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Abstract

Standard benchmarks are essential tools to evaluate and compare database management

systems in terms of relevant semantic properties and performance. They provide the

means to evaluate a system with workloads that mimic real applications. Although a num-

ber of realistic benchmarks already exist for relational database systems, the same cannot

be said for NoSQL databases. This latter class of data storage systems has become increas-

ingly relevant for geo-distributed systems, and this has led developers and researchers to

either rely on benchmarks that do not model realistic workloads or to adapt the aforemen-

tioned benchmarks for relational databases to work for NoSQL databases, in a somewhat

ad-hoc fashion. Since these benchmarks assume an isolation and transactional model in

the database, they are inherently inadequate to evaluate NoSQL databases.

In this thesis, we propose a new benchmark that addresses the lack of realistic eval-

uation tools for distributed key-value stores. We consider a workload that is based on

information we have acquired about a real world deployment of a large-scale applica-

tion that operates over a distributed key-value store, that is responsible for managing

patient prescriptions at a nation-wide level in Denmark. We design our benchmark to

be extensible to a wide range of distributed key-value storage systems and some rela-

tional database systems with minimal effort for programmers, which only need to design

and implement specific data storage drivers to benchmark different alternatives. We fur-

ther present a study on the performance of multiple database management systems in

different deployment scenarios.

Keywords: Benchmark, Key-Value Store
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Resumo

Os benchmarks são ferramentas essenciais para avaliar e comparar sistemas de gestão

de bases de dados relativamente às suas propriedades semânticas e desempenho. Estes

fornecem os meios para avaliar um sistema através da injeção sistemática de cargas de

trabalho que imitam aplicações reais. Embora já existam vários benchmarks realistas

para sistemas de gestão de bases de dados relacionais, o mesmo não se verifica para bases

de dados NoSQL. Esta última classe de sistemas de armazenamento de dados é cada

vez mais relevante para os sistemas geo-distribuídos, o que levou a que programadores e

investigadores recorressem a benchmarks que não possuem cargas de trabalho realistas ou

adaptassem os benchmarks para bases de dados relacionais para operarem sobre bases de

dados NoSQL. No entanto, como esses benchmarks assumem um modelo de isolamento

e transacional na base de dados, são inerentemente inadequados para avaliar uma base

de dados NoSQL.

Nesta tese propomos um novo benchmark que aborda a falta de ferramentas de ava-

liação realistas para sistemas de armazenamento chave-valor distribuídos. Para esse fim

recorremos a um gerador de operações que injeta carga sobre a base de dados a partir de

informação que obtivemos sobre uma instalação de uma aplicação real em larga escala,

que opera sobre um sistema de armazenamento chave-valor distribuídos responsável

pela administração de receitas de pacientes a nível nacional na Dinamarca. Desenhámos

o nosso benchmark para ser extensível a uma ampla gama de sistemas de armazenamento

chave-valor distribuídos e algumas bases de dados relacionais com um esforço mínimo

para programadores, que só precisam desenhar e implementar drivers específicos para

avaliar as suas soluções. Finalmente, apresentamos um estudo do desempenho de múlti-

plos sistemas de gestão de bases de dados em diferentes cenários de instalação.

Palavras-chave: Benchmark, Bases de Dados Chave-Valor
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1
Introduction

1.1 Motivation

Database Management Systems (DBMS) are becoming ubiquitous in today’s society. As

companies and governments transition to digital storage of information and documents,

almost every new software project requires some form of persistent data storage. A

DBMS also provides easy access to data while abstracting away complex issues related

with efficiently retrieving data, processing transactions, recovering from crashes, etc.

In recent decades, developers have been given plenty of choices for databases: we’ve

seen the rise and widespread adoption of projects like MySQL, PostgreSQL, among many

others. The companies developing databases that respect the SQL standard provide typ-

ical features, such as transactional support, materialized views, programable functions

and triggers, secondary indexes, among others. Some DBMS however use slightly differ-

ent implementations for those different features which sometimes might not be publicly

documented and specified. This leads to an issue for software developers and software

project managers when it comes to selecting the most adequate storage system for their

applications or projects, since it is extremely difficult to compare the performance of

these different solutions.

Despite offering similar features, implementations vary across different storage sys-

tems and this leads to claims of significant performance differences between database

management systems. Fairly comparing database systems in an easy and fair way is a

non-trivial task, as results may become biased for a plethora of reasons. Even with a fixed

environment and dataset, different workloads with distinct data access patterns may show

significant performance deltas between storage systems, particularly if the database has

been optimized for a particular workload (e.g. read intensive, low write workload). A fair

comparison thus requires multiple scenarios, preferably guided by typical application
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patterns. Additionally, to ensure that testing can uncover existing performance trade-offs,

it is essential to monitor multiple performance indicators.

The multiple challenges discussed above resulted in the establishment of the Trans-

action Processing Council (TPC), which for many years has taken the responsibility of

developing and specifying benchmarks for relational database management systems, that

can be used to systematically exercise the operations of databases and compare their per-

formance through the use of workloads inspired by real world use cases. The benchmarks

designed by the TPC have been widely adopted and are considered a standard for the

performance evaluation of this specific subset of data storage systems [31].

The release of the Amazon Dynamo [20] and the Yahoo’s PNUTS [18] systems marked

the first steps for a new, and relevant, type of data storage systems: distributed key

value stores. These new types of databases offered a simpler interface than conventional

DBMS while explicitly departing from the relational model and not supporting SQL-

like languages, leading to their famous “NoSQL” classification. Many projects based on

PNUTS and Dynamo have meanwhile emerged with some success in the market (e.g.

Riak [39], Cassandra [8], CouchDB [10]). This new class of databases started to see wide

adoption particularly in the context of web applications [20]. In fact, the design of these

DBMS was highly motivated by the need to provide low latency in large scale deployments

that span multiple data-centers, where the requirement of low latency for clients around

the globe is more important than the semantics provided by relational databases.

After several NoSQL databases were released, there was again a need to compare the

performance between different design and implementation strategies. In 2010, Yahoo

released a benchmark called the Yahoo Cloud Serving Benchmark (YCSB) [19] that was

designed for distributed key-value stores, which became widely adopted and quickly

considered the standard for this class of databases. Aside from being adapted for key-

value stores, YCSB still had a fundamental difference from the TPC benchmarks: its

workload consisted of synthetic read/write operations, while in the TPC benchmarks

the workload mimicked real world application patterns. While YCSB is considered a

very good baseline performance benchmark for key-value stores, this benchmark still

lacks somewhat in providing workloads that successfully emulate more sophisticated

and realistic application patterns.

The fact that YCSB only provides synthetic workloads, has lead many researchers to

rely on their own ad-hoc adaptations of TPC benchmarks for key-value stores [1, 37, 41].

This leads to experimental results that are hard to validate, compare, and reproduce.

We thus identify a need for a benchmark that simultaneously targets distributed key-

value stores and is based on a realistic application, which we try to address with the work

presented in this thesis.
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1.2 Problem Definition

In the thesis we propose to tackle the existing limitations of benchmarks for distributed

key-value stores, and design a solution that can, on the one hand, provide a systematic

way to evaluate and compare the performance benefits of different distributed key-value

stores, and on the other hand rely on a realistic use case with operations that illustrate a

realistic and interesting data access pattern. To this end we will base our work on informa-

tion that we have acquired regarding a realistic use case for distributed key value stores,

in particular the Fælles Medicinkort (FMK) system which is responsible for managing

patient prescriptions at a nation-wide level in Denmark.

Our benchmark, that we name FMKe, features multiple representative workloads of

the original system, that can be parameterized by the user in order to control the size of

the dataset, and the (average) amount of conflicting operations, among others. Moreover,

the benchmark is suitable to experimentally assess the performance of distributed key-

value stores in single site deployments and in geo-replicated deployment, which are both

extremely relevant nowadays.

Furthermore, and to ease the wide adoption of our benchmark, we designed it to be

extensible to a wide range of distributed key-value storage systems as well as relational

databases. This can be achieved through the implementation of (application-level) drivers

that transparently translate a generic specification of the operation in the FMK representa-

tive workloads into the concrete operation offered by the storage system. By allowing the

implementation of relational database drivers we hope to allow not only a performance

comparison between different distributed key-value stores, but also a contrast with re-

lational systems in order to determine whether the difference in performance justifies

the increase in complexity that is associated with the use of NoSQL databases as well as

the loss of commonly used features in relational storage systems such as transactional

support, materialized views, etc.

1.3 Contributions

This work presents two main contributions:

• An extensible benchmark that can be used to assess the performance of both NoSQL

and relational databases, which will allow programmers to verify which database

is most adequate to their use case from a performance standpoint. The benchmark

is readily available [23] as a set of software packages along with appropriate docu-

mentation.

• A comparative study of the performance of several different databases across dif-

ferent deployments. This study, to the best of our knowledge, represents the first

performance comparison of multiple NoSQL databases using a realistic benchmark.
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1.4 Publications

Two publications have been made in the context of this thesis:

• Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Akkoorath, Annette Bieniusa,

João Leitão, and Nuno Preguiça. 2017. FMKe: A Real-World Benchmark for Key-
Value Data Stores. In Proceedings of the 3rd International Workshop on Principles

and Practice of Consistency for Distributed Data (PaPoC ’17), Annette Bieniusa

and Alexey Gotsman (Eds.). ACM, New York, NY, USA, Article 7, 4 pages. DOI:

https://doi.org/10.1145/3064889.3064897

• Deliverable D6.1: New concepts for heavy edge computing, LightKone European Re-

search Project, H2020 grant agreement ID 732505.

1.5 Structure of the Document

The remainder of this document is organized as follows:

Chapter 2 introduces an extended set of concepts to provide the essential context

for this thesis, which involves a brief overview and definition of databases and some

types of databases that are relevant for this work, followed by some properties, including

replication and consistency guarantees that are inherently different in the two mentioned

database types. This chapter also includes a primer on database benchmarks and their

importance for comparing available storage systems. A division is then made between

benchmarks appropriate for relational databases and benchmarks for NoSQL databases,

and some limitations of existing solutions are provided to justify this work.

Chapter 3 describes a novel benchmark for distributed key-value stores that can also

be extended to support relational databases. We provide an overview of the use case

and present its architecture. We then list different data models that were considered to

model the benchmark application, along with their limitations and compatibility with

relational data models. Then we present specifications for all the system operations,

including equivalent SQL transactions. After the operation specifications, we discuss how

we obtained information from a real world application and used that data to produce a

workload generator for our benchmark.

Chapter 4 details our implementation of the FMKe benchmark, specified in Chapter 3,

which is currently compatible with several NoSQL databases but is easily extensible to

relational database systems. In this chapter we list the software packages that compose

FMKe, navigate through some sections of the codebase in order to understand how to

configure and use FMKe. Then, we discuss how we implemented a generic and exten-

sible database driver interface that allows programmers to implement simple, generic

drivers, or more complex drivers with a smaller performance overhead. Finally, we list

the database systems for which there are FMKe drivers, detailing which data models they

implement.
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Chapter 5 presents our experimental evaluation which includes a comparative study

of the performance of multiple key-value stores. We first present a case study for Anti-

doteDB, for which FMKe was used to study several scalability dimensions and then we

present a broad study using a single data-center in the search for the best data model for

each database. The best data model is then used in the next evaluation stage, where again,

several measurements of scalability are performed for each storage system.

In Chapter 6 we present concluding remarks on our work, expand on some of the

observations we made regarding the viability of the benchmark as a new standard as

well as the results we have obtained in the experiments. We also list a number of ways

in which the benchmark can be extended and several paths that can still be explored as

future work.
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2
Related Work

In this chapter we present relevant related work for the purpose of this thesis. The chapter

is organized in the following structure: Section 2.1 introduces the topic of storage systems

by defining some important concepts and distinctions for the remainder of the chapter. In

Sections 2.2 and 2.3 we introduce the two main subclasses of databases that are relevant

for this thesis: relational and NoSQL databases. We then proceed the discussion into

distributed databases for both types of database. Section 2.4 presents several existing

benchmarks and categorizes them in relation to the type of databases for which they are

typically employed. Finally, Section 2.5 provides an overview of Conflict-Free Replicated

Data Types, which are used in several databases studied in this thesis.

2.1 Databases

A database is a collection of data that is usually organized to support fast search and

data retrieval. Despite some applications being able to operate in a stateless way, most

computer systems will handle some sort of state that needs to be safely stored and thus

require a some form of database system[49]. A diverse range of applications use databases:

from commercial websites that need to keep a record of purchased products and orders,

to governments needing to digitally store information about citizens, virtually any new

systems will need to allocate resources for a data storage solution.

Currently available data storage systems can be broadly divided into two different

categories: SQL-based databases (also referred to as relational databases [22]) and NoSQL

databases (or distributed key-value stores). When designing a computer system, the key

system requirements usually dictate what type of database is chosen since they inherently

are better tailored for different use cases. Making the wrong decision for the data storage

component of a system may impact its scalability and performance [52], as will become
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clear in the following sections.

In the next sections we discuss in some detail the characteristics of SQL and NoSQL

databases, comparing their data model, programmer interface, and discussing some of

the relevant use-cases in deployment today. This information will serve as a base to

understand in which circumstances each type of database should be used, and secondly

to discuss how each one of the databases types handles data replication (in particular,

how they enforce replicas to be or converge to a consistent state), which are key aspects to

fully grasp the different scenarios where each of these class of storage solutions are more

appropriate, and hence relevant to design adequate benchmarks for their evaluation.

2.2 Relational Databases

Relational Databases or Relational Database Management Systems (RDBMS) are storage

systems based on the relational model first specified in 1970 by E. F. Codd [17]. Modern

implementations of this type of databases follow the SQL standard, which imposes several

formal rules on how the data can be manipulated and queried. The following subsections

give an overview of the data model, programmer interface and some relevant industry

examples.

2.2.1 Data Model

Relational databases are based on the relational data model. In the relational model, all

data entries are represented in tuples and tuples are grouped into relations. More precisely,

data are organized into tables called relations representing some sort of entity such as

“person” or “animal”, and each record inside a table is called a tuple. Table columns are

called attributes and form the basis for the types of queries that can be performed over

tables. Figure 2.1 provides a visual representation of the notation used to describe a table

and its entries in the context of the relational model.

Tuple

Relation

Attribute

Figure 2.1: Visual representation of a table in the Relational Model

Attributes are bound to a specific domain (e.g. “boolean” or “integer”) and can be

further constrained through the use of special clauses. Each relation has a subset of

attributes referred to as candidate keys that uniquely identify each tuple in the relation.

The minimal subset of attributes that uniquely identifies each tuple is called a primary key.
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To create conceptual connections between relations, attributes in one table may contain a

primary key of another table. In this case, the primary key that appears on another table

is called a foreign key.

Relational Database Management Systems typically index relations by their primary

key since this is the most efficient way of data retrieval. If frequent access is required

through attributes not in the primary key indices can be used to speedup access. Several

types of indices are usually supported by relational databases, and programmers must

make an appropriate choice depending on access patterns, data distribution and number

of tuples in the relation.

Databases that implement the relational data model and the SQL standard usually

also provide transactional support with varying levels of isolation, as will be detailed

further ahead. Having support for transactions is particularly useful for application

programmers, since it becomes easier for them to reason about the evolution of the ap-

plication state (at least when operating with more restrictive isolation levels). It is not

hard to conceptualize examples of application operations where atomicity is needed: a

classical example is a bank transfer between two accounts, which consists in subtracting

an amount from one account and crediting the same amount in another account. This

feature is much harder to implement in other types of database systems due to the in-

herent constraints that have to be ensured in its execution, particularly in what regards

atomicity, as either both operations succeed or both fail, otherwise money could either

disappear or be created; and operations should ensure that the balance of each account

does not go to a negative value.

2.2.2 Programmer Interface

All modern relational database management systems implement the SQL standard and

thus use the Structured Query Language (SQL) as a mechanism to define, manipulate

and query data. Despite some database vendors including procedural extensions, SQL is

mostly a declarative language.

