
Published in the Actas da Conferência sobre Sistemas Móveis e Ub́ıquos
(CSMU-2006),2006.

Reconciliation for Mobile Computing
Environments with Portable Storage Devices ?

Marcos Bento1, Nuno Preguiça1, Carlos Baquero2, and J. Legatheaux Martins1

1 DI, FCT, Universidade Nova de Lisboa
2 DI, Universidade do Minho

Abstract. Mobile computing environments have changed in recent years
with the increasing use of different types of portable devices, ranging
from mobile phones to laptops, and from MP3 players to portable stor-
age devices (e.g. flash disks). Many of these devices have large amounts
of storage, allowing users to transport most of their data with them. In
this paper we briefly present the FEW file management system, a system
that aims to ease file management in this new mobile environment. In
particular, we detail the automatic reconciliation approach used in this
system based on operational transformation. We motivate our work with
a study of conflicts in data managed by version control systems.

1 Introduction

Mobile computing environments have changed in recent years with the increasing
use of different types of portable devices, ranging from mobile phones to laptops,
and from MP3 players and digital cameras to portable storage devices, such as
flash-disks. Although most of these devices are not general-purpose computing
devices, they can be used to transport users’ data, as they often have gigabytes
of storage. These devices can act as sophisticated, large-capacity storage devices
either attached to a computer or directly connected to a network.

The Files EveryWhere (FEW) system is a distributed file system that in-
tends to explore the multiple available storage devices to allow users to safely
store their data while providing high availability, good performance and low en-
ergy consumption. To this end, the system manages files that are automatically
replicated in computing devices and portable storage devices. When a replica
is modified, the update is asynchronously propagated to all file replicas using a
best-effort approach. To garantee eventual consistency, replicas are synchronized
in periodic pairwise epidemic update propagation sesions [2].

An important aspect of our system is its support for data sharing among
multiple users. Our optimistic approach may lead to concurrent and conflict-
ing updates. Unlike most file systems with support for mobile computing [8,
6, 13, 10], our reconciliation approach relies on the propagation of updates to
files as sequences of operations. This approach has the potential to improve per-
formance [4] and allow better reconciliation results. For reconciliation, we have
? This work was partially supported by FCT/MCES – POSC/FEDER #59064/2004.

1

decided to use operational transformation techniques. These techniques must be
customized for each file type, but allow powerful automatic reconciliation.

In this paper we focus on the reconciliation solution implemented in the
FEW system. To motivate the need for advanced reconciliation strategies, we
present results from a usage study for cooperative software development projects
managed by the (sourceforge) CVS (Concurrent Version System) version control
systems. This study shows that unsolved conflicts are much more common in
this environment that in distributed file system [6].

The remainder of this paper is organized as follows. Section 2 presents the
system model, its architecture and implementation issues of the current proto-
type. Section 3 presents a study about conflicts in CVS repositories. Section 4
discusses FEW reconciliation approach. Section 5 discusses related work and
Section 6 ends the paper with some final remarks.

2 Architecture

The FEW system is composed of several machines, each one containing internal
storage units and hosting a variable set of portable storage devices. Portable
storage devices with no computing or network communication capabilities are
only available to the system when they are connected and under the control of a
single computer. Portable devices with limited computing and network commu-
nication capabilities (e.g. mobile phones) may act as a machine in the system or
may be connected and controlled by a host computer as a passive storage device.

FEW manages sets of files, called containers. Containers can be replicated
at multiple storage devices and be shared by multiple users. Users can explicitly
create new (partial or complete) replicas of a container using the system inter-
face or by simply copying contents between storage devices. A FEW node may
automatically create temporary replicas for recently accessed containers in its
controlled storage devices if space, performance and energy constraints allow.

The system adopts an optimistic replication approach, allowing users to mod-
ify any replica at any time. Whenever a file is modified in a given node, the node
propagates the update (or a simple invalidation report depending on the size and
connectivity conditions) to other replicas using a best-effort event-dissemination
system. Additionally, nodes synchronize in pair-wise background epidemic prop-
agation sessions. These sessions guarantee that all replicas eventually converge
(by receiving all updates). In Figure 1 we depict a sample FEW system, com-
prised of several computing devices with connected portable storage devices.

2.1 File Containers & Namespace Mapping

In FEW, the replication unit is the container, that includes a set of files. Inside
containers files are stored in a tree-like hierarchy and have a symbolic name used
by users and an internal unique identifier used by the system.

