
José Manuel Perdigão Venâncio

BSc in Computer Science

A Tool for Online Debates

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Leite, Associate Professor,
Faculdade de Ciências e Tecnologia,
NOVA University of Lisbon

Co-advisers: Teresa Romão, Assistant Professor,
Faculdade de Ciências e Tecnologia,
NOVA University of Lisbon
João Leitão, Assistant Professor,
Faculdade de Ciências e Tecnologia,
NOVA University of Lisbon

Examination Committee

Chairperson: Prof. Doctor Ana Maria Diniz Moreira
Raporteur: Prof. Doctor Paulo Miguel Torres Duarte Quaresma

Member: Prof. Doctor João Alexandre Carvalho Pinheiro Leite

February, 2017





A Tool for Online Debates

Copyright © José Manuel Perdigão Venâncio, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt




To all my family, friends and colleagues.





Acknowledgements

I would like to firstly thank Prof. Dr. João Leite for all the support and knowledge given

during the elaboration of this dissertation. I would also like to thank Prof. Dr. Teresa

Romão and Prof. Dr. João Leitão for all the availability and knowledge that helped to

accomplish my goals.

I would also like to thank all the participants of the tests, without them this work

would not be possible.

At last (but not at least), I would like to thank my family and friends, especially my

parents that gave me the possibility to study, and helped me throughout all my academic

years.

vii





Abstract

Nowadays, internet is one of the most used vehicles to connect people. There are social

networks such as Facebook, Twiter and Youtube, that allow the users to interact among

them. Despite the existence of these social networks, the debates that arise in these

platforms are often chaotic and unstructured.

The problem of unstructured or even chaotic debates was approached by Leite and

Martins, they have studied some of the existing solutions on the web to tackle this prob-

lem, and proposed a model of Social Abstract Argumentation. This model defines a

Social Abstract Argumentation Framework, based on arguments, attacks, and votes on

arguments. The model was later extended to also consider votes on attacks.

The extension of Social Abstract Argumentation has many advantages that cannot be

found on the existent systems over the internet. A tool based on this model has some

important properties, such as, creating arguments and attacks without knowing any

formal rules, reusing arguments, participate using only votes, and consult the debate

outcome at any moment. All of these properties can be a major contribution to online

debating.

In this work we have developed a web-application, based on the extension of Social

Abstract Argumentation, as a proof of concept to validate this model.

The evaluation and validation of this tool is divided in three separate parts: Interface

Usability, Semantics, and Algorithm performance. The results of this evaluation, pro-

vided clues to further improvements of the semantics and interface, and allowed us to

validate the model of Social Abstract Argumentation.

Keywords: Online Debate, Abstract Argumentation Framework, Ranking-based Seman-

tics for Abstract Argumentation, Social Abstract Argumentation

ix





Resumo

A internet é um dos principais veículos para ligar as pessoas. Existem redes sociais como

o Facebook, o Twitter e o Youtube, que possibilitam a interação entre utilizadores. Apesar

da existência destas redes sociais, os debates que surgem nestas plataformas são frequen-

temente caóticos e destruturados.

O problema dos debates destruturados ou até mesmo caóticos, foi abordado por Leite

e Martins, que estudaram algumas das soluções existentes na web para combater este pro-

blema, e propuseram um modelo de Argumentação Abstrata Social. Este modelo define

uma Framework de Argumentação Abstrata Social, tendo por base argumentos, ataques e

votos em argumentos. Mais tarde, este modelo foi estendido de forma a considerar votos

nos ataques.

A extensão da Argumentação Abstrata Social tem várias vantagens sobre alguns dos

sistemas existentes na internet. Uma ferramenta baseada neste modelo possui algumas

propriedades importantes, como a criação argumentos e ataques sem ter de conhecer

quaisquer regras formais, a reutilização de argumentos, a participação utilizando apenas

votos, e a consulta do resultado do debate em qualquer momento. Todas estas proprieda-

des podem ser uma importante contribuição para o debate online.

Neste trabalho, foi desenvolvida uma aplicação web baseada na extensão da Argumen-

tação Abstrata Social, como prova de conceito para a validação deste modelo.

A avaliação e validação desta ferramenta está dividida em três partes distintas: Usabi-

lidade da Interface, Semântica e Performance do Algoritmo. Os resultados desta avaliação,

facultaram-nos pistas para melhorias futuras da semântica e da interface, permitindo-nos,

desta forma, validar o modelo da Argumentação Abstrata Social.

Palavras-chave: Debate Online, Framework de Argumentação Abstracta, Semânticas

baseadas em ranking para Argumentação Abstracta, Argumentação Abstracta Social

xi





Contents

List of Figures xv

List of Tables xvii

Listings xix

1 Introduction 1

1.1 Motivation and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contributions and Document Structure . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 7

2.1 Semantics for Abstract Argumentation . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Dung’s Abstract Argumentation Framework . . . . . . . . . . . . 7

2.1.2 Ranking-based Semantics for Abstract Argumentation . . . . . . . 9

2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Existing argumentation/debate applications . . . . . . . . . . . . . . . . . 18

2.2.1 Abstract Argumentation Systems . . . . . . . . . . . . . . . . . . . 18

2.2.2 Structured Argumentation Systems . . . . . . . . . . . . . . . . . . 20

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Proposed Solution 25

3.1 Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Project Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . 26

3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Presentation Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Requests to the Application Layer . . . . . . . . . . . . . . . . . . . 32

3.3.3 Application Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4 Storage/Data Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



CONTENTS

4 Evaluation and Results 43

4.1 Interface Usability Evaluation and Results . . . . . . . . . . . . . . . . . . 43

4.1.1 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Semantics Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Algorithm Performance Evaluation and Results . . . . . . . . . . . . . . . 62

4.3.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion 67

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 71

A Usability Evaluation 75

B Semantics Evaluation 85

xiv



List of Figures

1.1 Social Abstract Argumentation Framework example . . . . . . . . . . . . . . 4

2.1 Graph Representation of a Social Abstract Argumentation Framework . . . . 8

2.2 Consider.it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 CreateDebate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Debategraph interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 MindMeister interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Structured Argumentation Systems: Agora-net . . . . . . . . . . . . . . . . . 21

3.1 Three-tier architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 User Interface Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Argument example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Relation between colors and acceptance . . . . . . . . . . . . . . . . . . . . . 30

3.5 Attack example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Filters example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Top menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Right click pop up menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.9 Adapter scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 Neo4J Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Login procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Add argument button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Question 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Question 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Cycle of attacks between an argument A and B with the same votes on argu-

ments but different number of votes on attacks . . . . . . . . . . . . . . . . . 61

4.5 Performance of the algorithm as function of the size and density of the graphs 64

4.6 Algorithm performance before (blue) and after modifications (orange) . . . 65

5.1 Comparison between the scores before and after the scores start at 50 (i.e. 10

positive votes and 10 negative votes) . . . . . . . . . . . . . . . . . . . . . . . 69

xv





List of Tables

2.1 The properties that take into account the Argument Strength and Attack

Strength are marked with 3 in the respective column, otherwise they are

marked with 7. (nn - the attack strength must not be null ). . . . . . . . . . . 11

2.2 Results for SAA Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Discussion-based semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Burden-based semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Ranking Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Summary of task easiness questionnaire results. The highest scores are high-

lighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Statements that composed the general evaluation part of the questionnaire. . 48

4.3 Summary general evaluation questionnaire results. The highest scores are

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Results to the questions 7 and 8 of the questionnaire. . . . . . . . . . . . . . . 54

4.5 Results to the question 11 of the questionnaire. . . . . . . . . . . . . . . . . . 54

4.6 Results to the question 9: Reasons to positive votes . . . . . . . . . . . . . . . 54

4.7 Results to the question 10: Reasons to negative votes . . . . . . . . . . . . . . 54

4.8 Results to questions 12 and 13 and comparison with the scores assigned by

the application.V + - Positive Votes, V − - Negative Votes, VH - Very High, H -

High, M - Medium, L - Low, VL - Very Low . . . . . . . . . . . . . . . . . . . 55

4.9 Results to questions 14 and 15 and comparison with the scores assigned by

the application.V + - Positive Votes, V − - Negative Votes, VH - Very High, H -

High, M - Medium, L - Low, VL - Very Low . . . . . . . . . . . . . . . . . . . 56

4.10 Results to questions 22 to 25. A+ - Positive Votes of argument A, A− - Negative

Votes of argument A, B+ - Positive Votes of argument B, B− - Negative Votes of

argument B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Algorithm Performance Evaluation: Test Subsets . . . . . . . . . . . . . . . . 63

4.12 Average runtime improvement for graphs . . . . . . . . . . . . . . . . . . . . 65

5.1 Scores for the arguments on Figure 5.1 . . . . . . . . . . . . . . . . . . . . . . 69

xvii





Listings

2.1 Pseudocode of the ISS algorithm . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Example of an Ajax request - Connecting two arguments . . . . . . . . . . 33

3.2 Example of parsing the results of a request - Get all nodes from a graph . 33

3.3 Example of JSON returned by graph_id . . . . . . . . . . . . . . . . . . . . 34

3.4 Method: getAllnodesFromGraph(int id) . . . . . . . . . . . . . . . . . . . 37

3.5 Adapted ISS algorithm Java implementation . . . . . . . . . . . . . . . . . 38

3.6 Secure password generation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xix





C
h
a
p
t
e
r

1
Introduction

1.1 Motivation and Context

The word debate is often used to define a discussion between two or more individuals. Ev-

ery time two or more people gather around they tend to start a debate. However, in some

countries, such as the United States of America, debate can be considered to be a sport

and, as any other sports, it has its own rules. Depending on these rules, the debate can

be classified in many different categories, from Judicial Debate or Parliamentary Debate

ruled by the court of law and the parliamentary procedure, respectively, to Academic

Debate that usually has its own rules depending on the institution or contest where it

takes place [20]. All of these categories of debates have a common denominator, they all

have intrinsic rules for the debate. There is also another category designated as Nonfor-

mal Debate. The Nonformal Debate is the only form of debate that is conducted without

formal rules found in the categories mentioned before [20]. Although this category does

not rely on formal rules, it is probably the most used form of debate. This is the kind of

debate that one can have in a bar with their friends when arguing about the best beer in

the table.

Since this form of debate is so simple, it also emerges naturally in society. Nonformal

debate occurs in every kind of media platforms, such as television and radio, and also

over the Web. Most of the newspapers websites provide a comment area associated to

each article, where the users can express their opinion about the subject. The same model

can be seen in social networks (e.g Facebook, Twitter and Youtube) where a user can

freely comment on every post of the network. Despite of the freedom given to the users,

these kinds of models usually lead to debates that easily deviate from the main topic,

considering that not all of the users are serious and some of them just want to express

their emotions, despite the main topic or main arguments. Additionally, in the platforms

1



CHAPTER 1. INTRODUCTION

mentioned before, the way the debate is presented is often based on a timeline where, at

the top, the most recent comments appear.

The problem of unstructured or even chaotic debates was approached by Leite and

Martins, in [23]. In this article, the authors envisioned a self-managing online debate

system where both experts and non expert users can participate on a debate. Furthermore,

this system would be able to autonomously maintain a formal outcome to debates. In

order to produce this outcome, the system would assign a strength to each argument

based on the votes and the attacks between arguments.

For this purpose, they have firstly studied some of the existing solutions on the web

to tackle this problem and proposed a model of Social Abstract Argumentation, that we

will explain later on this chapter. The authors found some websites where the users can

participate in structured debates. Some of these systems were designed to a more serious

debate, to ground a thesis, or to share different points of view and ideas. The websites,

createdebate.com and agora.gatech.edu, are some of the examples that we can find

over the web. In some of these platforms the debate may have some formal rules that

are enforced, and mechanisms to restrain the user participation in the debate (e.g. the

user may participate but has to formally define every relation between all the parts of

the argument). There are also other debate tools, that are less formal, where a user can

add new arguments to one or both sides of the thesis being debated, as well as support or

dispute other arguments.

Despite the merits of these platforms, the authors considered that these websites have

some characteristics that may limit their adoption in the Social Web, namely [17, 23]:

1. In some of these tools, only two antagonistic users can engage in a debate, others

can vote for the winning side, but not on concrete arguments.

2. The debate structure is sometimes very rigid, with a pre-fixed number of rounds

and strict debate rules not known by most users.

3. Only a few of these tools provide facilities to reuse arguments (e.g. consider.it

[12]) and debates.

4. Most of the times the debate stops short of reasoning with the debate data and

votes/opinions, yielding to simplistic and naïve outcomes.

In order to tackle this problem and contribute to richer interactions in the form of

debates over the Social Web, the authors introduced the model of Social Abstract Argu-

mentation. Abstract Argumentation Frameworks defined by Dung in [15], are defined by

a set of abstract arguments, and a set of attacks between arguments. An abstract argument

does not have any internal structure or specific interpretation. Thus, abstract arguments

can provide great flexibility when specifying arguments. However, this flexibility may

lead to statements that are not structured arguments. Social Abstract Argumentation

2

createdebate.com
agora.gatech.edu
consider.it


1.1. MOTIVATION AND CONTEXT

benefits for these flexibility on the arguments specification, while providing tools to eval-

uate these arguments, through social support (voting) on the arguments. Moreover the

extension of Social Abstract Argumentation, introduced votes on attacks that can be used

to evaluate their logical foundation, and also to avoid that senseless attacks have impact

on the debate outcome.

The graph in figure 1.1 illustrates an example of a Social Abstract Argumentation

Framework. In this graph, each node represents an argument and each edge represents

an attack between arguments, both of them have the values of positive and negative votes

associated to them.

The main topic of the debate illustrated in figure 1.1, is the benefits of using e-

cigarettes over regular cigarettes 1. Each node stands for an argument and has its re-

spective votes, each edge stands for an attack relation and also has its respective votes.

For example, the argument f attacks argument a, since the argument a states that the

use of e-cigarettes can be safer than the use of regular cigarettes, and the argument f

points out a study about people that got seriously hurt with the batteries explosions of

e-cigarettes. Considering this specific case, it is clear that argument a safety was related

to the smoke and not the technology. Therefore, the attack between f and a, has more

negative votes than positive votes. This means that, although there are many users that

agree with the argument f (57 positive votes and 12 negative votes), a great part of the

users do not agree with the attack between f and a. Consequently, the impact of argument

f on the acceptance of a is reduced, due to the social support of the attack. In conclusion,

votes on attacks can be an important factor to avoid that senseless attacks have a great

impact in the debate outcome, that without votes on attacks would not be achievable.

A tool based on the extension of Social Abstract Argumentation , as it was described

in [17], would have properties that can be a major contribution to the online debate in

the social web.

• The debate is not restricted to only two sides, a tool based on this model would

allow the users to create an argument at any time, without choosing a side.

• An argument does not have to follow specific formal rules. This will allow any

user (independently of their knowledge about argumentation) to participate in the

debate.

• The arguments can be reused. For instance, recalling the debate in Figure 1.1, if a

new argument stating that: "E-cigarettes can help someone to stop smoking, but they
only work for a limited time period" was created, argument b could be used to attack

this new argument.

• The users that are not interested in proposing new arguments can also be an active

and important part of the debate, voting on arguments and attacks.

1The content of the arguments were retrieved and adapted from the ARG-tech Argument Mining datasets
[3]. The votes on both arguments and attacks were introduced manually.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Social Abstract Argumentation Framework example

4



1.2. OBJECTIVES

• Since every argument has its acceptance value, the actual outcome of a debate can

be consulted at any moment.

• Since every attack has its acceptance value, senseless attacks will not have a great

impact on the debate outcome if their acceptance is low.

In order to develop a tool based on Social Abstract Argumentation, an efficient al-

gorithm for Social Abstract Argumentation (without votes on attacks) was proposed in

[13]. This algorithm was tested for complex debates with thousands of arguments, and

resulted on runtimes that make it suitable for an online debate tool.

Although there is a lot of work already done concerning Social Abstract Argumenta-

tion, this model has not ever been tested in the real world. Since this model was intended

to tackle a problem in the social web, there is a necessity of validating and test a tool

that implements Social Abstract Argumentation, that can be used by real users. In this

dissertation we propose to develop a tool that will implement and validate the extension

of Social Abstract Argumentation (with votes on attacks).

1.2 Objectives

The main goal of the work discussed in this document is to develop a web-application

that will allow the users to debate. Furthermore, this web-application will be used as

a proof of concept in order to validate Social Abstract Argumentation. There are some

important properties that our web-application must have, that were already defined in

[17, 23]:

• The users must be able to participate in several different ways (i.e. create an ar-

gument, create an attack, vote positively and negatively both on arguments and

attacks).

• The user must receive the appropriate feedback. A user should easily assess the

strength of each argument and attack.

In order to, develop this kind of application we must certify that it follows some un-

avoidable principles in a distributed system:

Scalability. The system must be able to deal with an increasing number of users and

arguments and maintain its performance.

Security. The system must be able to keep the integrity and confidentiality of the data.

Performance. The system should run the valuation algorithms in a small amount of

time, therefore both the algorithms and the system have to be optimized.

5



CHAPTER 1. INTRODUCTION

Also we need to provide the user a system that is both simple and complete:

Learnability. The user should be able to learn how to use the system fast. [29]

Efficiency. An experienced user should be able to achieve a high level of productivity.

A user should be able to complete a task in the appropriate period of time, and without

much effort.[29]

Memorability. The system should be easy to remember after a short or long period with-

out using it.[29]

Satisfaction. The system should be pleasant to use.[29]

1.3 Contributions and Document Structure

Abstract Argumentation is one of the core studies in Artificial Intelligence. Since 1995 a

lot of work has been done in this field of study.

With the work that was conducted in the context of this MSc dissertation, we built

and evaluated a prototype that can serve as a proof of concept for Social Abstract Argu-

mentation and also a tool to showcase this platform and test its acceptance among the

users.

