Distributed Systems, 2007. SRDS 2007. 26th IEEE International Symposium on. IEEE.

2007, pp. 301–310.

[33] J. Leitao, J. Pereira, and L. Rodrigues. “HyParView: A membership protocol for reli-

able gossip-based broadcast”. In: Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on. IEEE. 2007, pp. 419–429.

[34] J. C. A. Leitão. “Topology Management for Unstructured Overlay Networks”. PhD

thesis. Universidade Técnica de Lisboa, Instituto Superior Técnico, 2012. url:

http://asc.di.fct.unl.pt/~jleitao/pdf/LeitaoPhDThesis.pdf.

[35] A. van der Linde. “Enriching Web Applications with Browser-to-Browser Commu-

nication”. MA thesis. Faculdade de Ciências e Tecnologias, Universidade Nova de

Lisboa, Nov. 2015.

67

http://dx.doi.org/10.1145/1364782.1364786
http://doi.acm.org/10.1145/1364782.1364786
http://doi.acm.org/10.1145/1364782.1364786
http://gen.lib.rus.ec/book/index.php?md5=13FBCD492D5C94E41F57FD68FC5B67EB
http://gen.lib.rus.ec/book/index.php?md5=13FBCD492D5C94E41F57FD68FC5B67EB
http://asc.di.fct.unl.pt/~jleitao/pdf/LeitaoPhDThesis.pdf

BIBLIOGRAPHY

[36] A. van der Linde, P. Fouto, J. Leitão, N. Preguiça, S. Castiñeira, and A. Bieniusa.

“Legion: Enriching Internet Services with Peer-to-Peer Interactions”. In: Proceedings
of the 26th International Conference on World Wide Web. International World Wide

Web Conferences Steering Committee. 2017, pp. 283–292.

[37] M. Maekawa. “An algorithm for mutual exclusion in decentralized systems”. In:

ACM Transactions on Computer Systems (TOCS) 3.2 (1985), pp. 145–159.

[38] G. Mühl, F. Ludger, and P. Pietzuch. Distributed event-based systems. Springer

Science & Business Media, 2006.

[39] Microsoft Azure. url: https://azure.microsoft.com.

[40] N. Mohamed and T. Michel. “How to detect a failure and regenerate the token in

the log (n) distributed algorithm for mutual exclusion”. In: International Workshop
on Distributed Algorithms. Springer. 1987, pp. 155–166.

[41] Moodle 3.2. url: https://docs.moodle.org/32/en/Main_page.

[42] Napster. url: http://www.napster.com.

[43] J. Pereira, L. Rodrigues, A. Pinto, and R. Oliveira. “Low latency probabilistic broad-

cast in wide area networks”. In: Reliable Distributed Systems, 2004. Proceedings of
the 23rd IEEE International Symposium on. IEEE. 2004, pp. 299–308.

[44] Publish/Subscribe topic-based architecture image. url: https://i-msdn.sec.s-

msft.com/dynimg/IC141963.gif.

[45] K. Raymond. “A tree-based algorithm for distributed mutual exclusion”. In: ACM
Transactions on Computer Systems (TOCS) 7.1 (1989), pp. 61–77.

[46] M. Raynal. “A simple taxonomy for distributed mutual exclusion algorithms”. In:

ACM SIGOPS Operating Systems Review 25.2 (1991), pp. 47–50.

[47] Response Times: The 3 important limits. url: https://www.nngroup.com/articles/

response-times-3-important-limits/.

[48] M. Ripeanu. “Peer-to-peer architecture case study: Gnutella network”. In: Peer-to-
Peer Computing, 2001. Proceedings. First International Conference on. IEEE. 2001,

pp. 99–100.

[49] R. Rodrigues and P. Druschel. “Peer-to-peer Systems”. In: Communications of the
ACM 53.10 (2010). issn: 0001-0782. doi: 10.1145/1831407.1831427.. url:

http://doi.acm.org/10.1145/1831407.1831427..