In a FEW node, a virtual directory allows access to all container replicas.
For example, Figure 2 shows this directory as /few in a system that contains an

÷
ü÷

�*o�¥Ó�F¹Á÷v¹Á¤�÷
�*o�¥�¥�Fo¤÷�¥F*��F�Á÷v�F»Á�FÓ÷

.F��Á�F¤¥�Fo¤÷

Fig. 1. FEW Architecture

internal storage device (hda1) and a portable storage device (sda1). Under the
directory /few/all, the user can access all file containers available in the storage
devices controlled by the node. For each file accessed under this directory, the
system chooses the best replica to retrieve data (considering metrics as replica
freshness, energy requirements and access performance).

Users can also access specific file replicas, by accessing files under the appro-
priate device directory (e.g. /few/sda1 for replicas in the portable device) – the
file system calls are redirected to the appropriate location. In either case, appli-
cations continue to access the FEW file system using the common file system
interface, thus requiring no change to the applications.

2.2 Implementation Aspects

This subsection describes some important aspects of the current implementation.
The FEW system is currently under development, but a preliminary prototype
with some limitations is already implemented in Linux.

Each node runs a FEW daemon and an interception layer (implemented
with FUSE) that redirects file system calls to the daemon – Figure 3. This
daemon is organized in a set of modules responsible for the execution of the
following main tasks: receive and handle file system calls; manage local replicas;
manage information about remote replicas; schedule and execute peer-to-peer
synchronization; publish events to remote replicas.

/ (root dir)

home mnt tmp

f1 f2

f.o

sda1

work

proj

f.c

f.dvi

d

f.tex

proj

f.c d

f.tex

few

sda1 all hda1

proj proj proj

....

....

....

Fig. 2. Filesystem namespace for a computer with a portable storage device.

Native File System

Fuse

Application
FEW

DaemonU
s
e

r
S

y
s
te

m

Linux FS Interface

Linux FS Interface

Fig. 3. FEW Daemon Architecture

Each FEW Daemon manages information about locally connected and other
known replicas. This information is maintained by the Replica Information Man-
ager module and it is essential in the synchronization process. The mecha-
nism to find remote replicas is still under investigation, but it may use some
event-dissemination system. For remote replicas, the following information is
maintained: connection status, network latency, known freshness. For replicas
controlled by the node, this modules keeps track of transfer rates, energy con-
sumption and available energy and energy mode (when appropriate). For local
replicas, the Container Manager sub-module additionally maintains information
on how to access files in each container, used in the redirection of file system
calls to the appropriate storage unit.

The Log Manager is responsible for the efficient storage of the logs of updates
for each file in the locally controlled storage units. This module also manages
the associated information to order and trace dependencies among updates.

The Data Propagation propagates updates among container replicas using
two mechanisms. First, for the immediate propagation of updates, the system
relies on an event-dissemination system. For each container, there is an associ-
ated channel that all nodes with a container replica can subscribe. All updates
are published in this channel (a simple invalidation report may be delivered
depending on the size and connectivity). Second, peer-to-peer epidemic synchro-
nization sessions are established in background to guarantee convergence in all
replicas. To this end, the daemon in each replica periodically selects another
replica to perform synchronization, based on the information available about
other replicas (including information received in invalidation reports).

The Reconciliation module performs two main tasks. First, when an appli-
cation saves some file, this module is responsible to infer the executed updates.
These updates are stored locally by the Log Manager and propagated to other
replicas by the Data Propagation module. Second, the reconciliation module ex-
ecutes remote updates using an operational transformation approach that guar-
antees eventual convergence of all replicas. This process is detailed in Section 4.

3 CVS Usage Study

Usage studies in distributed file systems with support for disconnected operation
show minimal file sharing and very rare concurrent updates (e.g. in [6], the
authors report 0.025% for the update conflict rate and 0.004% for the unsolved
conflicts). As FEW intends to support file sharing among groups of users working

on the same projects/tasks, we have decided to investigate the rate of concurrent
updates in similar environments. To this end, we have used real traces from
collaborative software projects managed by CVS at http://sourceforge.net.

CVS supports cooperative software development using a central server. For
each project, the server maintains a file hierarchy and for each file keeps the
current and all past versions. A user checks-out files, modifies his local replicas
and then checks-in his new version. As local replicas can be modified concurrently
by multiple users, conflicts can occur. A conflict is detected when a user tries
to check in a new file version that has been modified by other users since that
user has checked-out his version. In this case, the system tries to automatically
merge both versions, creating a final version that includes all updates made to
different lines. This process fails if there is a real conflict (i.e., the same line has
been modified by both users). In this case, the user must resolve the conflicts
manually before he can check-in his file version.