The remainder of this document is structured as follows:

Chapter 2 - State of the Art. This chapter is divided into two different sections. In

the first section we will describe different models to approach our problem. In the second

section we will discuss the different categories of the existing applications.

Chapter 3 - Proposed Solution. In this chapter we describe our solution, starting by

explaining the project requirements and then discussing the system architecture, focus-

ing on the implementation and the options that we made along the development process.

Chapter 4 - Evaluation and Results. In this chapter we describe the methods use to

evaluate our system and present the results. Lastly the results are discussed and analyzed.

Chapter 5 - Conclusion. In this chapter we present our conclusions that were taken

from the elaboration of this dissertation. Lastly we discuss the future work.

6



C
h
a
p
t
e
r

2
State of the Art

In this chapter we will start by describing the existing ranking-based semantics for Ab-

stract Argumentation. Afterwards, we will discuss the existing categories of applications

that may address our problem and compare them to Social Abstract Argumentation.

2.1 Semantics for Abstract Argumentation

Due to the necessities that were pointed out in the previous chapter, we are going to

explore Semantics for Abstract Argumentation to tackle the problems specified before.

It is important to note that throughout this dissertation the definition of argument

will be as follows: An argument it is only a comment, a piece of information, an image, a

video or any other content. The argument does not have to be structured nor meaningful,

any kind of intervention can be considered an argument.

In this section, we will start by explaining what is an Abstract Argumentation Frame-

work — using the model proposed by Dung back in 1995 [15] — and also ranking-based
argumentation semantics. Afterwards we will explore some other relevant Abstract Argu-

mentation semantics and their properties.

2.1.1 Dung’s Abstract Argumentation Framework

All the definitions throughout this section were first proposed and described in [15].

Definition 2.1. An Argumentation Framework is a pair

AF = 〈A,R〉,

where A is a set of arguments and R is a binary relation in A. The relation R ⊆ A ×A
defines an attack within A.

7



CHAPTER 2. STATE OF THE ART

Figure 2.1: Graph Representation of a Social Abstract Argumentation Framework

An Abstract Argumentation Framework can be represented by a directed graph where

the nodes stand for arguments and the edges represent attacks. If some argument b

attacks an argument c, where b,c ∈ A and (b,c) ∈ R, we will have an edge directed from

b to c (Figure 2.1 ). The AF represented in figure 2.1 (ignoring the votes) is defined as

follows: AF2.1 = 〈{a,b,c,d,e}, {(a,d), (c,a), (d,e), (e,a), (b,c)}〉

Definition 2.2. A set S of arguments is said to be conflict-free if:

∀a,b ∈ S : ¬∃(a,b) ∈ R

Definition 2.3.

1. An argument a ∈ A is acceptable to (defended by [4]) a set S if and only if:

∀b ∈ A : (b,a) ∈ R⇒∃x ∈ S : (x,b) ∈ R

2. A conflict-free set of arguments S is admissible if and only if:

∀a ∈ S : a is acceptable with respect to S

Definition 2.4. A preferred extension of an argumentation framework AF is the maximal

admissible set (with respect to set inclusion) of AF.

The notion of preferred extension is used to define the semantics of an argumentation

framework.

8



2.1. SEMANTICS FOR ABSTRACT ARGUMENTATION

Definition 2.5. Let S be a conflict-free set of arguments. S is called stable extension if and

only if S attacks every argument that does not belong to S (i.e. ∀a ∈ A\S,∃b ∈ S : (b,a) ∈ R)

Definition 2.6. A set S of arguments is called a complete extension if and only if each

argument, acceptable with respect to S, belongs to S.

Definition 2.7. Two Argumentation Frameworks AF1 = 〈A1,R1〉 and AF2 = 〈A2,R2〉 are

isomorphic if and only if there is a bijective mapping m : A1→ A2 such that:

(a,b) ∈ R1⇔ (m(a),m(b)) ∈ R2

2.1.2 Ranking-based Semantics for Abstract Argumentation

In this section a set of Ranking-based semantics for Abstract Argumentation will be

compared. The ranking-based semantics classify each argument with a large range of

levels of acceptability [7], producing a unique ranking between the arguments. As we

imagine a platform meant for Social Abstract Argumentation, we envision a debate as

a graph where nodes represent arguments and edges represent attacks. Both, edges

and nodes, have negative and positive votes associated (see figure 2.1). The strength

or acceptance of an argument will be defined by the relations and the votes only. The

strength of an attack will be solely defined by its votes.

First, we will need to define some properties, used in [2, 7, 23], in order to compare

the different semantics. Since this properties were not defined to a debate as we envi-

sion, we will also mention what it is needed to be changed in order to use each property.

Throughout this section we will define the direct attackers of a as R−(a) and the defenders

(i.e. an attacker of an attacker of a) as R+(a).

Abstraction. The ranking on A should be defined on the basis of attacks between arguments.
This is a relevant property, however we must add that the ranking depends not on the

content of the argument but on its attacks and votes.

Independence. The ranking between two arguments a,b ∈ A should be independent of any
other argument c ∈ A, if c is not attacked/attacks neither a nor b.

Void Precedence. An argument that has not been attacked is ranked strictly higher than one
which was attacked. This is a relevant property, however it does not consider the number

of votes of an argument. So it only stands if the strength of both arguments is the same

and if at least one of the attacks’ strength is not null.

Self-Contradiction. An argument that attacks itself is ranked strictly lower than any other
argument that does not attack itself. This property can only be verified if the strength of all

the attacks is the same, as well as the proportion of positive and negative votes on the

arguments.

9



CHAPTER 2. STATE OF THE ART

Cardinality Precedence. The greater the number of direct attackers of an argument, the
weaker the level of acceptability it has. We need to reformulate this property, in order to

apply it to our concrete use case. If we have two arguments a,b where a is being attacked

by n arguments and b by m, and m > n, a has a better level of acceptability than b, if and

only if the strength of the attack relations and the attackers is equal for a and b, we also

have to consider that both arguments, a and b have the same proportion of positive and

negative votes.

Quality Precedence. The greater the acceptability of an direct attacker of an argument, the
weaker the level of acceptability of the argument. This property does not consider the strength

of the attack relation.

Counter-Transitivity. If the direct attackers of a are at least as numerous and acceptable as
those of b, then b is at least as acceptable as a. This property does not consider the strength

of the attack relation, therefore it is only relevant if we consider that every attack in the

example has the same strength.

Strict Counter-Transitivity. If the direct attackers of a are strictly more numerous or ac-
ceptable than those of b, then b is strictly more acceptable than a. This property does not

consider the strength of the attack relation, therefore it is only relevant if we consider

that every attack in the example have the same strength.

Defend Precedence For two arguments a,b ∈ A with the same number of direct attackers,
if a is defended and b non-defended, then a will have a higher ranking than b. This property

does not consider the strength of the attack relation, therefore it is only relevant if we

consider that every attack in the example have the same strength.

Distributed-Defend Precedence The best defense is when each defender attacks a distinct
attacker. This property is relevant if we consider that all the attack relations strengths are

not null.

Partial. All pairs of arguments can be compared. This property is relevant since, in order to

make a ranking it is mandatory that every two arguments can be directly compared, even

if they are not directly related. The fact that two arguments can be directly compared

does not mean that they cannot be equal (i.e. with the same acceptance).

Non-attacked equivalence. All the non-attacked arguments must have the same rank. This is

a relevant property because, this property must be fulfilled, in order to keep a meaningful

feedback to the user.

10



2.1. SEMANTICS FOR ABSTRACT ARGUMENTATION

Other properties:

Properties related to adding/increasing an attack/defense branch. An attack branch on
a is a branch of arguments attacking its sibling where a is the leaf of the branch and the num-
ber of arguments is odd. A defense branch on a only differs to the attack branch on the total
number of arguments, in this case we have an odd number of arguments in the branch. These

properties are not relevant to the solution since they do not take into account the weight

of the attack (defined by votes).

Table 2.1 sums up the aspects that are not considered in the properties presented

previously, that are relevant to our problem.

Argument Strength Attack Strength
Abstraction 7 3

Independence 3 3

Void Precedence 7 3nn

Self-Contradiction 7 7

Cardinality Precedence 7 7

Quality Precedence 3 7

Counter-Transitivity 3 7

Strict Counter-Transitivity 3 7

Defend Precedence 7 7

Distributed-Defend Precedence 3 3nn

Partial 3 3

Non-attacked equivalence 7 3

Table 2.1: The properties that take into account the Argument Strength and Attack
Strength are marked with 3 in the respective column, otherwise they are marked with 7.
(nn - the attack strength must not be null ).

A system, as it was envisioned in [23], must have some of the properties presented pre-

viously, however adapted to our specific problem. Therefore our system must guarantee

the property of Abstraction, Partial, and Independence, considering that the property

of abstraction was redefined to consider the votes on the arguments. The properties of

Void Precedence, Cardinality Precedence and Defend and Distributed-Defend Prece-

dence only make sense for arguments and attacks with the same strength and non null.

Only in these concrete cases these properties can be verified. The properties Quality

Precedence, Counter-transitivity, and Strict Counter-Transitivity can only be verified

when the strength of all the attacks is the same and different form 0. The property Self-

Contradiction cannot be considered since they do not take into account the arguments’

votes and the attacks’ strength.

To sum up, the system semantics should guarantee that:

• The ranking between the arguments is defined by the attacks, votes on the argu-

ments, and votes on attacks (adaptation of Abstraction).

11



CHAPTER 2. STATE OF THE ART

• The ranking between two arguments, a and b, is independent of any other argument

that does not attack or is attacked by a or b (Independence).

• All the arguments with the same number of positive and negative votes that are not

attacked, must have the same rank (adaptation of Non-attacked equivalence).

• All pairs of arguments can be compared. (Partial).

• If two arguments, a and b, have the same strength and a attacks b, the attacker (a),

must be ranked strictly higher than the attacked (b), if the attack’s strength is not

null (adapted from Void Precedence).

• If an argument a attacks an argument b and the attack strength is null, the accept-

ability of argument b must not change.

• If an argument a attacks an argument b and the strength of argument a is null the

acceptability of argument b must not change.

2.1.2.1 Social Abstract Argumentation Framework

The Social Abstract Argumentation Framework[13, 17, 23] is an extension of Dung’s

AAF since it adds votes to the previous definition. The Social Abstract Argumentation

Framework was first proposed considering only votes on the arguments. Later an ex-

tended version of the Social Abstract Argumentation Framework introduced the votes

on attacks. The following definitions are related to the extension to the Social Abstract

Argumentation Framework.

Definition 2.8. Let AF be a Social Abstract Argumentation Framework where AF =

〈A,R,VA,VR〉. V : A → N ×N, is a total function mapping each argument (VA) or

attack(VR) to its number of positive and negative votes.

Definition 2.9. A social abstract argumentation semantic framework is a 6-tuple 〈L,τ,

≺

A,

≺

R, ≺, ¬〉, where:

• L is a totally ordered set with top and bottom elements >,⊥, containing all possible

valuation for an argument.

• ≺ A,

≺

R : L×L→ L, are two binary algebraic operations to restrict strengths to given

values (where A stands for argument strengths, and R to attack strengths).

• ≺ : L×L→ L, is a binary algebraic operation on argument valuations used to combine

or aggregate valuations and strengths.

• ¬ : L→ L, is a unary algebraic operation for computing a restricting value corre-

sponding to a given valuation or strength.

12



2.1. SEMANTICS FOR ABSTRACT ARGUMENTATION

• τ : N×N→ L, is a function that aggregates positive and negative votes into a social

support value.

Definition 2.10. Let F be a social abstract argumentation framework and S a semantic

framework, where S = 〈L,τ, ≺ , ≺,¬〉. A total mapping M : A→ L a social model of F under

semantics S, or S-model of F, if:

M(x) = τ(VA(x)) ≺ A ¬ ≺xi∈R−(x) (τ(VR(xi ,x)) ≺ R M(xi))1

Definition 2.11. Let S ·ε = 〈[0,1], ≺ ·, ≺ ·, ≺·,¬, τε〉 be a semantic framework where x,y ∈ [0,1]

and:

• x

≺ ·y = x · y

• ≺·(x,y) = 1− (1− x)(1− y)

• ¬x = 1− x

• τε(a) = V +(a)
V +(a)+V −(a)+ε , with ε > 0, and similarly for attacks.

This semantics consider the votes on the arguments to compute the strength of an

argument as well as the votes on the attack relations. If one argument a ∈ A has a high

valuation, and it attacks b ∈ A, we can not guarantee that b will have a low valuation,

since the votes on the relation (a,b) ∈ R may decrease the strength of the attack to nearly

0, thus this attack will have almost no influence on the valuation of b.

After using these semantics, to calculate the score of each argument in the graph

represented in the figure 2.1, we got the following values for SAA Extended — with votes

on attack relations. The SAA Extended introduces votes on attacks, therefore an attack

with no votes will have no influence on the attacked argument. The results are shown in

table 2.2.

a b c d e
SAA Extended 0.342254 0.914634 0.064522 0.588548 0.406361

Table 2.2: Results for SAA Extended

It is important to note that, if the strength of an attack or argument was 0 (e.g.

positive votes = 0), this would change the ranking order completely, since an argument

with 0 votes would have its strength equal to 0, and the attack would also have its strength

equal to 0, thus not having any influence on the attacked argument.

Algorithm for Social Abstract Argumentation.

An efficient implementation of an algorithm for Social Abstract Argumentation (with-

out votes on attacks), was introduced in [13]. We will present the ISS (Iterative Successive
1 ≺{ x1,x2, ...,xn } , ((x1 ≺x2) ≺... ≺xn). M(x) is referred as the social strength, or value, of x in M.

13



CHAPTER 2. STATE OF THE ART

1 while (max >= precision) {

2

3 max = 0;

4

5 for (argument in Arguments) {

6

7 newx = argument.tau;

8

9 for (parent_argument in argument.parents)

10 newx *= 1 - parent_argument.x;

11

12 max = max(max,abs(argument.x - newx));

13 argument.x = newx;

14 }

Listing 2.1: Pseudocode of the ISS algorithm

Substitution) algorithm briefly. The algorithm is based on successive substitutions, and

uses the following iteration rule:

x
(k+1)
i = τi

∏
j<i,j∈Ai

(
1− x(k+1)

j

) ∏
j≥i,j∈Ai

(
1− x(k)

j

)
Let us recall that τi only depends on the argument’s positive and negative votes and Ai
are the set of arguments that attack i. The value of xk when k = 0 is the initial guess,

the iteration process only stops when the stopping criterion2 is attained (i.e. when ISS

converges to a solution x∗ ∈]0,1[n).

The listing 2.1 presents the pseudo code for an implementation of the algorithm. Note

that precision is the value used in the stopping criterion, and max is the maximum differ-

ence between strengths of two iterations, i and i+1. The initial guess of every argument

was set to τ .

It is important to mention that this algorithm was already tested in [13], and can be

adapted to include votes on attacks.

2.1.2.2 Categoriser

The categoriser [5] is a function that assigns for each argument a value, given the value

of its direct attackers. Cat : A→]0,1] is defined as follows:

Cat(a) =


1, if R−1(a) = ∅

1
1 +Σc∈R−1 (a)Cat(c)

, otherwise

These semantics takes into account only the direct attackers of an argument to com-

pute its rank. Furthermore, the votes on arguments and attacks are not considered by

these semantics. Therefore if we had an argument with no votes, or attack with no votes,

that would not make any difference on the ranking calculated by this function.

2If there is at least one variable xm converging to x∗m then the algorithms converge to a solution x∗ ∈]0,1[n.

14



2.1. SEMANTICS FOR ABSTRACT ARGUMENTATION

If we apply this function to the example in the previous subsection (Figure 2.1 ) we

get: Cat(a) ≈ 0.477, Cat(b) = 1, Cat(c) = 0.5, Cat(d) ≈ 0.677, Cat(e) ≈ 0.596.

2.1.2.3 Discussion-based semantics

Discussion-based semantics [2] are based on a linear discussion. A linear discussion is a

sequence of arguments such that each argument attacks the argument preceding it in the

sequence. We define Disi(a) as follows:

Disi(a) =

−|R
+
i (a)|, if i is odd

|R−i (a)|, if i is even

In these semantics the number of attacks to an argument is more important than the

strength of the arguments that are attacking. When applying this semantics to the AF

represented in figure 2.1, we get the results reported on table 2.3 from where we get the

following ranking, that is ordered lexicographically: b �DBS d �DBS e �DBS c �DBS a.

step a b c d e
1 2 0 1 1 1
2 -2 0 0 -2 -1

Table 2.3: Discussion-based semantics

2.1.2.4 Burden-based semantics

The Burden-based semantics [2] are based on Burden numbers. The Burden number of

an argument a is defined based on the burden numbers of its direct attackers. We define

Buri(a) as follows:

Buri(a) =


1, ifi = 0

1 +Σb∈R−1 (a)
1

Buri−1(b)
, otherwise

As on Discussion-based semantics the number of attacks to an argument is more

important than the strength of the arguments that are attacking it. When applying this

semantics to the AF represented in Figure 2.1, we get the results reported on table 2.4

from where we get the following ranking: b �BBS d �BBS e �BBS c �BBS a.

step a b c d e
1 3 1 2 2 2
2 2 1 2 1.33 1.5
3 2.17 1 2 1.5 1.75

Table 2.4: Burden-based semantics

15



CHAPTER 2. STATE OF THE ART

2.1.2.5 Valuation with tuples

The valuation with tuples[11] takes into account all the ancestor branches of an argument

stored in tupled values. Let a,b ∈ A, we consider the number of attack branches on a

and b, as well as the defense branches. Afterwards we compare those numbers to define

whether a ≺V T b or b ≺V T a.
Note that if the AF has cycles, some tuples can be infinite, to solve this, the algorithm

transforms cycles into infinite acyclic graphs to calculate them. This is not a trivial

algorithm to calculate, and as there was no implemented version of the algorithm, we

will not show the results for this algorithm and we will only consider its main properties.