2.2.2.1 Querying Data

Database users can fetch data by using a “SELECT” statement. If we imagine an instance

of a database with a table of people with several personal attributes, one could design a

query that returned every first name, last name and age of all people over 25 as follows:

Listing 2.1: SQL Select Example Statement

1 SELECT FirstName, LastName, Age FROM people WHERE age > 25;

The SELECT clause in the statement accepts a list of attributes to be returned, while

the FROM clause determines which relation the query is going to be performed on. An

optional WHERE clause may be added to filter out some of the results. SELECT state-

ments can be used also to compute aggregate information over the data. For instance,
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the average age of all people in the example above could be queried with the following

statement:

Listing 2.2: SQL Average Computation Example

1 SELECT avg (Age) FROM people;

2.2.2.2 Creating Data

Tuples can be inserted into a relation using an “INSERT” statement. Using the same

people example, one could add a new tuple using the following statement:

Listing 2.3: SQL Insert Example Statement

1 INSERT into people (ID, FirstName, LastName, Age)

2 VALUES (1, ’Peter’, ’Gabriel’, 68);

2.2.2.3 Modifying Data

Some tuple attributes can be changed, namely those that are not part of the primary key.

The “UPDATE” statement can be used to modify one or more tuples at once:

Listing 2.4: SQL Update Statement

1 UPDATE people

2 SET FirstName = ’Jim’, LastName = ’Morrison’, Age = 27

3 WHERE ID = 1;

2.2.2.4 Removing Data

Deleting tuples from relations can be done with the “DELETE” statement:

Listing 2.5: SQL Delete Statement

1 DELETE FROM people

2 WHERE FirstName = ’Jim’ AND LastName = ’Morrison’ AND ID <> 1;

2.2.2.5 Transactions

Programmers can execute operations on a relational DBMS using transactions. Previously

described operations happen within a transactional context, in order for the database

management system to allow concurrent and possibly conflicting transactions. Listing 2.6

presents an example of a transaction that performs all previous operations:
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Listing 2.6: SQL Transaction Example

1 BEGIN TRANSACTION

2 INSERT into people (ID, FirstName, LastName, Age)

3 VALUES (1, ’Peter’, ’Gabriel’, 68)

4 UPDATE people

5 SET FirstName = ’Jim’, LastName = ’Morrison’, Age = 27

6 WHERE ID = 1

7 SELECT FirstName, LastName FROM people WHERE ID = 1

8 COMMIT TRANSACTION;

Interactive consoles to database management systems sometimes enter a transactional

context automatically, and the final intention of the user (i.e. whether to commit using

“COMMIT TRANSACTION” or rollback using “ROLLBACK TRANSACTION”) must be

stated explicitly.

As hinted throughout the above example, transactions are conceptually arbitrarily

complex operations over data that feature what is commonly denominated ACID proper-

ties [49], which is an acronym for the following properties:

• Atomicity: the database system must ensure that every transaction is not partially

executed, in any circumstance (may include system crashes or power failures). If a

transaction contains an instruction that fails then the whole transaction must fail

and the database must be left unchanged. This provides an easy to reason with “all

or nothing” semantics.

• Consistency: before and after transactions execute, the database must be in a cor-

rect state. This means that a successful transaction makes the database transition

between two correct states, which means that any data written must abide by all

applicable rules including referential integrity, triggers, etc.

• Isolation: this property is only relevant when considering the concurrent execution

of multiple transactions. Usually several isolation levels are provided by the DBMS,

the weakest being that two concurrent transactions will be able to see each others’

effects in the database even when both are incomplete (i.e. before they commit). The

highest isolation level is an equivalence to a serialized execution of the transactions,

which means that any two concurrent transactions cannot modify the same data.

• Durability: the system must ensure that once transactions enter the committed

state they are recorded in non-volatile storage in a fault tolerant way (again, this

may include system crashes or power failures), and that their effects will not be

forgotten.

Regarding the provided isolation levels, despite some vendors not supporting the

higher Serializable level, many provide the following levels:
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• Read Uncommitted: This is the lowest possible isolation level, which does not pro-

vide any guarantees. Transactions may read values that have not yet been committed.

In practice this value is not used very often.

• Read Committed: Transactions can only read values that have been committed to

the database, so any two concurrent transactions will not be able to read each other’s

values.

• Snapshot Isolation: Like the name indicates, each transaction reads from a snap-

shot of the database that is taken when the transaction begins. This level, despite

one of the highest and being used often, is not equivalent to the Serializable level,

since at this isolation level some anomalies may occur (e.g. write skews).

• Serializable: This is the highest possible isolation level, and also the one with

the biggest performance impact. A concurrent scheduling of multiple transactions

executed at this isolation level should be equivalent to one sequential execution of

the same set of transactions.

The use of transactions and a strong isolation level are paramount to guarantee the

correct behavior of applications [13]. If set to the default or a wrong isolation level, users

may be able to exploit the anomalies allowed by the isolation level to gain unfair advan-

tages or otherwise reach undefined or unwanted states: in a recent study, Warszawski

and Bailis [55] proved to be able to subvert ECommerce applications by overspending

gift cards using concurrent operations and presented another example of how similar

malicious behavior can heavily affect companies.

2.2.3 Relevant Examples and Usage

According to the 2018 Stack Overflow Developer Survey, Oracle and Microsoft are the

vendors of the most popular relational database management systems [51], with Oracle

providing a free (MySQL) and a paid (Oracle 12) option. According to the same survey,

MySQL was used by 58.6% of the respondents, followed by SQL Server and PostgreSQL

with 41.6% and 33.3% respectively.

Website hosting software like cPanel have several integrations for these database sys-

tems, enabling hundreds of applications that depend on them. These range in category

but include bulletin boards, ECommerce frameworks, and blogs. Relational databases

have been studied for decades and given their built in support for operations with strong

data consistency guarantees, this type of database is also used in mission critical systems

(e.g. banking, medical records).

2.2.4 Distributed Relational Databases

Relational databases were not designed specifically for distributed deployment, yet mul-

tiple vendors offer features that enable several different distributed deployments. These
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features are desirable because they ensure that the storage system is able to endure large

growths both in data volume and in the number of data accesses.

Due to the constraints that are commonly associated with the data model in a rela-

tional database, some properties like referential integrity invalidate any other strategy

that does not involve synchronizing between replicas as soon as an operation is executed

(and before notifying the client of the operation outcome). For each operation submitted

by a client, the servers need to immediately replicate the operation which might have

a negative impact on performance on its own. Typically the client only receives a re-

ply to its request after all replicas have successfully executed the operation (as a single

replica being unable to execute the operation should make the operation fail). Under-

standably, a bigger number of replicas will translate into more synchronization and a

bigger latency, and this effect is magnified in geo-replicated scenarios, since synchroniza-

tion happens across data-centers that are geographically distant and therefore add to the

latency overhead even further. Any replication strategy in this context, in order to main-

tain the guarantees provided by SQL constraints such as referential integrity needs to use

replication strategies based on state machine replication or group communication prim-

itives, which all suffer from the previously described problem, while exhibiting limited

scalability [38].

Once a relational database reaches a point where either the amount of data or the

number of accesses is enough to go over capacity in a single server, the administrators

must partition the data over multiple servers in order to distribute data and system

load. There are several ways database administrators can partition data across multiple

instances of the same database management system. One technique is called sharding,

where data is divided based on a shard key. In the “people” example, which we have been

using to demonstrate some of the features of relational databases, we could envision a

scenario where we were running out of space to store more tuples, or too many concurrent

accesses in peak times were overwhelming our database instance. For example, a database

administrator could choose to shard the “people” relation by the ID primary key so that

tuples with the ID attribute ranging from 0-100000 would be stored in one shard, IDs

ranging from 100001-200000 would be stored on another shard, and so on. The database

management system stores this information in its schema so that it can either access data

directly or redirect to other database shards that contain the required data.

Sharding is not the only way to partition a relational database. When storing large

volumes of data, database administrators can choose to separate larger tables into a dedi-

cated server to avoid instances going over capacity. For even larger deployments and data

storage requirements a combination of both may be required to safely accommodate all

data.
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2.3 NoSQL Databases

Relational databases are seen as a traditional choice given their popularity over the years.

The catalyst behind the development of modern databases that fall into the category of

NoSQL databases was the need for scaling data storage beyond what relational databases

allowed. The NoSQL label is, however, too broad: any storage system that does not follow

the SQL standard (even in cases where a relational model is provided) can be considered

to some extent a NoSQL database. In this context, there are document stores, graph-

oriented databases, and others, but for the remainder of this document we restrict the

meaning of the term “NoSQL database” to refer only to key-value storage systems. The

increasing popularity and relevance of this approach has led to the emergence of many

such databases, including Riak [39], Cassandra [9], AntidoteDB [6], CockroachDB [16],

Redis CRDB [29], among others.

Distributed key-value stores began gaining popularity with the release of the Ama-

zon Dynamo [20] and Yahoo! PNUTS [18] systems. These systems explored several

dimensions of scalability and gave concrete examples of their usage in production in geo-

replicated deployments, which accredited them as viable alternatives to the scalability of

relational databases.

2.3.1 Data Model

In NoSQL databases, data is stored in key-value pairs. Some data stores support names-

paces usually referred to as buckets in order to allow multiple entries with the same key. A

key is a unique identifier of an entry commonly represented through a string of characters,

and the value can vary wildly in type depending on what data structures the key-value

store supports. The most common type of value is also a string of characters, although

there are databases that can store maps, sets, registers and flags.

The design decision to opt for a simpler interface, little to no data consistency re-

quirements and the usual lack of transactional support makes NoSQL databases more

performant than relational databases in general. Since access is made per key and returns

a single value, more complex operations involving data aggregation can be impossible to

perform on NoSQL databases. Some vendors offer support for a subset of SQL features

in order to maintain database accesses with a declarative appearance and simplify the

programmer interface, although some features like referential integrity are particularly

challenging to provide in this type of databases.

This work focuses mainly on distributed key-value stores, which are databases that

are designed to be deployed in distributed scenarios. For this particular subclass of

NoSQL databases, heavy focus is given to fault-tolerance, data distribution and repli-

cation, availability and scalability. We will define these concepts more clearly in the

following subsections.
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2.3.2 Data Replication and Consistency

Data replication is one of the most important properties in distributed databases. Being

able to replicate information means that in case of a system failure data will not be

lost. The system may also provide higher availability than when storing all data in a

centralized component, which becomes a single point of failure. With replication comes

additional performance overhead of maintaining consistency between all copies, which

also poses problems when network partitions are considered.

Nowadays there are many services that operate at a global level like Google Mail or

Dropbox. To provide a good service to all users a centralized data storage component

is a bad approach, since clients further away from the datacenter where the database

is stored will experience drastically increased latency. Hence, a common approach for

these types of systems is to provide geo-replication: having the database replicated in

multiple data-centers spread across the world, with each client connecting to the closest

replica. In this scenario the aforementioned overhead of keeping the replicas consistent

is orders of magnitude higher, and these types of systems usually relax the consistency

enforced among replicas to avoid spending a significant portion of time synchronizing the

information between all the data-centers. Weaker consistency constraints are captured by

consistency models such as eventual consistency, which allows outdated values to persist

on a database with guarantees that after write operations stop being issued, all replicas

will converge to the same value at some undefined point in time. This apparently small

change has a big impact in performance, since only periodic synchronization is required

to be performed across data-centers, contrary to the per-operation synchronization of

the more classical consistency model (featured in relational databases) that is commonly

referred as strong consistency. In this model of periodic synchronization there are several

possible consistency models:

• Eventual Consistency: This is the weakest level of consistency guarantees a storage

system can provide. It also imposes the least overhead, so this is an appropriate

consistency model for systems with very high availability requirements. In this

model the previously mentioned periodic synchronization mechanism present in

the database is responsible for the dissemination of update operations between

servers. This means that for a certain piece of data, if there are no new updates then

at an unspecified point in time (i.e. eventually) all servers when queried will reply

with the correct last value [20].

• Causal Consistency: In this consistency model, some operations are said to have a

causal relation to others. This requires keeping track of the operation dependencies.

If a server receives an operation which relates to others it has not executed, the

operation must be queued until all dependent operations are executed. This is

one of the strongest consistency levels available while valuing availability over

consistency [3, 26, 35].
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System architects may choose to provide either consistency model when designing

data storage systems, but this is normally not a configurable parameter. Thus, the users of

these databases need to choose a storage solution that best fits their current performance

and availability requirements without much flexibility to change after deployment, which

implies a need for a thorough study of the performance of existing solutions along with

their features.

2.3.3 Common Replication Strategies for NoSQL Databases

Unlike relational databases which are constrained by the data model, NoSQL databases

are more flexible in the sense that they may provide strong or weak consistency models.

Relying on replication strategies similar to the ones employed for relational databases

would only minimize the divergence between replicas, but since these types of systems

already assume that the data may diverge, in practice it is better to take the advantage of

being better performant and supporting operations under network partitions by provid-

ing weaker forms of consistency. This allows replicas to synchronize only periodically, at

the expense of requiring mechanisms to handle conflicts due to the execution (on different

replicas) of conflicting operations.

2.3.4 Availability versus Consistency

In 2002 Brewer et al. formally proved that a distributed system cannot simultaneously

have the three following properties: Consistency, Availability, and Partition tolerance.

This proof was later referred as the CAP Theorem [30]. Figure 2.2 gives a visual represen-

tation of the three properties labelled by their first letter.

Figure 2.2: Visual representation of the CAP theorem

Let us first assume that we can ensure no network partitions will occur. Under these

circumstances, we are able to build a system that is available (theoretically) 100% of

the time and that all replicas of the data it stores remain consistent. This is some of the

reasoning behind Google’s latest database as a service product, Spanner [15].

As soon as network partitions are considered (a reality for any distributed systems,

and more probable for geo-distributed systems [12]), any database system that experi-

ences a partition will either lose Availability or Consistency. This is a trade-off that really

16



2.3. NOSQL DATABASES

exposes the difference between strong consistency (typically featured in SQL based sys-

tems) and weak consistency (a design choice available in many NoSQL databases). Due

to this, under a network partition, relational databases will lose Availability. This is the

only way to preserve all of the invariants that are required for correct operation, which

may include referential integrity.

On the other hand, since NoSQL databases have simpler data models and usually

operate with relaxed consistency requirements, they are usually able to maintain avail-

ability. Any operation that is performed under a network partition will lead replicas to

diverge, which makes it harder to reason about the evolution of the system state.

The choice of a DBMS to prioritize either consistency or availability is so important

that these systems are labelled according to their behavior under partition (CP for “Con-

sistent under Partition” and AP for “Available under Partition”).

One noteworthy aspect of the CAP properties is that Availability is measured as per-

centage of time that the system is running correctly and that it is able to perform read

and write operations. This means that a CP database will not become completely unavail-

able, it will simply be unable to guarantee availability 100% of the time (namely under

network partitions).

2.3.5 Programmer Interface

While relational databases have support for rich queries using SQL, most NoSQL databases

only provide a (get,put) interface. At first sight this appears to only allow for very basic

queries, but there have been several NoSQL databases that provide support for subsets

of SQL such as Apache Cassandra [7] or CockroachDB [16]. These include queries using

predicate selection using exact matches, and even basic transactional support.