CVS logs all accesses to a project. We aquired the logs from several projects
and obtained the following results: number of updates; number of conflicts (con-
current updates); number of unsolved conflicts (concurrent updates requiring
manual intervention) We have selected projects in the most active list and other
less active projects (for which we could analyze the full log).

These logs had to be processed before statistics could be obtained. First,
after solving a conflict manually, a user must check-in the new version, leading
to two CVS log entries. Second, we have observed that, after a conflict detection,
users sometimes download the current version of the file before checking in a
new version. This suggests that users prefer to re-apply their changes to the
new version instead of changing the version produced by CVS.In both cases, we
count the resulting pair of log entries as one unsolved conflict.

In Figure 4 we present the results for the Gnuplot Project (results are similar
for other projects). The CVS log stores a total of 39843 entries, from 13 different
users over 795 files, ranging from 15/04/1995 to 28/11/2005. For ease of presen-
tation, each point in the graph presents the average of entries of 20 files. The
results show that the number of concurrent updates (conflicts) is much larger
than in distributed file systems and vary with the number of updates for each
file. In this case, for files with more than 25 updates in the analyzed period, from
10% to 30% correspond to concurrent updates and from 5% to 15% correspond
to unsolved conflicts.

These results show that, for supporting data sharing, reconciliation must be
considered seriously as a large number of conflicts occur in practice. In FEW,
we are addressing this problem by adapting and using automatic reconciliation
techniques previously proposed in groupware systems, as we detail next.

4 Reconciliation

Operational transformation (OT) is a reconciliation approach originally designed
for synchronous cooperative text editors [11, 3]. The basic idea is to allow differ-
ent replicas to converge to the same state while applying transformed versions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 40 80 120 160 200 240 280

O

pe
ra

tio
ns

Files

Updates to Repository
Conflicts

Unsolvable Conflicts

0%

10%

20%

30%

40%

50%

 0 40 80 120 160 200 240 280

%
 O

pe
ra

tio
ns

Files

Conflicts / # Updates
Unsolvable Conflicts / # Updates

Fig. 4. Gnuplot Project CVS log statistics - absolute values on the left graph and the
ratio between solved/unsolved conflicts against the number of updates on the right.

of the operations in each replica by a different orders. For example, if in a text
file one user inserts a new second line and a second user concurrently changes
the fourth line, both replicas can converge to the same state if in the first replica
the fifth line is changed (as the fourth line is now the fifth line by the effect of
the insert operation) and in the second replica the new second line is inserted.

Unlike typical solutions in log-based reconciliation (e.g. [12]), this approach
allows replicas to converge to the same state while always reflecting all known up-
dates and without requiring operations to be undone. To this end, OT transforms
each operation against every other concurrent operation. This allows conflicts to
be detected easily by verifying the compatibility of concurrent operations. This
approach is more powerful than typical serialization-based reconciliation algo-
rithms where conflicts must be detected only by querying the data state (this
approach can also be used in our solution, as the code of operation may include
such verification). Additionally, conflict resolution strategies that explore the
semantics of operations can be easily implemented - conflict resolution can be
executed step-by-step, when an operation is compared with a concurrent oper-
ation, instead of requiring conflict resolution to be executed considering a data
state that may reflect a large set of concurrent operations.

These interesting properties lead us to explore the possibility of using this
approach in our system. Our solution can be divided into two subproblems. The
first is the integration algorithm (Subsection 4.1), that defines the algorithm to
execute operations received from foreign sites. The second, is the definition of
the transformation functions, used to transform the operations that are executed
by the integration algorithm. These type-specific transformations are presented
for binary files (Subsection 4.2), and for text files (Subsection 4.3).

4.1 Integration Algorithm

For the integration algorithm, we have based our solution in the GOTO (Generic
Operational Transformation Optimized) algorithm [11]. This algorithm requires

the definition of two functions: the inclusion transformation (IT) modifies op-
eration Oa against an operation Ob by including the impact of executing Ob

before Oa; and the exclusion transformation (ET) modifies Oa against causally-
precedent operation Ob by excluding the impact of executing Ob before Oa. For
guaranteeing convergence, IT and ET functions must satisfy the following two
transformation properties [11]: TP1: Oa ◦ T (Ob, Oa) ≡ Ob ◦ T (Oa, Ob) and TP2:
T (T (T (O, Oa)), T (Ob, Oa)) ≡ T (T (T (O, Ob)), T (Oa, Ob)).

