
Supporting Synchronous Groupware with Peer Object-Groups

Jorge Paulo F. Simão, José A. Legatheaux Martins,
Henrique João L. Domingos, and Nuno Manuel R. Preguiça

Dept. of Computer Science,
Faculty of Sciences and Technology, New University of Lisbon

2825 Monte Caparica - Portugal
{jsimao, jalm, hj, nmp}@di.fct.unl.pt

Work partially supported by PRAXIS XXI scholarships.

Abstract

We propose the peer object-group design pattern as a
suitable architectural solution to structure and im-
plement synchronous groupware applications. We
discuss a reliable group-communication subsystem
and a distributed objects model, implemented in
Java, used to realize the approach.

1. Characterizing Groupware

"Computer Supported Cooperative Work" - CSCW,
deals with the use of computer systems by people to
cooperatively work on common tasks. Groupware is
software specially built to allow people to work co-
operatively.

Groupware and user interaction can be roughly clas-
sified in two broad classes - asynchronous or differ-
ent-time, and synchronous or same-time. When using
asynchronous groupware, users work not necessarily
in the same time-frame and interact for long periods
of time (e.g. in the joint development of a software
project). When using synchronous groupware users
work in a tightly-coupled manner during relatively
short common time-frames (e.g. during a distributed
meeting). The synchronous and asynchronous coop-
eration paradigms are not alternatives, but rather
complementary; real work is most often performed
alternating asynchronous work with synchronized
periods.

We are in the process of investigating generic sys-
tem-level services to support and allow simple de-
velopment of robust groupware applications. In this
text we will focus on system support for synchronous
groupware. In particular, we will discuss structuring
and programming abstractions based on group-
communication and object-groups specially devised
to help in the development of synchronous group-
ware applications (SGA).

A virtually common feature to all SGA is the provi-
sion of a shared workspace which users use to com-
municate and cooperate during a synchronous ses-
sion. For acceptable productivity, users need to have
an accurate notion of what the state of the shared
workspace is. In particular, users should have mu-
tually consistent views of the state of the workspace
and should see each others actions as soon as possi-
ble. SGA are also interactive applications by nature,
so it is required that the system responds and evolves
accordingly to users expectations [1]. Users desire
short or immediate response times; preferably, simi-
lar to that found in single user applications. Users do
not find acceptable to wait a considerable amount of
time to perform some operation (e.g. to update a
shared object). Because users tend to divide/phase
tasks into smaller sub-tasks and user communication
and cooperation has multiple facets, SGA should be
seen not as monolithic applications but rather as a
collection of tools aggregated in the context of a
single session (e.g. including a tool for shared draw-
ing, a tool for message exchanging, a tool for text or
document editing, tools providing audio and video
channels, user activity awareness, coordination, etc.).
From a software-engineering perspective, it is also
preferable to use a generic multi-tool approach than
to provide all the functionality from scratch in every
application.

2. Design Alternatives to Support Dis-
tributed Synchronous Groupware

A commonly used architectural approach to support
distributed SGA is the client-server paradigm. A
central server is used to manage the shared work-
space, to perform concurrency control on user ac-
cesses, and to provide other session related services
(e.g. user activity awareness). User processes use the
server to operate on shared resources and to dissemi-
nate information to other users. While this is a very
well understood paradigm, and it is simple to realize,

it presents major drawbacks: fault-tolerance and
scalability, since it is based on a central server.
Moreover, performance can be somewhat injured by
this architectural approach, although clients may
replicate/cache parts of shared workspace in order to
mitigate the problem. A variation is the centralized
application-distributed interface approach, where a
single application multiplexes user interaction and
disseminates output across several user interfaces. It
presents the same problems as the client-server ap-
proach, and is in general less flexible.

An alternative is the replicated-server, or object-
group, approach. A group of servers actively repli-
cates objects and/or service state. Even if a subset of
servers crashes or becomes unreachable, the service
will be available as long as some of them remain
reachable (one or the majority - depending on consis-
tency criteria). This approach is very suitable for
many distributed fault-tolerant services, but still pre-
sents some drawbacks in the context of SGA. Be-
cause users want to have accurate views of the
shared workspace, and because users actions are
largely driven by other users actions, extra mecha-
nisms for event notifications are required.

Preliminary experience on scalable, fault-tolerance,
distributed systems has suggested that migrating
complex system functionality from servers to clients
may be a suitable design option. This argument, the
need for flexibility in tool building, and the low-
latency requirements of SGA, suggests, in our view,
a much more natural approach - the peer object-
group approach.