[50] A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware 2001: IFIP/ACM In-
ternational Conference on Distributed Systems Platforms Heidelberg, Germany, Novem-
ber 12–16, 2001 Proceedings. Ed. by R. Guerraoui. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 329–350. isbn: 978-3-540-45518-9. doi: 10.1007/3-

540-45518-3_18. url: http://dx.doi.org/10.1007/3-540-45518-3_18.

68

https://azure.microsoft.com
https://docs.moodle.org/32/en/Main_page
http://www.napster.com
https://i-msdn.sec.s-msft.com/dynimg/IC141963.gif
https://i-msdn.sec.s-msft.com/dynimg/IC141963.gif
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
http://dx.doi.org/10.1145/1831407.1831427.
http://doi.acm.org/10.1145/1831407.1831427.
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18

BIBLIOGRAPHY

[51] J. Sahoo, S. Mohapatra, and R. Lath. “Virtualization: A survey on concepts, taxon-

omy and associated security issues”. In: Computer and Network Technology (ICCNT),
2010 Second International Conference on. IEEE. 2010, pp. 222–226.

[52] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications”. In: SIGCOMM
Comput. Commun. Rev. 31.4 (Aug. 2001), pp. 149–160. issn: 0146-4833. doi:

10.1145/964723.383071. url: http://doi.acm.org/10.1145/964723.383071.

[53] I. Suzuki and T. Kasami. “A distributed mutual exclusion algorithm”. In: ACM
Transactions on Computer Systems (TOCS) 3.4 (1985), pp. 344–349.

[54] A. S. Tanenbaum and M. Van Steen. Distributed systems. Prentice-Hall, 2007.

[55] Q. H. Vu, M. Lupu, and B. C. Ooi. Peer-to-Peer Computing: Principles and Applica-
tions. 1st. Springer Publishing Company, Incorporated, 2009. isbn: 3642035132,

9783642035135.

[56] WebRTC. url: https://webrtc.org.

[57] P. Wieder, J. M. Butler, W. Theilmann, and R. Yahyapour. Service Level Agreements
for Cloud Computing. Springer Publishing Company, Incorporated, 2011. isbn:

1461416132, 9781461416135.

[58] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha. “Streaming video over the

Internet: approaches and directions”. In: IEEE Transactions on circuits and systems
for video technology 11.3 (2001), pp. 282–300.

[59] I. Zhang, N. Lebeck, P. Fonseca, B. Holt, R. Cheng, A. Norberg, A. Krishnamurthy,

and H. M. Levy. “Diamond: automating data management and storage for wide-

area, reactive applications”. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association. 2016, pp. 723–738.

69

http://dx.doi.org/10.1145/964723.383071
http://doi.acm.org/10.1145/964723.383071
https://webrtc.org

	List of Figures
	List of Tables
	Listings
	Introduction
	Context
	Motivation
	Contributions
	Document Organization

	Related Work
	Distributed Systems Architectures
	Centralized Architectures
	Partially Centralized
	Partially Decentralized
	Decentralized
	Relevant examples
	Discussion

	Communication Primitives
	Message-oriented Communication
	Stream Oriented Communication
	Multicast Communication
	Relevant examples
	Discussion

	Coordination Primitives
	Mutual Exclusion
	Elections
	Consensus
	Relevant examples
	Discussion

	Used Technologies
	WebRTC
	Legion Framework

	Summary

	System Architecture
	Design Overview
	Network layer
	Overlay Network Logic - Architecture
	Communication Module

	Application layer
	Request Capture protocol
	Coordination protocol
	Fault Tolerance Protocol/Resource owners management

	Summary

	Evaluation and Results
	Network Layer Evaluation and Results
	Message maximum hops Test
	Join Stabilization Time Test

	Application Layer Evaluation and Results
	SMoodle vs TMoodle
	SMoodle vs TQMoodle

	Conclusion
	Future Work

	Bibliography

