
Data Management Support for Asynchronous Groupware

Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, Sérgio Duarte

Departamento de Informática

Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa

Quinta da Torre, 2825-114 Monte da Caparica, Portugal

{nmp, jalm, hj, smd}@di.fct.unl.pt

Abstract
In asynchronous collaborative applications, users usually

collaborate accessing and modifying shared information

independently. We have designed and implemented a

replicated object store to support such applications in

distributed environments that include mobile computers.

Unlike most data management systems, awareness support is

integrated in the system. To improve the chance for new

contributions, the system provides high data availability. The

development of applications is supported by an object

framework that decomposes objects in several components,

each one managing a different aspect of object “execution.”

New data types may be created relying on pre-defined

components to handle concurrent updates, awareness

information, etc.

Keywords
Asynchronous groupware, mobile computing, awareness,

object framework, development support.

INTRODUCTION
The ubiquity of the Internet has opened opportunities for

collaboration among people on different geographical

locations. Several general-purpose services, such as e-mail

and news, have been used to support basic interaction and

collaboration. However, enhanced support for groups of users

collaboratively seeking common goals requires specialized

applications such as multi-user editing tools, cooperative

schedulers and calendars, workflow-based applications,

conferencing systems and others [8]. Most of these

applications rely heavily on a data storage sub-system to

enable information sharing, distribution and composition.

Some support systems have been implemented, either, for

general use (e.g. Lotus Notes [16]), for specific domains (e.g.

Vortex [11] for workflow) or for specific applications (e.g.

Iris [15] for document editors).

In asynchronous groupware, users usually collaborate

accessing and modifying shared information without

immediate knowledge about the actions of other users (either

because users work at different times or simply because they

do not have access to each other’s actions). To improve the

chance for asynchronous collaboration, users should be

allowed to perform their contributions independently without

restrictions (besides coordination and access control

restrictions). To accomplish this requirement, a replicated

data management system with a “read any/write any” model

of data access is often used. The increasing popularity of

mobile and disconnected computing, with its inherent

characteristics [21], seems to further strength the above

approach - mobile users expect to be able to access and

modify shared information even while disconnected. Using

this model, users may execute concurrent updates. To

synchronize these concurrent streams of activity [5]

adequately, it is often necessary to rely on application-

specific semantic information [12,14,7].

Awareness information is often essential to the success of

collaborative activities [4]. In asynchronous groupware,

although users have no immediate knowledge of each other’s

actions, overall information about the evolution of the

collaborative activity (e.g. evolution of the shared data, users’

actions,…) may improve each user’s contributions. Different

collaborative activities, applications and users will demand

different forms of awareness information (e.g. a scheduler

application may actively notify users of new appointments

while a collaborative writing system may simply maintain a

log of modifications).

In this paper we present the data management approach of the

DAgora project [1] to support asynchronous groupware. It

has two main components: (1) a replicated object store that

integrates awareness mechanisms; and (2) a framework that

eases the creation of new data types that are specially tailored

to be used in collaborative applications.

The DAgora distributed object store (named DOORS) is

based on a group of servers that replicate sets of related

objects with a “read any/write any” model of data access. It

also includes a client caching mechanism that allows clients

to cache frequently used objects. The combination of these

mechanisms provides high data availability even in the

presence of voluntary disconnection and network and/or

server failures. To maximize the semantic information

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CSCW’00, December 2-6, 2000, Philadelphia, PA.

Copyright 2000 ACM 1-58113-222-0/00/0012…$5.00.

69

available to synchronize divergent streams of activity, the

system propagates operations instead of data values.

DOORS objects are structured according to an object

framework that decomposes object “operation” in different

aspects: concurrency control, awareness-support, etc. This

framework eases the development of collaborative

applications because it allows programmers to define new

shared data types using, in each data type, the adequate pre-

defined components for each aspect of data sharing.

The remainder of this paper is organized as follows: section 2

discusses requirements and design choices; section 3 outlines

the DOORS architecture; section 4 presents the object

framework; section 5 describes our experience using the

DOORS system and section 6 discusses related work; section

7 concludes the paper with some final remarks.

REQUIREMENTS AND DESIGN CHOICES
In this section we present the requirements and design choices

that lead to the DAgora data management approach to

support asynchronous collaborative activities. To illustrate

some of the requirements of asynchronous groupware we will

use examples from three well understood applications: a

conferencing system, a group scheduler and a multi-user

editing tool.

In an asynchronous conferencing system, users collaborate

through the exchange of messages posted in a shared space

(newsgroups are a simple example). These messages create

threads of discussion related with different subjects. Users

should be allowed to independently post new messages,

which should be displayed in a consistent way (at least,

message dependencies should be taken into account - a reply

should not be displayed before the original message).

In a group scheduler, multiple users should be allowed to

request new appointments independently. These new

appointments should be considered tentative [7] until being

committed by some form of automatic global agreement. If

requested, users should be notified when their requests are

committed or aborted.

A multi-user editing tool allows a group of users to

collaboratively edit some structured document (for example,

this paper). Different users should be allowed to

independently modify the document (e.g. two users can

modify different sections). Concurrent modifications should

be merged taking into consideration all changes (e.g. the final

document must include the new versions of the two sections).