3. The Peer Object-Group Design Pattern

In the peer object-group approach the shared work-
space managed by SGA is materialized as a collec-
tion of objects replicated amongst users local envi-
ronments. Each local environment holds a replica for
every object the associated user is currently working
on or accessing with. The set of replicas for a given
object constitutes a (peer) object-group. Consistency
amongst the replicas is kept by a group-
communication subsystem implementing appropriate
consistency criteria. Shared objects are mapped to
object-groups and operations on the objects are
mapped to (reliable) multicast operations. Figure 1
schematically illustrates the model.

Users gain access to objects by dynamically joining
the corresponding object-groups - which may involve

the transparent transfer of the object's current state to
the local replica. When no longer interested in the
objects, users leave the object-groups.

Users keep accurate views of the shared state since
updates are received by all object-group members;
no provisions for additional notification mechanisms
is required. Latency in object manipulation is im-
proved because no intermediate entities are present.
Fault-tolerance and availability is also improved; a
K-degree of fault-tolerance is achieved as long as
K+1 members keep copies of shared objects.

O bjectG roup 1

O bjectG roup 2

O bjectG roup 3

U ser A

U ser B

Large Scale
U nreliable
N etw ork
Infrastructure

U ser C

U ser D

Proccess
A ddress
Space

Proccess
A ddress Space

Proccess
A ddress Space

Proccess
A ddress
Space

O bject R eplicas

K ey:

Figure 1 - The peer object-group design pattern.

Different shared-objects may have different replica-
tion consistency requirements, meaning that the un-
derlying group-communication sub-system should
provide group-protocols with different service se-
mantics. The selection of object-groups granularity
must inevitably be tool and protocol driven; the
lighter-weighted the protocols are, the finer the
granularity can be.

Object persistence is not addressed by this bare
model. While it is desirable that some objects out-
live sessions, that facility is provided by the asyn-
chronous groupware support, and will not be dis-
cussed in this paper.

4. Object-Oriented Group-Protocol Im-
plementation and Composition

The essential component to realize the peer object-
group approach is the group-communication subsys-

tem, which provides group membership and message
passing services. Those services are implemented by
group-protocols and accessed through the combined
use of a user-to-protocol service request interface
and a protocol-to-user event notification interface.
The former includes methods for message sending
and multicasting as well as group management. The
later includes methods for message delivery and
group membership view change notifications.

Implementing group-protocols is a complex task,
mainly because they must convert an unfriendly
system environment into a friendly one. A good en-
gineering option is to use a modular approach in de-
signing and implementing group protocols. Multiple
(micro-)protocol layers, each implementing some
specific service, are stacked to built complex proto-
col services [2].

To realize the peer object-group we have imple-
mented an object-oriented framework to allow the
convenient implementation and composition of
group-protocols. Because we want to maximize
flexibility, allow application and system components
to be loaded on-demand, and support heterogeneity,
the Java language was a natural choice [3]. The inte-
gration with the Web was an additional motivation.

In our framework protocol layers are implemented as
objects of special classes, which implement group
services related programming interfaces. Complete
protocol structures (or stacks) are built attaching
protocols objects together. To allow simple con-
struction of protocol structures, protocol structures
description strings and generators are used. Descrip-
tion strings convey information about which proto-
cols should be used to build a particular protocol
structure and the topological relationships between
the layers. Protocol structure generators parse strings
and generate the correspondent protocol structures,
by dynamically loading the layer classes and creating
the layer objects.

In implementing specific group-protocols we have
considered SGA specifics. Because users objects
working-sets are expected to change often during the
lifetime of a session and users should be able to enter
and leave sessions dynamically, dynamic lightweight
group membership services were used. In particular,
we have specified a new membership and reliable
multicast service semantic - linear convergent syn-
chrony, which is weaker than the "standard" view
synchrony [4], but can be implemented by protocols

which incur in less overhead for group membership
management. The semantics and implemented proto-
col are linear, in the sense that no view merging is
allowed, because we assume that state reconciliation
due to network partitions is performed using the ex-
ternal data storage services. The protocol uses a spe-
cially tailored FIFO reliable multicast protocol.

We have also experienced with optimistic ordering
techniques to reduce system response-time. In par-
ticular, the Undo/Redo delivery paradigm was used
to reduce update latency [5]. In this paradigm mes-
sages are delivered locally while asynchronously
multicasted to the group. If ordering conflicts arise,
some previously delivered messages/updates are un-
done. Object operations semantics (e.g. the commu-
tative property), is explored to reduce the probability
of conflicting updates. The protocol sits on top of a
sequencer based total ordering and state transfer
protocol, which achieves high levels of concurrency
even during process joins.