When the data access is done in a fine grained manner (i.e. using a basic get and

put interface) applications tend to become more complex in terms of concurrent oper-

ations. This is because an SQL statement may implicitly include several read or write

operations in order to maintain referential integrity. Without this declarative interface,

programmers need to specify each individual operation to be performed. The lack of

transactional context magnifies the complexity issue since concurrent operations are no

longer guaranteed to execute under the ACID properties common in relational database

management systems. Working with a weak consistency model is somewhat simplified

when data types are designed to be replicated and contain state merge policies. This is the

case of Conflict-Free Replicated Data Types (CRDTs) [36], which basically define a policy

for resolving conflicts when concurrent operations are performed. By adding conflict

resolution capabilities to the data types, programmers don’t need to handle each batch

of concurrent operations on each data type. Despite the impact of CRDTs, one major

limitation is that there is no way to link data types such that a resolution policy spans

multiple objects, meaning that there are no easy ways of maintaining complex application

invariants.
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2.3.6 Relevant Examples

Like stated in the beginning of Section 2.3, this work mainly concerns NoSQL databases

that fit the model of key-value stores. In that regard, the Stack Overflow Developer Survey

of 2018 lists Redis, CosmosDB (Microsoft), Google Cloud Storage, DynamoDB (Amazon),

Memcached and Cassandra as the most popular NoSQL storage systems. To provide

context for this work we provide an overview of the following NoSQL databases:

• Redis: a key-value store that is very popular, having bindings implemented for more

than 30 programming languages [45]. It is often used as an in-memory cache or as a

persistent storage system with its durability option. It has support for several data

structures aside from the typical strings: lists, maps, sets, ordered sets, bitmaps

and spacial indexes which are all built-in to the database. It can also be used as a

distributed key-value store using a special Cluster configuration which automati-

cally shards the key-space and associated data between all participant servers and

offers some level of fault tolerance. To operate in a distributed environment, Redis

introduced a concept called hash slots where each slot may contain several keys. At

the time of cluster formation, Redis servers fairly distribute portions of the interval

among them. Clients querying the cluster for a given key will then received either

a reply containing the expected key-value pair or a different reply with the details

of the server responsible for replicating the key.

There are several big Internet companies using Redis for multiple purposes: Twitter,

GitHub, SnapChat, and StackOverflow are just a few examples [56].

• Riak-KV: once the flagship product of the deceased company Basho, is a database,

that nowadays maintained by a group of ex-employees and companies where it is

still in use. Riak-KV is a distributed key-value store inspired by DynamoDB with a

strong focus on reliability and fault-tolerance [39]. Similar to Redis, a Riak cluster

indexes keys based on their hash, assigning each server a fair chunk of the total

hash space. Despite this, keys are replicated in a configurable number of replicas

and any Riak node is able to accept a write operation, even if is not accountable for

the key, which makes individual operations in Riak have consistently low latency

numbers.

Riak is implemented in Erlang and aside from the default string support for keys

and values, it also supports maps, sets, counters and flags through its CRDT library.

Today Riak’s intellectual property is owned by Bet365 (online casino), but Riak is

still used in the medical industry (e.g. British National Health Service), gaming

industry (e.g. Riot Games), telecommunications (e.g. Comcast), among others [47].

These are all industries where, understandably, data availability and low latencies

are the top priority.

• AntidoteDB: AntidoteDB is database developed within the context of the SyncFree

European Research Project [6]. It is based on riak-core, a framework for building

18



2.4. DATABASE BENCHMARKS

distributed systems that was used to build Riak-KV [46]. It is one of the few dis-

tributed key-value stores to have transactional support, built-in support for multiple

data-center deployments and also includes its own CRDT library. AntidoteDB has

clients libraries in JavaScript, Golang, Java, and Erlang, although it can easily be

implemented in other languages since it uses Google Protocol Buffers (a language

and platform neutral layer to serialize structured data) to establish communication

between the clients and the servers.

• Cassandra: Apache Cassandra is one of the most popular NoSQL databases, and its

main selling points are scalability and high availability of data. Some information

has been published about big Cassandra deployments (e.g. Apple stores approxi-

mately 10 Petabytes of data in a 75.000 node cluster), which validate its claims as a

great solution for large scale decentralized storage [9].

Its architecture is similar to Riak’s but there are several design decisions that set it

apart. Cassandra supports configuring the consistency with a per-operation gran-

ularity. This consists in specifying how many replicas need to respond to a client

request in order for such request to be considered successful. Aside from config-

urable operation consistency, Cassandra also defines the Cassandra Query Language
(CQL). CQL offers a subset of the SQL standard, which vastly increases the richness

of queries that can be performed on a Cassandra cluster. CQL has several built-in

types and includes support for query statements that are identical in appearance to

SQL queries despite not providing some features like table joins [7].

For the context of this work we will later explore AntidoteDB, Cassandra, Redis and

Riak-KV in more detail.

2.4 Database Benchmarks

A database benchmark is an application that is used to evaluate the performance of a

database management system. Benchmarks use workload generation components that

usually exhibit data access patterns similar to those that would be in a real world deploy-

ment. This enables the detection of possible performance issues and even the violation

of properties that the programmers expect the database system to guarantee.

There are multiple metrics that benchmarks are able to obtain, but for the context of this

work we will focus on the main metrics that are related to performance. Considering

performance, two key metrics should be obtained: throughput (the number of operations

that the system is able to perform in a given time unit) and latency (the response time

from the moment the client requests an operation until the moment it receives a reply).

There are 3 main subcategories of benchmarks:

• Micro-benchmarks: benchmarks of this type typically perform a very small set of

basic operations in a closed loop. As these don’t typically represent any particular
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workload they are not popular benchmark types for database management systems,

despite being present in other areas such as performance comparisons of program-

ming languages.

• Synthetic benchmarks: these benchmarks offer some level of configurability in or-

der for users to test different workloads. A popular way of describing workloads

is by defining a distribution or percentage of operations to perform of each sup-

ported operation, which allows for the creation of more realistic usage patterns.

These benchmarks are ideal for making baseline performance readings, but they

are not indicative of the final performance if it is known that the use case where the

database is being deployed is more complex.

• Realistic benchmarks: for a benchmark to be considered realistic it needs to be

based on a real application. Furthermore, the workload of the application itself

needs to described by traces of a real system. When benchmarks are designed this

way, their users can be assured to expect similar performance numbers if their use

case is similar. Operation distribution can still be described in percentages, but

usually the benchmark operations are at the application level instead of generic

read or write operations. Understandably, these types of benchmarks are the most

trusted, and they are commonly used to compare database systems and also have a

strong presence in the classic experimental evaluation sections of many articles.

Despite the subcategory, workloads can be informally described as balanced, read

intensive, or write intensive depending on which types of operations are predominant

in its definition. Workloads that use read operations may require data to be previously

added to the storage system to ensure that there is data to be read. On the other hand,

if workloads contain both reads and write operations, reads operations can read data

written in previous operations without needing to populate the database.

2.4.1 Benchmarks for Relational Databases

The most relevant relational database benchmarks were specified by the Transaction Pro-

cessing Council (TPC). The TPC designs database benchmarks for a multitude of different

scenarios and storage systems: Big Data, Internet of Things (IoT), Virtualisation, OnLine

Transaction Processing (OLTP), etc. Nowadays, when comparing the raw performance of

storage systems, we are interested in the throughput in terms of how many queries and

transactions a database can perform for a given time unit, and for that purpose we focus

mainly on the OLTP benchmarks.

2.4.1.1 Relevant Examples

The following benchmarks for relational databases are important in the context of this

thesis:
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• TPC-C: Benchmark C is an OLTP benchmark that models the business of processing

orders of a wholesale supplier with several warehouses distributed across multiple

districts. The benchmark operations are described as transactions and are equiv-

alent to application level operations (e.g. add new order, process payment). The

benchmark specification is publicly available, allowing anyone to make an imple-

mentation of TPC-C according to the documentation. The performance results of

TPC-C are transaction throughput measured in queries per minute (Qpm) [53].

• TPC-H: modeling the same application as benchmark C, TPC-H is a decision sup-

port benchmark. Its queries involve examining large volumes of data and executing

highly complex queries with the intent of answering relevant business questions, in-

volving business analysis concepts. All queries in the TPC-H benchmark have some

level of aggregation making them particularly costly to execute from a performance

standpoint. Despite this, the portrayed application is provenly relevant, as there

are many implementations of TPC-H for different databases and articles that use it

in their evaluation. Like TPC-C, benchmark H’s specification document is publicly

available [54].

• RUBiS: this OLTP benchmark models an auction house inspired by the online com-

merce website ebay.com. Aside from providing a full specification, a partial imple-

mentation of RUBiS is available in Java or PHP, where the users are supposed to

complete the SQL queries for the databases according to the documentation [48].

These three benchmarks all fall within the realistic benchmark category, since each

is modeled after a real application. Developers, when benchmarking the performance of

data storage systems, can then select one of these options which follows an application

closest to their use-case. This approach yields the most reliable results, since choosing

a similar application implies having somewhat similar data access patterns, and similar

performance results from benchmark executions.

2.4.2 Benchmarks for NoSQL Databases

The benchmarks mentioned in Section 2.4.1 are not compatible with storage systems

that do not implement at least a subset of the SQL standard, since they require indices

or aggregation capabilities. Yahoo Cloud Serving Benchmark (YCSB) [19] was the first

benchmark that specifically addressed the lack of performance measurement tools for

storage systems with simpler interfaces such as those provided by distributed key-value

stores. YCSB is a synthetic benchmark and offers multiple configurable workloads. De-

spite multiple published iterations of the benchmark like YCSB++ [40], YCSB is still

widely regarded as the standard option for performance evaluation of NoSQL databases.
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2.4.3 Benchmark Adaptations

We argue that the realistic aspect of benchmarks is important in getting meaningful

performance measurements. We hinted at the breadth of published research that uses

TPC benchmarks for performance evaluation, but that alone is not enough to prove the

value in having a performance analysis tool that closely resembles a realistic use case. In

fact, we have found several projects that attempt adapting realistic benchmarks to work

with distributed key-value stores. For instance, there is an active project for running

the TPC-W benchmark on the Cassandra distributed key-value store [1], and another

project that implements TPC-C with compatibility for multiple back ends [41]. Since

virtually no distributed key-value stores use the relational data model, these adaptations

require some changes in order to correctly represent data using simpler data models (e.g.

column-based). If two different NoSQL databases make their own adaptations for one

of the realistic benchmarks, it is questionable whether the performance results will be

comparable between each other.

There is a large number of adaptations of all benchmarks mentioned in 2.4.1 for dis-

tributed key-value stores, which implies a need for a direct comparison between relational

databases and NoSQL databases, as well as a lack of realistic choices within the bench-

marks designed for key-value stores. The contributions of this work address both of these

concerns.

2.5 Conflict-free Replicated Data Types

Data replication in distributed key-value stores is complex due to the challenges asso-

ciated with guaranteeing information consistency across replicas. This complexity is

magnified in scenarios where concurrent operations are allowed and network partitions

can happen, since two disconnected servers replicating a piece of data might accept con-

current operations, and one of the states will have to be considered the last valid state

and the other one needs to either be consolidated or discarded.

There are several policies available to resolve concurrent operations. The simplest

policy is called Last Writer Wins (LWW), and to implement it the server needs to store a

timestamp of when the data was last updated. When two conflicting operations emerge,

the one with the highest timestamp value is selected as the last state and other alternative

states are discarded. While this is a simple policy from a conceptual standpoint, in

practice it may cause anomalies where data is lost. Figure 2.3 demonstrates an anomaly

where information is lost about one of the write updates.

In the beginning, the set contains a single element “x”. Client 1 and Client 2 both

read this initial value, and within the context of some application level operation, they

each modify the value of the set, adding a new element to it. Both clients try to update

the set, and Client 1’s write is received first. Since the timestamp of the operations is the

only resolution policy available at this moment, the server discards the previous value
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Client 1

Server 1

Client 2

time

Set = [ x ]

read(Set = [ x ] )

read(Set = [ x ] ) write( Set = [ x, y ])

write( Set = [ x, z ])

Set = [ x, y ] Set = [ x, z ]

Figure 2.3: CRDT Set Example: Last Writer Wins policy may cause loss of data.

and accepts “[x, z]” as the final state value.

To mitigate this shortcoming, programmers could attempt to perform a read immedi-

ately before the write, and while this could have some effect in reducing data loss, this

approach would also not work to solve the problem of two clients concurrently executing

this algorithm. This type of anomaly is the first hint at the requirement for some sort of

state merge operation that can take into account multiple state values and produce a new

meaningful state such that information is not lost.

Shapiro et. al first presented Conflict-free Replicated Data Types (CRDTs) in 2011 [2,

34, 36]. In essence, the previously described problem is solved by defining new data types

with built-in conflict resolution policies. These data types are somewhat constrained in

the operations they can perform due to the intricacies of the state merge procedure as we

describe in somewhat more detail in the following section.

2.5.1 Replication Strategies

Conflict-free Replicated Data Types can be viewed as a basic building block to provide

eventual consistency. By ensuring periodic propagation of update operations, CRDTs can

be used to ensure that all servers replicating a piece of data will eventually converge to the

same value. The implementations of these data types, however, can vary depending on the

type and number of operations expected. CRDTs can be divided into two main categories

that separate the different approaches to perform replication: state based replication and

operation based replication, which we detail in the following sub-sections.

2.5.1.1 State Based Replication

Like the name implies, in this replication strategy replicas send the full state to each

other and then perform a state merge operation. The information (i.e. the state) that is

sent to other replicas depends on the data type: for a counter it will only be the counter’s

value, for a set it can be the list of elements, etc.
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Server 1

Server 2

time

Set = [ x, z ] Set = [ x, y, z ]

Set = [ x, y ] Set = [ x, y, z ]

Send( [x, z] ) Receive( [x, y] )

Receive( [x, z] )Send( [x, y] )

Figure 2.4: State Based Set: Example of state merge between two server replicas contain-
ing different values.

Figure 2.4 shows an example of how servers can resolve state differences. When a

difference between replica values is detected, replicas send each other the state that they

have for the offending piece of data. In this case we can see that replicas hold different

values for the set, and upon receiving the other replica’s value, the state merge procedure

can be run, at which point both replicas will hold the same value for the set.

In order to guarantee the convergence of values among all replicas, the state merge

function needs to be idempotent, associative, and commutative. These properties are re-

quired since in complex deployments there will be multiple replicas communicating with

each other and each server may need to process several state merge operations until a final

value is reached. Proofs about the requirement of these properties for the state merge

functions can be found in the referenced literature[4, 36].

State based CRDTs have some limitations: in multi-value data types where the max-

imum number of values is unbounded, state can expand over time and make the dis-

semination of state quite costly. Improvements were proposed to mitigate this effect

describing a new a variant of state-based CRDTs called Delta State Based CRDTs, which

is inspired in some techniques used in operation-based CRDTs where only differences

between states are disseminated, instead of the entire state data [4].

2.5.1.2 Operation Based Replication

Operation based CRDTs replicate data by propagating only the operations they have

performed on a particular piece of data from a baseline value. This is based on the

assumption that the operations have the same properties described in the previous section

so that replicas that execute the same set of operations converge to the same value.

This replication strategy is particularly useful for data types whose value can grow

unbounded over time, as state propagation in those cases can add a significant overhead.

Figure 2.5 illustrates a similar scenario to the one described in figure 2.4 using operation

based replication.

In this scenario we see the same set starting out with different values in the two server

replicas. At the time of synchronization, the replicas send the operations that need to be

performed in order to get to their current value. After both replicas execute the operations
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Server 1

Server 2

time

Set = [ z ] Set = [ x, y, z ]

Set = [ x, y ] Set = [ x, y, z ]

Send( {add, z} ) Receive( {add, [x, y]} )

Receive( {add, z} )Send( {add, [x, y]} )

Figure 2.5: Operation Based Set: Example of operation based merge between two server
replicas containing different values.

received over the network, they both arrive to the same final value. Interestingly, the list

of operations that needs to be sent is only the set of operations performed since the last

synchronization, which for the sake of simplicity we assume not to exist in this example.

This means that even if the set had thousands of elements, if since the last synchronization

server 1 and 2 had only added “x”, “y” and “z” respectively, the list of operations that

needed to be propagated would be the same as the ones shown on Figure 2.5.