Syntactic consistency1 [5] should be preserved even when

handling semantic conflicts (e.g. if two users modify the same

section, two versions of that section should be created and

maintained).

From the previous brief descriptions we note that users

collaborate through the access and modification of shared

1 A system is syntactically consistent if the underlying data store is

structurally sound, allowing the activity to proceed.

information. Therefore, data management plays an important

role in the support of groupware. In this paper we restrict our

discussion to the data-management support. However, in the

DAgora project [1] we are also addressing other problems,

such as the coordination of collaborative activities [3], the

support of synchronous applications [23] and the

dissemination of awareness information relative to the

collaborative activity [6].

High data availability
One important requirement to enable collaboration is to allow

users to access shared information. In distributed settings, it is

impossible to guarantee the permanent reachability of a single

storage site (due to network and machine failures). Therefore,

systems that intend to provide high data availability usually

rely on data replication - data can be accessed if some replica

is available. In DOORS, the information associated with a

collaborative activity is grouped in a volume [14] that is

replicated by a group of servers.

Mobile users are frequently disconnected from the network,

either due to economical factors, energy saving or unavailable

connectivity. Disconnected users have to rely on local data

replicas to access the shared information. However, as it is

often impossible and/or undesirable to allow all disconnected

computers to manage a full unit of replication, clients usually

rely on a caching mechanism. In DOORS, clients cache a set

of key objects to allow disconnected users to continue their

work.

From the previous examples we note that users contribute to a

collaborative activity through the modification of the shared

information. Therefore, to promote collaboration, users

should be allowed to modify data without restrictions. In a

distributed setting that includes mobile/disconnected

computers, pessimistic concurrency control mechanisms

based on locks or tokens lead to low write availability (for

example, to allow a single disconnected client to modify data

it may be necessary to prevent all other clients from updating

it). In DOORS, we have adopted an optimistic replication

strategy with a “read any/write any” model of data access —

all clients are allowed to modify data independently. We have

also adopted an epidemic scheme of update propagation [2],

where every server eventually receives all updates from every

other, either directly or indirectly. This scheme requires only

occasional pair-wise communication between computers, thus

imposing minimum connectivity requirements among

computers. The DOORS architecture is detailed in the next

section.

Multiple concurrency-control strategies
In the optimistic replication scheme adopted in DOORS, as in

other systems previously presented in literature [7,16,14,15],

users may independently perform their updates. This situation

leads to the need to handle concurrently performed updates.

Moreover, due to the lazy replication strategy, updates are not

propagated to all servers at the same time — different servers

may have received different subsets of the performed updates.

Although similar approaches have been identified as

70

necessary to support large-scale distributed environments that

include mobile computers [7,9,14], they pose an important

data management problem - how to handle the concurrently

performed updates?

Consider the following examples from the previously

presented applications. In a conferencing system messages

should be displayed taking into consideration their

dependencies. However, there is no need to display all

messages in the same order in all replicas - a causal order is

sufficient. On the other hand, in a scheduler application all

appointments must be committed in the same order in all

replicas - all updates should be applied using a total order.

Uncommitted updates may be presented as tentative.

Many algorithms have been proposed to handle concurrent

updates (based on undo-redo techniques [13], operation

transformations [24], exploitation of data types semantic

properties [12],…). However, it seems that no single method

is adequate to all situations. Instead, different groups of

applications will use different mechanisms. Nevertheless, the

use of semantic information has been identified [7,14,18] as a

key element to merge the concurrent streams of activity.

In DOORS we allow each application to define its own

concurrency control method (see “application development

support” for reuse support). To maximize the flexibility in the

handling of concurrent updates, we have based our system in

the propagation of updates as operations. Consequently, the

concurrency control mechanism may use not only the

semantic information associated with the data type but also

the semantic information associated with each performed

operation.

Integrated awareness support
Awareness has been identified as important in the

development of collaborative activities because individual

contributions may be improved by the understanding of the

activities of the whole group [4,19]. To this end, it is

important to have information about the evolution of shared

data, users’ actions and motivations,… In asynchronous

collaborative activities, awareness information plays a central

role in collaboration allowing each user to take notice of new

contributions from other users.

Consider the previously presented multi-user editing tool: it is

important that each user takes notice of updates performed to

the shared document. To this end, information about updates

should be automatically collected and maintained with the

document. This information may be displayed to users using

different user interface metaphors (log of changes, multiple

colors in the document,…). This form of awareness is usually

called shared feedback [4]. Consider now the group scheduler

application: it seems interesting to allow the affected persons

to be notified of the commitment or abortion of any requested

appointment (a log with the results of requests may also be

maintained). In our architecture, updates are processed

asynchronously by the data management system and users

will usually not be connected to the system when their

updates are committed2. Consequently, we believe that the

support for handling awareness information relative to the

evolution of the shared data should be tightly integrated with

the data management system. This integration allows each

processed update to produce the adequate awareness

information (and eventual notifications to be propagated

immediately).

In DOORS, we have made this integration. Each processed

update may produce a piece of awareness information. Each

data type may define the way this information is handled, thus

supporting different awareness models (e.g. awareness data

may be stored with the data object or/and may be

immediately propagated to users). We will detail the

awareness support in the next sections.