5. Object-Groups Management and Ses-
sion Services

In addition to a group-communication subsystem
SGA programming can benefit from the provision of
other more specific services. Mechanisms and serv-
ices are required for the naming and binding to ses-
sions, for the management of the object-groups in the
shared workspace, and to enable user activity aware-
ness.

We have defined and implemented an extensible
distributed object model to structure and implement
SGA, which tackle the above issues in an integrated
manner. In addition to the collection of peer object-
groups which constitutes the shared workspace, we
have introduced the notion of fully replicated Session
object. A Session object is supported by a special
bootstrap object-group, which all user processes
must join to enter a session. Binding information
required to enter a session is fetched from an external
binding service.

A Session object's main purpose is to store and man-
age directories which hold information about created
object-groups and users participating in the session.
Object-groups information includes binding and
management data (e.g. protocol structures descrip-
tion and replication options), and user information
includes human readable data about human users
(e.g. user full name, user photography, e-mail ad-

dress, the Web home-page, etc.). Both object-groups
and users are identified by names, and are repre-
sented as Java classes which can be application de-
rived to convey additional information. Conceptu-
ally, we abstract an application as a collection of
shared object(-groups) and users organized around
the fully replicated Session object. Figure 2 depicts
an intuitive view of the distributed objects model.

From an application programmer perspective, she/he
can invoke the methods of a Session object to create,
destroy, join or leave object-groups and to obtain
information about users. A reactive programming
style can also be used to act on session related events
(e.g. a user entering or leaving a section, or an ob-
ject-group being created or destroyed).

Session Object SessionBindingService Object

Client Side
Code

Communication to

External
Session Binding

Service

Other Application Objects

Proccess Address Space

Object-Group Directory

ObjectGroup

Object-Group

User Directory

..
.

Binding
&

Management
Data

key

key User
Data

..
.

UserRecord

Shared Application Object

Application
Code

Layer 3

Layer 2

Layer 1

Protocol
Structure

Figure 2 - Objects conceptual model.

6. Experience and Future Work

As described, we have developed up to this point the
framework for protocol composition, a set of stack-
able group-protocols and the distributed objects
model. We have tested the suitability of our ideas
implementing a demo white-board tool. It is a simple
tool which manages a shared drawing canvas and
requires only one object-group to be implemented. It
was tested with only a small number of users in a
local network. In this restricted setting, system re-
sponse has reveled to be quite acceptable, i.e. system
performance did not suffer significant degradation
when operating on replicated shared objects. Addi-

tional experience and performance measures are re-
quired to analyze system behavior in more general
environments.

Many potential work directions were revealed during
the course of our work. We plan to continue the
process of specifying suitable group-communication
semantics and implementing new protocols. In par-
ticular, we expect to develop layers for light-
weighted group - multiplexing many groups into a
small number of groups, in order to increase system
performance when many fine granularity object-
groups are used. This may call for the definition of
multiple-group service semantics. The issue of fail-
ure-detectors consistency will also be addressed, i.e.
ensure that the membership layers of several protocol
stacks have a similar view of what the connectivity
state is. Also, we expect to tackle the always impor-
tant issue of security and access control.

We also plan to develop additional tools and appli-
cations, and hope to validate more clearly the useful-
ness of the abstractions discussed in this paper. We
will consider enhancing our object model with addi-
tional structuring abstractions and common services
as more experience is gained. Finally, we intend to
build a stub-compiler to simplify the task of shared
objects programming.

References

 [1] C.A. Ellis, S.J. Gibbs, and G.L. Rein, Group-
ware - Some issues and experience, Communication
of the ACM, vol. 34, n.1, Jan. 1991.

[2] van Renesse, Robbert, Birman, Kenneth P.,
Friedman, Roy, Hayden, Mark, and Karr, David A.,
A Framework for Protocol Composition in Horus, in
proceedings of the 14th IEEE International Confer-
ence on Distributed Computing Systems, 1994.

[3] Gosling, James, McGilton, Henry, The Java(tm)
Language Environment: A White Paper, Sun Micro-
systems, 1995.

[4] Kenneth P. Birman, and Thomas A. Joseph, Ex-
ploiting Virtual Synchrony in Distributed Systems,
Department of Computer Science, Cornell Univer-
sity, 1987.

[5] Karsenty, Alain, and Beaudouin-Lafon, Michel,
An Algorithm for Distributed Groupware Applica-
tions, in proceedings of the 13th IEEE International
Conference on Distributed Computing Systems,
1993.