2.5.2 Data Types

We have looked at some examples of CRDT sets in order to explain some of the concepts

behind the replication strategies and state convergence, but there are other relevant types

of CRDTs, such as counters, registers, flags, maps. These range in usefulness, but in

general every data type serves a particular purpose. Counters are typically the only

data type where trivial arithmetic operations (such as increment and decrement) are

allowed, while registers have a simple read/write interface that allows the storage of

single values with arbitrary content (e.g. names, addresses, etc.). Flags, Sets, and Maps

can have multiple implementations with different conflict resolution functions. In the

case of a flag which can only be enabled or disabled, there might be implementations

favoring the enabled state in case of concurrent operations while others might choose to

keep a disabled state.

2.5.3 Discussion

Distributed key-value stores that do not offer proper consistency guarantees can make

the implementation of applications on top of them more complex, but there is also a pos-

sibility of users and companies discovering the previously mentioned data loss anomalies

in already existing applications. The need for providing data convergence without loss

of operations or state is provided by some CRDTs. The industry impact of these types

of data types is unquestionable, as CRDTs are offered by all of the previously mentioned

databases (Redis, Riak, AntidoteDB, and Cassandra), among others.

One particular disadvantage of working with CRDTs is that the most adequate type

of CRDT replication strategies depends not only on the modeled application, but also
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on the expected state size and number of operations. Further iterations of replication

strategies, like Delta State Based CRDTs or Operation Based CRDTs that use compression

to bundle sets of equivalent operations, can mitigate the overhead cost in case, but they

are also typically immutable in terms of their conflict resolution policy (i.e. programmers

cannot change between multiple options after creating an instance of the data type).

CRDTs are useful for ensuring convergence, but this guarantee is provided for each

individual piece of data. A consequence of this property is that it is extremely challenging

to create and maintain application invariants which involve multiple pieces of data. This

means that only a subset of the application invariants that are able to be modeled in a

relational database can actually be guaranteed within a distributed key-value store. This

is not a consequence of the use of CRDTs, but instead is a limitation of possibilities when

a particular database chooses to be available under a network partition, as is the case of

virtually every database providing CRDTs.

2.6 Summary

Benchmarking database systems is useful for developers to understand which system

offers the best performance while also considering other relevant features. There are

several database benchmarks available for relational database systems, and the most

popular performance measurement systems model some application that is built fol-

lowing realistic data access patterns. These database benchmarks are available for re-

lational databases, but the choice becomes limited for NoSQL databases, which mainly

rely on synthetic benchmarks in order to determine performance. In the next chapter,

we present our benchmark, FMKe, which addresses the lack of realistic benchmarks for

NoSQL databases.
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3
The FMKe Benchmark

In this chapter we present our benchmark, FMKe, which addresses the lack of tools for

performance evaluation in distributed key-value stores. We first give a brief overview in

Section 3.1 describing the use case and how it is based on a real application in production

in Denmark. FMKe’s architecture is described in Section 3.2 In Section 3.5 we list the

main operations required to implement the benchmark. An analysis of the consistency

requirements to run the FMKe benchmark is made in Section 3.6 and in Section 3.7 we

enumerate a smaller subset of operations which are actually used in the main workload.

3.1 Overview

FMKe is a OLTP benchmark specifically designed for distributed key-value stores. From

the benchmarks studied in Chapter 2, FMKe stands out as a novel option for NoSQL

databases. It is modeled after a real application using a Riak cluster, and since the work-

loads are based in system traces of the real FMK system, we present it as a realistic bench-

mark. To the best of our knowledge FMKe is the first realistic benchmark for this type of

databases, and we make it possible to extend support for other types of systems, allow-

ing for a more comprehensive performance study to be performed of different databases

using multiple configurations and deployment scenarios.

The benchmark is based on a subsystem of the Fælles Medicinkort (FMK), an initiative

related to the Danish National Joint Medicine Card which is responsible for managing

medical information about prescriptions for the whole country. In this system, patient

records are stored along with prescriptions and information about prescribing doctors,

pharmacies that dispense prescriptions and hospitals and other treatment facilities where

prescriptions can be emitted from. In the full FMK system, there are other entities

such as treatments (involving patients, physicians and prescriptions) and events that can
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occur sporadically or in the context of a treatment. Figure 3.1 presents an entity-relation

diagram that models FMK, providing a more comprehensive view of how the different

entities relate between themselves.

Figure 3.1: FMK Entity-Relation Diagram

3.2 Architecture

FMKe needs to be able to extract meaningful performance metrics from database manage-

ment systems. When designing the benchmark, we decided to structure it as 3 different

components: a data storage component, an application server, and finally, a workload

generation component. Figure 3.2 illustrates how these three components interact with

each other.

A more in-depth explanation of each component is required to better understand

some of our decisions:

• Database: This is in essence the System Under Test (SUT). It can be a single instance

of a database or a geo-distributed cluster. No assumptions are made on what type

of database is used, what communication protocol exists between the application

server and the database instances, or any other configuration detail.
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Figure 3.2: FMKe Architecture

Communication between the application server and the database is performed how-

ever specified in a driver module written in Erlang. We made this decision as there

may be database systems that use binary protocols to communicate with clients,

others may expose an HTTP interface or another unpredicted communication mean.

This way we rely on client libraries to be available and on programmers to write

these database drivers in order to support them, yet the trade-off here is that we are

able to support virtually any database system.

• Application Server: This is the main component since it abstracts the database

layer and provides a uniform interface of application-level operations. Queries and

operations may be performed over RPC calls or via an exposed REST interface that

allows for the manipulation of the FMKe entities.

The application server can be connected in a series of configurations ranging from

a single database instance to an entire cluster. The idea is that for very large scale

clusters the application server can become the performance bottleneck, and in these

cases more instances of the application server can be launched so that load is bal-

anced among them in order to reach peak throughput numbers.

• Workload Generation Tool: The workload generation tool is a modified version

of a popular Erlang load generation tool called Basho Bench. This tool is highly

customizable and is able to generate high levels of load, measure throughput and

latency and also contains scripts to generate result graphs which include several

latency percentiles and latency and throughput plots.

One of the configurable parameters is the number of client processes that gener-

ate load on the application server. Using incrementally bigger numbers on this

parameter allows for multiple performance readings that should show increased

throughput as the number of client processes grows until the peak throughput is
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Operation Frequency
Get pharmacy prescriptions* 27%
Get prescription medication* 27%
Get staff prescriptions* 14%
Create prescription 8%
Get processed prescriptions* 7%
Process prescription 4%
Update prescription medication 4%

Table 3.1: FMK operation frequency. Operations marked with * are read-only.

reached, at which point the latency values will begin increasing along with some

throughput loss (due to queue effect).

3.3 Benchmark Design

There are several reports of companies using NoSQL databases in large deployments [11,

14, 21]. These deployments are a good indicator of the performance and stability that

NoSQL databases have managed to attain over time, but there has been little effort to

disclose workload details of these production applications. Realistic benchmarks can

be constructed from system logs or statistics by properly extracting workload patterns,

taking appropriate precautions to remove any personally identifiable information and

any references to such information.

As research progressed in the European Project SyncFree, there was a need for evalu-

ating AntidoteDB and comparing it to similar databases. One of the industrial partners

of the project, Trifork, managed a large production application using a NoSQL database

for data persistence in the medical industry. In order to produce a realistic workload with

which to benchmark AntidoteDB, we communicated with people at Trifork in order to

understand the system operations that were in place as well as some minor details about

the deployment. We obtained anonymised traces of the system with a generic description

of the types of operations that were being performed. This yielded an operation frequency

that is depicted in Table 3.1.

Interestingly, during a time interval of one month where the system traces were sam-

pled, there was only vestigial evidence of operation executions relating to treatments and

events depicted in the Entity-Relationship diagram (Figure 3.1), so in the implementa-

tion of the benchmark these entities were left out. Analyzing Table 3.1 also provides

some insight onto the type of operations performed in the system, as all of them relate

to prescriptions in some way. According to Entity-Relationship diagram, prescriptions

are relationships between three entities: patients, pharmacies and doctors. Therefore,

the operations that compose the workload rely on existing records of these three pri-

mary entities implicitly (i.e. in order to run a workload based on Table 3.1, the database

needs to be previously populated with patient, doctor and pharmacy records). To emulate
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the behavior of the real system, the implementation of our benchmark makes the same

assumption.

The remaining components of the benchmark and the design decisions associated

with each component are described in the following sections. In Section 3.4 we discuss

several data models and assess the most adequate models to be incorporated into the

benchmark implementation. Then, in Section 3.5 we discuss which application level

operations are required to obtain a similar level of functionality as the real system and

present the pseudocode specification for a particular data model. Finally, in Section 3.7,

we return to the operations listed in Table 3.1 and discuss their combination to complete

the workload specification.

3.4 Data Model

FMKe is a system that manages medical information about patients. In this domain there

is a need to keep records for pharmacies, treatment facilities, patients, and prescriptions.

All entities are referenced by their ID and contain some other identification information

such as a name and an address. For medical personnel a “Speciality” attribute is stored

to enable distinctions between physicians, nurses, surgeon, etc. In the case of treatment

facilities, there is also a need to distinguish between hospitals and local treatment centers

which is done with the “Type” attribute. Prescriptions are in essence a relation between

several entities that itself contain its own attributes. Information about what drugs have

been prescribed and when the medication was dispensed is also required. A medical

prescription within the FMKe system can be in one of two states: open, meaning that a

qualified medical professional has prescribed drugs to a patient and this prescription has

yet to be fulfilled at a pharmacy, and closed, meaning that the patient has obtained the

prescribed drugs at a specific pharmacy. While the prescription is in the open state, the

prescribed drugs can be changed, but after moving to the closed state (i.e. after being

processed) no further changes are allowed. The prescription state is tracked through the

“DateProcessed” attribute. Table 3.2 lists all attributes of FMKe entities.

Entity Attributes
Patient Id, Name, Address, Prescriptions

Pharmacy Id, Name, Address, Prescriptions
Treatment

Facility
Id, Name, Address, Type

Medical Staff Id, Name, Address, Speciality, Prescriptions
Prescription Id, Patient Id, Pharmacy Id, Prescriber Id, Date of Prescription, Date

of Processing, Drugs

Table 3.2: FMKe Entity Attributes
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3.4.1 Relational Data Model

Since key-value stores typically do not support the relational model they thus require

using a denormalised data model. To explain how we got to our working version of the

data model for key-value stores, we first present an equivalent SQL model that is able

to capture every piece of information required and also includes the types of constraints

that would be used on a relational database management system.

Listing 3.1: FMKe Table Creation SQL Statements

1 CREATE TABLE IF NOT EXISTS patients (

2 ID int,

3 Name text NOT NULL,

4 Address text NOT NULL,

5 PRIMARY KEY (ID)

6 );

7

8 CREATE TABLE IF NOT EXISTS pharmacies (

9 ID int,

10 Name text NOT NULL,

11 Address text NOT NULL,

12 PRIMARY KEY (ID)

13 );

14

15 CREATE TABLE IF NOT EXISTS medical_staff (

16 ID int,

17 Name text NOT NULL,

18 Address text NOT NULL,

19 Speciality text NOT NULL,

20 PRIMARY KEY (ID)

21 );

22

23 CREATE TABLE IF NOT EXISTS treatment_facilities (

24 ID int,

25 Name text NOT NULL,

26 Address text NOT NULL,

27 Type text NOT NULL,

28 PRIMARY KEY (ID)

29 );

30

31 CREATE TABLE IF NOT EXISTS prescriptions (

32 ID int,

33 PatID int NOT NULL REFERENCES patients(ID) ON DELETE CASCADE,

34 DocID int NOT NULL REFERENCES medical_staff(ID) ON DELETE CASCADE,

35 PharmID int NOT NULL REFERENCES pharmacies(ID) ON DELETE CASCADE,

36 Drugs text[] NOT NULL,

37 DatePrescribed datetime NOT NULL,

38 DateProcessed datetime,

39 PRIMARY KEY (ID)

40 );
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Listing 3.1 gives an example of how the FMKe data model would look like in a re-

lational database model, taking into account the possibility of having multi-value at-

tributes required to store multiple drug names in the prescriptions table. Not all rela-

tional databases support multi-value attributes, and in those cases an additional prescrip-
tion_drugs table could be created in order to store prescription drugs.

3.4.2 Denormalised Data Model

By losing the assumptions and guarantees provided by the relational data model we

can no longer expect data properties such as referential integrity. This poses a design

challenge on how to ensure that the information remains consistent from an applica-

tion standpoint, ensuring that potentially conflicting operations do not create incorrect

states. When adapting the relational data model to a denormalised data model we it-

erated through several versions which all seemed to allow anomalies depending on the

feature set of the storage systems.
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Figure 3.3: Nested Data Model Example: Patient Prescription

Figure 3.3 gives a visual representation of how prescriptions are nested inside other

entities, such as patients, using the relational data model. In order to fetch the patient
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prescriptions, only a read operation is required to the patient key. Typically, this increased

state size results in worse performance, as we detail in the following section.
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Figure 3.4: Denormalized Data Model Example: Patient Prescription

Figure 3.4 represents an alternative approach to the nested data model, where instead

of storing entire prescriptions inside patient records, a list of prescription keys is stored

instead. This vastly reduces the record size for patients, especially for patients with a

significant number of associated prescriptions.

3.4.3 Data Model Performance Comparison

FMKe has a generic driver for the ETS database, mostly used for testing, since ETS is a

key-value store that is built-in to Erlang. The ETS driver implements both the nested and

denormalized data models, so we ran a small experiment to determine which data model

yields the best performance.

Figure 3.5 presents the performance difference between the two data models for the

same database - Erlang’s built-in key-value store as a throughput latency graph. These

graphs aggregate data about multiple benchmark executions, as each data point in the

graph represents a test execution with a certain amount of clients. Typically, a vertical

lines in this graph imply that the system has reached its peak performance, and latency
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Figure 3.5: Performance comparison of the nested and denormalized data models for the
ETS built-in key-value store

increases after that point, since requests that cannot be instantly processed need to be

queued, increasing the response times.

There is a clear difference in the performance and latency between the two data models

as indicated in Figure 3.5, favoring the denormalized model. Based on this result, which

was also later confirmed by the Riak generic driver, we stopped developing drivers based

on the nested data model.

3.5 Application Level Operations

The application server must implement a set of operations that closely model the applica-

tion described in Section 3.1. This section presents the operations implemented by FMKe,

their pseudocode for implementation in key-value storage systems and equivalent SQL

queries. We provide an SQL query equivalent to the pseudocode for two main reasons:

firstly it consolidates the idea presented in algorithms, and it also provides a specification

for implementing an FMKe driver for a relational database. This is one of the possible

extensions of our work which we further discuss in Chapter 6.

As mentioned previously, FMKe is primarily a benchmark for distributed key-value

stores. In the following subsections we describe algorithms for implementing the appli-

cation level operations, which assume the existence of read and write primitives on the

target storage system. Furthermore, we expect that either there is explicit support for

name-spacing or the read andwrite operations can be extended to support it (for example,

by prefixing the key with the entity name).

As detailed in Se 3.4.3, we determined that the nested data model results in a signifi-

cant performance overhead. For the remainder of this section, pseudocode is presented
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only for the default denormalized data model.

3.5.1 Create Patient

This operation creates a patient if it not present in the database:

Algorithm 1 Create Patient

1: procedure create_patient(id,name,address)
2: p← read(patient, id)
3: if p = nil then . We can add the patient
4: p← {id,name,address}
5: write(patient, id,p)
6: return ok . Operation was successful
7: else
8: return {error,patient_id_taken} . Patient already exists

If the target system supports the relational model, the above algorithm is equivalent

to the following SQL transaction:

Listing 3.2: Create Patient SQL Transaction

1 BEGIN TRANSACTION

2 INSERT INTO patients (ID, Name, Address)

3 VALUES (id, name, address)

4 COMMIT TRANSACTION;

Since “ID” is defined as a primary key of the patients table, the transaction would

abort automatically if a tuple with the same “ID” value was already present.