Application development support - reusing pre-defined
base solutions
In the previous subsections we have presented some of the

data management requirements that lead to the DAgora

approach to support asynchronous collaborative appli-

cations. It is important to notice that the fulfillment of those

requirements demands type-specific solutions. The DOORS

design choices attempt to offer the maximum flexibility in the

implementation of different solutions - different groups of

applications require different solutions. However, to fulfill the

objective of providing support for the development of new

applications, this flexibility is not sufficient — application

programmers should be assisted in the implementation of

their specific data types. To this end, we have created a data

management object framework that decomposes each object

in several components, each one responsible for a different

aspect of the object “operation.”

Moreover, we have implemented a set of pre-defined

components that execute different policies, notably related

with concurrency control and awareness support. Using the

DOORS open object framework, application programmers

may create new data types composing these pre-defined

components with regular object classes. If necessary,

programmers may create new components or extend any pre-

defined one. The DOORS object framework does not restrict

reuse to concurrency control and awareness support. For

example, we have defined a base component that acts as a

surrogate of a relational database system. This component

allows programmers to store their data using a relational

model while relying on DOORS facilities. We will detail the

object framework and some of the implemented base

components in the section “object framework.”

As it has already been mentioned, the DOORS replication

mechanism is based on the propagation of the operations

performed by users. To this end, the invocation of operations

2 Note that this operational pattern (updates being processed when

users are no longer connected to the system) is common in many

data management systems that support disconnected users

[7,12,14].

71

should be logged in clients. In DOORS, we use a

preprocessor that transforms the object classes implemented

by the application programmer so that the invocation of

operations could be logged transparently when user

applications call object methods.

ARCHITECTURE
DOORS is a distributed object store based on a “extended

client/replicated server” architecture. It manages objects

structured according to the DOORS object framework

(named coobjects — from collaborative objects). These

coobjects may represent rather complex data objects, such as

documents or calendars, and be implemented as arbitrary

compositions of common objects. Sets of related coobjects

are grouped in volumes that represent collaborative

workspaces and store the data associated with a given

workgroup and/or collaborative project.

The DOORS architecture is composed by servers and clients,

as depicted in Figure 1 — any machine may act as both a

client and a server. Servers replicate volumes of coobjects to

mask network and/or server failures. Clients cache key

coobjects to allow users to continue their work, even while

disconnected. Applications that use DOORS to store their

data run on client machines and modify coobjects through the

invocation of coobjects’ methods - users collaborate through

the modification of shared coobjects.

Key

 Server

 Client

 Coobject

Application

epidemic
propagation

coobjects

updates

epidemic
propagation

Figure 1 – DOORS architecture composed by four

computers with different configurations. Coobjects are

replicated by servers, cached by clients and manipulated

by users’ applications.

Applications usually use a “get/modify locally/put changes”

model of data access. When an application requests a

coobject, if it is not available in the local cache, it is fetched

from any server (if connectivity is available). A private copy

of the coobject is created in the client component and it is

handed over to the application. Applications use coobjects as

common objects, i.e., applications invoke coobjects’ methods

to query and modify their state. Updates performed by

applications are logged internally by coobjects without any

intervention of the DOORS system. These updates are

recorded as sequences of method invocations (properties of

operations are used to compress these sequences - for

example, only the last operation that sets new text to a section

is recorded). Finally, if the user chooses to save her changes,

the logged sequence of updates is transferred to the client,

where it is persistently stored until it is propagated to a server.

Alternatively, DOORS supports a remote invocation

mechanism that immediately processes on a server any

method invocation performed on a coobject (if connectivity is

available). This mechanism is mainly used to support access

to large coobjects that can not be instantiated in clients, in

particular coobjects that act as surrogates of RDBMS (see

next section).

Upon arrival of updates from a client machine, the server

hands them over to the coobject local replica. It is up to the

coobject replica to store and process these updates - updates

are propagated from clients to servers and among servers as

sequences of method invocations. Servers propagate new

updates among them in an epidemic way [2] - pairs of servers

establish occasional communications to synchronize received

updates. Therefore, all servers will eventually receive all

updates, either directly or indirectly. DOORS allows pair-

wise communications to be established over multiple

transports, including asynchronous ones such as e-mail. This

property, combined with the epidemic strategy of update

propagation, imposes minimum connectivity requirements

among servers. As a consequence of the lazy strategy of

update propagation, multiple replicas may differ at a given

moment, but they will eventually converge (at least all

replicas will reflect the same set of updates). These temporary

inconsistencies may be reduced by increasing the frequency

of epidemic propagation sessions.

The group of servers that replicate each volume may vary as a

result of users (system administrators) explicit orders. The

protocols implemented for membership management are

light-weight and impose only pair-wise communications. To

support push-based awareness models, each server contains

an “awareness service.” This “awareness service” is

responsible to propagate messages through the defined

mechanisms — e-mail, SMS/pager gateways or other (to cope

with temporary impossibilities of propagation, several retries

may be necessary). To support coobjects that act as database

surrogates, each server may have an associated database

system to maintain local replicas.

OBJECT FRAMEWORK
In the previous section we have outlined the DOORS system.