2.1.2.6 Matt & Toni

Matt and Toni [25] compute the strength of an argument based on a game. This game

confronts two players, a proponent and an opponent of a given argument, where the

strategies of a player are sets of arguments. Let SP be the strategies for the proponent and

SO for the opponent, SO,SP ⊆ A.

Definition 2.12. The degree of acceptability of P with respect to O is given by

φ(P ,O) =
1
2

[1 + f (N. of attacks from P to O)− f (N. of attacks from O to P)]

where f (n) =
1

1 +n

Definition 2.13. The rewards of P, denoted by rF(P ,O), are defined by:

rF(P ,O) =


0, iff ∃a,b ∈ P , (a,b) ∈ R

1, if N. of attacks from O to P = 0

φ(P ,O), otherwise

Definition 2.14. For each argument a ∈ A the proponent’s expected payoff is given by:

E(a,p,q) = Σnj=1Σ
m
i=1piqjri,j

Where p and q are probability distributions with p = (p1,p2, ...,pm) and q = (q1,q2, ...,qm).

Lastly the value of the game is denoted by:

s(a) =maxpminqE(a,p,q)

In Matt & Toni the strength of the attackers has more impact on the valuation of the

arguments than the number of attackers. Note that this is not a trivial algorithm to

calculate, and as there was no implemented version of the algorithm, we will not show

the results for this algorithm and we will only consider its main properties.

16



2.1. SEMANTICS FOR ABSTRACT ARGUMENTATION

2.1.3 Discussion

After analyzing all these semantics, we can reach the following conclusions. Table 2.5

shows the resulting ranking for some of the semantics examined before. When we look

at the table 2.5, it is clear that the votes (on arguments and attacks) have a significant

impact on the argument ranking, even for a small example with only five arguments, SAA

Extended produces a different result from all the other semantics.

1 2 3 4 5
SAA Extended b d e a c

Categoriser b d e c a
DBS b d e c a
BBS b d e c a

Table 2.5: Ranking Results Comparison

All the discussed semantics, except from Social Abstract Argumentation Framework

(section 2.1.2.1), do not consider votes on arguments and votes on attacks. However, these

semantics could be reformulated in order to take into account votes on arguments and

attacks. The Categoriser could be adapted to have votes on both arguments and attacks,

in order to do that the Categoriser function should be changed in the following way:

Cat(a) =


τ(a), if R−1(a) = ∅

τ(a)
τ(a) +Σc∈R−1 (a)τ(c,a)×Cat(c)

, otherwise

Where τ(a) is the same function defined in the section 2.1.2.1.

Although these semantics can be easily adapted in order to consider both argument

strength and attack strength, this solution is not experimented or studied as Social Ab-

stract Argumentation Framework.

The Discussion-based semantics are difficult to adapt in order to take into account

the votes on arguments and attacks, since these semantics rely on the number of the

sequence of attacks. On the contrary Burden-based semantics can be adapted in order

to consider votes on arguments. To achieve that the Burden-based semantics function

must be adapted in the following way:

Buri(a) =


τ(a), ifi = 0

τ(a) +Σb∈R−1 (a)
τ(a)

τ(b,a)×Buri−1(b)
, otherwise

Matt & Toni and Validation Tuples semantics rely on more complex algorithms

where it is difficult to introduce a change to consider the votes on arguments and votes

on attacks, without having to reformulate the whole algorithm.

To sum up, although some of the semantics can be easily adapted to consider votes

on arguments and attacks, there are no evidence that these semantics would guarantee

17



CHAPTER 2. STATE OF THE ART

the properties that our solution requires, and since the Social Abstract Argumentation

Framework already considers votes on arguments and votes on attacks, and also proposes

an efficient algorithm [13] to compute the argument and attack strengths, these semantics

seem to be the most appropriate to address our problem.

2.2 Existing argumentation/debate applications

There are already a lot of debate systems in the web that we will analyse throughout this

section. In order to do that, we will divide the different systems in classes and discuss the

varied features of each one.

In this section we will consider two main types of existing applications. First, we

will see the systems that are based on Abstract Argumentation, although we will use a

broader definition of Abstract Argumentation, where the only property is that an argu-

ment is not divided into parts. Afterwards we will study the systems based on structured

argumentation3.

2.2.1 Abstract Argumentation Systems

In this section we are going to present systems that allow users to have a debate based on

abstract argumentation.

2.2.1.1 Pros and Cons

In this class of solutions, only one thesis is presented to the user and then users are

given the possibility to discuss the pros and the cons of this thesis. In most models,

the user can contribute to both sides of the thesis. The systems consider.it [12] and

createdebate.com [30] are two good examples of this kind of systems. Consider.it lets

the user add an argument for or against the main thesis. It also lets the user express

his/her opinion by asking how much does he/she supports one or other side of the thesis.

A user can also reuse existing arguments to express his/her point of view (similar to vote

on an argument, see figure 2.2).

CreateDebate also lets the user add arguments to both sides of the thesis, although

it differs from the previous system because the user can dispute, clarify, or support any

argument as well as upvote or downvote each one of them (see figure 2.3).

Clearly the main purpose of this type of applications is to freely discuss a single thesis,

without having to be concerned with whether or not some argument is valid, since the

judgement is left to the users of the system.

3An argument is said to be structured if the premises and claim are explicit, and the relationship between
them is formally defined[6].

18

consider.it
createdebate.com


2.2. EXISTING ARGUMENTATION/DEBATE APPLICATIONS

Figure 2.2: Consider.it

Figure 2.3: CreateDebate

2.2.1.2 Mind Map Systems

Another way to organize arguments is to use a mind map, these applications are not

argumentation systems. In this kind of applications the user starts with a main idea

and decompose the idea into smaller ones. In this section, we are going to examine two

different systems that are based in this concept, debategraph.org[14] and mindmeister.

com[26].

Debategraph starts with a main idea in the center node of the graph and the subideas

all around the center node connected to that main idea. Everytime a user clicks on a

19

debategraph.org
mindmeister.com
mindmeister.com


CHAPTER 2. STATE OF THE ART

Figure 2.4: Debategraph interface

Figure 2.5: MindMeister interface

node, that node goes to the center and the other nodes disappear, appearing new nodes

all around the center node, representing the subideas of the current selected node (see

figure 2.4).

MindMeister is a mind map. In the center we get the main idea and as we get further

from the center we start to get that idea decomposed into smaller branches (see figure

2.5).

These kind of systems are used to expose and navigate all the smaller aspects of a

main thesis, this is useful to organize a discussion or even to study some subject without

losing the overall view of the main subject.

2.2.2 Structured Argumentation Systems

In this section we will focus on structured argumentation systems. In Structured Argu-

mentation systems, each argument is divided in different parts. For example, we can have

20



2.2. EXISTING ARGUMENTATION/DEBATE APPLICATIONS

Figure 2.6: Structured Argumentation Systems: Agora-net

some premises and infer some claim, all the parts together build an argument. Since the

relations between every part of the argument are explicitly defined, the role of each part

is also clearly defined.

Let us look at the example of agora.gatech.edu[1], where the arguments are repre-

sented as nodes and the relations are represented as edges (figure 2.6). The role of each

node is directly associated with the relation that it has with other nodes. If the relation

between a node a and a node b is "modus ponens" we can conclude that a is a premise to

conclude b.

To sum up, these kind of systems are used to structure and strengthen a thesis rather

than to provide a open debate to the users.

2.2.3 Discussion

After analyzing all these systems we note that, although there are some systems that

meet some of the requirements of Social Abstract Argumentation, none of the explored

tools meets all the requirements referred in the previous chapter. The applications that

are based on abstract argumentation could be adapted to Social Abstract Argumentation

semantics more easily. However, the applications that are based on structured argumen-

tation, also have some features that can be adapted to our solution.

From the two applications that we examined, that were based on abstract argumen-

tation, consider.it does not allow the users to vote on the arguments and also it is

21

agora.gatech.edu
consider.it


CHAPTER 2. STATE OF THE ART

restricted to only two different thesis. It introduces a different way for the user to express

their opinion about the whole debate, instead of the argument voting that is considered

in Social Abstract Argumentation.

The application createdebate.com allows the users to vote positively and negatively

on each argument, and also to dispute, support and clarify an argument. This application

is also limited to a fixed number of thesis. The option to dispute an argument could be

similar to the idea of attack in Social Abstract Argumentation, although the idea may be

similar, the behaviour is different from what we expected in an implementation of the

Social Abstract Argumentation. In createdebate.com the element that disputes another

argument works as a reply (that can also be upvoted and downvoted, disputed, clarified

and supported), therefore it can only dispute (attack) that argument and it does not

appear in the arguments of any other thesis.

The interface of both applications is presented in the form of threads, with one thread

for each thesis. If we try to adapt this kind of display to the Social Abstract Argumentation

it may be limiting since there are no restrictions to the number of thesis that a debate can

have. Some options such as the idea of support and the possibility to clarify an argument

can possibly be considered to an adaptation of the Social Abstract Argumentation.

The applications based on structured argumentation focus more on the relations

between arguments, narrowing the user’s freedom to argue. However, both systems inter-

faces display the arguments in a more suitable way, considering the many attack relations

that can be established in an implementation of the Social Abstract Argumentation.

The system agora-net represents the distinct parts of the arguments as nodes, and the

relations between the arguments as edges. This graph display can be easily adapted to

Social Abstract Argumentation. If we consider each argument as a node and each attack as

an edge, we can have a suitable presentation of the debate. Despite this, the system does

not allow much user interaction, and the relations between the different argument parts

are limited. This make this tool suitable to structured argumentation, but not suitable

for abstract argumentation.

Mind maps are used to decompose and organize ideas into smaller parts, they do not

let more than one user participate, leading to an informative hierarchical graph. Although

these systems do not have many of the properties that we aim, there are some points that

can be considered to our solution. The possibility of focusing on smaller parts of the

graphs, and also the ability to filter some of the nodes in order to see only the relevant

nodes for the user, are some of the features that can be considered in our solution.

In this work we focused on some of the systems that exist and that may be representa-

tive of the classes defined in this section. However, there are a lot of other systems that

can also be grouped in the different classes that we defined previously.

To conclude, we want to create a system that has different goals or properties from

the solutions discussed before, although it might also share some of them.

The system should provide an easy way to interact, allowing the user to participate

and give his/her opinion, via new arguments, voting, adding attacks between arguments,

22

createdebate.com
createdebate.com


2.2. EXISTING ARGUMENTATION/DEBATE APPLICATIONS

and also by voting on attacks.

23





C
h
a
p
t
e
r

3
Proposed Solution

In this chapter we describe the proposed solution, project requirements, and the system

architecture in which our prototype is based.

3.1 Proposal

In this dissertation we propose to develop an Online Debate Tool that allow us to vali-

date the Social Abstract Argumentation model proposed in [17, 23]. To achieve this, we

developed a prototype of an Online Debate Tool that allows the users to participate in a

debate. This tool can be divided in three main components that must be well integrated

among each other.

The presentation layer is the topmost level of the application. This layer manages

the user interface and also sends requests to the application layer. The application layer

receives the requests from the presentation layer, compute the results and also sends

requests to the storage layer, that stores all the data needed to maintain the application

state.

In order to adequately capture the notion, underlying the Social Abstract Argumen-

tation model, our solution must enable users to execute specific actions, such as the

possibility to create arguments, vote on arguments, create attacks between arguments,

and vote on attacks. All these interactions must be intuitive to the final user, therefore

our system must also be visually appealing and easy to use.

3.2 Project Requirements

In this section we will define the project requirements, divided in functional and non-

functional requirements.

25



CHAPTER 3. PROPOSED SOLUTION

3.2.1 Functional Requirements

1. The user must be able to add a new argument.

2. The user must be able to add a new attack relation between two arguments.

3. The user must be able to vote positively or negatively on an attack or on an argu-

ment.

4. The debate must be presented in the form of a graph.

5. The user must be able to log in.

6. The user must be able to see which arguments and relations are already voted by

himself.

7. The user must be able to see the debate ranking.

3.2.2 Non-functional Requirements

The system must provide adequate performance to enable an adequate interaction be-

tween users and the system, and guarantee that the users receive the appropriate feedback.

The results of the operators that modify the state of the debate should be visible to the

user with a low latency envelope.

3.3 System Architecture

Our framework architecture is based on the Three-tier model firstly proposed by Ecker-

son in 1995 [16] (Figure 3.1). The system is divided in presentation layer, application

layer, and storage layer. In this section we will describe each tier and the interactions

between them.

3.3.1 Presentation Layer.

The Presentation Layer is the topmost level of the application. In our solution the pre-

sentation layer includes the User Interface and also the requests to the application layer.

This layer also deals with all the information that comes from the application layer.

3.3.1.1 User Interface

The user interface was developed in HTML5 and Javascript and also relies on the library

Vis.js[10] to enable the visualization of the graph that represents the ongoing debate. Vis.js

26



3.3. SYSTEM ARCHITECTURE

Figure 3.1: Three-tier architecture

library allows the customization of the graph elements and also uses physics inspired

algorithms to position the elements on the canvas. Figure 3.2 presents the overview of

the user interface, each component will be described further in this section.

There are four main elements that compose the debate: arguments, votes on argu-

ments, attacks, and votes on attacks.

The arguments are represented using a node object of Vis.js. In order to represent an

argument, the node object from Vis.js has to be used by setting some specific configura-

tions. Firstly, the shape of the node had to be changed to a box, and also other properties

had to be changed such as border radius, label and title in the pursuance of achieving a

more appealing design to the final user. The node color also changes depending on the

strength of each argument.

To represent an attack, the arrow object of Vis.js was used. Some configurations were

also adjusted such as the arrow title and width to make the arrow more appealing to the

final user, and also more appropriate to its use in our system. The arrow width varies

from values slightly above 0 to 20. The function that determines the width value is the

following:

widtha = strengtha ∗ 20

Where a is the attack and the strength value varies from 0 to 1 according to [23]. If an

27



CHAPTER 3. PROPOSED SOLUTION

Figure 3.2: User Interface Overview

28



3.3. SYSTEM ARCHITECTURE

Figure 3.3: Argument example

attack has 0 width, Vis.js library does not make the arrow disappear, instead the arrow

width will be the minimum width available in the vis.js library.

There were some other libraries that were candidates to be chosen to represent the

debates in the form of graphs such as D3.js [8]. This library allows to create directed

graphs that can be customized thorough a set of mechanisms made available by the

library.

Both libraries had the limitation of not allowing to introduce custom html in the nodes.

This limitation prevented us from further customizing the node and led us to having to

place an html object on top of the node every time the user interacts with it. Since the

limitation is the same for both of the libraries the choice of using Vis.js was only a matter

of convenience to the development of the tool, in particular because Vis.js provides a clear

documentation and a large set of examples that allow a fast learning of the library.

Argument. Each argument is represented through a node. The text inside the node is

the argument overview and there are also three buttons, that the user is able to interact

with. The argument can be previewed on the bottom right of the page and it can also

be opened using double click or using the right click pop up menu and then choosing

"View argument". When the mouse is over an argument, a pop up box with information

about the argument (i.e. positive and negative votes, strength), is displayed by the user

interface. Note that the strength of an argument is represented by a number from 0 to

100, instead of 0 to 1 used by the algorithm.

The thumbs up and the thumbs down buttons allow the user to vote positively or

negatively on the argument. There is also a third button with a bolt, which is used to

attack (create a directed edge towards) another argument or the argument itself (see

Figure 3.3).

Each argument can have 10 different background colors forming a gradient between

red, yellow and green. The relation between the colors and the strength of each argument

is represented in the Figure 3.4.

The red color was chosen for the arguments with the smaller strength since red is

commonly associated to "unaccepted" or "wrong". The green color is associated with the

strongest arguments since it is often associated with "right" and "acceptance". Therefore

yellow is in the middle being a more neutral color representing the arguments that are

29



CHAPTER 3. PROPOSED SOLUTION

not weak nor strong.

There are two possible ways to create an argument: (1) double clicking on an empty

space on the canvas or (2) using the right click to display a pop up menu followed by the

click on the option "New Argument", and then fill the argument input box and click on

the create button.

There are three possible ways to vote on an argument: (1) using the buttons on the

bottom left corner of the argument representation in the graph; (2) using the buttons on

the bottom left corner of the argument preview on the right side of the interface; (3) using

the buttons on the right bottom corner of the opened argument view.

Attack. The attack relation between two arguments is represented through directed edges

that vary their width depending on the strength (i.e. relation between positive and nega-

tive votes) of the attack.

The user may create an attack in two different ways: (1) clicking on the bolt symbol on

the bottom corner of the argument (Figure 3.3) and then clicking on the target argument;

(2) right clicking on the source argument of the attack and then clicking on the target

argument. To vote on an attack it is necessary to click on the edge that represents the

attack, which makes a pop-up box appear with 2 buttons, thumbs up and thumbs down,

that enable the user to either vote positively or negatively respectively (see Figure 3.5).

Note that the user can vote only once on each attack.

Moving and zoom. At the bottom right corner of the screen the user can find zoom

buttons that let him/her to zoom in or zoom out the canvas. This allows the user to focus

on a small part of the debate or to have an overall view of the debate. At the left bottom

corner, there is an arrow pad that allows the user to move along the canvas, in order to

inspect different parts of the debate (see Figure 3.2).

It is also possible to navigate along the debate by using the mouse. To move along the

debate a user can click and drag in an empty space of the canvas. To zoom in and zoom

out the user can use the mouse scroll wheel.

Figure 3.4: Relation between colors and acceptance

30



3.3. SYSTEM ARCHITECTURE

Figure 3.5: Attack example

Debate Ranking. It is possible to consult the Debate Ranking by clicking on the De-
bate Ranking tab on the top menu or using the right click pop up menu and choose the

option "Debate Ranking". The debate ranking shows all the arguments in decreasing

order taking into account the argument strength.