3.5.2 Create Pharmacy

This operation is analogous to Create Patient within the pharmacy namespace:

Algorithm 2 Create Pharmacy

1: procedure create_pharmacy(id,name,address)
2: p← read(pharmacy, id)
3: if p = nil then . We can add the pharmacy
4: p← {id,name,address}
5: write(pharmacy, id,p)
6: return ok . Operation was successful
7: else
8: return {error,pharmacy_id_taken} . Pharmacy already exists

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.3: Create Pharmacy SQL Transaction

1 BEGIN TRANSACTION

2 INSERT INTO pharmacies (ID, Name, Address)
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3 VALUES (id, name, address)

4 COMMIT TRANSACTION;

3.5.3 Create Facility

This operation is analogous to Create Patient within the facility namespace:

Algorithm 3 Create Facility

1: procedure create_facility(id,name,address, type)
2: f ← read(f acility, id)
3: if f = nil then . We can add the facility
4: f ← {id,name,address, type}
5: write(f acility, id, f )
6: return ok . Operation was successful
7: else
8: return {error, f acility_id_taken} . Facility already exists

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.4: Create Facility SQL Transaction

1 BEGIN TRANSACTION

2 INSERT INTO treatment_facilities (ID, Name, Address, Type)

3 VALUES (id, name, address, type)

4 COMMIT TRANSACTION;

3.5.4 Create Medical Staff

This operation is analogous to Create Patient within the staff namespace:

Algorithm 4 Create Staff

1: procedure create_staff(id,name,address, speciality)
2: s← read(staf f , id)
3: if s = nil then . We can add the staff member
4: s← {id,name,address, speciality}
5: write(staf f , id, s)
6: return ok . Operation was successful
7: else
8: return {error, staf f _id_taken} . Staff member already exists

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.5: Create Staff SQL Transaction

1 BEGIN TRANSACTION

2 INSERT INTO medical_staff (ID, Name, Address, Speciality)

3 VALUES (id, name, address, speciality)

4 COMMIT TRANSACTION;
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3.5.5 Create Prescription

This operation creates a prescription associating a specific patient, pharmacy, medical

professional and contains some additional information about the time of creation and

what drugs are prescribed. Algorithm 5 describes a possible implementation of the

operation where “drugs” is assumed to be a list of drug names, which are specifically not

validated to be correct as per the real FMK system.

Algorithm 5 Create Prescription

1: procedure create_prescription(id,pat_id,doc_id,pharm_id, timestamp,drugs)
2: presc← read(prescription, id)
3: if presc = nil then . We can add proceed with creating the prescription
4: pat← read(patient,pat_id)
5: doc← read(staf f ,doc_id)
6: pharm← read(pharmacy,pharm_id)
7: if pat = nil then . Invalid patient ID
8: return {error,no_such_patient}
9: else if doc = nil then . Invalid staff ID

10: return {error,no_such_staf f }
11: else if pharm = nil then . Invalid pharmacy ID
12: return {error,no_such_pharmacy}
13: else
14: presc← {id,pat_id,doc_id,pharm_id, timestamp,drugs}
15: pat_prescs← read(patientprescriptions,pat_id)
16: doc_prescs← read(staf fprescriptions,doc_id)
17: pharm_prescs← read(pharmacyprescriptions,pharm_id)
18: write(prescription, id,presc)
19: write(patient_prescriptions,pat_id,append(id,pat_prescs))
20: write(staf f _prescriptions,doc_id,append(id,doc_prescs))
21: write(pharmacy_prescriptions,pharm_id,append(id,pharm_prescs))
22: return ok . Operation was successful

23: else
24: return {error,prescription_id_taken} . Prescription ID taken

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.6: Create Prescription Stored Procedure

1 BEGIN TRANSACTION

2 INSERT INTO prescriptions (ID, PatID, DocID, PharmID, DatePrescribed, Drugs),

3 VALUES (id, pat_id, doc_id, pharm_id, now(), drugs)

4 COMMIT TRANSACTION;

In listing 3.6 we take advantage of the previously assumed support for multi-value

attributes. Were this particular feature not available on a target storage system, we would

need the prescription_drugs table and would require as many INSERT statements to this

table as there were drugs in the prescription. These INSERT statements would thus be

considered as additional operations of the transaction depicted in this listing.
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3.5.6 Get Patient By Id

This is a simple read operation that fetches a patient record by its “ID” field. The pseu-

docode for this operation is described in algorithm 6.

Algorithm 6 Get Patient By Id

1: procedure get_patient_by_id(id)
2: patient← read(patient, id)
3: if patient = nil then
4: return {error,no_such_patient}
5: else
6: return patient

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.7: Get Patient By Id SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM patients WHERE ID = id

3 COMMIT TRANSACTION;

3.5.7 Get Pharmacy By Id

This operation is analogous to Get Patient By Id within the patient namespace:

Algorithm 7 Get Pharmacy By Id

1: procedure get_pharmacy_by_id(id)
2: pharmacy← read(pharmacy, id)
3: if pharmacy = nil then
4: return {error,no_such_pharmacy}
5: else
6: return pharmacy

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.8: Get Pharmacy By Id SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM pharmacies WHERE ID = id

3 COMMIT TRANSACTION;
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3.5.8 Get Facility By Id

This operation is analogous to Get Patient By Id within the facility namespace:

Algorithm 8 Get Facility By Id

1: procedure get_facility_by_id(id)
2: f acility← read(f acility, id)
3: if f acility = nil then
4: return {error,no_such_f acility}
5: else
6: return f acility

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.9: Get Facility By Id SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM facilities WHERE ID = id

3 COMMIT TRANSACTION;

3.5.9 Get Staff By Id

This operation is analogous to Get Patient By Id within the staff namespace:

Algorithm 9 Get Staff By Id

1: procedure get_staff_by_id(id)
2: staf f ← read(staf f , id)
3: if staf f = nil then
4: return {error,no_such_staf f }
5: else
6: return staf f

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.10: Get Staff By Id SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM medical_staff WHERE ID = id

3 COMMIT TRANSACTION;
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3.5.10 Get Prescription By Id

This operation is analogous to Get Patient By Id within the prescription namespace:

Algorithm 10 Get Prescription By Id

1: procedure get_prescription_by_id(id)
2: prescription← read(prescription, id)
3: if prescription = nil then
4: return {error,no_such_prescription}
5: else
6: return prescription

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.11: Get Prescription By Id SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM prescriptions WHERE ID = id

3 COMMIT TRANSACTION;

3.5.11 Get Pharmacy Prescriptions

This operation returns every prescription record that is associated with a specific phar-

macy, independently of status.

Algorithm 11 Get Pharmacy Prescriptions

1: procedure get_pharmacy_prescriptions(id)
2: pharmacy← read(pharmacy, id)
3: if pharmacy = nil then
4: return {error,no_such_pharmacy}
5: else
6: pharm_prescs← read(pharmacy_prescriptions, id)
7: prescs_read← []
8: for presc_id in pharm_prescs do
9: append(read(prescription, presc_id), prescs_read)

10: return prescs_read

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.12: Get Pharmacy Prescriptions SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM prescriptions WHERE PharmID = id

3 COMMIT TRANSACTION;
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3.5.12 Get Processed Pharmacy Prescriptions

This operation returns every prescription record that is associated with a specific phar-

macy that have already been dispensed to patients.

Algorithm 12 Get Processed Pharmacy Prescriptions

1: procedure get_processed_pharmacy_prescriptions(id)
2: pharmacy← read(pharmacy, id)
3: if pharmacy = nil then
4: return {error,no_such_pharmacy}
5: else
6: pharm_prescs← read(pharmacy_prescriptions, id)
7: proc_prescs← []
8: for presc_id in pharm_prescs do
9: presc← read(prescription,presc_id)

10: if presc.is_processed then
11: append(presc, proc_prescs)

12: return proc_prescs

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.13: Get Processed Pharmacy Prescriptions SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM prescriptions WHERE PharmID = id

3 COMMIT TRANSACTION;

3.5.13 Get Prescription Medication

This operation returns the list of drugs of a specific prescription.

Algorithm 13 Get Prescription Medication

1: procedure get_prescription_medication(id)
2: prescription← read(prescription, id)
3: if prescription = nil then
4: return {error,no_such_prescription}
5: else
6: return prescription.drugs

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.14: Get Prescription Medication SQL Transaction

1 BEGIN TRANSACTION

2 SELECT drugs FROM prescriptions WHERE ID = id

3 COMMIT TRANSACTION;
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3.5.14 Get Staff Prescriptions

This operation returns every prescription record that is associated with a specific phar-

macy, independently of status.

Algorithm 14 Get Staff Prescriptions

1: procedure get_staff_prescriptions(id)
2: doc← read(staf f , id)
3: if doc = nil then
4: return {error,no_such_staf f }
5: else
6: staf f _prescs← read(staf f _prescriptions, id)
7: prescs_read← []
8: for presc_id in staff_prescs do
9: append(read(prescription, presc_id), prescs_read)

10: return prescs_read

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.15: Get Staff Prescriptions SQL Transaction

1 BEGIN TRANSACTION

2 SELECT * FROM prescriptions WHERE DocID = id

3 COMMIT TRANSACTION;

3.5.15 Update Patient Details

This operation updates several basic patient attributes.

Algorithm 15 Update Patient Details

1: procedure update_patient_details(id,name,address)
2: pat← read(patient, id)
3: if pat = nil then
4: return {error,no_such_patient}
5: else
6: pat.name← name
7: pat.address← address
8: write(patient, id,pat)
9: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.16: Update Patient Details SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE patients

3 SET Name = name, Address = address

4 WHERE ID = id

5 COMMIT TRANSACTION;
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3.5.16 Update Pharmacy Details

This operation is analogous to Update Patient Details within the pharmacy namespace:

Algorithm 16 Update Pharmacy Details

1: procedure update_pharmacy_details(id,name,address)
2: pharm← read(pharmacy, id)
3: if pharm = nil then
4: return {error,no_such_pharmacy}
5: else
6: pharm.name← name
7: pharm.address← address
8: write(pharmacy, id,pharm)
9: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.17: Update Pharmacy Details SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE pharmacies

3 SET Name = name, Address = address

4 WHERE ID = id

5 COMMIT TRANSACTION;

3.5.17 Update Facility Details

This operation is analogous to Update Patient Details within the facility namespace:

Algorithm 17 Update Facility Details

1: procedure update_facility_details(id,name,address, type)
2: f ac← read(f acility, id)
3: if f ac = nil then
4: return {error,no_such_f acility}
5: else
6: f ac.name← name
7: f ac.address← address
8: f ac.type← type
9: write(f acility, id, f ac)

10: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.18: Update Facility Details SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE treatment_facilities

3 SET Name = name, Address = address, Type = type

4 WHERE ID = id

5 COMMIT TRANSACTION;
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3.5.18 Update Staff Details

This operation is analogous to Update Patient Details within the staff namespace:

Algorithm 18 Update Staff Details

1: procedure update_staff_details(id,name,address, speciality)
2: doc← read(staf f , id)
3: if doc = nil then
4: return {error,no_such_staf f }
5: else
6: doc.name← name
7: doc.address← address
8: doc.speciality← speciality
9: write(staf f , id,doc)

10: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.19: Update Staff Details SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE medicall_staff

3 SET Name = name, Address = address, Speciality = speciality

4 WHERE ID = id

5 COMMIT TRANSACTION;

3.5.19 Update Prescription Medication

This operation adds drugs to a prescription record.

Algorithm 19 Update Prescription Medication

1: procedure update_prescription_medication(id,drugs)
2: presc← read(prescription, id)
3: if presc = nil then
4: return {error,no_such_prescription}
5: else if presc.date_processed , nil then
6: return {error,prescription_already_processed}
7: else
8: presc.drugs← union(presc.drugs,drugs)
9: write(prescription, id,presc)

10: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.20: Update Prescription Medication SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE prescriptions

3 SET Drugs = NewDrugs

4 WHERE ID = id AND DateProcessed = null
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5 COMMIT TRANSACTION;

3.5.20 Process Prescription

This operation transitions a specific prescription from the open to the closed state.

Algorithm 20 Process Prescription

1: procedure process_prescription(id,date)
2: presc← read(prescription, id)
3: if presc = nil then
4: return {error,no_such_prescription}
5: else if presc.date_processed , nil then
6: return {error,prescription_already_processed}
7: else
8: presc.date_processed← date
9: write(prescription, id,presc)

10: return ok

The above algorithm is conceptually equivalent to the following SQL transaction:

Listing 3.21: Process Prescription SQL Transaction

1 BEGIN TRANSACTION

2 UPDATE prescriptions

3 SET DateProcessed = getdate()

4 WHERE ID = id AND DateProcessed = null

5 COMMIT TRANSACTION;

3.6 Consistency Requirements Analysis

Like hinted in the previous section, the FMKe application requires some data consistency

guarantees in order to keep a correct state. Some of the data models presented allow for

anomalies, depending on the features offered by the storage system.

While most operations in the FMKe system are self-contained in the sense that they

modify or create a single key, some operations involve more intricate interactions where

multiple keys are read from or written to. Every operation that either creates or mod-

ifies a prescription record in the FMKe system will read and write multiple keys since

prescriptions are explicitly modelled as a relation between multiple entities (in this case

patients, pharmacies and doctors). The following operations can possibly conflict with

each other:

• Create Prescription

• Update Prescription Medication

• Process Prescription
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It is very unlikely in the context of the application that a conflicting scheduling of

Create Prescription with either Update Prescription Medication or Process Prescription

appears. Thus, Update Prescription Medication (3.5.19) and Process Prescription (3.5.20)

are a usual source of suspicion for witnessed anomalies.

The anomalies happen because the data model uses the “date_processed” attribute

as a mechanism of figuring out if the prescription is in the open or closed states. If

there are concurrent operations that change “date_processed” and add more drugs to the

prescription, it will appear that the prescription is in the closed state, despite the newly

added drugs not having been dispensed. There are multiple ways of fixing this issue,

which again depend of the features offered by the storage system.

One way of fixing this incorrect state is by adding a specific “is_processed” flag as a

CRDT attribute of a prescription, specifying the “disabled wins” conflict resolution policy

while making a small change in the algorithm for the Update Prescription Medication.

To ensure the prescription is never in the closed state when there is medication that

was still not given to the patient, Process Prescription must set the flag, while Update

Prescription Medication will disable the flag. In the event of the previously described

concurrent scheduling, the final state of the flag will be disabled, indicating that there

are medication that has not yet been given to the patient. With this iteration we can avoid

incorrect application state, but now we have lost information about the prescription

object. Previously we had considered that the prescription was fully dispensed to the

patient without the possibility of obtaining a subset of the medication, but with this

iteration of the design this is possible. If we want to maintain information about which

medicine has already been dispensed to the patient, we would have to keep a flag for

every drug in the prescription, indicating whether it had already been dispensed. Since

we can obtain correct application behaviour with a single flag, we do not explore this

possibility.

3.7 Workload

A workload definition is a list of operations, coupled with frequencies or percentages,

that allows a load generation tool to execute operations according to the distribution or

frequency described in the definition.

For the definition of our workload, we obtained anonymised system traces from the

real FMK system in production in Denmark. After defining the system operations, the

traces showed what operations were called in a given time interval and how many times

each one was called. This allowed us to define a workload that is based upon real traces

of the FMK system and use it to generate load on a FMKe application server.

After looking at the system traces, it became clear that only a very small subset of

operations were actually used frequently. Interestingly, throughout the extended time

interval of the traces, no entities aside from prescriptions were created, indicating that

the every other type of entity was already populated in the database and that the FMK
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Operation Frequency
Get pharmacy prescriptions* 27%
Get prescription medication* 27%
Get staff prescriptions* 14%
Create prescription 8%
Get processed prescriptions* 7%
Process prescription 4%
Update prescription medication 4%

Table 3.3: FMKe operations, along with their frequency. Operations marked with * are
read-only.

system was primarily focused on the prescriptions, a subset of what we expected to see

in terms of medical information.