As it has been described, the responsibilities of the system

core are almost restricted to provide high data availability: it

should maintain updated copies of coobjects in clients and

propagate updates between clients and servers and among

servers. The rationale behind this design is to allow flexible

support of collaborative activities: “operational” aspects of

data management, such as concurrency control and awareness

support, are controlled in a type-specific way and are defined

in the implementation of the shared data types (coobjects).

Therefore, the system core is limited to minimal services that

represent the common aspects of data management.

72

On the other hand, a heavy burden is imposed on the

implementation of coobjects, which must handle several

aspects that are usually managed by the system. To alleviate

programmers from much of this burden and to allow the reuse

of “good” solutions in multiple data types, we have defined

an object framework that decomposes coobjects in several

components that handle different operational aspects. In this

section we will present the object framework and some of the

reusable pre-defined base components that have been

implemented. In the applications presented in the next section

we will exemplify the use of this object framework.

The DOORS object framework structures each coobject in

six components, each one with a well defined function and

interface (see figure 2). We will now briefly present these

components and outline (with some simplifications) how they

work together in the clients and in the servers. The capsule

aggregates the other components of the coobject and serves

as an interface to the DOORS system. The "attributes"

component stores general-purpose information about the

coobject. The log stores the updates performed by users. The

concurrency control component is responsible to execute the

logged updates. The data component defines the

conventional data type represented by the coobject, with its

internal state and operations. The awareness component

handles the awareness information.

A
tt

ri
b
u
te

s

L
o
g

C
o
n
cu

rr
en

cy
co

n
tr

o
l

D
at

a

A
w

ar
en

es
s

Capsule

Figure 2 – DOORS open object framework.

In clients, applications manipulate coobjects using the

methods defined in the data component. Updates performed

are transparently logged (in the log) and executed. When the

user decides to save her changes, the system extracts the

sequences of updates performed from the log, and later

propagates these updates to a server.

In servers, the updates received from clients and from other

servers are stored in the log — during epidemic sessions

these stored updates are propagated among replicas. The

concurrency control component is responsible for executing

logged updates according to the defined strategy. When an

update is executed some awareness information may be

produced: this information is handled by the awareness

component. Next, we will detail the components of the

DOORS open object framework and present some pre-

defined base solutions.

Capsule component
The capsule component defines the composition of the

coobject and aggregates its components. It implements the

interface used by the system core to interact with coobjects

and coordinates coobjects’ operation. Commonly, coobjects

are composed by one instance of each component and work

as it has been described. However, we have defined a two-

version capsule that allows programmers to implement

coobjects that maintain two data versions relying on common

object classes. Usually one version stores the committed state

(result of the execution of all stable updates) and the other

stores a tentative state (reflecting all known updates). In the

next section, we present the example of a scheduler

application that uses this capsule to allow users to observe

both the tentative and committed appointments — this

behavior has been identified as interesting for applications

that use replicated data in large-scale settings that include

mobile computers [7].

The two-version capsule contains two data components, two

awareness components and two concurrency control

components. Each data component stores a different version

of the data. These versions are easily maintained executing

the stored updates resorting on different concurrency control

policies — the committed (tentative) version is obtained

using a pessimistic (optimistic) strategy. The two awareness

components allow programmers to handle stable and unstable

awareness information in different ways.

"Attributes" component
The “attributes” component is used to store general-purpose

information relative to the coobject, such as creation and

modification dates, owner, etc. It also stores meta-information

about the coobject state and the replication process, such as

summaries (timevectors) of received, executed, discarded and

delivered updates [20]. Two base implementations are

available: a simple and an extended one. The extended

implementation maintains additional information about a

primary replica and defines methods to modify it. This

information can be used by other components in their

operation - e.g. concurrency control mechanisms based on a

sequencer use this information (see “concurrency control

component” for details). These base classes may be extended

to define type-specific attributes.

Log component
The log component stores the updates performed by users. In

clients, these updates are temporarily logged until they are

requested by the system (when the user saves his changes) to

be propagated to a server. In servers, updates are permanently

stored (until they are discarded) and they are propagated

during epidemic synchronization sessions. The log adds, to

each sequence of updates, the necessary information to order

them and to trace their dependencies, i.e., to identify the

multiple streams of activity.

Two base implementations are available: a simple one and an

extended one. The extended one should be used with

concurrency control components based on a sequencer (see

details in the next subsection). The sequence of updates

produced in clients is automatically compressed if operations’

properties are available — e.g. if multiple consecutive

73

updates (performed in the same session by the same user) set

a new value to the same section of a document, only the last

update needs to be recorded.

Concurrency control component
The concurrency control component is responsible for

executing the updates stored in the log. In clients, intercepted

updates are usually immediately executed to allow users to

observe the expected results from their actions. In servers,

multiple strategies may be used to synchronize the concurrent

streams of activity depending on the semantics of the shared

data-type. Two inter-related problems must be taken into

consideration: how to guarantee that all data replicas evolve

as expected and how to guarantee that users’ intentions are

respected.

The first problem can be handled constraining the execution

order of updates. For example, executing all (deterministic)

updates by the same order in all replicas leads all replicas to

the same state. However, as different replicas may have

received different subsets of updates, it is usually necessary to

postpone the execution of some updates to guarantee that

property. In some applications it is not necessary to achieve

exactly the same state or due to semantic properties it is

possible to rely on weaker orderings to achieve the same

state. We have implemented several components with

different policies (in the next section we present examples of

their usage).