The GOTO algorithm considers that each site receives the original submitted
operation from every other site. However, in a system where replicas are syn-
chronized asynchronously (as needed for supporting disconnected operation and
for improving scalability) this is not practical as it would either forbid epidemic
dissemination or it would require two versions of each operation to be stored in
every site (the original and the transformed one). Thus, we have modified the
GOTO algorithm to propagate operations that have already been transformed
against some set of other operations. The basic idea is to include this information
with the propagated operation in order to reduce the needed transformations in
the receiving site [1].

4.2 Files With Unknown Type

For files that the system has no information on the internal structure, we have
designed a general solution that creates multiple versions when files are changed
concurrently. Unlike Coda [8], we have decided to allow users to continue to
change existing versions before executing manual reconciliation (that can simple
consist in deleting one of the versions).

To this end, each file version has a unique identifier and an UpdateContent
of version operation is inferred for each open/write/close session. When this
operation is executed at any site, the referred version is deleted (if it exists) and a
new version is created (with a unique identifier). Thus, concurrent changes of the
same version lead to two versions, as expected. Similarly, it is possible to define
an operation that deletes a file version. For these operations, no transformations
are needed in IT and ET (IT (Oa, Ob) = Oa, ET (Oa, Ob) = Oa), as they lead to
the expected results if they are executed in causal order (as GOTO guarantees).

4.3 Text Files

For text files, we have devised a specialized solution to merge concurrent updates.
Our basic approach is based on a OT implementation of the CVS reconciliation
semantics that allows peer-to-peer synchronization and reconciliation. However,
unlike CVS, we have decided to consider line versions (created to solve conflicting
updates to the same line) first-class citizens and to allow line versions to evolve
as the result of user updates without producing additional versions.

For example, considering the updates produced by two users depicted in Fig-
ure 5. The user X has produced two consecutive updates to a given file and
user Y has produced one update to the same file (note that user Y updates are
presented twice in the figure). Using the CVS reconciliation semantics approach,

LineA LineX <<<<
LineX

LineB
>>>>

LineA LineB LineC

LineA LineX

<<<<
<<<<
LineX

LineB
>>>>

LineC
>>>>

Reconciliation Path B

Reconciliation Path A

U
se

r
X

U

se
r

Y

U
se

r
Y

 <<<<
LineX

LineC
>>>>

Fig. 5. CVS Conflict Resolution - The way conflicting updates are committed to CVS
server influence the final state of the document

two reconciliation results are possible depending on when reconciliation is per-
formed. In reconciliation path A, the user Y reconciles user X twice: the first
time after user X has executed his first update, leading to two versions for the
single line of the file; and the second time after user X has executed the second
update, leading to a new conflict and three possible versions for the file. However,
as user X has decided to evolve his own version, it seems reasonable to assume
that he no longer wants his first version. Thus, the correct result would be the
one presented in reconciliation path B that could be obtained using the CVS
semantics if only one reconciliation is executed. In our approach, as we consider
line versions first-class citizens, we can reach the expected result independently
of the reconciliation path.

To this end, we have considered a text file as a sequence of text lines and we
have defined the following basic operations: InsertTextLine, DeleteTextLine and
UpdateTextLine. The following additional operations have been defined to ma-
nipulate line versions: CreateTextVersion (creates a line version with an existing
version), InsertTextVersion (inserts a version for a line that has been deleted),
UpdateTextVersion (updates a line version), DeleteTextVersion (deletes a line
version). When a user closes a file that he has modified, the executed operations
are inferred comparing the original and the final file versions (using a simple diff
algorithm).

Conflicts are solved creating multiple text line versions. To this end, an Up-
dateTextLine operation that conflicts with a concurrent UpdateTextLine op-
eration is transformed into a CreateTextVersion operation. When an Update-
TextLine conflicts with a DeleteTextLine, the conflict is solved transforming the
UpdateTextLine into an InsertTextVersion or transforming the DeleteTextLine
into a CreateTextVersion. When two DeleteTextLine operations act upon the
same line, one of the operations is transformed into a null operation. Similar
transformations have been defined for operation that manipulate versions.

For now, as it is common in operational transformation algorithms [3, 11],
we are considering that an InsertTextLine never conflicts with other concurrent
operations. This approach allows concurrent updates to ChangeLog files to be
automatically solved, but it may be semantically incorrect in some situations.

We are investigating the best solution and may introduce the alternative of
producing text versions for insertions in the same line.