Table 3.3 lists the specific benchmark operations along with their frequency. The

remaining FMKe system operations were in essence non-existent in the traces, with a

few exceptions (Create Patient) that still had vestigial or negligible frequency. There are

some interesting aspects to this workload definition: firstly, we can clearly see that the

production system revolves completely about prescription records, since every operation

is related with prescriptions in some way. Interestingly, 75% of the operations performed

on the system are going to be read only. The rest of the operations solely concern with

the creation and modification of prescription records, albeit with a smaller importance.

Before the implementation we needed to define the semantics of creating a prescrip-

tion, since it is an entity that is linked to others. Namely, we wanted to answer the

following questions:

• How do we choose the entities which are going to be linked to the prescriptions?

• How many drugs does a prescription contain at the time of creation?

• How many times does a prescription get updated over time?

Answers to these questions are not based on the original system since we could not get

access to that information without risking the anonymity of the data. Instead we made

some decisions at the time of modelling the system in an attempt to replicate what we

extrapolate could be the real usage pattern of the production system:

• Prescriptions follow a Zipfian distribution on all linked entities. This means that,

for patients, there will be a small number of patients that have a large amount of

prescriptions and a very large number of patients that will have only a few pre-

scriptions. The same heuristic is followed for pharmacy prescriptions and doctor

prescriptions.

• Prescriptions contain a random amount of drugs that follow a uniform distribution

ranging from 1 to 5.
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• Prescriptions are randomly selected for update or processing, but once a prescrip-

tion is processed it can no longer be eligible for update.

3.8 Summary

We implemented, to the best of our knowledge, the first benchmark for NoSQL databases

that is based on traces of a real application. The architecture for the benchmark consists

in an application server that is able to connect to different databases, and a workload

generator tool that generates load on the application server using HTTP requests. The

workload of the real system assumes that there is data in the
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4
FMKe Implementation

In this chapter we present our implementation of FMKe in Erlang, which is available

as a set of open source software packages[23, 25, 33]. These packages contain the logic

needed to run the components described in Section 3.2, which include: an application

server, a load generation tool, and other utilities required to compile results, automate

testing, and orchestrate deployments.

An early version of this benchmark was used in 2017 for performing the evalua-

tion of the Antidote system for the final deliverable of the SyncFree European Research

project, with geo-distributed deployments. A short presentation of the demonstration

was recorded and is available on YouTube [24]. The interested reader can refer to that

video as an example of its usage. Initially FMKe was designed purely as performance eval-

uation tool for the AntidoteDB database, but after we completed the prototype it became

necessary to compare AntidoteDB’s performance with other databases, and significant

changes were made to enable the extensibility of easy to implement and self-contained

database drivers.

Section 4.1 provides an overview of the provided software packages, describing each

component in detail. Then, in Section 4.2, we describe our approach in designing the

Erlang interface for the driver implementation, with particular focus in our decisions

to make it extensible for other types of databases and also easy to implement. Finally

in Section 4.3 we list the storage systems which our implementation supports initially,

explaining why we decided to support these systems in the beginning.
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4.1 Software Packages

Our implementation of the FMKe benchmark is available as a set of code repositories,

each one encapsulating a single component in the FMKe architecture described in Sec-

tion 3.2. Some additional repositories are listed as additional packages since they assist

in some way with the execution and compilation of the performance measurements. The

repositories are all compatible with the latest version of Erlang at the time of writing

(Release 21) and incorporate Continuous Integration testing using TravisCI. Additionally,

every code repository includes self-contained usage instructions in a README file.

4.1.1 Application Server

The application server is the most important component in the FMKe benchmark since it

is responsible for establishing the connection to the storage systems. It must be extensible,

allow the implementation on other databases and also easy to use.

Our implementation of the application server contains approximately 11.000 lines of

code, includes Erlang’s optional type checker verification as well as unit and integration

tests for every supported database totaling 85% code coverage [23]. The code is struc-

tured as a modern Erlang project, using rebar3 as a build tool. Figure 4.1 lists the directory

tree seen from the repository root.

fmke

config/

include/

scripts/

src/

test/

Makefile

Figure 4.1: Application Server Directory Tree

We now provide a high level description of the contents of each directory:

• config: This folder includes several configuration files for benchmark definitions

and contains the fmke.config file, where several system settings are read from and

configured when the application server boots. We describe the content and structure

of this file in Section 4.1.1.1.

• include: this directory contains the application header files which define several

data types. In particular, this is where the application level records for the FMKe

entities are defined. Some databases have more complex driver implementations

and may require specific header files to improve code readability, these files also go

into the “include” directory.
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• scripts: There are several scripts available in this folder to increase automation of

the benchmark executions. Many of these are helper scripts that change a specific

option in the configuration file. There are also utility scripts for the local execution

of benchmarks (primarily for testing purposes) that are able to download the ad-

ditional components required to run the benchmarks, start up database instances

using Docker containers, run benchmarks, and finally compile and present the re-

sults in a single PNG file containing several latency and throughput values over

time.

• src: This directory contains the source files that follow Erlang module naming con-

ventions. The driver files are of particular importance, which are given the name

fmke_driver_DATABASE.erl where “DATABASE” is an identifier of the supported

storage system.

• test: All of the integration tests are put in this directory. Every time a code commit

is pushed to the FMKe repository, the TravisCI Continuous Integration tool runs

batches of tests against each of the supported databases. Each test batch consists

of starting up a database instance within a Docker container, launching an FMKe

server connected to the previously mentioned database instance, and performing a

comprehensive set of tests that verify the correct behavior of both the RPC and the

REST interfaces. Erlang encourages programmers to put simpler unit tests in each

module in order to increase code readability. There are dozens of unit tests spread

across the different FMKe modules which are submitted to the same validation step.

Finally, since Erlang can be considered a somewhat niche programming language

with a relatively small community, we want to provide ease of use when compiling and

running FMKe and we have created a Makefile with appropriate documentation, making

the compilation, testing and execution steps available as Makefile targets. For example,

running unit and integration tests can be performed simply by running make test in a

terminal when the current directory is the root of the FMKe repository.

4.1.1.1 The “fmke.config” File

FMKe already supports several different database systems. In order to load the correct

drivers to interact with a database, a series of parameters need to be configured, which is

performed in the fmke.config file inside the “config” directory. This file follows a typical Er-

lang configuration file format, with options being presented as named tuples. Listing 4.1

shows the contents of an example configuration file.

Listing 4.1: FMKe Configuration File

1 %% List of IP addresses where FMKe should try to connect at boot time.

2 {database_addresses , ["127.0.0.1"]}.

3

4 %% List of ports where FMKe should try to connect at boot time.
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5 {database_ports, [8087]}.

6

7 %% Target back end data store. This is required in order for FMKe to load the

8 %% correct drivers to connect to your desired data store. Please select a value

9 %% in the form of an Erlang atom (e.g. riak) or string (e.g. "riak").

10 {target_database, riak}.

11

12 %% Uses an optimized driver that implements the entire FMKe API.

13 %% Currently these are available for antidote, riak and redis.

14 % {optimized_driver , true}.

15

16 %% Changes the data model, if the available drivers support it.

17 %% For key-value stores, we consider the possible values to be nested or

18 %% non_nested, depending on whether the database keeps references to other

19 %% objects, or copies of other objects that must be updated on each update

20 %% to the original.

21 %% NOTE: Usually optimized drivers only support one data model

22 %% (the one that yields the best performance)

23 % {data_model, nested}.

24

25 %% When FMKe connects to the database you choose, it opens a pool of connections.

26 %% This parameter configures the connection pool size.

27 %% Please note that in deployments with connections to multiple back end nodes,

28 %% the number of connections will be equally shared among all nodes

29 %% Example: connecting FMKe to 2 nodes with a connection pool size of 30 will

30 %% open 30 connections to each database node for a total of 60.

31 {connection_pool_size , 30}.

32

33 %% The port on which the FMKe HTTP server binds to. Running on a system

34 %% reserved port (0-1023) will require superuser privileges.

35 {http_port, 9090}.

The most used and mandatory options are:

• database_addresses: A list of IP addresses where each database instance is running.

• database_port: A list of ports where each database instance is running. This list

can either have a one to one correspondence with the previous option or a single

value, in which case FMKe will connect to the same port for all IP addresses.

• target_database: This option selects which driver is loaded. Different drivers can

be implemented for the same data storage system, in which case this option is one

way to differentiate between drivers.

The remaining options have safe defaults but are used to obtain more fine grained

controls over the deployment and driver to be utilized in the benchmarks:

• optimized_driver: As explained in Section 4.2, drivers can either implement a very

simple key-value store interface (i.e. generic drivers) or be a more complex variant
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in which the entire FMKe interface must be implemented (i.e. optimised drivers).

This option allows for the switch between the two different driver types. If missing,

the default is to load the first matching driver for the selected database.

• data_model: In Section 3.4 we hinted at the possibility of having multiple data

models that could be used in the FMKe use case. The implemented drivers use two

different models which we named nested and non_nested, corresponding to whether,

for example, the database system stores copies of prescriptions inside patients and

other entities that that need to keep prescription information, or if they only store

references to those prescriptions (e.g. prescription IDs or even a list of prescription

keys), respectively.

• connection_pool_size: This option controls the number of connections that are

opened for each database node configured in the previous options. Depending on

the driver implementation, the value of this option can be ignored, for instance, if

the driver wants to manage connections itself.

• http_port: The port the FMKe HTTP server binds to. This option is useful when

launching multiple FMKe instances on the same machine, since only one server can

bind to a specific port.

• driver: Useful in cases where there are multiple drivers implemented for the same

database. The default driver for each database can be queried on the fmke_driver_config.

4.1.1.2 Additional Documentation

The FMKe repository contains a documentation Section as a “GitHub Wiki”. In this space,

several documents are available that explain what FMKe is and how to use it for every

supported database system. Furthermore, a driver implementation tutorial is available

to assist programmers in extending FMKe to work with more storage systems [1, 37, 41].

4.1.2 Load Generation Tool

Basho Bench is a benchmark utility built by Basho in 2010. As the company dwindled,

this tool became incompatible with modern Erlang versions despite its popularity. Since

Basho Bench is configurable and extensible, we made significant modifications to its

source code and released the end product as a separate package called Lasp Bench [33].

The work of restructuring Basho Bench was conducted in the context of a 2017 Google

Summer of Code project [32].

Figure 4.2 lists the directory tree of the workload generator. Inside the repository are

several directories and artifacts, of which the most important are:

• src: contains the source files for the workload generator, as well as the logic for im-

plementing the FMKe client. The client is implemented in the fmke_client module.
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fmke_client

examples/

src/

Makefile

Figure 4.2: Workload Generator Directory Tree

• examples: this folder contains several workload generation files that amount to all

the different client behaviors defined in the src directory.

The workload generator, Lasp Bench, runs the client operation and collects the through-

put and latency automatically. The performance results get collected into multiple CSV

files, that contain information about how many operations were successful within a cer-

tain time interval, as well as corresponding latencies, and the total number of operations

requested in that time interval.

Figure 4.3: Benchmark Result for AntidoteDB in a 4-node cluster with 32 clients

Figure 4.3 shows the compiled results that the client is able to generate. In it, the

highlighted graph plots throughput over time, making a distinction between successful
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and failed operations. Below it are very detailed latency statistics for each benchmark

operation, including mean, medium and several percentile latency values.

4.1.3 Database Population Utility

The workload described in Section 3.7 was based on a the analytics of the production

system FMK. Since FMK handles patient data, the operations in the workload implic-

itly assume that the database is populated with a particular data set. After speaking

with Kresten Krab of Trifork we were given a rough impression of the dimension of the

production dataset, so we designed our own based on the real one.

Since FMKe is especially useful to run comparative performance measurements, in-

serting the dataset into the databases would be a particularly arduous task to perform

manually. We designed and implemented a multi-threaded command-line application

that populates databases. To avoid having to duplicate driver code, in order to enable

population on every supported storage system, we perform the population step through

one or more running instances of the FMKe application server. This population tool

is available as a standalone git repository [25]. The repository contains thorough docu-

mentation of all available options and includes several examples in different deployment

scenarios.

4.2 FMKe Driver Interface

Designing and implementing an interface that would allow for extensibility while main-

taining an easy to use set of functions was a particularly challenging task. Different

key-value stores offer different functionality, and it was not trivial finding an interface

that fit every system. On one hand, programmers will get the best results out of database

drivers that implement the full FMKe interface, but this imposes an additional imple-

mentation effort we did not want to impose. Alternatively, a generic interface could be

provided with simple read/write interface, but this would negatively impact the perfor-

mance of systems with more advanced APIs (e.g. AntidoteDB allows for the reading and

writing of multiple keys within a single API call).

As we considered extending the support to a larger number of storage systems, we

quickly realised that we would not be able to provide a single universal interface. Instead,

we opted to provide both types of driver interfaces, which we detail in the following

subsections.

4.2.1 Generic Driver

This driver interface is supposed to offer programmers an easy way to test their desired

system if it is not yet supported, through the implementation of an Erlang module with a

simple interface containing a small set of functions:
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• start_driver

• stop_driver

• begin_transaction

• commit_transaction

• read

• write

There is an FMKe module that converts top level application requests into a trans-

action that depending on the operation may include multiple read and write calls. If a

system does not have transactional support, a simple empty response can be sent back,

and FMKe disregards the transactional context. This interface was the simplest we could

design that supported all types of systems while simultaneously maintaining a conceptu-

ally simple interface. There are multiple drivers of this kind already implemented using

this strategy, which in average contain approximately 100 lines of code.

We argue that this interface can allow programmers to very quickly obtain perfor-

mance measurements from their desired storage system, but we also acknowledge some

limitations to this approach. It is not known whether the performance results taken using

a generic driver can be directly compared to the results of a storage system using a driver

that implements the entire FMKe API. This is because the decomposition of application

level operations into read and write function calls yields a significantly larger and more

complex chain of function calls. In the future we will implement drivers that cover the

entire FMKe API as well as a generic drivers for a small set of storage systems and then

measure whether the performance overhead of using the generic approach is measurable

or significant.

4.2.2 Optimized Driver

As an alternative to generic drivers for database systems with more intricate client APIs,

we allow programmers to also implement a driver that fully covers the FMKe API. This

allows a more fine grained and flexible approach to each operation, where even the data

model can be changed. This type of drivers can be arbitrarily complex depending on

the data model and the algorithms used to fulfill each operation. Since they are highly

tailored to the storage system they are implementing, we refer to these drivers as optimized
drivers.

Since each operation described in Section 3.5 could be implemented with direct calls

to the storage system’s API, we consider this approach to contain a certain performance

advantage over the generic approach. Despite their potential performance advantage,

these drivers are significantly more complex to implement, not only because every oper-

ation needs to be implemented, but also because programmers need to ensure that the
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code they wrote is not susceptible to the types of anomalies described in the data model

that was chosen. On average, these driver types are 5 times longer than generic drivers

(approximately 500 lines of code).

Ideally we would be able to perform our comparative performance study with only

optimized drivers, since they would yield the most reliable performance numbers, but our

main focus in getting FMKe accepted as a new standard for the performance evaluation

of distributed key-value stores, and thus we need to provide an easier alternative for

programmers that does not involve implementing the entire API.