Filters. The filters appear on the right side of the screen. The arguments can be fil-

tered by their color. In order to make arguments with a specific color disappear, one must

click on the desired color. The arguments with that specific color will only disappear if

they are not connected with any of the other existing and displayed arguments (see figure

3.6).

Top Menu. The top menu of the application has three different options: Login, De-

Figure 3.6: Filters example

bate Ranking, and Register (see Figure 3.7). When a user clicks on the login button a

modal that allows the user to login appears requesting the user credentials (i.e. username

and password).

31



CHAPTER 3. PROPOSED SOLUTION

Figure 3.7: Top menu

The register modal allows the user to register on the system, a modal appears where

the user must fill the username, email and password fields. The email is validated in this

form and also the passwords must match and be at least 6 characters long.

Right Click Pop Up Menu. When a user clicks with the right button of the mouse on

the canvas a pop up menu is shown with the following options: "New Argument", "Start

Attack", "View Argument", and "Debate Ranking" (see Figure 3.8). If the user right clicks

on an empty canvas space only the options to create a new argument and to consult the

debate ranking are enabled. If the user right clicks above an argument the options "Start

Attack", "View Argument" and "Debate Ranking" also become enabled, while the "New

Argument" option is disabled.

Figure 3.8: Right click pop up menu

3.3.2 Requests to the Application Layer

The presentation layer makes the needed requests to the application layer and also deals

with all the data that comes from the application layer. The REST requests use the jQuery

library [18] and are made using AJAX (Asynchronous Javascript and XML). The Listing 3.1

provides an example of a request made to the application layer. This request occurs when

a user creates an attack between two nodes s (source) and t (target).

After the request is made the application layer returns a JSON formatted message to

the Presentation Layer. This message is then parsed by the presentation layer and used to

display the proper information to the user. Listing 3.2 shows an example of the parsing

of the request that returns all the nodes of a specific graph (i.e. graph/graph_id).

In the Listing 3.2 the list of nodes of the requested graph is iterated. For each argu-

ment, a node object from Vis.js is created (line 3 to 15) and the dataset of the nodes is

updated and consequently the nodes are updated in the canvas (line 16).

32



3.3. SYSTEM ARCHITECTURE

1

2 $.ajax({

3 ’async’: true,

4 ’type’ : "POST",

5 ’global’: false,

6 "headers": {

7 "authorization": "Bearer�"+token},
8 ’url’: "http://localhost:8080/helloworld/rest/connectnodes/g/"

9 +graphId+"/s/"+s+"/t/"+t+"/"+token,

10 ’dataType’: "json",

11 ’success’: function (data) {

12 json = data;

13 }

14 });

Listing 3.1: Example of an Ajax request - Connecting two arguments

1 for(i = 0; i<json.nodes.length; i++) {

2 var debnode = json.nodes[i];

3 node = {id: debnode.id,

4 title: "Score�:�<b>"+
5 (Math.round(debnode.x * 10000) / 100)+

6 "/100</b><p>Positive:�<b>"+numberRed(debnode.positiveVotes)+
7 "</b>��Negative:�<b>"+numberRed(debnode.negativeVotes)+"</b></p>",
8 label: debnode.text, arg: debnode.arg, score: debnode.x,

9 userId: debnode.userId,

10 votePos:debnode.positiveVotes,voteNeg:debnode.negativeVotes,

11 text:debnode.text,

12 color:{background: defineBackground(debnode.x),

13 border: defineBorder(debnode.x)},

14 chosen: {label:false,node: changeColor(debnode.x)},

15 widthConstraint: {maximum: 600, minimum: 600},

16 hidden:false, shapeProperties: {borderDashes: false}, };

17 nodes.update(node);

18 }

Listing 3.2: Example of parsing the results of a request - Get all nodes from a graph

3.3.3 Application Layer

The application layer deals with all the logic behind the tool (e.g. semantics algorithm)

and it also retrieves the data from the storage layer. It is divided into two sublayers,

Frontend and Logic. The Frontend receives and forwards all the requests that come from

the presentation layer and also sends the expected responses to the presentation layer.

The logic sublayer deals with all the computations and requests to the storage layer.

The application layer was implemented as a web service running on a Tomcat Server

[19] that allows requests and it also runs all the algorithm computations and logic.

3.3.3.1 Frontend

This sublayer of the application layer provides a REST API to connect with the Presenta-

tion Layer. Frontend organizes and filters the information that comes both from the algo-

rithm and the storage layer providing the necessary methods to the Presentation Layer:

33



CHAPTER 3. PROPOSED SOLUTION

1 {

2 id:2,

3 nodes:[

4 {

5 id:0,

6 x:0,

7 text:"Argument�1",
8 arg: "",

9 userId:"user1",

10 positiveVotes:0,

11 negativeVotes:0

12 },

13 {

14 id:1,

15 x:0,

16 text:"Argument�2",
17 arg: "",

18 userId:"user2",

19 positiveVotes:0,

20 negativeVotes:0

21 },

22 {

23 id:2,

24 x:0,

25 text:"Argument�3",
26 arg: "",

27 userId:"user3",

28 positiveVotes:0,

29 negativeVotes:0

30 }

31 ],

32 nodesSize:3

33 }

Listing 3.3: Example of JSON returned by graph_id

graph/graph_id. This method returns all the arguments in a debate graph with a specific

id. An example of an answer returned by this method is presented listing 3.3. Listing 3.3

shows all the nodes for the graph with the id = 2 and the respective nodes list of the graph.

Each node has several properties: id, strength (represented by x), argument text preview

(represented by text), argument extension (represented by arg), userId, positiveVotes, and

negativeVotes.

attacks/graph_id. This method returns all the attacks that exist in a debate graph with a

specific id.

debatenode/node_id. This method returns all the information about an argument/de-

bate node with a specific id. This information includes: id, node strength, node text,

node argument extension, user id of the creator, number of positive votes and number of

negative votes.

34



3.3. SYSTEM ARCHITECTURE

addnode/node_id. This method receives a JSON with all the information needed to create

a new debate node (i.e. an argument in a debate).

deletenode/nodeId/node_id/token/token. This method receives an id of an argument

and deletes it. This action can only be successfully performed if the user with the pro-

vided token is the owner of the argument (i.e. the creator of the argument), and if the

argument has no votes. The argument can only be deleted when it has no votes since we

do not want to interfere on the debate, and an argument with any vote has impact in the

debate.

connectnodes/g/graph_id/s/source/t/target. This method creates a new attack between

two debate nodes (i.e. two arguments in a debate). The attack starts in the node with the

id source and ends in the node with the id target.

votepos/g/graph_id/node/node_id/token/token. This method adds a positive vote to a

node with a specific id made by the user with the provided token. In the case the user

has already voted positively on the argument, the existing vote is removed. Otherwise, if

the previous vote of the user is negative, a positive vote is added and a negative vote is

subtracted from the argument.

voteneg/g/graph_id/node/node_id/token/token. This method adds a negative vote to a

node with a specific id made by the user with the provided token. In the case the user

has already voted negatively on the argument, the existing vote is removed. Otherwise,

if the previous vote of the user is positive, a negative vote is added and a positive vote is

subtracted from the argument.

voteposE/g/graph_id/attack/attack_id/token/token. This method adds a positive vote

to an attack with a specific id made by the user with the provided token. In the case

the user has already voted positively on the attack the previous vote on that attack is

removed. Otherwise, if the previous vote of the user is negative, a positive vote is added

and a negative vote is subtracted from the argument.

votenegE/g/graph_id/attack/attack_id/token/token. This method adds a negative vote

to an attack with a specific id made by the user with the provided token. In the case

the user has already voted negatively on the attack the previous vote on that attack is

removed. Otherwise, if the previous vote of the user is positive, a negative vote is added

and a positive vote is subtracted from the argument.

createuser. This method receives a JSON message with all the information needed to

create a new user. If there is no user with the same username a new user will be created.

35



CHAPTER 3. PROPOSED SOLUTION

The information provided is: username, email and password.

existsuser. This method receives a JSON message with a username and a password and

returns a JSON message with a boolean that will be true if both the username and pass-

word exist and match, and false otherwise. The JSON message also provides a temporary

token needed to execute most of the requests and an expiration date.

getuserbytoken/token This method returns all the information of the user that currently

owns the specified token. This method allows the user to close the page and still be logged

in if he returns within one hour from the last time he logged in to the application. The

token is stored in the browser’s local storage.

getuservotes/token/g/graph_id This method returns all the votes (on arguments and

attacks) that the user with a specified token owns.

The API was developed using Jersey [22] and Tomcat [19]. Jersey is a library that provides

a framework for developing RESTful web services in Java. The Jersey framework allows

to add filters to the Web Application (e.g. every time a user makes a request to the web

application a function will be called automatically by the Jersey runtime).

Authentication Filter. In order to guarantee the user authentication an Authentication

Filter was added to the Web Application. The authentication filter intercepts the user

requests and verifies if the token that is present in the request header matches any valid

token in the database. If it does, the request proceeds, otherwise, an exception is thrown

and the request is cancelled.

3.3.3.2 Logic

The Logic sublayer computes the algorithm and makes requests to the storage layer. In

order to implement all the requests to the storage layer, it was used the adapter design

pattern1[21], which consists in a class that permits to retrieve all the necessary informa-

tion from the database.

Adapter to the database. The adapter is used as an abstraction to the client. The client

makes a specific request, this request is received by the adapter that transforms it into

a query. The query is forwarded to the Neo4J Driver that sends it to the database and

receives the response records. After these records are received, the adapter parses and or-

ganizes the records. Finally the client receives the answer (see Figure 3.9). The Singleton2

1The adapter design pattern purpose is to "Convert the interface of a class into another interface clients
expect" [21]

2The Singleton design pattern guarantees that there is only one object of the desired class.

36



3.3. SYSTEM ARCHITECTURE

1 public List<DebateNode> getAllnodesFromGraph(int id){

2 List<DebateNode> list = new ArrayList <>();

3 StatementResult r = session.run(

4 "MATCH�(g:Graph)-[r:BELONGS_TO]->(n:DebateNode)"
5 + "�WHERE�(g.gid�=�"+id+")��"
6 + "RETURN�n.nid�as�id,�n.posVotes�as�posVotes,�n.negVotes�as�negVotes"
7 +",�n.x�as�x,�n.text�as�text,�n.userId�as�userId");
8 while(r.hasNext()){

9 Record record = r.next();

10 int nid = record.get("id").asInt();

11 int posVotes = record.get("posVotes").asInt();

12 int negVotes = record.get("negVotes").asInt();

13 double x = record.get("x").asDouble();

14 String text = record.get("text").asString();

15 String userId = record.get("userId").asString();

16 DebateNode n = new DebateNode(nid, posVotes, negVotes, x,id,text,userId);

17 list.add(0,n);

18 }

19 return list;

20 }

Listing 3.4: Method: getAllnodesFromGraph(int id)

design pattern was also used to guarantee that there is only one instance of the Neo4J

Adapter in the system.

Figure 3.9: Adapter scheme

An example that can illustrate this process is when the client asks all the nodes from

a specific graph (graph/graph_id.). The method getAllnodesFromGraph(int id) is called

(listing 3.4):

This method sends a query to the driver using the driver session (line 3 to 7 - Listing

3.4) and converts the answer into objects (DebateNode) that are in a format understood

by the presentation layer.

Algorithm. The algorithm that was explained in section 2.1.2.1 was adapted to allow

votes on attacks and implemented in Java — previously there was only an implementa-

tion in C++. This was done to allow an easy integration of the algorithm with the database

library and also Jersey. The ISS algorithm iteration rule was adapted in order to consider

37



CHAPTER 3. PROPOSED SOLUTION

1 double prec = 1e-12;

2 while(max>=prec){

3 max = 0;

4 for(int i=0; i<scc.length;i++){

5 DebateNode pNode = g.nodesMap().get(scc[i]);

6 double newx = pNode.getA();

7 for(Pair attacker: pNode.getParents(g)){

8 newx *= 1 - attacker.getNode().getX() * attacker.getValue();

9 }

10 max = Math.max(max, Math.abs(pNode.getX()-newx));

11 pNode.setX(newx);

12 }

Listing 3.5: Adapted ISS algorithm Java implementation

the strengths of the attacks:

x
(k+1)
i = τi

∏
j<i,j∈Ai

(
1− x(k+1)

j · τj,i
) ∏
j≥i,j∈Ai

(
1− x(k)

j · τj,i
)

To develop the re-implementation of the algorithm, several classes and functions were

created. The classes DebateNode, Graph, Pair and SAAF were created.

The class DebateNode provides all the functions to access the necessary fields to com-

pute the strength of the debate node: positive votes, negative votes and attackers list with

the respective positive and negative votes.

The class Graph contains a list of all the DebateNodes that compose that graph and

also the graph id.

The class Pair contains a node (attacker) and the respective positive and negative

votes.

The class SAAF (Social Abstract Argumentation Framework) has all the functions that

are part of the semantics algorithm.

Listing 3.5 presents the code of the implementation of the adapted version of the ISS

algorithm in Java.

Executor thread to run the algorithm. To run the algorithm without compromising the

response times of the API the alogrithm runs in a separate thread. This separate thread

is an Executor class that is running in background for each debate and recalculates the

scores of the arguments within a time interval of 3s. The API returns the JSON answer

to the client whilst the executor thread runs on background and updates the arguments’

values in the database.

3.3.4 Storage/Data Layer

This layer stores all the data that defines the state that it is needed to maintain the ap-

plication, such as users, arguments, debates, and relation data (i.e. attacks, votes, and to

which graph an argument belongs).

38



3.3. SYSTEM ARCHITECTURE

Figure 3.10: Neo4J Database Schema

This layer uses neo4j[28], a Graph Database that is well adapted to our problem. In

the neo4j every entity is a node and every relation is an edge. This abstraction allows

to establish relations between entities in a more intuitive way. Furthermore, neo4j is

optimized to graph queries with highly connected data, allowing to run queries, over a

graph with a considerable number of attacks, potentially faster.

Other Graph databases such as HypergraphDB[27] were considered throughout the

development of this tool, however the performance to run a query, the size of the stored

data, and the documentation led us to choose the neo4j database instead.

We only need 3 different entities and 3 distinct types of relationships — as we can see

in figure 3.10 — to store all the required information to run our tool.

Entities:

User. The User entity stores all the needed information about each user and also informa-

tion about votes on edges. The field userId stores the username of the user. The field email
contains the email that the user provided in the registering. The field password stores

the encrypted password of the user.

The field salt stores the random salt generated in the registering, and it is used to

encrypt the password in the application layer. The field token stores the token generated

every time a user logs in, and the field date stores the expiry date of that token. The fields

posEdges and negEdges store the edges that the user has voted, positively and negatively

respectively.

DebateNode. The DebateNode entity contains all the information related to each argu-

ment.

The DebateNode entity has several fields that are described next. The field nid stores

39



CHAPTER 3. PROPOSED SOLUTION

the id of the argument. The fields posVotes and negVotes contain the positive and negative

votes of the argument, respectively. The field x stores the computed strength of the argu-

ment. The fields text and arg contain the argument content. The field userId stores the

owner username.

Graph. The Graph entity contains the information about the graph. The only field in

the Graph entity is gid that stores the graph id.

Relationships:

BELONGS_TO. This relation links the DebateNode entity to Graph entity. This means

that each DebateNode belongs to one graph.

VOTE. This relation goes from the User entity towards the DebateNode entity. Each

user can vote only once on each DebateNode. The VOTE relation has only the field type-
OfVote which can be either positive or negative.

ATTACKS. This relation goes from the DebateNode entity to the DebateNode entity. Each

DebateNode is able to attack every other DebateNode in the same graph including itself.

The ATTACKS relation also contains two fields to store the positive votes and negative

votes on the attack.

3.3.5 Security

This application provides secure connections (SSL) to the two methods where a password

is sent to the server: createUser and existUser. Most of the other methods require an user

token to run — only the method to get all the graph nodes and the method to get all the

attacks do not require a token to be executed.

Every time a user logs in a new token is generated and stored in the database. When

the user tries to perform an action a token is sent to the server. The server will try to

match this token with all the existing tokens in the database, if it finds a match the user

may proceed with the action.

The token that is sent to the user is stored on the web browser local storage. This will

let the user reload the page and keep the session. However, this stored token also has an

expiration date of one hour after its generation.

The user registering requires a valid username (i.e. an username that is not used yet),

an email and a password. When a user does his registers itself all these three fields are

sent to the application layer. The application layer stores the user and the email in plain

text, and encrypts the password without having access to its plain text. A random salt

string is also generated and stored along with the user information.

40



3.3. SYSTEM ARCHITECTURE

In the login procedure only the username and the password are sent to the applica-

tion layer. The application layer receive the username and get the respective salt string.

Afterwards, this salt string is used to encrypt the password and the password is matched

against the user password. If it matches, a true boolean is returned from the storage layer

and a token is generated and sent both to the presentation layer and storage layer. Figure

3.11 illustrates the login procedure.

Figure 3.11: Login procedure

Password encryption. The password encryption is granted by the SHA512 algorithm.

Before the encryption of the password a random generated salt string with 18 characters

is added to the beginning of the password. This salt is stored along with the user infor-

mation to allow the encryption of the password again. This assures that two passwords

1 private String get_SHA_512_SecurePassword(String passwordToHash, String

salt)

2 throws UnsupportedEncodingException{

3 String generatedPassword = null;

4 try {

5 MessageDigest md = MessageDigest.getInstance("SHA-512");

6 md.update(salt.getBytes("UTF-8"));

7 byte[] bytes = md.digest(passwordToHash.getBytes("UTF-8"));

8 StringBuilder sb = new StringBuilder();

9 for(int i=0; i< bytes.length ;i++){

10 sb.append(Integer.toString((bytes[i] & 0xff) +

11 0x100, 16).substring(1));

12 }

13 generatedPassword = sb.toString();

14 }

15 catch (NoSuchAlgorithmException e){

16 e.printStackTrace();

17 }

18 return generatedPassword;

19 }

Listing 3.6: Secure password generation

41



CHAPTER 3. PROPOSED SOLUTION

with the same plain text will result in two different encrypted passwords and also that

the encryption of a password from a specific user will result in the same outcome since

the salt used is always the same (see Listing 3.6).