The no order component executes updates as soon as they are

received for the first time — therefore, different replicas may

apply the same updates in a different order. The causal order

component executes updates in a causal order (when a user

performs a new update, he observes a coobject state that

reflects a given set of previous updates - causal order

guarantees that the new update is executed in all replicas after

that set of updates). Due to the DOORS epidemic

propagation model, this constraint does not usually impose

any delay on the execution of updates - therefore, replicas

usually reflect all known updates.

We have also implemented several components that execute

updates in the same order in all replicas using different

techniques - all components rely uniquely in information

propagated during normal epidemic sessions. The stability-

based total order component implements a fully distributed

algorithm to establish the total order (based on the

ReplicatedStateMachine algorithm, see [17]). As this

algorithm relies on information gathered in all replicas, a

permanently disconnected computer may prevent new

updates from being executed. The sequencer-based total

order component uses a replica designated as sequencer to

order updates. These updates are executed in all replicas in

the order defined by the sequencer. The identity of the

sequencer may be modified using the methods defined in the

"attributes" component. This component allows new updates

to be (ordered and) executed if they can be propagated to the

sequencer replica (even in the presence of multiple

permanently disconnected computers).

Both total order components postpone the execution of

updates until the order of updates can be positively

established. However, in some situations it is preferable to

use an optimistic approach - updates are immediately applied

assuming that no previous updates are unknown. This allows

users to observe the expected results from all known updates.

Subsequently, if some previous update is received the updates

executed in the wrong order are undone and later redone in

their correct position. We have implemented versions of the

previous total order components that use this undo-redo

optimistic strategy [13].

The second problem is to guarantee that users' intentions are

respected when concurrent streams of activity are

synchronized. To tackle this problem, three main approaches

have been proposed in literature. First, the use of transactions

— an update is committed if data values are equal to those

observed by the user, otherwise it is aborted. This model is

too restrictive because the strict identity of values is not

necessary in many situations — some transactions could be

executed if data honors a weaker condition. Moreover, the

abortion of users’ contributions is not usually acceptable in

asynchronous groupware where contributions may represent

large amounts of work (in synchronous groupware several

systems have used this approach successfully — e.g. [22]).

Second, updates are transformed taking into consideration the

updates executed after the state observed by the user [24].

Third, semantic information is used in synchronization [7,12].

Although we have extended the optimistic stability-based

total order component to execute update transformations (that

must be specified by programmers), we expect that most

applications will rely on semantic information to guarantee

the fulfillment of users’ intentions. As updates are applied in

servers executing coobjects’ methods, it is possible to express

the expected semantics in the code of operations - pre and

post-conditions can be checked and alternative actions may

be executed depending on the state of the coobject (see the

next section for examples).

Awareness component
The awareness component is used to handle the awareness

information generated in the execution of updates. Two main

implementations are available. The notification-based

component propagates information to users using their

preferred transport - e-mail messages, SMS/pager messages,

etc. The shared-feedback component stores the awareness

information, so that it can be presented to users in

applications - e.g. a multi-user editor may present the log of

updates. We have also implemented some wrappers that

guarantee the expected semantics despite the multiple

concurrency control policies (e.g. awareness information may

not be propagated as the result of unstable updates in

optimistic concurrency control strategies, although updates

are executed in all servers only one message is

propagated,…).

In the future, we expect to provide an enhanced notification-

based component that propagates information to users

74

through our new event-dissemination architecture (see [6] for

a preliminary design). This architecture will allow users to

specify the way awareness information is propagated to

themselves — for example, some user may request to be

immediately notified using SMS/pager messages for

important information, daily digests for information about

activities that he is not directly involved on, and e-mail for

other messages.

Data component
The data component implements the data type being created,

with its associated state and operations. It is implemented as a

common class that is preprocessed, so that updates performed

by users can be transparently logged. We have implemented

some base components that can be extended to easily create

data types with specific approaches. The structured multi-

version component defines a hierarchy of sub-objects that

may have multiple versions. Two types of operations are

available: operations that modify the sub-objects and

operations that manage the hierarchic organization.

Concurrent modifications of the same sub-object are

automatically detected and solved creating multiple versions -

the information added to the operations by the log component

is used to detect concurrent modifications without the need

for any special concurrency control component (as in

[14,16]). Programmers may define automatic merge

procedures or let this work to users. Concurrent modifications

of the hierarchic organization are automatically merged in a

coherent way. This component is suitable for situations where

it is impossible to automatically solve conflicts but syntactic

consistency must be maintained to enable users to continue

their work (e.g. in a structured document two versions should

be created when the same section is concurrently modified by

two users). We have used this component to implement

several structured documents (as it is detailed in the next

section).

The database surrogate component implements a surrogate

of a database. It provides basic methods to query and update

the database using a Java JDBC-like interface (i.e. queries

and updates may be performed using SQL). To allow

different servers to hold local data replicas using different

database systems, only SQL standard statements must be

used. This component may be extended to create new data

types that use the relational data model - these new data types

should define high-level operations that use those basic

methods. Coobjects that use such data-types are structured as

all other coobjects and rely on the same DOORS mechanisms

(e.g. updates are propagated and executed in all replicas using

the common mechanism). Similarly, we have also defined a

file-system surrogate that allows programmers to store their

data in files.