4.2.3 Driver Interface Comparison

We implemented both the generic and the optimized driver for Riak and decided to de-

termine what is the performance tradeoff when users implement generic drivers.
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Figure 4.4: Performance comparison of a simple and optimized drivers for the same
database

Figure 4.4 describes our results, which shows a clear performance benefit in imple-

menting an optimized driver. We suspect this performance overhead occurs because all

calls going to a generic module need to go through an adapter that converts application

level operations into read and write operations to submit to the generic drivers. While

were are not certain that the overhead present in the Riak generic driver would be simi-

lar for other databases, we decided to implement all further FMKe drivers as optimized

drivers
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4.3 Supported Systems

As we mentioned in the beginning of the chapter, FMKe was originally designed as a

performance measurement tool for the AntidoteDB database, so this was our first sup-

ported storage system after the significant refactor process that allowed different drivers

to be loaded and implemented for the same database. AntidoteDB was built on top of

Riak-core, one of the main distribution components of Riak-KV. Despite Riak-KV and

AntidoteDB sharing a core component, they vary wildly in the feature sets: AntidoteDB

has transactional support and an client API that allows for multiple operations to be per-

formed in a single call; Riak has mechanisms such as active anti-entropy and read repair

to control the divergence between server replicas and supports several storage engines.

Riak-KV’s driver was added shortly after AntidoteDB’s in order to compare throughput

and latency values.

Either AntidoteDB or Riak-KV can operate mainly on memory, at which point be-

comes interesting to compare with other in memory databases. For this end we chose

Redis, since it is a popular choice and it contains both in memory and disk-persisted con-

figurations. With several experimental dimensions to explore already, we also wanted to

add Cassandra as it is widely regarded as one of the most scalable NoSQL databases, and

it contains many similar features to both Riak and AntidoteDB that could be interesting

to compare.

4.4 Summary

Our implementation of the FMKe benchmark contains three components: an applica-

tion server, a workload generation tool, and a database population tool. All of these

components were written in Erlang and are publicly available. In the following chapter,

we will use this implementation to perform an experimental study that compares the

performance of the supported databases: AntidoteDB, Cassandra, Redis Cluster, and

Riak.
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5
Experimental Evaluation

In this chapter we present our experimental results using the implementation detailed

in Chapter 4. We first discuss the first practical application of FMKe to evaluate the

performance of AntidoteDB within the SyncFree European research project in Section 5.1,

and follow up with a subsequent comparative study of the performance of AntidoteDB,

Cassandra, Redis Cluster, and Riak in Section 5.2. This is, to the best of our knowledge,

the first comparative performance evaluation performed on distributed key-value storage

solutions using a realistic benchmark. We briefly mention some of the performance im-

provements made to the application server that were based on experimental observations

and scrutinize individual performance metrics for each database. We end this chapter

with a discussion about the validity and usefulness of these experiments to potential users

of these storage systems in Section 5.3.

5.1 AntidoteDB Performance Study

FMKe was first designed to be a performance evaluation tool for AntidoteDB, thus be-

coming the first supported data storage system. We explored several techniques and data

models to see what configurations yielded the best results and proceeded to evaluate

the performance of AntidoteDB in multiple environments. This section documents our

observations of several performance metrics, which are primarily focused on throughput

and scalability. Section 5.1.1 describes the testing environment in detail, followed by the

benchmark procedure in Section 5.1.2. After this, we present our results across different

deployment scenarios.
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5.1.1 Test Environment

We performed multiple tests on Amazon Web Services (AWS) [5] using on demand

“m3.xlarge” instances with 4 vCPUs, 15GiB RAM and 2 x 40 GiB SSD across the North

Virginia, Frankfurt and Ireland data-centers. In each experiment all instances used a

clean installation of Ubuntu 16.04 LTS 64-bit. Within each data-center instances were

spawned in the same Availability Zone.

Application 
server

Load 

Generator

AntidoteDB cluster

Application 
server

Application 
server

Load 

Generator

Load 

Generator

Figure 5.1: Architecture for a large single cluster experiment. AntidoteDB does not
replicate data in a single cluster.

Using only the “m3.xlarge” instance type implied using multiple instances to generate

sufficient load on the database servers. We accomplished this using the architecture

depicted in Figure 5.1. In this type of deployment, each application server is connected to

every node in the AntidoteDB cluster, and multiple instances of the application server can

be deployed. A load generator instance (the fmke_client package described in Section 4.1.2)

is created for each application server. These load generator instances will then generate

client requests on a single application application server.

On geo-replicated deployments, the architecture is identical to the one shown in

Figure 5.1, with the difference being on the AntidoteDB cluster formation, which is pre-

configured to replicate data from other clusters in different data-centers.
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5.1.2 Benchmark Procedure

The AntidoteDB instances are first started and configured into according to the specified

test deployment. Multiple application servers are then spawned and configured to main-

tain a sufficiently large connection pool to the database nodes. The size of the connection

pool is equal to the smallest power of 2 that is greater than or equal to the number of

expected clients. This means that for a specific test with 20 clients, the application server

is configured to have 32 open database connections.

The database nodes need to be populated prior to the workload generation phase, and

this is done by the fmke_populator package described in section 4.1.3, which is used to

insert multiple records into AntidoteDB through one or multiple application servers. The

following number of entities were populated into the database for these experiments:

• Facilities: 50

• Medical Staff: 20.000

• Patients: 1.000.000

• Pharmacies: 300

• Prescriptions: 10.000

Prescription records use references to patients, pharmacies and medical staff, and

thus need to be distributed realistically across the number of entities. We configured the

database population tool described in Section 4.1.3 to distribute prescriptions following

a uniform distribution for the pharmacies and medical staff. The distribution of prescrip-

tions across patients follows a Zipf distribution, meaning there will be a small number

of patients with a large number of prescriptions, and the vast majority will have few or

no prescriptions. From our observations, the population step takes up to 2 minutes to

complete. After the population step is performed on a geo-replicated deployment, a 30

minute idle period is given to allow for the replication and key distribution mechanisms

to reach a stable state. This idle period is skipped in single data-center configurations. To

start the experiments, all load generators are started at once with a certain number of pro-

cesses (depending on the experiment) and proceed to make requests on the application

servers for a 20 minute period.

Following the load generation phase, we used shell scripts to automatically extract

and compile the results of each individual experiment.

During the operation of the benchmark several modifications are made to the appli-

cation records added in the population stage. This means that between experiments,

AntidoteDB needs to be cleared of data and repopulated.
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5.1.3 Driver Versions

Similar to the results presented in Chapter 4 for the selection of a default data model,

we tested several key nesting techniques and other small changes to the data model,

regardless of the conservation of correct application state. We had four candidate driver

versions, whose performance is shown on Figure 5.2. Our first driver version, described

as “Base” in Figure 5.2, nested prescription objects inside the patients, pharmacies, and

medical staff records. We observed that as more prescriptions get added to the same

records, the throughput would decrease substantially. Our “Improv” version was an

attempt to modify the application server code to minimize the impact of nesting (mainly

by parallelizing read and write operations), but this did not translate into significantly

better performance.

Figure 5.2: Throughput over latency plot for different driver versions

We experimented with creating indexes to be persisted in the database itself, to create

prescription references using these indexes. With respect to AntidoteDB’s supported

types, we experimented with using CRDT sets and maps to represent the indexes. In gen-

eral, it seems that large CRDT objects, regardless of content (e.g. index, or a patient with

a large number of nested prescriptions), make data access significantly slower. Avoid-

ing the nesting of prescription objects and using CRDTs to represent indexes resulted in

slower performance values than our base approach, so we did not explore this technique

on other systems. Finally, “Normal” is our representation of a normalized data model,

where the prescription keys of a given patient or pharmacy are stored in a list that is sep-

arate from the entity record. This corresponds to our “non nested” data model detailed

in Chapter 4, and became the default data model for driver implementations of other

storage systems.
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5.1.4 Cluster Size

Scalability is an important property to validate in a distributed database such as An-

tidoteDB. In our experimental study, we explored the performance implications that

correspond to two dimensions of scalability: the number of servers in a cluster within a

single data-center and also the number of data-centers. Figure 5.3 details the results for

a varying number of AntidoteDB instances in a single data-center cluster and Figure 5.4

explores the total system throughput when Antidote is deployed in a geo-replicated envi-

ronment.

Figure 5.3: Throughput over latency plots for varying cluster size

AntidoteDB is written in Erlang and is based on Riak Core, a framework for building

distributed systems. Riak Core is a popular option to build distributed systems using

Erlang, and its scalability limits are often mentioned in Erlang conference talks (e.g. 50-

60 nodes). We expect AntidoteDB to have the same theoretical scalability limits despite

having run smaller scale tests. As can be seen in Figure 5.3, an increase in the number

of nodes in the cluster does translate to an increase in throughput as expected, although

we did not observe linear scaling. One of the explanations for this lesser than expected

performance increase can be AntidoteDB’s transactional engine, which needs to be able

to detect write conflicts between all nodes in the cluster. As the number of nodes in the

cluster increases and operations get distributed among them, the overhead of synchroniz-

ing on write operations for a particular key can mitigate the performance benefit from

having more servers to handle requests.

5.1.5 Multiple Data-centers

Geo-replicated deployments are one of the main scenarios that favor lower levels of syn-

chronization like those typically present in distributed key-value stores. By using weak
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consistency models, less synchronization is required, and this translates into higher avail-

ability levels. Figure 5.4 illustrates that AntidoteDB has approximately linear scalability

with the number of data-centers.

Figure 5.4: Throughput over latency plot for varying number of data-centers

These experiments were run in the North Virginia, Frankfurt and Ireland datacenters.

In each data-center we used 8 AntidoteDB instances. Note that any of the deployed

clusters would still have the same throughput limit as shown in Figure 5.3, but the higher

throughput is justified by having an additional cluster where clients can submit requests.

The amount of synchronization between the data-centers also determines how scalable a

distributed database is. Unlike relational databases which would require synchronization

to ensure data consistency, AntidoteDB leverages CRDTs and eventual consistency to

maintain a low requirement for synchronization with other data-centers, which yields

the results seen in Figure 5.4.

5.2 Comparative Performance Study

This section documents our second batch of experiments which were performed after

completing the implementation of the database drivers for Cassandra, Redis Cluster,

and Riak. Our objective is to provide a direct comparison of what we understand to be

comparable configurations of different databases. There is an extremely large number

of different combinations that could be tried in our experiments in terms of database

features and configuration options, but due to time constraints we focused on a single

data-center configuration. Similarly to the previous section, we begin by detailing the

test environment and benchmark procedure for these particular experiments. Then, in

Section 5.2.3 we list the configuration options we selected for each distributed database.

Finally in Section 5.2.4 we provide an aggregate result which indicates how the different

storage systems compare between themselves.
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5.2.1 Test Environment

The experiments for this study were also performed on Amazon Web Services in the

Frankfurt data-center. For each experiment, the instances run a clean installation of

Ubuntu 18.04.1 LTS 64-bit. All instances were spawned in the same Availability Zone,

using the following instances types:

• c3.2xlarge: 8 vCPUs, 15 GiB RAM, 2 x 80 GiB SSD

• c3.8xlarge: 32 vCPUs, 60 GiB RAM, 2 x 320 GiB SSD

The “c3.2xlarge” instance types were used for the database servers while the “c3.8xlarge”

instances were used to run the application server and the client. Using more powerful

instance types for the application servers and workload generators provided a significant

advantage - we used far fewer instances to run the experiments, which not only lowered

the cost of running experiments but also simplified the deployment of large experiments

and the collection of results.

For each database, multiple experiments were run with 32, 64, 128, 256 and 512

clients. All obtained results are presented in Appendix for completeness. In the following

we focus our discussion on the results where each database shows maximum throughput.

5.2.2 Benchmark Procedure

The procedure for running the benchmark is identical to the previously described proce-

dure in Section 5.1.2.

5.2.3 Database Configuration

When deploying the database nodes and assembling the nodes into a cluster we followed

general recommendations according to each database’s official instruction. Some consid-

eration was needed to ensure a valid operation scenario for all databases: Riak does not

recommend deployments with less than 5 servers [57] and Redis Cluster uses a Master-

Slave replication strategy in order to provide fault tolerance [43].

Accommodating to the requirements of each tested database, we decided to use a 6-

node cluster to run all of our single data-center experiments, and selected configuration

options are detailed below for each data store.

5.2.3.1 AntidoteDB

The FMKe AntidoteDB driver fully utilizes AntidoteDB’s transactional support. Each

read or write operation that occurs in the context of an application level operation is

performed within an AntidoteDB transaction, meaning that multiple concurrent write

operations to the same key will cause one of the transactions to abort and the operation

to fail. If an operation fails, three additional retries are attempted before ultimately
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considering the operation as failed. In the population phase of the benchmark, only write

operations are performed, thus increasing the probability of concurrent write operations.

AntidoteDB’s validation of transactions is a parameter that is configurable at runtime,

and we disable it prior to the population step and enable it again after populating the

database.

5.2.3.2 Cassandra

Despite being a column based storage system, using Cassandra’s subset of SQL called

Cassandra Query Language (CQL) with FMKe requires some changes to the default data

model, which is a more intricate configuration process compared with the other supported

databases.

Cassandra uses keyspaces to partition data across several nodes. We defined the

following keyspace for FMKe:

Listing 5.1: Cassandra FMKe keyspace

1 CREATE KEYSPACE IF NOT EXISTS fmke

2 WITH REPLICATION = {

3 ’class’: ’SimpleStrategy’,

4 ’replication_factor’: 1

5 };

Choosing a replication factor of 1 implies that data is not replicated within the cluster

and instead will only be partitioned across all nodes. In Section 5.2.4.2 we discuss the

performance implications of foregoing replication in the context of the slightly altered

data model.

Cassandra’s subset of SQL (CQL) does not support referential integrity (i.e. foreign

keys) and thus does not provide a similar schema to the one presented on Listing 3.1.

Cassandra’s FMKe driver uses prepared statements that are validated at runtime by the

Cassandra client library, thus the database tables need to be created before the application

server is started. Appendix A lists the CQL commands that create the tables according to

the assumptions made in the driver.

5.2.3.3 Redis

Our configuration for Redis Cluster is based on the default Redis configuration. Taking

into consideration that FMKe emulates a real application that stores medical information,

we decided against using only in-memory storage and configure several data persistence

parameters:

• appendonly: This option enables an append-only operation log. Write operations

that modify data result in a log entry. We enabled appendonly in our Redis Cluster

experiments.
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• appendfsync: The Redis append-only log uses a buffer to batch log entries to the

log file. This option configures the frequency with which the buffer is flushed on

disk using the “fsync” system call [27]. There are 3 possible settings: “no” where

Redis writes to file without calling fsync, “everysec” ensures that the contents of the

buffer are flushed every second and “always”, which ensures that data is written in

disk before replying to the client. We used the default “everysec” since it achieves a

balance between speed and durability [44].

5.2.3.4 Riak

We did not change any default configuration options for our Riak deployment. How-

ever, using CRDT maps and sets requires enabling these data types (referred to as

“bucket types” in the documentation) manually after the cluster is assembled.

5.2.4 Performance Analysis

This subsection is dedicated to the analysis of the results obtained in our experiments.

Results are divided by database, and a final result is presented comparing the throughput

and latencies of the different storage systems.

5.2.4.1 AntidoteDB

Figure 5.5 shows the test results where AntidoteDB’s throughput peaked at 128 concur-

rent clients. The first thing to note is the downwards throughput trend, which is not

distinguishable over smaller (e.g. 5 minute) benchmark durations. This was a recurring

pattern throughout our experiments across all databases, where over time the volume of

stored data increases to the point where database nodes cannot store or index all informa-

tion in memory. As the data volume grows, further data queries will increasingly require

disk access which is known to be significantly slower than main memory access.

This decrease in throughput occurs until a stabilization point is reached. This can

likely take hours [50], and due to time and cost restrictions we could not determine the

stabilization point for each database.

Our results show that AntidoteDB provides consistent latency values for all opera-

tions with the notable exception of “process_prescription” (listed in the plot as ”update-

prescription-state”). For all remaining operations, even the tail latencies appear to be

consistently low. For this deployment, AntidoteDB’s database throughput peaks at 128

concurrent clients. Appendix B reports the remaining results for the AntidoteDB experi-

ments with other number of clients.