3.4 Summary

In this chapter we have presented our solution. Our solution is divided in three different

layers: Presentation Layer, Application Layer and Storage Layer. The Presentation Layer

is divided in the User Interface and the requests to the Application Layer. The Application

Layer deals with all the logic of the system, receives the requests from the Presentation

Layer, and also sends the requests to the Storage Layer. Finally, the Storage Layer keeps

the system state and is consulted by the Application Layer.

In the next chapter we will describe how we have evaluated our application and the

results will be presented and discussed.

42



C
h
a
p
t
e
r

4
Evaluation and Results

In this chapter we describe the tests that were conducted in order to evaluate our so-

lution. We also present the results of those tests and we discuss them. The evaluation

of the system is divided in three separate parts: Usability, Semantics, and Algorithm

Performance.

4.1 Interface Usability Evaluation and Results

In this section we describe how we evaluated the interface usability. We start by describing

the tests that were conducted and after we present and discuss the obtained results.

4.1.1 Test setup

To evaluate the interface, we did usability tests with specific tasks to cover all the inter-

actions with the user interface. All the tests were done under supervision of the develop-

ment team. Notes of the participants behaviour and doubts, were taken along the process.

Before the tests some pilot tests were conducted with two voluntary participants in order

to prepare the real tests and correct minor bugs and problems with the questionnaire and

tasks.

Participants. The usability tests were conducted with 16 voluntary participants (13 male

and 3 female) aged between 18-57 with an average age of 24.75 (standard deviation of

8.9). A large majority of the participants (81.3%) use social networks on a daily basis. The

participants have different academic degrees: 4 have completed a master degree, 4 have

completed high school and the other 8 participants have completed a bachelor degree.

Methodology. Before the tests each participant was given a briefing on the application.

43



CHAPTER 4. EVALUATION AND RESULTS

The briefing was focused on the purpose of the application and not on the functioning,

so as not to bias the participant’s behavior during the tasks.

During the test, the users performed the following tasks:

• Task 1: Create an argument

The user must create an argument with the specific text: "Cigarettes are dangerous

for your health. It does not matter if they are electronic or not."

• Task 2: Vote on an argument.

The user must vote positively on a specific argument, and afterward he/she must

vote negatively on another specific argument.

• Task 3.1: Create two attacks.

The user must use the argument created on the first task and create two attacks

between that argument and two other specific arguments.

• Task 3.2: Vote on an attack.

The user must vote on the second attack that he/she created in the Task 3.1.

• Task 4: Delete an argument.

The user must create an argument and vote positively on that argument. Afterwards

the user deletes the argument. In order to do that the user must remove his positive

vote on the argument.

• Task 5: Consult the debate ranking.

The user must open and consult the debate ranking.

After completing each task the user had to answer some questions in order to under-

stand the difficulty of the task and the way he/she completed the task. The first question

of every task is about the task easiness (i.e. "The task was easy to complete."). The partici-

pants answered using a likert scale, where they can choose from a scale of 1 to 5. Choosing

1 means that they strongly disagree with the statement, while choosing 5 means that they

strongly agree with the statement. Also the last question of each task lets the users add

suggestions and comments related to that task.

Questionnaire. The questionnaire is divided into 5 different tasks that test possible

interactions with the system. These tasks were the following:

Task 1. Questions 5 to 8 of the questionnaire are related to Task 1. Question 6 asks

the user how he/she created the argument. Question 7 asks the user about the easiness

to understand how to create an argument.

Task 2. Questions 9 to 15 are related to Task 2 which is subdivided in Task 2.1 and

44



4.1. INTERFACE USABILITY EVALUATION AND RESULTS

Task 2.2. Questions 10 and 13 were used to check if the task was completed successfully

asking the score of the argument, after the user completed the task. Questions 11 and 14

aim to understand how did the user voted on the arguments.

Task 3.1. Questions 16 to 20 of the questionnaire are related to Task 3.1. Question 17

aims to understand if the user considers that the interface provided the proper feedback.

Question 18 aim to understand how did the user created the attack. Lastly, questions 19

and 20, ask the users about the number of votes of the attack after its creation and also

the score of the attacked argument after the attack. These two questions are used to check

if the user successfully completed the task.

Task 3.2. Questions 21 and 23 are related to Task 3.2. Question 22 asks the score of

an attacked argument after the completion of the task. This question is used to check if

the user has completed the task successfully.

Task 4. Questions 24 to 26 of the questionnaire are related to Task 4. Question 24 asks the

user if he completed the task successfully. Question 25 asks about the easiness of the task.

Task 5. Questions 27 to 30 of the questionnaire are related to Task 5. Question 28

is used to check if the user completed the task successfully, asking the user to copy the

text of the argument placed in second in the ranking. Question 29 aim to understand

how did the user opened the debate ranking.

Visualization and Navigation. In this part of the questionnaire (Questions 31 to 34)

we asked the users the following questions:

• Q31. Which color is associated to the strongest arguments?

This question aimed to understand if the user could distinguish the strongest argu-

ments from the weakest arguments.

• Q32. It was easy to move (right, left, up, down) along the debate.

In this question the users were asked on how much they agree with this sentence,

using the same likert scale mentioned before.

• Q33. It was easy to zoom in and zoom out.

In this question the users were asked on how much they agree with this sentence,

using the same likert scale mentioned before.

• Q34. What were the main obstacles when performing these tasks?

In this question the user could alert to any problem they found when performing

tasks related to the visualization and navigation.

45



CHAPTER 4. EVALUATION AND RESULTS

We also inquired the users about the system usability as a whole (Questions 35 to 38).

The full usability test questionnaire is available in the Appendix A.

4.1.2 Results

In this section we will present the results to the questionnaire described previously. The

table 4.1 shows the results of the first question of each task (questions 5, 9, 16, 21, and

27).

Strongly
Disagree (1)

Disagree (2) Neutral (3) Agree (4)
Strongly
Agree (5)

AVG SD

T1 12.5% 31.25% 12.5% 31.25% 12.5% 3 1.32
T2 0% 0% 0% 12.5% 87.5% 4.88 0.34
T3.1 0% 0% 6.25% 12.5% 81.25% 4.75 0.45
T3.2 0% 6.25% 25% 37.5% 31.25% 3.94 0.93
T4 0% 18.75% 62.5% 18.75% 0% 3 0.63
T5 0% 0% 0% 0% 100% 5 0

Table 4.1: Summary of task easiness questionnaire results. The highest scores are high-
lighted.

Task 1: Create an argument. In the questionnaire section about the first task (Questions

5 to 8), we asked the users to express their opinion about the statement "Understanding

how to create an argument was easy." (Question 7) using the same scale from 1 to 5 used

before, and how did they created the argument. The results reveal that the participants

disagree with the statement (the average is 2.5 with a standard deviation of 0.97).

To the question about how the users have created the argument (Question 6), 15 users

used the right click pop up menu and only 1 of the participants have used the double click.

There were also 2 users that suggested the creation of a button to add a new argument.

Task 2: Vote on an argument. Since there are several ways to vote positively or negatively

on an argument, the users were asked how did they vote on the argument (Question

11 and 14). This question was asked twice because the users had to vote positively and

negatively on different arguments. The aggregate values revealed that the participants

used the buttons in the argument preview 14 times, the graph view 17 times and the view
with the argument opened only once.

Task 3.1: Create an attack. On the questions related to the task 3.1 (Questions 16 to

20), the participants were asked to express their opinion about the following statement

"The system gave clear evidence of the success of the task." (Question 17). The answers to

this question reveal that the majority (14 participants) strongly agree (5) with the state-

ment and the other 2 participant agree (the average is 4,875 and the standard deviation

is 0.34).

46



4.1. INTERFACE USABILITY EVALUATION AND RESULTS

The participants were also asked how did they created the attacks (Question 18). The

answers to this question showed that 3 of the participants used the bolt symbol in the

argument and the remaining 13 participants used the right click pop up menu to start

the attack.

Task 3.2: Vote on an attack. The task 3.2 of the questionnaire (Questions 21 to 23) aimed

to understand if the user could perform a vote on an attack. The notes taken during the

task reveal that some of the participants had difficulties to click on the attack and make

the pop up to vote appear.

Task 4: Delete an argument. In the questions related to the task 4 of the questionnaire

(Questions 24 to 26), the results revealed that every participant was able to complete

the task, however some suggestions were made by the participants during the process.

Some of the users referred that the message shown to inform the users the conditions to

delete an argument is small and insufficient to understand why they can not delete the

argument.

Task 5: Consult the debate ranking. Question 29 asked the participants how did they

opened the debate ranking. The answers revealed that 2 participants used the right click
pop up menu and the remaining 14 used the button on the top menu of the application.

The questions 10, 13, 22, and 24 were introduced to verify if the tasks were completed

in the correct way. These tasks asked the user to enter the value of a particular argument

after the completion of the task.

Visualization and Navigation. The first question was about the color relation with the

strength of the arguments (i.e. Which color is associated to the strongest arguments?).

The participants could choose between 4 different colors (Green, Yellow, Red and Blue)

and the results showed that 15 users associated the green color with the strongest argu-

ments and only 1 participant thought the strongest arguments were red. Furthermore we

observed that the majority of the users had to check the argument strengths to answer

this question. Three participants also commented that for them, the red color would be

more intuitive to represent the strongest arguments.

In the other two questions the users were asked to comment two statements with

the same likert scale that was used previously. With the statement "It was easy to move

(right, left, up, down) along the debate." All the participants strongly agreed. The other

statement asked about the difficulty to zoom in and zoom out ("It was easy to zoom in

and zoom out."). There were 15 participants answered that they strongly agree and only

one who answered he/she agrees (the average is 4.94 and the standard deviation is 0.25).

General questions. This part of the questionnaire was based on an adaptation of the

47



CHAPTER 4. EVALUATION AND RESULTS

System Usability Scale (SUS) — proposed by John Brooke in 1996 [9] — and comprises

the statements on Table 4.2.

Statements
Statement 1. It is easy to learn how to use the system.
Statement 2. I found the system unnecessarily complex.
Statement 3. I thought the system was easy to use.
Statement 4. I think that I would need the support of a
technical person to be able to use this system

Table 4.2: Statements that composed the general evaluation part of the questionnaire.

Table 4.3 presents the percentage of users for each option of the scale for every state-

ment. As shown in Table 4.3 most of the users agree that it is easy to learn how to use the

system and disagree that the system is unnecessarily complex. Furthermore most of the

participants agree that the system is easy to use and disagree that they would need the

support of a technical person to be able to use the system.

4.1.3 Discussion and Analysis

In this section we will analyze and discuss all the tasks and try to identify possible usabil-

ity problems and improvements. Firstly, we will focus on the different tasks and features

tested by the participants. When we analyze Table 4.1 three of the tasks (T1,T3.2, and T4)

have an average below 4 (Agree). Consequently we will examine in detail the participants

evaluation of these 3 distinct tasks.

Task 1: Create an argument. The first question of task 1 (question 5) had an average

score of 3, however participants voted on every option of the likert scale concerning the

task difficulty — 5 voted on Disagree and 5 on agree, each of the other option had 2 voters.

Furthermore, the question that asked about the ease of understanding on how to perform

the task had an average score of 2.5 emphasizing that is difficult to understand how to

create an argument and hence it may be also difficult to complete the task.

There were two possible solutions that were pointed out by the users: Add a button

to create an argument and warn the users about the possibility to use the right click and

Strongly
Disagree (1)

Disagree (2) Neutral (3) Agree (4)
Strongly
Agree (5)

AVG SD

S1. 0% 0% 12.5% 75% 12.5% 4 0.55
S2. 6.25% 68.75% 25% 0% 0% 2.21 0.58
S3. 0% 0% 6.25% 81.25% 12.5% 4.07 0.47
S4. 25% 75% 0% 0% 0% 1.79 0.43

Table 4.3: Summary general evaluation questionnaire results. The highest scores are
highlighted.

48



4.1. INTERFACE USABILITY EVALUATION AND RESULTS

Figure 4.1: Add argument button

the double click.

The users do not have any introduction on how to use the system, therefore it is

difficult for most of the user to guess how to create an argument since there are no

instructions, no explicit buttons or visual indications on how to do it.

To overcome this issue we decided to add a new button on the right side of the screen

that will allow the users to create a new argument (Figure 4.1). In addition a textual indi-

cation about the possibility to use the right click was also added to the box that appears

when the mouse is over an argument.

Task 3.2: Vote on an attack. This task had an average score of 3.94, 5 votes had a score

under 4. These results suggest that although the majority of the users could complete the

task without much difficulty, the task is not intuitive to some of the users. Some partici-

pants also referred that it was difficult to select an attack when the arrow was thinner (i.e.

lower strength).

In order to reduce the task difficulty, a textual indication explaining that the attack

must be clicked in order to vote on it, was added to the box that appears when the mouse

is over an attack (arrow).

Task 4: Delete an argument. This task had an average score of 3 revealing that delet-

ing an argument it is not an easy task to perform. An argument can only be deleted if

it has 0 votes (positive and negative) and if it is owned by the current user. This means

that we only want to allow users that created an argument unintentionally to delete the

argument.

The task asked the user to create an argument, vote positively on that argument and

delete the argument. The delete button was disabled while the positive vote had not been

removed. A message with the conditions to delete an argument is shown as a tooltip when

the user overs the delete button, however the participants commented that they were not

able to see the message and that a pop up message should appear to make the conditions

to delete perfectly clear for the user.

To overcome the presented issue we decided to add a pop up modal presenting the

necessary conditions to delete the argument. This modal also has a confirmation button

in order to assure that the user read these conditions.

49



CHAPTER 4. EVALUATION AND RESULTS

The tasks T2, T3.1, and T5 had average scores above 4, nonetheless there are also some

observations and improvements that can be made in some of the related features. In task

T3.1 the participants were asked to create an attack between two arguments, although the

results suggest that the task was easy to complete (average score = 4.75) users commented

that the modal that appears after the start of the attack should have a confirmation button

and only disappear after the user clicked that button.

The tasks T2 and T5 have averages of 4.88 and 5 respectively, with only two votes

with the score of 4 on the task T2, the remaining votes had the score of 5. Consequently

we considered that the features related to these tasks do not need to be improved.

Visualization and navigation. One of the users considered that the strongest arguments

were represented with the red color. Three users also mentioned that the color red, is

associated with strength and the reason they have chosen green is related to the textual

indication of the argument’s strength.

Despite these observations, there was only one user that did not associate the green

color with the strongest arguments and considering that only a minor part of the users did

not found this association intuitive (between the green color and the strongest arguments),

we decided to keep the system as it is. The fact that the acceptance of the arguments is

displayed as their strength, may have deceived the users, and make them associate the

red color with the strongest arguments.

The participants found it easy to move and zoom along the debate graph, using the

buttons that exist for this purpose and also the mouse (dragging and scrolling).

General Evaluation. The results of the questions 35 to 38 may indicate that there are

still some improvements that must be made to the interface, however it is already accept-

able.

To sum up, the system usability is acceptable as a whole although there are some

critical issues that were solved in order to allow the user to perform all the possible

interactions. The features that were improved are the following:

• Add an argument.

• Vote on an attack.

• Delete an argument.

Some improvements related to the interface design and also other minor issues may

also be considered in the future.

4.2 Semantics Evaluation and Results

In this section we are trying to understand the users’ vision about several aspects of the

semantics, such as the definition of argument and attack, the definition of positive and

50



4.2. SEMANTICS EVALUATION AND RESULTS

negative votes, the definition of argument and attack strength, and the influence of the

attacks and votes on the strength of an argument.

4.2.1 Test Setup

To evaluate the semantics we conducted some tests with one group of 15 voluntary par-

ticipants (none of the users of this group has participated on the interface usability tests).

The application was set up on a Ubuntu Server 16.04.3 [24] running a Tomcat8[19] and

neo4j[28] community edition. A username and a password was provided to each user.

The username was not related to the participants’ name so that it would not be possible

to relate each user to the person itself.

The users were given the system with 3 arguments and 2 attacks already created and

also a main subject to start a debate. The main subject of the debate was euthanasia and

assisted suicide. The participants used the system for a four days period, creating debates

with a relevant number of arguments and attacks. After these tests, all the participants

answered a questionnaire (see Appendix B) where we tried to learn and understand more

about the following questions:

1. What is an argument for the users?

With this question we are trying to understand the definition of argument for a user.

An an hypothesis we may consider that an argument will be a comment about the

subject. However some more debate-experienced users may define an argument in

the formal way.

In order to understand the definition of argument for the users we introduced 3

different questions (Questions 7, 8, and 11). Questions 7 and 8 ask about the user’s

and the other users’ conception of an argument, respectively. Question 11 presents

several statements and asks the user to select the ones that he/she consider to be

arguments.

2. What is the reason behind positive/negative votes on the arguments?

In this question we are trying to understand what means a positive vote and a

negative vote to most of the users. The user may vote positively or negatively due

to several different reasons:

a) The argument is/is not well-structured.

b) The argument is structured, well formed, and the user agrees/does not agree

with its premises.

c) The argument is structured, and the user agrees/does not agree with its con-

clusion.

d) The argument is a comment that the user agrees/does not agree with.

e) The argument is a comment that the user finds funny/disrespectful.

51



CHAPTER 4. EVALUATION AND RESULTS

There could also be other reasons that may influence the user to provide a positive

or a negative vote that we were not aware of before the tests.