5 Related Work

In recent years, several systems have been developed for mobile computing en-
vironments. In [13], the authors modify the Coda [8] file system to improve
availability and performance using portable storage devices as lookaside caches.
The Blue Filesystem [5] explores the existence of multiple storage devices to im-
prove energy consumption in a client/server architecture similar to Coda. FEW
explores the use of portable storage devices with the same objectives and ad-
vantages. However, FEW uses a peer-to-peer architecture that requires no single
server and allows replicas to synchronize when ad-hoc networks are established.

Personal Raid [9] and Footloose [7] manage files from a single user. Although
they address the problem of data stored in multiple devices, they were not de-
signed to support data sharing among multiple users.

Segank [10] also addresses the problem of managing file replicas stored in
multiple portable devices. This system support sharing among users, but unlike
FEW do not present any solution for conflict resolution – that is delegated to
applications. Moreover, unlike FEW the system assumes that all portable devices
are always connected, what does not seems reasonable considering the existence
of portable storage devices and limited batteries.

Regarding reconciliation, as we have explained in the previous section,
we have introduced several modifications to operational transformation algo-
rithms [11, 3] to adapt them to a peer-to-peer asynchronous setting. Our recon-
ciliation solution for files with unknown type is similar to the one used in Coda
(although the implementation is different) with the difference that we allow users
to continue changing versions. As explained in the previous section, our solution
for text files differs from the typical solution in CVS as it allows the evolution of
line versions created for conflict resolution. Being more suited for systems that
allow background peer-to-peer synchronization, our approach always allows the
integration of new updates received from all users without creating bogus new
line version. In this case, our implementation is also very different.

6 Final Remarks

In this paper we have presented the design of FEW, a file management system
for mobile computing environments with portable storage devices. FEW allows
files to be shared among users and to be replicated in multiple storage devices,
including portable storage devices. The system explores the multiple available
replicas to improve freshness, performance and to reduce power consumption.

Besides the description of FEW, this paper presents two main contributions.
First, the study of CVS logs showing that, in files shared in cooperative projects,
conflicts are much more frequent that reported in distributed file systems envi-
ronments [6, 8]. Second, the reconciliation mechanism based on OT and including

type-specific solutions for text files and for files with unknown internal structure.
This shows that it is possible to adapt OT techniques to file systems and explore
the improved reconciliation results obtained with this approach.

References

1. M. Bento. Desenho e implementação de um sistema de ficheiros com suporte para
dispositivos de armazenamento portáteis. Msc thesis, FCT - Universidade Nova de
Lisboa, May (expected) 2006.

2. A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson. Epidemic algorithms
for replicated database maintenance. In Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing, pages 1–12. ACM Press, 1987.

3. A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Achieving convergence with op-
erational transformation in distributed groupware systems. Rapport de Recherche
5188, INRIA, May 2004.

4. Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan. Operation-based update propa-
gation in a mobile file system. In Proceedings of the USENIX 1999 Annual Tech-
nical Conference, Monterey, CA, USA, Jun 1999.

5. E. B. Nightingale and J. Flinn. Energy-efficiency and storage flexibility in the blue
file system. In Proc. 6th USENIX OSDI, pages 363–378, San Francisco, CA, Dec.
2004.

6. T. W. Page, Jr., R. G. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software – Practice and Experience, 11(1), 1997.

7. J. M. Paluska, D. Saff, T. Yeh, and K. Chen. Footloose: A case for physical
eventual consistency and selective conflict resolution. In 5th IEEE Workshop on
Mobile Computing Systems and Applications, pages 170–180, Monterey, CA, USA,
October 9–10, 2003.

8. M. Satyanarayanan. The evolution of coda. ACM Trans. Comput. Syst., 20(2):85–
124, 2002.

9. S. Sobti, N. Garg, C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang. Person-
alraid: Mobile storage for distributed and disconnected computers. In Proceedings
of the First Conference on File and Storage Technologies, January 2002.

10. S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang, E. Ziskind, A. Krish-
namurthy, and R. Y. Wang. Segank: A distributed mobile storage system. In
Proceedings of the Third USENIX Conference on File and Storage Technologies
(FAST’04), San Francisco, CA, March 2004.

11. C. Sun and C. A. Ellis. Operational transformation in real-time group editors:
Issues, algorithms, and achievements. In Computer Supported Cooperative Work,
pages 59–68, 1998.

12. D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. In Proc. of the 15th ACM Symposium on Operating systems principles,
pages 172–182. ACM Press, 1995.

13. N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan. Integrating portable and
distributed storage. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, pages 227–238, San Francisco, CA, March 31 - April 2, 2004.