EXPERIENCE
In the previous sections we have described the DOORS

system. In this section we will present some applications that

illustrate the DOORS support for asynchronous groupware.

In particular, we will focus on the use of the DOORS object

framework to ease the development of new applications. The

applications presented in this section have used a DOORS

prototype implemented in Java 1.2. The DOORS pre-

processor has been implemented using the JavaCC parser

generator.

Scheduler
The scheduler application enables users to manage a shared

calendar. This calendar may be used to schedule the

reservation of a shared resource (e.g. meeting room) or as a

personal date book managed by more than one person (e.g.

the owner and his secretary). In this application multiple users

may independently request reservations, thus imposing a high

data availability requirement. As only a single reservation

may be granted for the same period of time, a global

agreement mechanism must be used to commit requests and

decide possible conflicts. However, users must be able to

observe not only committed requests but also those that have

not been committed yet. As these tentative updates represent

the expected state of the shared calendar, users should also

avoid conflicts with those updates. To reduce the likelihood

of having rejected requests, users may provide alternative

periods of time for their requests. Additionally, users may

want to be notified when the results of their requests are

determined.

To develop this application using DOORS it was necessary to

implement the shared calendar as a new coobject (and then to

implement the application that manipulates this coobject).

First, we have implemented the coobject’s data component —

we have used a common calendar class, as it would be

implemented for a local application. In figure 3 we present

the method that processes new requests. As it can be seen,

this method sequentially checks the possibility to schedule the

appointment in alternative periods. The result of the operation

is reported using the method newAwarenessMsg (and it will

be processed by the awareness component).

Next, this data component has been composed with some pre-

defined components to create the shared calendar coobject. In

this application we wanted to be able to present the

committed and tentative updates using different colors. In

DOORS, we can maintain two data versions using normal

data classes relying on the two-version capsule. The

committed state is maintained executing the stored updates by

a pessimistic total order (e.g. the sequencer-base total order)

- therefore all replicas will execute all updates in the same

order, thus deciding possible conflicts in concurrently

performed requests. The tentative state is maintained

executing all other updates by any order to a copy of the

committed state (or executing updates by the correspondent

optimistic total order). To provide notifications of the final

result of requests, we have associated the notification-based

awareness component to the committed data (and a wrapper

so that a single notification is propagated for each request).

With the tentative data version we have associated a null

awareness component, so that no notification is propagated as

the result of tentative updates. Finally, we have also used a

75

log and a "attributes" components (the extended versions

must be used with the sequencer-based total order

concurrency control).

public update void processRequest(RequestInfo request){

 for(int i = 0; i < request.period.length; i++) {

 if(availablePeriod(request.period[i]) {

 insertRequest(request, request.period[i]);

 newAwarenessMsg(request.user,

 "Reservation confirmed at " +

 request.period[i] + "\nDetails:\n" +

 request.detailedInfo());

 return;

 }

 }

 newAwarenessMsg(request.user,

 "Impossible request.\nDetails:\n" +

 request.detailedInfo());

}

Figure 3 – Method processRequest for scheduler coobject.

The method newAwarenessMsg is defined in the base data

component class and it is a simple redirection to the

awareness component. The “update” keyword is used by

the DOORS preprocessor.

As outlined, the shared calendar coobject was implemented

using a simple calendar class and relying on several pre-

defined components to manage the complexity associated

with data sharing among multiple users. High data availability

is provided by the core of the DOORS system.

Multi-user document editor
The editor application allows users to produce structured

documents collaboratively. A document is a hierarchical

composition of two types of elements: containers and leaves.

Containers are sequences of other containers and/or leaves.

Leaves represent atomic units of data that may have multiple

versions and that may be of different types. In figure 4, we

present an example of a LaTeX document. Users are allowed

to change the same document independently and the system

must manage these changes. If two users modify the same

atomic element, two versions of that element should be

created, thus maintaining syntactic consistency - the system

can not decide which version is the best one and no work

should be discarded by the system. Users should merge both

versions later. Concurrent modifications of the document

structure should be merged applying both modifications in the

same way in all replicas - for example, if two users are adding

a new section they are probably adding different sections.

Additionally, the application should provide awareness

information to users presenting the modifications performed

by other users.

To create a shared document coobject in DOORS, we have

used the structured multi-version data component to

automatically manage the document structure and multi-

versioning of atomic document elements. This component

had to be extended to define the allowed configuration of

elements and the type of atomic elements. To guarantee that

Figure 4 – Multi-user editor with a LaTeX document.

all modifications in the structure of a shared document are

executed in the same way in all replicas we have used an

optimistic total order concurrency control component. This

component guarantees, not only, that the shared document

replicas will converge, but also that users can immediately

observe all contributions performed by users.

We have used the shared-feedback awareness component to

store awareness information about all updates performed.

This information is used by the editor application to provide

shared-feedback awareness information to users. The shared

document coobject has also used a simple capsule

component, a log component and a "attributes" component.

As outlined, we have used and extended DOORS pre-defined

components to create multiple shared document coobjects -

data-management problems related with data sharing are

managed by the pre-defined components.