In order to better understand the meaning of votes on arguments 2 questions (Ques-

tions 9 and 10) were introduced on the questionnaire. These questions go straight

to the point, asking the users’ reasons to vote positively and negatively on an argu-

ment. The options presented to the users are the reasons listed above. Moreover,

the users were able to add other different reason from the ones that were presented.

3. What is the meaning of attacking other argument? What is the difference be-

tween an attack and a negative vote on an argument?

With these questions we are trying to understand in which situations an user creates

an attack between two arguments and also the difference between an attack and a

negative vote. In order to understand this, questions 16, 17, and 19 were introduced

to the questionnaire.

Question 16 presents two different arguments and asks the user what attacks he/she

would create between the two arguments. Questions 17 and 19 address the question

related with the difference between a negative vote and an attack, asking the users

what they would do if they found an argument (B) that they do not agree with or

found disrespectful. The options available are: (1) Create an argument and use it

to attack the argument B; (2) Vote negatively on argument B; (3) None of the above.

4. When do the users vote positively/negatively on an attack?

In this question we are trying to understand when do the users vote positively/neg-

atively on an attack. Question 18 was introduced in the questionnaire in order to

answer to this specific question. Although, some of the questions related to the

argument strength can also give clues to answer this question.

Question 18 presents two different arguments to the user, with an attack between

them, and asks the user how and if he/she would vote on that specific attack.

5. Do the users understand and agree with the strength of the arguments and how

they change? Do the users perceive how the attacks influence the arguments’

strength?

With this question we are trying to understand the users’ view about the score that is

assigned to each argument, taking into account the votes on arguments and attacks,

and also the attacks between the arguments. In order to answer this, questions 12 to

15 and 20 to 31 were introduced in this questionnaire. Questions 12 and 13 present

the users 7 unattacked arguments and their respective positive and negative votes,

and ask the users to assign a score to each argument — within a range1— and to

1The different options are the following: Very low (0 to 20), Low (20 to 40), Medium (40 to 60), High (60
to 80), and Very High (80 to 100)

52



4.2. SEMANTICS EVALUATION AND RESULTS

arrange the arguments in the descending order, respectively. Questions 14 and 15

are similar to the previous questions but present only 3 arguments that attack each

other.

Questions 20, 21, 30, and 31 focus on the influence of an attack and its dependence

on the source argument score. Questions 22 to 29 target the influence of the number

of votes on the arguments’ strength/score.

There was also an initial question (Question 5 of the questionnaire) that asked the

users’ how well the socres/strenghts assigned by the application reflected the overall view

of the debating group. The users answered using a likert scale, where they can choose

from a scale of 1 to 5, choosing one means that they strongly disagrees with the statement

and 5 means that they strongly agree.

The full questionnaire is available in the Appendix B.

4.2.2 Results

The tests were conducted with 15 voluntary participants (11 female and 4 male) aged

between 18-29 with an average age of 22.07 (with a standard deviation of 3.1). A large

majority of the participants (93.3%) use social networks on a daily basis. The participants

have different academic degrees: 6 have completed a master degree, 6 have completed

high school and the other 3 participants have completed a bachelor degree. These tests

resulted in a debate with 19 arguments, 58 attacks, and 115 votes. The resulting graph of

the debate can be seen in Figure 3.2.

Question 5 that asked the users about their overall view of the scores/strengths as-

signed by the application had the following results:

• The majority of the participants (9) agrees (4) with the scores/strengths assigned by

our application.

• 3 participants strongly agree (5) with the scores/strengths assigned by our applica-

tion.

• 3 participants are neutral (3) about the scores/strengths assigned by our application.

Therefore this results in an average of 4 with a standard deviation of approximately 0.65.

Questions 7 and 8 that were focused on the definition of argument to the users. We

got the results that are presented in Table 4.4, where the percentage of users that chose

each option is displayed (note that the participants could chose both options).

Table 4.5 presents the results to the question 11 of the questionnaire.

This table shows that only the structured arguments with true premises were consid-

ered arguments to the users. Note that the third sentence is a structured argument where

the conclusion is implicit.

53



CHAPTER 4. EVALUATION AND RESULTS

What is an argument...
To you To the other users

A structured assertion (i.e. with premises and conclusion) 86.7% 80.0%
An unstructured comment 13.3% 33.3%

Table 4.4: Results to the questions 7 and 8 of the questionnaire.

Which of the following sentences do you consider to be arguments?
S1. "I don’t agree!" 0%

S2.
"Animals are born in the wild,
and they are supposed to be living in the wild too.
Therefore,you should not lock any kind of animal in your home!!"

93.3%

S3.
"There are many types of animals
and some of them are already adapted to live inside."

66.7%

S4. "Snails are slow, and I like snails. So snails should live inside." 0%
S5. "I like turtles!" 0%

Table 4.5: Results to the question 11 of the questionnaire.

Questions 9 and 10 are intended to understand the reasons why users vote positively

and negatively on an argument. Tables 4.6 and 4.7 present the results to this two ques-

tions.

When you voted positively on an argument what did you want to express?
"The argument is well structured,
independently of whether I agree with the conclusion."

20%

"The argument is structured, well formed, and I agree with its premises." 66.7%
"The argument is structured and I agree with its conclusion,
independently of everything else."

46.7%

"The argument is a comment that I agree with." 46.7%
"The argument is a comment that I find funny" 0%

Table 4.6: Results to the question 9: Reasons to positive votes

When you voted negatively on an argument what did you want to express?
"The argument is not well structured." 40%
"The argument is well formed and I do not agree with its premises." 60%
"The argument is structured and I do not agree with the conclusion." 46.7%
"The argument is a comment that I do not agree with." 53.3%
"The argument is a comment that I find offensive/disrespectful." 26.7%

Table 4.7: Results to the question 10: Reasons to negative votes

Questions 16, 17 and 19 are focused on the meaning of an attack and the difference

between an attack and a negative vote on an argument.

Question 16 presented the users the situation in Figure 4.2(a) and ask them how

would they create an attack. The results are presented in Figure 4.2(b).

54



4.2. SEMANTICS EVALUATION AND RESULTS

(a) Question 16 (b) Question 16 results

Figure 4.2: Question 16

V + V −
Mode Score

(Users)
Actual Score

(Application)
Mode Order

(Users)
Actual Order
(Application)

A 22 2 VH (80 to 100) VH (80 to 100) #1 #2

B 1 0
L (20 to 40)
H (60 to 80)

VH (80 to 100) #2 #1

C 2 2 M (40 to 60) M (40 to 60) #3 #3
D 1 23 VL (0 to 20) VL (0 to 20) #6 #5
E 0 2 VL (0 to 20) VL (0 to 20) #5 #7
F 42 43 M (40 to 60) M (40 to 60) #4 #4
G 1 43 VL (0 to 20) VL (0 to 20) #7 #6

Table 4.8: Results to questions 12 and 13 and comparison with the scores assigned by
the application.V + - Positive Votes, V − - Negative Votes, VH - Very High, H - High, M -
Medium, L - Low, VL - Very Low

In the question 17, users revealed that, when they do not agree with an argument or

find it disrespectful, almost every user would vote negatively on that argument (86.7%).

There were also 10 users (66.7%) that said that they would create an argument and attack

the argument they do not agree with or find disrespectful. Lastly, only one user (6.7%)

considered that he/she would not perform any of the actions above.

In the question 19, 13 users said that they would not create an argument saying

"I do not agree", in the case they do not agree with an argument or find the argument

disrespectful. Only 2 users (13.3%) chose the opposite option.

Question 18 was intended to understand when the users voted positively or negatively

on an attack. This question displayed the situation in Figure 4.3(a) and had the following

results (Figure 4.3(b)).

Questions 12 and 13 focus on the users’ understanding of the scores/strengths as-

signed by the semantics to each argument, without taking attacks into account. Table 4.8

summarizes the results of both questions, comparing them to the actual score/strength

calculated by our application.

Questions 14 and 15, are similar to questions 12 and 13 but the debate has only three

55



CHAPTER 4. EVALUATION AND RESULTS

(a) Question 18

(b) Question 18 results

Figure 4.3: Question 18

V+ V-
Mode Score

(Users)
Actual Score

(Application)
Mode Order

(Users)
Actual Order
(Application)

A 30 27 M (40 to 60) M (40 to 60) #1 #1
B 1 0 M (40 to 60) M (40 to 60) #2 #2
C 2 22 VL (0 to 20) VL (0 to 20) #3 #3

Table 4.9: Results to questions 14 and 15 and comparison with the scores assigned by
the application.V + - Positive Votes, V − - Negative Votes, VH - Very High, H - High, M -
Medium, L - Low, VL - Very Low

arguments and two attacks (i.e. A attacks B and B attacks C). Table 4.9 summarizes the

results of questions 14 and 15, comparing them to the actual score/strength calculated

by our application.

Questions 20 to 31 focus on the users’ valuation on the strengths/scores assigned to

each argument. Questions 22 to 29 are related with the influence of the votes on the

arguments’ strengths/scores. Questions 22 to 25 present the users two arguments with

distinct values of positive and negative votes. Table 4.10 compiles all the results to those

questions.

Questions 26 to 29 also present the users two arguments with distinct positive and

negative votes, but the score/strength assigned to each argument is showed to the partici-

pants. The participants are then asked to say if they agree or not with the score assigned

56



4.2. SEMANTICS EVALUATION AND RESULTS

Which one should be the strongest (Q. 22 & 24)/weakest (Q. 23 & 25) argument?
A+ A− B+ B− A B None

Q. 22 100 0 50 0 80% 0% 20%
Q. 23 0 100 0 50 66.7% 20% 13.3%
Q. 24 5 1 124 121 33.3% 53.3% 13.3%
Q. 25 13 19 234 240 6.7% 66.7% 26.7%

Table 4.10: Results to questions 22 to 25. A+ - Positive Votes of argument A, A− - Negative
Votes of argument A, B+ - Positive Votes of argument B, B− - Negative Votes of argument
B

by our application and to explain why (questions 27 and 29).

In the questions 26 and 27 argument A had 0 positive votes and 1 negative vote and

a score of 0, while argument B had 1 positive vote and 50 negative votes and a score of

1.96. The majority of the users (60%), agreed with the score assigned by the application,

explaining that, since B has one positive vote while A has 0 positive votes, B should

have a slightly higher score/strength than A. The other 40% of the participants did not

agree with the score assigned by our application, arguing that if there are 50 users voting

negatively on argument B and only one voting negatively on A, B should be weaker than

A, even if it has 1 positive vote.

In the questions 28 and 29 argument A had 1 positive votes and 0 negative votes and

a score of 100, while argument B had 50 positive votes and 1 negative vote and a score

of 98.04. Almost every participant (93.3%) did not agree with the score assigned by the

application, the users mentioned that, since B has a greater number of positive votes it

should be stronger than A, and that one negative vote should not make it weaker than

A. There was only one participant that agreed with the score assigned by the application.

That user mentioned that an argument that has no negative votes should be stronger than

an argument with negative votes, even if it is only one.

Finally, questions 20, 21, 30, and 31 are related with the influence of the attacks on

the arguments’ score. In the question 20 and 21 a situation is presented to the user with

two arguments A and B, where A has no votes and B only has one positive vote. After

A attacks B, and the attack has 1 positive vote, the user is asked what will it happen to

score of B: (1) Decrease; (2) Maintains; (3) Increase.

The majority of the participants (60%), considered that the score of B would not

change after the attack. The participants explained that, since argument A has a score of 0

it should not have any impact on B. There were also 26.7% of the participants considering

that the score of B would decrease. The only reason pointed out by the participants was

that when an argument is attacked its score should decrease. Lastly, only 13.3% of the

participants considered that the score of B should increase, pointing out that, if the attack

is strong and the argument A is weak, the score of B should increase.

Questions 30 and 31 also presented two arguments, A and B, where A has 1 positive

votes and 0 negative votes, and B has 50 positive votes and o negative votes, A attacks

57



CHAPTER 4. EVALUATION AND RESULTS

B with an attack with 1 positive vote. The score assigned by our application to each

argument is presented to the users — A: 100, B: 0. The users are asked if they agree, and

why they agree with those scores. There was no users agreeing with the scores/strengths

assigned by our application, the participants pointed out that A has only one vote, there-

fore it should not decrease the score of B to 0 since it has 50 votes. There was also one

user that mentioned that when an the argument A attacks argument B, the number of

positive votes of A should be transformed to negative votes on B.

4.2.3 Discussion and Analysis

In this section we will discuss and analyze all the results and try to identify problems and

possible improvements that can be made in the semanatics.

Firstly, we will start by analyzing and discuss the questions related to the definition

of argument. The results to questions 7, 8 and 11 — presented on Tables 4.4 and 4.5 —

revealed that most of the users consider that only structured arguments can be considered

arguments, although there will be some users that will consider an "unstructured com-
ment" also an argument. Furthermore, question 11 shows that structured arguments that

are not well formed, are also not considered arguments. We can conclude that, although

the users can freely create their arguments, they understood an argument should be well

structured and well formed in order to be relevant in a debate.

Questions 9 and 10 focus on the reasons behind a positive and a negative vote on an ar-

gument. When we analyze Table 4.6 we reach the following conclusions. The majority of

the users vote positively on an argument, when that argument is well formed, structured

and they agree with the premises. There were also nearly half of the participants (46.7%)

that vote on an argument when they agree with the conclusion, whether the argument is

structured or unstructured. Given these points, the most important factors are the users’

agreement with the premises and the conclusion on an argument.

Now we will analyze the results related to the meaning of attacking other arguments

and the difference between an attack and a negative vote. The results related to the

difference between an attack and a negative vote reveal that:

• The majority of the participants (86.7%) would vote negatively on an argument that

they do not agree with or find disrespectful.

• The majority of the participants (66.7%) would create an argument to attack an

argument that they do not agree with or find disrespectful.

Although 66.7% of the participants said they would create an argument and attack

the argument they do not agree with or find disrespectful, they would only do this if they

have a meaningful argument to add to the debate — as it was showed by the results of

question 17.

Question 16 presented the users two arguments that should not attack each other.

However argument A presents a fact, while argument B presents an opinion. The results

58



4.2. SEMANTICS EVALUATION AND RESULTS

to this question were dispersed (Figure 4.2(b)). It seems that part (46.7%) of the partic-

ipants would not create any attack, and also a smaller part of the participants (26.7%)

would create an attack in both ways. One half of the remaining participants (13.3%)

would create an attack from A to B, and the other half from B to A (13.3%). The majority

of the users would not create any attack or create an attack in both ways. This seems to

happen because the different views of what is a debate to the users. On the one hand, if

the user considers that the debate is a battle of opinions where it does not matter if the

opinions are facts or not, then they chose to attack both ways. On the other hand, if the

user embraces the meaning of a debate where the arguments are based on facts and only

attack other arguments if they contradict or invalidate them, then they would not create

any attack.

When we analyze the results to question 18 (Figure 4.3(b)), that is related with the

reasons behind the votes on attacks, we can conclude that, the participants seem to

understand the meaning of an attack and the impact of a vote on an attack. The majority

of the participants (66.67%) would vote negatively on the attack. This makes sense

since the argument that is attacking is not even related to the attacked argument. The

remaining participants (33.33%) chose not to vote.

Lastly, we will analyze the results related to the arguments’ score/strength and the

influence of the attacks on the arguments score/strength. Table 4.8 shows the results

to questions 12 and 13 of the questionnaire. If we analyze this table it is possible to

understand that the score that most of the participants suggested for each argument,

match the score assigned by the application semantics, for every argument except B. The

fact that argument B has only one positive vote (and 0 negative votes) seems to have

led the participants to doubt about the strength that argument B should have. This

indecision was revealed also by the results since there were 2 participants that thought

that the strength should be very low, 3 that thought it should be low, 2 that thought it

should be medium, 3 that thought it should be high, and 1 that thought it should be very

high. We can infer some reasons for this dispersion of results in the case of argument B:

• Since argument B has only one vote some users, may have considered that its score

should not be too high.

• The total number of votes should influence the arguments’ score. In an example

where are arguments with 42 positive votes a user may consider that an argument

with only 1 positive vote should have a low score.

• Since argument B has only positive votes its score should be very high.

Considering the order of the arguments, we notice that there are several arguments (i.e.

A, B, D, E, and G) that were not placed in the same order that our semantics produced.

Arguments A and B are misplaced (i.e. argument A should be on the 2 position and

argument B on the first), this reinforces that the total number of votes should be taken

into account when the score is calculated. Also arguments D, E and G are misplaced

59



CHAPTER 4. EVALUATION AND RESULTS

between them. Argument E has the lowest score in our application since it has no positive

votes, and 2 negative votes, arguments D and G both have one positive vote, but a higher

number of negative votes — D has 23 negative votes, and G has 43. Again this seems to

support that the participants think that the total number of votes should be taken into

consideration when the score of each argument is calculated.

The results to the questions 22 to 25 are indicators that can help to identify the influ-

ence that the total number of votes should/should not have in the score of an argument.

Table 4.10 presents the results to these questions, and it is possible to identify that in the

questions 22 and 23 the majority of the users chose the arguments that have the greater

number of votes, positively or negatively. In fact, in our application, both arguments have

the same score, but, as we noticed before, the total number of votes is a parameter that

the participants take into account when comparing arguments.

In the questions 24 and 25, the arguments A and B have the same difference between

positive and negative votes (i.e 4 in the question 24 and -6 in question 25). Although they

have the same difference between positive and negative votes the total number of votes

is notably higher in argument B. Therefore, the participants considered that argument B

was the strongest in question 24 and the weakest in question 25. In question 25 argument

B had an higher number of positive votes than in argument A, and in question 26 it had

a higher number of negative votes than in argument A. Once again, the participants

considered the total number of votes as an important factor when calculating the score

of an argument.