5.2.4.2 Cassandra

Figure 5.6 depicts the experiment results that yielded the peak throughput for Cassandra.
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Figure 5.5: Throughput over latency plot using 128 clients

Unlike AntidoteDB, Cassandra’s throughput peaks at 64 concurrent clients. After

some investigation we believe to have discovered the cause for this lower throughput

peak when compared with AntidoteDB. When a Cassandra client requests an operation

with a query that involves subsequent requests to multiple keys that are not a primary

key, this affects performance negatively. This does not happen in AntidoteDB since we

are able to model data differently and store store multiple prescription references into a

single CRDT value. On Cassandra, as per the definition of table “staff_prescriptions” in

Appendix A, queries for obtaining prescription records associated with a given medical

staff will result in more requests to other nodes than what would be expected in Antidot-

eDB. Appendix C contains the remaining results for the Cassandra experiments, with

different client numbers.

5.2.4.3 Redis Cluster

Redis Cluster achieved the highest throughput value at approximately 23.000 operations

per second. Figure 5.7 shows the 128 concurrent client experiment that resulted in the

maximal throughput value.

Interestingly, Redis is also the database with the biggest loss of throughput over time.
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Figure 5.6: Throughput over latency plot using 64 clients

Our understanding of this result relates to the data persistence options discussed pre-

viously in Section 5.2.3.3. Redis seems to be primarily directed at in-memory storage

despite its support for durability. The options we have selected seem to impact per-

formance drastically over time. It would be interesting to run experiments with Redis’

default configuration, without data persistence, to understand if our intuition is correct.

Appendix D contains the remaining results for the Redis Cluster experiments, where we

consider different numbers of clients.

5.2.4.4 Riak

In the beggining we expected Riak to be one of the better systems in terms of throughput

and we were surprised by our experiment results. As will become fairly obvious, Riak

lags behind in throughput under the same number of concurrent client connections when

compared with competing database. It seems to somewhat compensate for the lack of

throughput with very consistent latency values, which contrasts with the results obtained

in Cassandra and Redis Cluster with larger numbers of concurrent clients. Figure 5.8

shows the throughput and latency plots for the experiment resulting in the peak through-

put with 64 clients.
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Figure 5.7: Throughput over latency plot using 128 clients

While implementing the Riak FMKe driver we realized that Riak is the only database

of the group that does not support read and write operations of multiple keys as a single

operation. This justifies the increase in latency for operations like “create_prescription”

that involve reading and writing multiple keys. We believe that addressing this short-

coming would make Riak significantly more competitive against the other databases.

The remaining experiment results are listed in Appendix E for the Riak database with a

varying number of clients.

5.2.4.5 Performance Comparison

In this section we aggregate the results from the previous section and compare the per-

formance of the different databases using the results we obtained. Figure 5.9 presents a

comparison of the average throughput values while Figure 5.10 and Figure 5.11 depict

the minimum and maximum observed throughput, respectively. Further discussion about

the results obtained in this section is presented in Section 5.3.

The performance comparison graphs are throughput latency plots that aggregate data

from multiple experiments. For each data point in the graph, throughput and latency val-

ues are extracted from a single benchmark execution, and the combination of these values

72



5.2. COMPARATIVE PERFORMANCE STUDY

Figure 5.8: Throughput over latency plot using 64 clients

becomes a single point in the plot. For increasing number of clients, we repeat the process

in order to determine the point at which a system has reached peak throughput. This can

be seen in the graphs as a latency spike that can also cause reduction in throughput. The

benchmark clients experience increased latency on their requests if they are generating

more load than the application server or database nodes can handle at once. This results

in requests becoming queued instead of instantly processed, leading to a bigger response

time. Throughput latency graphs are a good option to compare throughput and latency

between different systems at the same time, which otherwise would imply a graph to

compare each of the performance metrics.

The average throughput latency plot in Figure 5.9 indicates that AntidoteDB was

able to sustain a higher average throughput. Redis Cluster and Cassandra, while both

promising in terms of starting throughput, quickly decreased over time to a lower average

than AntidoteDB as seen from Figure 5.7 and Figure 5.6. Interestingly, the difference

between the average throughput in Cassandra and Redis Cluster seems negligible, despite

visibly behind AntidoteDB’s throughput.

Figure 5.10 shows the minimum observed throughput for each test case, which the-

oretically might be closer to the throughput stabilization point. There is a noticeable
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Figure 5.9: Average throughput for all FMKe drivers

Figure 5.10: Minimum observed throughput over average latency
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rise in Riak from last place to second, while still considerably distant from AntidoteDB.

Redis Cluster and Cassandra again have very similar results, but their sharp decrease in

throughput over time is clearly visible in this graph.

Figure 5.11: Maximum observed throughput over average latency

Finally, Figure 5.11 shows the maximum observed throughput during the workload

generation phase of the benchmark. Unlike the average throughput graph, Redis Cluster

takes the lead with a comfortable margin between it and AntidoteDB and Cassandra,

which now have very similar results. Riak, now last in the placements, reaches its peak

throughput at 8.000 operations per second and curiously is able to sustain it, unlike the

other databases, which suffer throughput losses at higher numbers of concurrent clients.

5.3 Discussion

Orchestrating and executing these experiments is very time consuming. There are several

steps that can be automated through the use of shell scripts, but these tend to be some-

what tightly coupled with the cloud platform on which the tests are being performed.

Hardware associated with instance types in the cloud may be upgraded at several points

in time, thus it is best to run the experiments within a small time window in order to min-

imize hardware heterogeneity. We understand that Riak looks unfavorable compared to

our other test subjects due to its lack of support for fetching and updating multiple keys at

once. Due to the replication strategies that each database uses, we are confident that Riak

would perform comparatively better in larger cluster deployments against Redis Cluster,

but we did not get the chance to explore this test case. Selecting more than 50-60 nodes,

past the limits of Riak Core, we would expect Cassandra to be the only viable option from

our set of storage systems. With regards to Antidote’s multiple data-center experiments,

there are other aspects to geo-replicated distributed databases, like the amount of time
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that it takes for operations on one data-center to be propagated to others (data staleness),

that were not measured in these experiments.

Our decision to generate load for a 20 minute period allowed us to see how database

performance would evolve in a real scenario and that affected our average results in

Section 5.2.4.5. Any particular selection (minimum, maximum, or average throughput)

will favor different distributed data stores, so we present all results acknowledging that

there is an argument to be made for each one of the values:

• Minimum: we have presented the results and seen that in all experiments through-

put decreases slightly over time. Since we let the workload generator run for 20

minutes, an argument can be made that the last throughput values (i.e. the lowest)

are closer to the stabilization point of the storage system’s throughput and thus are

closer to the real performance limits of the database.

• Maximum: like we previously stated, the throughput decrease is not noticeable in

a time frame below 5 minutes, which would lead to apparently stable throughput

readings. Had we run the workload duration for a short period of time, our end

results would match what we see as the maximum (typically observed in the first

moments of generating load on the database).

• Average: Our workload generation process push the database systems to operate at

their peak capacity. Real deployments of these databases would take much longer

to reach the stabilization point since they would not be subject to such an intense

workload, making the expected throughput somewhere between the maximum and

the minimum observed.

There are counter-arguments for opting for any of the throughput values in detriment

of the others, but taking into consideration that we did not explore the performance limits

of these databases exhaustively, we feel that opting for the minimum or average would

not properly represent the potential of each database system. Selecting the maximum

throughput also seems to be in line with previous publications on comparative database

evaluation [42] [28]. This effectively makes Redis Cluster the best performing distributed

database within a single data-center.

5.4 Summary

We conducted two different experimental evaluations focusing on measuring different

aspects of database scalability and performance. From our results we were able to verify

that AntidoteDB’s performance scales approximately linearly with an increasing number

of data-centers. In the comparative test results, we obtained results that can be inter-

preted in different ways. The distributed database with the highest maximum throughput

was Redis Cluster, while AntidoteDB maintained the highest average throughput of the
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systems under test. In the following chapter we make some closing remarks regarding

the contributions of this work as well as some insights we gained from the experimen-

tal results. Finally, we end with a brief discussion on future work related to this thesis

concerning experimental scenarios we wish to explore.
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6
Conclusions and Future Work

6.1 Conclusions

In this work we presented our proposal for a novel benchmark for distributed key-value

stores that is based on a real application in production in Denmark. We designed the inter-

face to allow both easy to implement, generic drivers, as well as more intricate drivers that

implement the full interface of the system being consistently more efficient. We presented

several data models that fit different data storage systems, and we included an equivalent

relational model alternative. This relational model variant will allow future performance

studies to be compared with our ongoing implementation of a relational ODBC database

driver for FMKe. This study will in turn objectively point out the performance difference

there is between relational and NoSQL databases, despite the differences in features and

consistency guarantees.

We have also detailed our implementation that we have made available in public code

repositories, which supports AntidoteDB, Redis, Riak and Cassandra. We demonstrated

how the FMKe application server can be configured to run with the different supported

storage systems and how to first populate the database with fictitious medical records and

then generate load on the application server using the Lasp Bench workload generator.

A significant effort went into making FMKe components simple to use, since we are

presenting it as a new standard for performance measurements in distributed databases.

With our experiments we were able to demonstrate the scalability of AntidoteDB on

several levels. Not only did its performance increase with the number of nodes in the

cluster, throughput also increased when multiple data-centers were added. In the compar-

ative experiments within a single data-center, we pointed out the performance between

AntidoteDB and Riak, and how Redis, running only in-memory, was able to reach higher

performance values. These experimental results not only compare the performance of the
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storage systems between themselves but also validate our implementation as an adequate

tool to conduct performance measurements from distributed databases.

We must note that the experiments presented in Chapter 5 were performed with a

limited budget in Amazon Web Services, and thus do not demonstrate the performance

of all databases in different scenarios. There are multiple configurations that were not

explored (e.g. using only in-memory storage), but this is not a limitation of our imple-

mentation. Designing experiments such that they are fair to all storage systems involved

in the comparison is not a trivial task. Any inefficiency in the FMKe driver, client li-

brary, and all other system components can be enough to invalidate the results for a given

database. For these reasons, we believe that the most important contribution of this work

is the benchmark implementation itself. We are convinced that the benchmark along

with its documentation will allow other developers to explore additional configurations

according to their requirements.

6.2 Future Work

As future work and to complement our single data-center study, we plan on implementing

an ODBC driver that would allow interaction with traditional relational databases. We

hope to observe the limits of distributed SQL databases and compare them with our

NoSQL database results. We would also like to extend our comparative performance

study to include larger deployments that demonstrate the scalability in terms of cluster

size. Finally, it would make sense to complete this comparative performance study by also

performing experiments in a geo-replicated environment and measure other properties

unrelated to performance, such as data consistency guarantees, data staleness and fault

tolerance.
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CQL Table Creation Statements

The following CQL statements are required to build Cassandra tables compatible with

FMKe’s driver:

Listing A.1: Cassandra Table Creation Script

1 CREATE TABLE IF NOT EXISTS fmke.patients (

2 ID int PRIMARY KEY,

3 Name text,

4 Address text,

5 );

6

7 CREATE TABLE IF NOT EXISTS fmke.pharmacies (

8 ID int PRIMARY KEY,

9 Name text,

10 Address text,

11 );

12

13 CREATE TABLE IF NOT EXISTS fmke.medical_staff (

14 ID int PRIMARY KEY,

15 Name text,

16 Address text,

17 Speciality text,

18 );

19

20 CREATE TABLE IF NOT EXISTS fmke.treatment_facilities (

21 ID int PRIMARY KEY,

22 Name text,

23 Address text,

24 Type text,

25 );

26

27
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APPENDIX A. CQL TABLE CREATION STATEMENTS

28 CREATE TABLE IF NOT EXISTS fmke.prescriptions (

29 ID int,

30 PatID int,

31 DocID int,

32 PharmID int,

33 DatePrescribed timestamp,

34 DateProcessed timestamp,

35 PRIMARY KEY (ID)

36 );

37

38 CREATE TABLE IF NOT EXISTS fmke.patient_prescriptions (

39 PatientID int,

40 PrescriptionID int,

41 PRIMARY KEY (PatientID, PrescriptionID)

42 );

43

44 CREATE TABLE IF NOT EXISTS fmke.pharmacy_prescriptions (

45 PharmacyID int,

46 PrescriptionID int,

47 PRIMARY KEY (PharmacyID, PrescriptionID)

48 );

49

50 CREATE TABLE IF NOT EXISTS fmke.staff_prescriptions (

51 StaffID int,

52 PrescriptionID int,

53 PRIMARY KEY (StaffID, PrescriptionID)

54 );

55

56 CREATE TABLE IF NOT EXISTS fmke.prescription_drugs (

57 PrescriptionID int,

58 Drug text,

59 PRIMARY KEY (PrescriptionID, Drug)

60 );
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B
AntidoteDB Performance Results

This appendix contains individual test results for the AntidoteDB tests run in the com-

parative performance study.
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APPENDIX B. ANTIDOTEDB PERFORMANCE RESULTS

B.1 32 Clients

Figure B.1: Throughput over latency plot using 32 clients
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B.2. 64 CLIENTS

B.2 64 Clients

Figure B.2: Throughput over latency plot using 64 clients
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APPENDIX B. ANTIDOTEDB PERFORMANCE RESULTS

B.3 128 Clients

Figure B.3: Throughput over latency plot using 128 clients
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B.4. 256 CLIENTS

B.4 256 Clients

Figure B.4: Throughput over latency plot using 256 clients
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APPENDIX B. ANTIDOTEDB PERFORMANCE RESULTS

B.5 512 Clients

Figure B.5: Throughput over latency plot using 512 clients
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Cassandra Performance Results

This appendix contains individual test results for the Cassandra tests run in the compar-

ative performance study.
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APPENDIX C. CASSANDRA PERFORMANCE RESULTS

C.1 32 Clients

Figure C.1: Throughput over latency plot using 32 clients
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C.2. 64 CLIENTS

C.2 64 Clients

Figure C.2: Throughput over latency plot using 64 clients
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APPENDIX C. CASSANDRA PERFORMANCE RESULTS

C.3 128 Clients

Figure C.3: Throughput over latency plot using 128 clients
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C.4. 256 CLIENTS

C.4 256 Clients

Figure C.4: Throughput over latency plot using 256 clients
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APPENDIX C. CASSANDRA PERFORMANCE RESULTS

C.5 512 Clients

Figure C.5: Throughput over latency plot using 512 clients
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Redis Cluster Performance Results

This appendix contains individual test results for the Redis Cluster tests run in the com-

parative performance study.
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APPENDIX D. REDIS CLUSTER PERFORMANCE RESULTS

D.1 32 Clients

Figure D.1: Throughput over latency plot using 32 clients
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D.2. 64 CLIENTS

D.2 64 Clients

Figure D.2: Throughput over latency plot using 64 clients
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APPENDIX D. REDIS CLUSTER PERFORMANCE RESULTS

D.3 128 Clients

Figure D.3: Throughput over latency plot using 128 clients

104



D.4. 256 CLIENTS

D.4 256 Clients

Figure D.4: Throughput over latency plot using 256 clients
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APPENDIX D. REDIS CLUSTER PERFORMANCE RESULTS

D.5 512 Clients

Figure D.5: Throughput over latency plot using 512 clients
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Riak Performance Results

This appendix contains individual test results for the Riak tests run in the comparative

performance study.
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APPENDIX E. RIAK PERFORMANCE RESULTS

E.1 32 Clients

Figure E.1: Throughput over latency plot using 32 clients
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E.2. 64 CLIENTS

E.2 64 Clients

Figure E.2: Throughput over latency plot using 64 clients
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APPENDIX E. RIAK PERFORMANCE RESULTS

E.3 128 Clients

Figure E.3: Throughput over latency plot using 128 clients
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E.4. 256 CLIENTS

E.4 256 Clients

Figure E.4: Throughput over latency plot using 256 clients
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APPENDIX E. RIAK PERFORMANCE RESULTS

E.5 512 Clients

Figure E.5: Throughput over latency plot using 512 clients
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