Musical shared database
The musical shared database is an application that manages

information about music. Multiple users are allowed to

introduce information about new albums, their songs, authors,

producers, on-line pointers, etc. Associated with each album

there is a discussion board where users may produce their

comments on the album and reply to previous comments.

Users may also classify albums regarding several

characteristics. Additionally, users may request to be notified

when albums with specific characteristics are introduced. As

usual in database applications, a set of possible queries is also

provided to users.

This application has been developed using DOORS to

manage data distribution — multiple database replicas may

be distributed in different computers and may be accessed

independently (e.g. different intranets may have different

database replicas that are synchronized during e-mail-based

epidemic sessions, a portable computer may hold a replica,

etc). The data component has been implemented extending

the database surrogate - application-level operations (such as

insert a new album and insert a comment) have been defined

using basic SQL statements. The causal order concurrency

76

control component has been used to guarantee that the

dependencies among operations are respected (e.g. replies are

always posted after the original comments) - this property is

sufficient in this case. This coobject relies on the notification-

based awareness component to implement notifications to

users. As usual, a log and a "attributes" components have

been used.

RELATED WORK
Several systems have been designed to manage data in large-

scale distributed environments. Notably, database systems

usually rely on transactions to manage concurrency control.

However, as we have already discussed, we believe that

transactions are too restrictive for asynchronous groupware.

Distributed file systems, such as Coda [14], support data

sharing among distributed and disconnected users. Coda

supports automatic conflict detection and resolution relying

on application-defined programs to merge multiple file

versions. As these programs have no information about

executed operations, their task is difficult and sometimes

impossible. This is not a problem in the targeted environment

where conflicts are expected to be the exception — however

this problem is important for general groupware support.

Lotus Notes [16] is a replicated document database based on

epidemic update propagation. Documents have a record-like

structure composed by typed fields defined in forms. Notes

propagates field values, handling concurrent updates by the

creation of multiple field versions that must be manually

merged. Although this approach is suitable in some

circumstances, automatic merging of concurrent streams of

activity is often possible and desirable.

Bayou [7] is a replicated database system based on epidemic

operation-based update propagation. Bayou updates (writes)

include information to allow generic automatic conflict

detection and resolution through dependency checks and

merge procedures. Bayou data presents two values: tentative

and committed. A primary replica scheme is used to fasten

update commitment. This set of data management

characteristics is interesting for many collaborative

applications, as we have already discussed when we have

presented similar DOORS features. DOORS differs from

Bayou in three main aspects. First, DOORS includes

integrated awareness support about data evolution, which is

important for many asynchronous groupware applications.

Second, as DOORS allows specific data types definition it

does not impose data to fit the relational model (as in Bayou).

DOORS also allows the implementation of applications that

use the relational data model extending the database

surrogate data component. However, these applications must

define high-level operations in Java using a JDBC-like

interface, while Bayou applications may use a higher-level

mechanism (based on TCL). Third, the DOORS object

framework allows the reuse of different strategies (such as

update transformations) - this situation may allow better and

simpler solutions for some applications, without imposing

additional complexity for programmers.

Several groupware systems are based on a traditional

client/server architecture. Sync [18], a framework for mobile

collaborative applications, presents a model of concurrent

update merging based on the definition of merge matrixes.

These matrixes define the operations that must be executed in

the server and in clients for each pair of operations. The

Prospero toolkit [5] presents a model for data management

based on the synchronization of divergent streams of activity

- divergence may be constrained using promises and

guarantees (an extension of locks). It allows type-specific

customization through its open implementation (e.g.

synchronization procedures may be redefined). However, the

lack of server replication makes these systems less suitable

for large-scale settings. Additionally, they do not present

integrated awareness support (e.g. no mechanism is defined to

notify users of the result of their action — a desirable

characteristic in some applications designed for mobile

environments).

Shared workspace systems (such as BSCW [10]) allow

multiple users to share a common workspace where they can

store documents. They usually use simple concurrency

control mechanisms based on locking (check-in/check-out) or

version management. We believe that it is often possible and

desirable to automatically merge concurrent updates.

Awareness information is usually pull-based (users must log

to the system and poll for new information).

CONCLUDING REMARKS
The DOORS replicated object store provides data

management support for asynchronous groupware. Asyn-

chronous collaborative applications, as illustrated in the

applications reported in this paper, require high (read and

write) data availability to maximize the opportunity for

collaboration among users — users perform their con-

tributions modifying shared information. To this end,

DOORS combines server replication and client caching to

provide high data availability in a distributed environment

that includes mobile computers. While DOORS shares goals

and approaches with several other systems, it also stresses

several different directions that look very promising

according to our experience.

First, DOORS is fully built around the notion of operation-

based update propagation. This approach maximizes the

flexibility in the synchronization of divergent streams of

activity relying on both data type and operation semantic

information. According to our experience, this flexibility is

essential to create specially tailored solutions.

Second, DOORS provides integrated support for handling

awareness information that is generated in the execution of

operations during the synchronization process.