Questions 26 to 29 are also focused on the importance of the total number of votes

when the score of the arguments is calculated. In the questions 26 and 27, 60% of

the participants agreed with the score assigned by our application. According to the

comments the participants provided it seems that, although the participants consider

that the total number of votes should be taken into account to calculate the score of an

argument, the absence of positive votes should also be an important factor.

Questions 28 and 29 emphasize the importance of the total number of votes to the

participants. Every participant except one (93.3%) did not agree with the score assigned

by the application. The users also considered that the total number of votes should be

taken into consideration ("Argument A should not be stronger, or as strong as B, because only
one person voted (positively) for A, and 50 people voted (positively) for B.").

Questions 14 and 15, focus on the influence of the attacks on the arguments’ score. As

we can see in Table 4.9, both the results, the scores and the order, match with the scores

produced by the application. It seems that the users understand and agree with the way

the attacks influence the arguments’ score. However, later in this section we will present

some examples where the influence of the attack does not produce the "expected" result.

In the questions 20 and 21 the majority of the participants (60%) considered that the

attacked argument score would not change after the attack. This reveals that the users

agree that, when an argument with a score equal to 0 attacks another argument, the score

of the attacked argument should not change.

60



4.2. SEMANTICS EVALUATION AND RESULTS

Questions 30 and 31 presented two arguments, A and B, both with only positive votes

and no negative votes. Argument A has only one positive vote while argument B has 50

positive votes. There is also an attack from A to B, with 1 positive vote and 0 negative

votes. The scores assigned by our application are displayed along with the arguments.

The fact that none of the participants agreed with the score, and the reasons they pointed

out can provide clues to how they think the attacks and the votes should influence the

arguments’ score:

• The total number of votes should have influence on the score of A and, consequently

the score of B should not decrease to 0.

• If the number of positive votes of A was converted to negative votes on B (as sug-

gested by one of the participants) the score of B would decrease only a little, and

the score of argument A would still be the highest.

Question 5 and 6 revealed that the majority of the users agree that the strength of

the arguments reflect the overall view of the debating group. In the question 6 some

users mentioned that as the strengths of the arguments were changing over the course of

the days you can see the debate evolving and the most relevant arguments standing out.

However there are some situations that were identified throughout this discussion where

the behaviour is not what the participants expected. Moreover, we also identified another

situation that we will describe next.

Consider the situation represented in Figure 4.4, where we have two arguments, A

and B, both arguments have a score of 100 (e.g. 1 positive vote and 0 negative votes). The

attack from A to B has a score of 100 and the attack from B to A has a score of 50.

Figure 4.4: Cycle of attacks between an argument A and B with the same votes on argu-
ments but different number of votes on attacks

When we look at this situation we expect that argument A will be stronger than

argument B, however we do not expect that its score is 100, and we also do not expect

that the score of argument B is 0. An argument should only have the maximum strength

when everyone agrees with it. Although argument A only has positive votes, there are

at least one user (e.g. 1 positive vote and one negative vote in the attack from B to A)

that thinks that the argument B attacks argument A. Therefore there is at least 1 user

that does not agree with argument A, hence it should not have the maximum score and

consequently B should not have the minimum.

61



CHAPTER 4. EVALUATION AND RESULTS

Our semantics use the strength of the attackers to influence directly the strength of

the attacked arguments (see Section 2.1.2.1). The strength of the attack that goes from

A to B is two times the strength of the attack that goes from B to A. Consequently, the

values change drastically from iteration to iteration and only converge when A is 100 and

B is 0. It is also important to mention that this only happens when both of the arguments

have the maximum strength (100). If the arguments have lower strengths (e.g. 50) the

semantics do not converge to the maximum (100) and minimum (0) values. For instance,

if we have the same situation — but the strengths of the arguments A and B is 50 instead

of 100 — after the attacks, the strength of A will be 43 and the strength of B will be 29.

To sum up, we have reached some important conclusions that may help to improve

the semantics and the application:

• The users generally understood what is an argument, an attack, votes on arguments

and votes on attacks.

• The users understood that they can express their disagreement using negative votes

and also attacking other arguments.

• The strength of the arguments should change more smoothly.

4.3 Algorithm Performance Evaluation and Results

In this section we will explain the methods that we used to evaluate the algorithm perfor-

mance. Afterwards we present the results of the evaluation of the algorithm performance.

4.3.1 Test Setup

The methods used to evaluate the algorithm performance are similar to the ones used by

Correia et al. [13] to test the algorithm implemented in C++.

All algorithms were implemented in Java and compiled with Java 1.8. The tests were

performed on an Intel Core i7 CPU @ 2.3GHz, running Windows 10. To test the algorithm

performance we registered the times that the algorithm took to run, varying the number

of nodes and the graph density. The graph density is defined in the following way:

D =
2×Number of Attacks

Number of Arguments × (Number of Arguments − 1)

The algorithm was tested with 9 different subsets. Each subset consists of 1000 graphs

generated randomly, size and density are uniformly distributed between the bounds

defined for each subset. The initial weight of each argument and attack was also generated

by an uniform random distribution, and the guess for the argument strength was set to

the argument initial weight. The tolerance was set to 10−12. Table 4.11 presents the

boundaries of each generated subset.

To evaluate the algorithm runtime after user interactions we generated 9 subsets

with the same generator used before but with a different seed. The algorithm ran for

62



4.3. ALGORITHM PERFORMANCE EVALUATION AND RESULTS

Minimum Number
of Nodes

Maximum Number
of Nodes

Minimum
Density

Maximum
Density

Subset 1 10 100 0 0.01
Subset 2 10 100 0.01 0.1
Subset 3 10 100 0.1 1
Subset 4 100 1000 0 0.01
Subset 5 100 1000 0.01 0.1
Subset 6 100 1000 0.1 1
Subset 7 1000 10000 0 0.01
Subset 8 1000 10000 0.01 0.1
Subset 9 1000 10000 0.1 1

Table 4.11: Algorithm Performance Evaluation: Test Subsets

all the generated graphs. Afterwards we introduced 5 to 14 modifications to the graph

(the number of modifications is randomly uniformed distributed) and ran the algorithm

again.

These tests goal is to evaluate the algorithm performance in a more realistic scenario

where the debate is always changing and the new strengths are being calculated with the

previous strengths (i.e. the initial guess is set to the strength calculated previously).

4.3.2 Results

Our tests resulted in the graphs represented in Figure 4.5. The graph on the Figure

4.5(b) shows that for debates with one hundred arguments or less, the algorithm runs

instantaneously.

For debates with a number of arguments between 100 and 1000 (figure 4.5(d)) the

algorithm runtime is always below 0.5 seconds. For debate graphs with more than 1000

arguments the runtime of the algorithm increases considerably reaching runtimes of 3

seconds for graphs with ten thousand arguments and density near 0.1 (see Figure 4.5(f)).

For debates with densities below 0.01 the longest runtime is near 0.5 seconds for

graphs with approximately ten thousand arguments (see Figure 4.5(a). Graphs with

ten thousand arguments with densities between 0.01 and 0.1 (see Figure 4.5(c)), reach

runtimes of 3 seconds.

The longest runtime, of 64 seconds, is for a complete graph with nearly ten thousand

arguments and density close to 1.02 (see Figures 4.5(e) and 4.5(f)).

The evaluation of the algorithm behaviour after a few modifications are introduced in

the debate resulted in the graphs represented in Figure 4.6.

The graphs are divided by classes of number of modifications, number of nodes and

density. It is possible to observe that the difference from the times before and after the

modifications is bigger when the number of modifications in lower (see Figure 4.6(a)). For

2A graph with a density of 1.0 is a complete graph where every node is connected to all the other nodes
and also itself. This means that a graph with 10000 arguments will have 100 millions of attacks.

63



CHAPTER 4. EVALUATION AND RESULTS

(a) 0 ≤ density ≤ 0.001 (b) 10 ≤ number of nodes ≤ 100

(c) 0.001 ≤ density ≤ 0.1 (d) 100 ≤ number of nodes ≤ 1000

(e) 0.1 ≤ density ≤ 1 (f) 1000 ≤ number of nodes ≤ 10000

Figure 4.5: Performance of the algorithm as function of the size and density of the graphs

a higher number of modifications this difference is smaller and also there are more cases

of higher duration as we can see in Figure 4.6(c).

It is possible to observe that in every graph of the Figure 4.6 the difference between

the first iteration of the algorithm (before the modifications) and the second iteration of

the algorithm, increases with the growth of the number of nodes and density.

Table 4.12 shows the average difference of runtimes where we introduced c modifica-

tions, and with different values of density (d) and different total number of nodes (n).

4.3.3 Discussion and Analysis

In order to evaluate the algorithm performance we need to check if the values of the

algorithm running times are within the goal defined by Correia et al. [13]. The authors

64



4.3. ALGORITHM PERFORMANCE EVALUATION AND RESULTS

(a) 5 ≤modif ications < 7 (b) 7 ≤modif ications < 10

(c) 10 ≤modif ications < 15

Figure 4.6: Algorithm performance before (blue) and after modifications (orange)

Nodes/
Density

10 ≤ n < 100 100 ≤ n < 1k 1k ≤ n < 5k 5k ≤ n < 10k

5 ≤
c
< 7

0≤ d < 0.01 0 ms 0 ms -18 ms 83 ms
0.01 ≤ d < 0.1 0 ms 1 ms 12 ms 101 ms
0.1 ≤ d < 0.5 0 ms 25 ms 163 ms 1129 ms
0.5 ≤ d < 1 0 ms 126 ms 2456 ms 9911 ms

7 ≤
c
< 9

0≤ d < 0.01 0 ms 0 ms -20 ms 83 ms
0.01 ≤ d < 0.1 0 ms 0 ms 14 ms 97 ms
0.1 ≤ d < 0.5 0 ms 12 ms 225 ms 895 ms
0.5 ≤ d < 1 0 ms 84 ms 1444 ms 9822 ms

10 ≤
c

< 15

0≤ d < 0.01 0 ms 0 ms -20 ms 57 ms
0.01 ≤ d < 0.1 0 ms 0 ms 4 ms 25 ms
0.1 ≤ d < 0.5 0 ms 10 ms 74 ms 447 ms
0.5 ≤ d < 1 0 ms 62 ms 1041 ms 6201 ms

Table 4.12: Average runtime improvement for graphs

defined that for a graph with a density of 0.1 with 5000 nodes the algorithm must run

under 1 second.

In our solution the average running time of the algorithm graphs with size between

4500 and 5500 and a density between 0.08 and 0.12 is 870 milliseconds (0.87 seconds),

a graph with 5000 nodes with a density of 0.1 means that each node attacks on average

500 other nodes, this totals 2.5 millions of attacks in the graph.

65



CHAPTER 4. EVALUATION AND RESULTS

When we analyze the graphs presented in Figure 4.5 it is possible to see that with the

increase of the number of attacks and number of nodes the running time also grows, as

expected. The graphs with higher densities also take much longer to run than a graph

with density near 0.1.

The results of the tests, before and after, a small number of modification is introduced,

reveal that the time runtimes after the modifications are introduced to the system, are

significantly lower than the previous runtimes. We also observed that the improvement

of the runtimes is as bigger as the graph density and size grows (see Figure 4.6).

The number of modifications between two iterations of the algorithm will depend on

the number of active users on the debate. Moreover every time a user interacts with the

system, the algorithm runs, this means that all the interactions that were made in a short

time interval will be taken into account in that iteration. We can expect that the number

of changes is small, proportional to the number of active users on a specific debate.

If we look at Table 4.12 it is possible to observe the times that the algorithm takes to

converge improves from the first to the second iteration. These improvements are more

visible for graphs with more than one thousand arguments and with high densities.

The results also shows that, as it was expected, the times are better when the number

of modifications is smaller although this depends on the actions that were performed.

To conclude, the algorithm was successfully re-implemented and runs within the

expected times. In real world scenarios the argument strengths will always be converged

before any change is made, unless the graph is imported. This means that the times that

we expect that the algorithm takes to run are similar to the ones that we represent in

figure 4.6 in orange. Moreover, we expect that the number of attacks that come from each

node does not exceed a fixed limit, consequently we expected that bigger graphs have

smaller density values when compared to smaller graphs.

Although some similar tests were performed in [13], we could not compare the results

since the tests were made for the version of the algorithm that does not consider attack

strengths.

4.4 Summary

In this chapter we have presented the evaluation, results and discussion of the developed

tool. This evaluation was divided in different parts: Semantics, Usability and Perfor-

mance, reaching the following conclusions. In terms of semantics, although the partici-

pants agreed with the semantics as a whole, there are some important adaptations and

improvements that can be made in the future. In terms of the system usability, however

it is acceptable and easy to use, the system still needs some improvements in order to

be more appealing and easy to use. In terms of performance, the tool has an adequate

performance that does not compromise the system usability.

66



C
h
a
p
t
e
r

5
Conclusion

In this work we developed a tool that is based on the extended version of Social Abstract

Argumentation [17]. This tool was used as a proof of concept to this model, allowing to

evaluate the extended version of Social Abstract Argumentation.

We proposed an application where the debate is represented through a graph. The ar-

guments are nodes in the graph, and the attacks are edges. Furthermore, both arguments

and attacks have positive and negative votes.

The usability of the application was tested with a group of 16 voluntary participants

and, although the interface was improved taking into account the identified issues, there

is still space for further improvements.

The algorithm presented in [13] was re-implemented and adapted in order to also

consider votes on attacks. The algorithm performance was evaluated using randomly

uniform distributed test sets, and we concluded that the running time for a debate is

within the values proposed in [13] (i.e. a graph with a density of 0.1, and 5000 nodes

should run under 1 second). In addition, the algorithm was tested in a more realistic

scenario. In this scenario, the strengths of a debate graph were calculated. After that,

a small number of modifications was introduced to the debate, and the strengths of the

arguments were recalculated. We verified that the runtimes after the modifications were

introduced are, in most of the cases, significantly lower.

The semantics proposed in [17] were also evaluated using a group of 15 voluntary

participants, that used the system for a four days period. After analyzing the results, we

could identify specific situations where the users disagree with the assigned strengths,

and also the reasons that make them disagree. The most prominent factor that make the

participants disagree is the fact that the semantics do not consider the total number of

votes on a debate, in order to calculate the arguments’ strength.

There was also another issue identified during the tests that is related to cycles of

67



CHAPTER 5. CONCLUSION

attacks between two arguments. This only happens when both of the arguments have a

score of 100 and different scores on the attacks, however one of the attacks must have

the maximum strength. This happens due to the definition of the semantics, that forces

the argument that is attacked with a strength of 100 by an argument that also has the

maximum strength to reduce drastically every iteration until it reaches 0.

Although we have identified these issues with the semantics they were generally ap-

proved and appreciated by the participants. There are some comments that reveal their

recognition on this tool:

• "(...) one thing we are not able to do in social networks, such as Facebook, is to see the
scores in the comments on a publication. Therefore, the most pertinent comments are lost
between many others that are not as good. This app allows us to debate a subject, see the
overall view and realize if we agree with the majority or if we are a minority. As I see it,
applying this to even broader groups and social networks would have a major impact on
how we discuss subjects online."

• "This project is an excellent idea because it is possible to perceive the dominant ideas
and through the connection between the arguments, it is possible to avoid the repetition
of ideas. It also makes the debate very dynamic because the score of the arguments is
changing over the course of days."

5.1 Future Work

There are several aspects of the system that can be improved, starting with the system

usability. One of the improvements that can be made is to allow the arguments to show

a preview of the links, videos, images, etc.. This feature would allow the users to have a

whole view of the debate with more relevant information.

The semantics can be adjusted in order to provide a more adequate strength to every

argument. To achieve this we have to consider the two situations mentioned before, taking

into account the total number of votes and also the issue related with cycles between two

arguments.

One way that could be used to solve this, is starting all the arguments with a strength

of 50 (e.g. every argument starts with 10 positive votes and 10 negative votes). This

way, two arguments with only positive votes, where one of them has 1 positive vote and

the other 100, would have significantly different score values (52 and 92 respectively).

Also the problem concerning cycles between two attacks will also be reduced since that

it would be necessary a high number of positive votes and no negative votes, in order to

achieve a score near to 100. Figure 5.1 presents an example that considers the scenarios

presented before, in the actual system (Figure 5.1(a)) and after introducing 10 positive

votes and 10 negative votes to every argument (Figure 5.1(b)).

Table 5.1 presents the scores of the arguments before and after this modification to

the system.

68



5.1. FUTURE WORK

(a) Before

(b) After

Figure 5.1: Comparison between the scores before and after the scores start at 50 (i.e. 10
positive votes and 10 negative votes)

V + V − Score (Before) Score (After)
A 1 0 100 45
B 1 0 0 29
C 100 0 100 92
D 10 0 100 67
E 1000 0 0 47
F 1 0 100 52
G 0 1 0 48
H 1 50 2 15

Table 5.1: Scores for the arguments on Figure 5.1

There are also other fields where this specific tool could be tested such as online news-

papers, participatory democracy, decision making, brainstorming, and others that we

may not be aware of. We think that this tool can be an asset in a vast range of applications

in the real world.

69





Bibliography

[1] Agora-net. Collaborative and web-based argument visualization software that can be
used for free all over the globe. url: http://agora.gatech.edu.

[2] L. Amgoud and J. Ben-Naim. “Ranking-Based Semantics for Argumentation Frame-

works”. In: Scalable Uncertainty Management - 7th International Conference, SUM
2013, Washington, DC, USA, September 16-18, 2013. Proceedings. 2013, pp. 134–147.

doi: 10.1007/978-3-642-40381-1_11. url: https://doi.org/10.1007/978-3-

642-40381-1_11.

[3] ARG-tech. Centre for Argument Technology. url: http://www.arg-tech.org/.

[4] P. Baroni and M. Giacomin. “Semantics of Abstract Argument Systems”. In: Ar-
gumentation in Artificial Intelligence. 2009, pp. 25–44. doi: 10.1007/978-0-387-

98197-0_2. url: https://doi.org/10.1007/978-0-387-98197-0_2.