Third, the DOORS system core is almost restricted to the

common functions of data management: propagate updates

between clients and servers and among servers. DOORS

delegates on coobjects most of the aspects related with the

management of data sharing, such as concurrency control,

77

handling of awareness information, etc. Additionally,

DOORS defines an object framework that decomposes

coobject “operation” in several components that handle those

different aspects. This framework eases application

development allowing programmers to create new data types

relying on several pre-defined solutions to organize data, to

manage concurrency control, to handle awareness

information, etc. - the applications reported in this paper

illustrate its use. Due to this model and to the open

implementation of the object framework, DOORS provides

the necessary flexibility to manage different collaborative

applications.

Some problems also need more attention and further research.

First, we intend to enhance our support for small mobile

devices introducing support for partial replication and

adequate mechanisms to handle variable connectivity.

Second, we intend to research more advanced tools to support

our component-based object framework. Third, we intend to

pursue our research in the event-dissemination architecture

and use it to propagate awareness information.

More information about the DAgora project (including

DOORS) is available from [1].

Acknowledgments
We would like to thank our students for helpful feedback on

the system and for supporting us with the implementation of

several applications (in particular, we would like to thank

Inês Vicente and Filipe Leitão for the implementation of the

musical shared database).

REFERENCES
1. DAgora project homepage - http://dagora.di.fct.unl.pt

2. Demers, A., Green, D., Hauser, C., Irish, W., Larson, J.,

Shenker, S., Sturgis, H., Swinehart, D., Terry, D.

Epidemic Algorithms for Replicated Database

Maintenance. Operating Systems Review, 22(1), 1988.

3. Domingos, H., Preguiça, N., Legatheaux Martins, J.

Coordination and Awareness Support for Adaptive

CSCW Sessions. In Proceedings of CRIWG’98, 1998.

4. Dourish, P., Bellori, V. Awareness and Coordination in

Shared Workspaces. In Proceedings of CSCW’92, 1992.

5. Dourish, P. Using Metalevel Techniques in a Flexible

Toolkit for CSCW Applications. ACM Transactions on

Computer-Human Interaction, June 1998.

6. Duarte, S., Legatheaux Martins, J., Domingos, H.,

Preguiça, N. DEEDS - An Event Dissemination Service

for Mobile and Stationary Systems. In Actas do 1º

Encontro Português de Computação Móvel, 1999.

7. Edwards, W., Mynatt, E., Petersen, K., Spreitzer, M.,

Terry, D., Theimer, M. Designing and Implementing

Asynchronous Collaborative Applications with Bayou. In

Proceedings of UIST’97, Oct. 1997.

8. Ellis, C., Gibbs, S., Rein, G. Groupware: Some Issues and

Experiences. Commun. ACM 34(1), 1991.

9. Gray, J., Helland, P., O’Neil, P., Shasha, D. The Dangers

of Replication and a Solution. In Proceedings of

SIGMOD’96, 1996.

10. Horstmann, T., Bentley, R. Distributed Authoring on the

Web with the BSCW Shared Workspace System. ACM

Standards View, Mar. 1997.

11. Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kumar,

B, Zhou, G. Declarative Workflows that Support Easy

Modification and Dynamic Browsing. In Proceedings of

WACC’99, 1999.

12. Joseph, A., deLespinasse, A.,Tauber, J., Gifford, D.,

Kaashoek, M. Rover: A Toolkit for Mobile Information

Access. In Proceedings of 15th SOSP, Dec. 1995.

13. Karsenty, A., Beaudouin-Lafon, M. An Algorithm for

Distributed Groupware Applications. In Proceedings of

13th ICDCS, May 1993.

14. Kistler, J., Satyanarayanan, M. Disconnected Operation in

the Coda File System. ACM Transactions on Computer

Systems, Feb. 1992.

15. Koch, M. Design Issues and Model for a Distributed

Multi-user Editor. Computer Supported Cooperative

Work – An International Journal, 3(3-4), 1995.

16. Lotus Notes. http://www.lotus.com

17. Lynch, N. Distributed Algorithms. Morgan Kaufmann

Publishers, Inc., 1996.

18. Munson, J., Dewan, P. Sync: A Java Framework for

Mobile Collaborative Applications. IEEE Computer, June

1997.

19. Pankoke-Babatz, U., Syri, A. Collaborative Worspaces

for Time Deferred Electronic Cooperation. In

Proceedings of GROUP’97, 1997.

20. Preguiça, N., Legatheaux Martins, J., Domingos, H.,

Simão, J. System Support for Large-Scale Collaborative

Applications. Technical Report, TR-01-98 DI-FCT-UNL,

available from [1].

21. Pitoura, E., Samaras, G. Data Management for Mobile

Computing. Kluwer Academic Publishers, 1998.

22. Schuckmann, C., Kirchner, L., Schümmer, J., Haake, J.

Designing Object-Oriented Synchronous Groupware with

COAST. In Proceedings of CSCW’96, 1996.

23. Simão, J., Preguiça, N., Domingos, H., Legatheaux

Martins, J. DAgora: A Flexible, Scalable and Reliable

Object-Oriented Groupware Platform. In Proceedings of

ECSCW’97 OOGP Workshop, 1997, available from [1].

24. Sun, C., Ellis, C. Operational Transformation in Real-time

Group Editors: Issues, Algorithms, and Achievements. In

Prooceedings of CSCW’98, 1998.

78