[5] P. Besnard and A. Hunter. “A logic-based theory of deductive arguments”. In: Artif.
Intell. 128.1-2 (2001), pp. 203–235. doi: 10.1016/S0004-3702(01)00071-6. url:

https://doi.org/10.1016/S0004-3702(01)00071-6.

[6] P. Besnard, A. J. García, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, and F.

Toni. “Introduction to structured argumentation”. In: Argument & Computation
5.1 (2014), pp. 1–4. doi: 10.1080/19462166.2013.869764. url: https://doi.

org/10.1080/19462166.2013.869764.

[7] E. Bonzon, J. Delobelle, S. Konieczny, and N. Maudet. “A Comparative Study of

Ranking-based Semantics for Abstract Argumentation”. In: CoRR abs/1602.01059

(2016). url: http://arxiv.org/abs/1602.01059.

[8] M. Bostock. D3. Data-Driven Documents. url: https://d3js.org/.

[9] J. Brooke et al. “SUS-A quick and dirty usability scale”. In: Usability evaluation in
industry 189.194 (1996), pp. 4–7.

[10] A. B.V. vis.js. A dynamic, browser based visualization library. 2016. url: http:

//visjs.org/.

71

http://agora.gatech.edu
https://doi.org/10.1007/978-3-642-40381-1_11
https://doi.org/10.1007/978-3-642-40381-1_11
https://doi.org/10.1007/978-3-642-40381-1_11
http://www.arg-tech.org/
https://doi.org/10.1007/978-0-387-98197-0_2
https://doi.org/10.1007/978-0-387-98197-0_2
https://doi.org/10.1007/978-0-387-98197-0_2
https://doi.org/10.1016/S0004-3702(01)00071-6
https://doi.org/10.1016/S0004-3702(01)00071-6
https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.1080/19462166.2013.869764
http://arxiv.org/abs/1602.01059
https://d3js.org/
http://visjs.org/
http://visjs.org/


BIBLIOGRAPHY

[11] C. Cayrol and M. Lagasquie-Schiex. “On the Acceptability of Arguments in Bipolar

Argumentation Frameworks”. In: Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, 8th European Conference, ECSQARU 2005, Barcelona, Spain,
July 6-8, 2005, Proceedings. 2005, pp. 378–389. doi: 10.1007/11518655_33. url:

https://doi.org/10.1007/11518655_33.

[12] Consider.it. Consider.it. Creates CIVIL, ORGANIZED, AND EFFICIENT ONLINE
DIALOGUE by visually summarizing what your community thinks and why. url:

https://consider.it/.

[13] M. Correia, J. Cruz, and J. Leite. “On the Efficient Implementation of Social Ab-

stract Argumentation”. In: ECAI 2014 - 21st European Conference on Artificial Intelli-
gence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications
of Intelligent Systems (PAIS 2014). 2014, pp. 225–230. doi: 10.3233/978-1-61499-

419-0-225. url: https://doi.org/10.3233/978-1-61499-419-0-225.

[14] DebateGraph. To change the world you need to look at it in a different way. url: http:

//debategraph.org.

[15] P. M. Dung. “On the Acceptability of Arguments and its Fundamental Role in

Nonmonotonic Reasoning, Logic Programming and n-Person Games”. In: Artif.
Intell. 77.2 (1995), pp. 321–358. doi: 10.1016/0004-3702(94)00041-X. url:

https://doi.org/10.1016/0004-3702(94)00041-X.

[16] W. W. Eckerson. “Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications”. In: Open Information
Systems 10. Jan. 1995.

[17] S. Egilmez, J. Martins, and J. Leite. “Extending Social Abstract Argumentation

with Votes on Attacks”. In: Theory and Applications of Formal Argumentation -
Second International Workshop, TAFA 2013, Beijing, China, August 3-5, 2013, Revised
Selected papers. 2013, pp. 16–31. doi: 10.1007/978-3-642-54373-9_2. url:

https://doi.org/10.1007/978-3-642-54373-9_2.

[18] T. jQuery Foundation. jQuery. Write less, do more. url: https://jquery.com/.

[19] T. A. S. Foundation. Apache Tomcat®. url: https://tomcat.apache.org/.

[20] A. J. Freeley and D. L. Steinberg. Argumentation and debate. Cengage Learning,

2013.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of. 1994.

[22] Jersey. RESTful Web Services in Java. 2016. url: https://jersey.github.io/.

[23] J. Leite and J. Martins. “Social Abstract Argumentation”. In: IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011. 2011, pp. 2287–2292. url: http://ijcai.org/

Proceedings/11/Papers/381.pdf.

72

https://doi.org/10.1007/11518655_33
https://doi.org/10.1007/11518655_33
https://consider.it/
https://doi.org/10.3233/978-1-61499-419-0-225
https://doi.org/10.3233/978-1-61499-419-0-225
https://doi.org/10.3233/978-1-61499-419-0-225
http://debategraph.org
http://debategraph.org
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-3-642-54373-9_2
https://doi.org/10.1007/978-3-642-54373-9_2
https://jquery.com/
https://tomcat.apache.org/
https://jersey.github.io/
http://ijcai.org/Proceedings/11/Papers/381.pdf
http://ijcai.org/Proceedings/11/Papers/381.pdf


BIBLIOGRAPHY

[24] C. Ltd. Ubuntu Server. url: https://www.ubuntu.com/server.

[25] P. Matt and F. Toni. “A Game-Theoretic Measure of Argument Strength for Abstract

Argumentation”. In: Logics in Artificial Intelligence, 11th European Conference, JELIA
2008, Dresden, Germany, September 28 - October 1, 2008. Proceedings. 2008, pp. 285–

297. doi: 10.1007/978-3-540-87803-2_24. url: https://doi.org/10.1007/

978-3-540-87803-2_24.

[26] mindmeister. Mindmeister. Collaborative mind mapping. url: https : / / www .

mindmeister.com/.

[27] Neo4j. HyperGraphDB. url: http://hypergraphdb.org/.

[28] Neo4j. Neo4j. url: https://neo4j.com/.

[29] J. Nielsen. Usability engineering. Elsevier, 1994.

[30] TidyLifeInc. CreateDebate - a social tool that democratizes the decision-making process
through online debate. url: http://www.createdebate.com/.

73

https://www.ubuntu.com/server
https://doi.org/10.1007/978-3-540-87803-2_24
https://doi.org/10.1007/978-3-540-87803-2_24
https://doi.org/10.1007/978-3-540-87803-2_24
https://www.mindmeister.com/
https://www.mindmeister.com/
http://hypergraphdb.org/
https://neo4j.com/
http://www.createdebate.com/




A
p
p
e
n
d
i
x

A
Usability Evaluation

In this appendix we present the questionnaires that were made during the user interface

evaluation. The questionnaire was developed using Google Forms and took place under

the supervision of the development team.

75



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 1/8

Debate Tool Thesis Evaluation
This form has the main purpose of evaluating the user interface of the debate system developed in a 
MSc Thesis context at FCT-UNL.

Your responses to the surveys are confidential. We value your privacy and will not share your 
information with anyone beyond the research team. Data will be averaged and reported in aggregate. 

Look at the graph (debate) in the screen. The debate is about cigarettes and e-cigarettes and its 
health related issues. Try to understand the whole debate before you start performing the tasks.

*Required

1. Gender: *
Mark only one oval.

 Male

 Female

2. Age: *

3. Academic degree: *
Mark only one oval.

 Highschool

 Bachelor

 Master

 Doctorate

 None of the above

4. How often do you use social networks (Facebook, Twitter, ...) ? *
Mark only one oval.

 Everyday.

 Several days a week.

 Once a week.

 Once a month.

 I do not use social networks.

Task 1 - Create an Argument
Create an argument with the following text: "Cigarettes are dangerous for your health. It does not 
matter if they are electronic or not. "



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 2/8

5. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

6. How did you create the argument? *
Mark only one oval.

 Double Click   Right click -> New Argument

7. Understanding how to create an argument was easy. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

8. Suggestions and comments:
 

 

 

 

 

Task 2 - Vote

2.1 - Vote positively on the argument that says “There are no
conclusive studies as towhether nicotine acts as a carcinogen
on its own…”

9. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 3/8

10. After your vote, what was the score of the
argument? (2.1) *

11. How did you vote on the argument? (2.1) *
Mark only one oval.

 Open the argument -> Click on the thumbs up. 

 Thumbs up (graph view)   Thumbs up (argument preview)

2.2 - Vote negatively on the argument that says, “A smoker has
always more style than anon-smoker”.

12. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

13. After your vote, what was the score of the
argument? (2.2) *



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 4/8

14. How did you vote on the argument? (2.2) *
Mark only one oval.

 Open the argument -> Click on the thumbs down. 

 Thumbs down (graph view)   Thumbs down (argument preview)

15. Suggestions and comments:
 

 

 

 

 

Task 3 - Attack other arguments

3.1 - Use the argument that you have created ("Cigarettes are
dangerous for your health. It does not matter if they are
electronic or not. "), to attack the arguments that states:
A:“Experts have stated that evidence shown from FDA
approved electronic cigarettes could potentially be safer than
the use of regular cigarettes” and B:“The appeal (of e-
cigarettes) may attract those who never smoked in the first
place, …”.



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 5/8

16. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

17. The system gave clear evidence of the success of the task. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

18. How did you create the attacks? *
Mark only one oval.

 Bolt symbol (graph view)   Right click -> Start attack

19. How many positive votes do attacks have
after their creation? *

20. What was the score of the argument A after
the completion of the task? *

3.2 - Change the vote of the second attack to negative.

21. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

22. What is the score of the argument B after the
completion of the task? *



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 6/8

23. Suggestions and comments:
 

 

 

 

 

Task 4 - Create and delete an argument
Create an argument. Vote positively on that argument. Delete the argument that you have just 
created.

24. Did you manage to complete the task successfully? *
Mark only one oval.

 Yes

 No

25. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

26. Suggestions and comments:
 

 

 

 

 

Task 5 - View the debate ranking
Open the debate ranking.

27. The task was easy to complete. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

28. Copy the text of the argument that was in
second place. *



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 7/8

29. How did you open the debate ranking? *
Mark only one oval.

 Top menu -> Debate Ranking   Right click -> debate ranking

30. Suggestions and comments:
 

 

 

 

 

General Questions

Visualization and Navigation

31. Which color is associated to the strongest arguments? *
Mark only one oval.

 Green

 Yellow

 Red

 Blue

32. It was easy to move (right, left, up, down) along the debate. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

33. It was easy to zoom in and zoom out. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree



25/11/2017 Debate Tool Thesis Evaluation

https://docs.google.com/forms/d/1PSstfUZyzW8ZDdhGDOeHCgkE8T53oaT4yEinov46E34/edit 8/8

Powered by

34. What were the main obstacles when performing these tasks?
 

 

 

 

 

Overall Evaluation

35. It is easy to learn how to use the system. *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

36. I found the system unnecessarily complex *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

37. I thought the system was easy to use *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree

38. I think that I would need the support of a technical person to be able to use this system *
Mark only one oval.

1 2 3 4 5

Strongly disagree Strongly agree





A
p
p
e
n
d
i
x

B
Semantics Evaluation

In this appendix we present the questionnaires that were made during the semantics

evaluation. The questionnaire was developed using Google Forms.

85



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 1/11

Debate Tool Semantics Evaluation
This form has the main purpose of evaluating the semantics of the debate system developed in a 
MSc Thesis context at FCT-UNL.

Your responses to the surveys are confidential. We value your privacy and will not share your 
information with anyone beyond the research team. Data will be averaged and reported in aggregate. 

*Required

1. Gender: *
Mark only one oval.

 Male

 Female

2. Age: *

3. Academic degree: *
Mark only one oval.

 Highschool

 Bachelor

 Master

 Doctorate

 None of the above

4. How often do you use social networks (Facebook, Twitter, ...) ? *
Mark only one oval.

 Everyday.

 Several days a week.

 Once a week.

 Once a month.

 I do not use social networks.



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 2/11

5. At the end of the debate do you think that the strength/score of the arguments reflects the
overall view of the debating group?
Mark only one oval.

1 2 3 4 5

Strongly disagree. Strongly agree.

6. Comments
 

 

 

 

 

7. Considering the way you use the system, an argument is... *
Tick all that apply.

 A structured assertion (i.e. with permises and conclusion)

 An unstructured comment

 Other: 

8. Consider the way other people use the system, an argument is... *
Tick all that apply.

 A structured assertion (i.e. with permises and conclusion)

 An unstructured comment

 Other: 

9. When you voted positively on an argument, what did you want to express? *
Tick all that apply.

 The argument is well structured, independently of whether I agree with the conclusion.

 The argument is structured, well formed, and I agree with its premises.

 The argument is structured and I agree with its conclusion independently of everything else.

 The argument is a comment that I agree with

 The argument is a comment that I find funny.

 Other: 

10. When you voted negatively on an argument, what did you want to express? *
Tick all that apply.

 The argument is not well structured.

 The argument is well formed and I do not agree with its premises.

 the argument is strucutred and I do not agree with the conclusion.

 The argument is a comment that I do not agree with.

 I find the argument offensive/disrespectful.

 Other: 



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 3/11

11. Which of the following sentences do you consider to be arguments? *
Tick all that apply.

 "I don't agree!"

 "Animals are born in the wild, and they are supposed to be living in the wild too. Therefore,
you should not lock any kind of animal in your home!!"

 "There are many types of animals and some of them are already adapted to live inside."

 "Snails are slow, and I like snails. So snails should live inside."

 "I like turtles!"

12. Consider the following arguments. Assuming they are not being attacked, how strong do
you think they should be (i.e. their score) ? *

Mark only one oval per row.

Very low (0
to 20)

Low (20 to
40)

Medium (40
to 60)

High (60 to
80)

Very high (80 to
100)

A
B
C
D
E
F
G



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 4/11

13. Consider the following unattacked arguments. Arrange the arguments in descending order
of strength/score (i.e. strongest arguments in the first positions). *
Your answer must be in the following way: A-B-C-D-E-F-G, where A is the strongest argument
and G the weakest.

 

 

 

 

 

14. Consider the following debate. How strong do you think each argument should be (i.e.
their score)? *

Mark only one oval per row.

Very low (0
to 20)

Low (20 to
40)

Medium (40
to 60)

High (60 to
80)

Very high (80 to
100)

A
B
C



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 5/11

15. Consider the following debate graph. Arrange the arguments in descending order of
strength/score (i.e. strongest arguments in the first positions). *
Your answer must be in the following way: A-B-C, where A is the strongest argument and C the
weakest.

 

 

 

 

 



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 6/11

16. Consider the following situation. What attacks would you create between these two
arguments?

Mark only one oval.

 From A to B.   From B to A.

 Both ways.   None.

17. Imagine an argument (B) that you do not agree with and/or you find disrespectful. How
would you express yourself using our tool in this specific situation? *
Tick all that apply.

 Create an argument and use it to attack the argument B

 Downvote argument B

 None of the above



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 7/11

18. How would you vote on the following attack? *

Mark only one oval.

 Positively

 Negatively

 I would not vote

19. Consider you voted negatively on a certain argument B. Would you create an Argument
stating "I do not agree" and use it to attack B? *
Mark only one oval.

 Yes

 No

20. Consider the following situation. After the attack what is going to happen to the
strength/score of argument B? *

Mark only one oval.

 Decrease

 Mantains

 Increase



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 8/11

21. Please explain why. *
 

 

 

 

 

22. Consider the following 2 arguments which one should be the strongest. *

Mark only one oval.

 A

 B

 None ( They should be equal)

23. Consider the following 2 arguments. Which one should be the weakest (i.e. with the lowest
score) ?

Mark only one oval.

 A

 B

 None ( They should be equal)



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 9/11

24. Consider the following 2 arguments. Which one should be the strongest (i.e. with the
highest score)? *

Mark only one oval.

 A

 B

 None ( They should be equal)

25. Consider the following 2 arguments which one should be the strongest (i.e. with the
highest score) . *

Mark only one oval.

 A

 B

 None ( They should be equal)

26. Consider the following situation. Do you agree with these strengths/scores? *

Mark only one oval.

 Yes

 No



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 10/11

27. Please explain why. *
 

 

 

 

 

28. Consider the following situation. Do you agree with these strengths/scores? *

Mark only one oval.

 Yes

 No

29. Please explain why.
 

 

 

 

 

30. Consider the following situation. Do you agree with these strengths/scores? *

Mark only one oval.

 Yes

 No

31. Please explain why.
 

 

 

 

 



29/11/2017 Debate Tool Semantics Evaluation

https://docs.google.com/forms/d/1EWhKeaUPnnIhB0rp0aclmubceQ8bb9aaWQ_IZzoxE_g/edit 11/11

Powered by



20
17

A
To

ol
fo

r
O

n
li

n
e

D
eb

at
es

Jo
sé

V
en

ân
ci

o


	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation and Context
	Objectives
	Contributions and Document Structure

	State of the Art
	Semantics for Abstract Argumentation
	Dung's Abstract Argumentation Framework 
	Ranking-based Semantics for Abstract Argumentation
	Discussion

	Existing argumentation/debate applications
	Abstract Argumentation Systems
	Structured Argumentation Systems
	Discussion


	Proposed Solution
	Proposal
	Project Requirements
	Functional Requirements
	Non-functional Requirements

	System Architecture
	Presentation Layer.
	Requests to the Application Layer
	Application Layer
	Storage/Data Layer
	Security

	Summary

	Evaluation and Results
	Interface Usability Evaluation and Results
	Test setup
	Results
	Discussion and Analysis

	Semantics Evaluation and Results
	Test Setup
	Results
	Discussion and Analysis

	Algorithm Performance Evaluation and Results
	Test Setup
	Results
	Discussion and Analysis

	Summary

	Conclusion
	Future Work

	Bibliography
	Usability Evaluation
	Semantics Evaluation

