Byzantium: Byzantine-Fault-Tolerant Database Replication Providing
Snapshot | solation*

Nuno Preguica Rodrigo Rodrigues Cristovao Honoratb ~ Joao Lourencb
L CITI/DI-FCT-Univ. Nova de Lisboa
2 Max Planck Institute for Software Systems (MPI-SWS)
3 INESC-ID and Instituto Superior Técnico

Abstract pared to traditional replication techniques that assume
replicas fail by crashing [2].

Database systems are a key component behind many | this paper we propose the design of Byzantium,
of today's computer systems. As a consequence, it ig Byzantine-fault-tolerant database replication middle-
crucial that database systems provide correctand contiRgare. Byzantium improves on existing BFT replication
uous service despite unpredictable circumstances, sug databases both because it has no centralized compo-
as software bugs or attacks. This paper presents the dfents (of whose correctness the integrity of the system

sign of Byzantium, a Byzantine fault-tolerant databasegepends) and by allowing increased concurrency, which
replication middleware that provides snapshot isolationg essential to achieve good performance.

(SI) semantics. Sl is very popular because it allows in- The main insight behind our approach is to aim
creased concurrency when compared to serializabilityg, - \yeaker semantics than traditional BFT replication
while providing similar behavior fpr.typical workloads. approaches. While previous BFT database systems
Thqs, Byzant|um Improves on existing propc_)sals by al'tried to achieve strong semantics (such as linearizabil-
lowing increased concurrency and not relying on anyyy, or 1_copy serializability [2]), Byzantium only ensures
centralized component. Our middleware can be used,,nqhot isolation (SI), which is a weaker form of se-
with off-the-shelf database systems and it is built on t0P, 5 nvics that is supported by most commercial databases
of an existing BFT library. (e.g., Oracle, Microsoft SQL Server). Our design min-
. imizes the number of operations that need to execute
1 Introduction the three-phase agreement protocol that BFT replica-
Transaction processing database systems form a kejon uses to totally order requests, and allows concurrent
component of the infrastructure behind many of today’stransactions to execute speculatively in different repli-
computer systems, such as e-commerce websites or catas, to increase concurrency.
porate information systems. As a consequence, it is cru-
cial that database systems provide correct and continill.1 Related Work
ous service despite unpredictable circumstances, Wh'cﬁ*he vast majority of proposals for database replication
may mcIuQe hardware and software faults, or even alyssume the crash failure model, where nodes fail by
tacks a_gamst the datgbase system_. - . stopping or omitting some steps (e.g., [2]). Some of
Applications can increase their resilience againstpege works also focused on providing snapshot isolation
faults ano_l a_ttacks thro_ugh Byzantine-fault-toleranty, improve concurrency [11, 10, 5]. Assuming replicas
(BFT) replication. A service that uses BFT can toler- | py crashing simplifies the replication algorithms, but
ate arbitrary failures from a subset of its replicas. Thisyges not allow the replicated system to tolerate many of
not only encompasses nodes that have been attacked aggl, tyits caused by software bugs or malicious attacks.
became malicious, but also hardware errors, or software There are few proposals for BFT database replication.
bugs. In particular, a recent study [13] showed that theThe schemes proposed by Garcia-Molina et al. [7] and
majority of bugs reported in the bug logs of three com- Gashi et al. [8] do not allow transactions to execute
mercial datapgse management SySte”.‘S would cause tEéncurrently, which inherently limits the performance of
system to fail in a non-crash manner (i.e., by prowdmgthe system. We improve on these systems by showing
incorrect answers, instead of failing silently). This sup- how ensuring weaker semantics (snaphost isolation) and

ports the cIaw_n that BET re_pl|c_at|on might be a more ad'bypassing the BFT replication protocol whenever possi-
equate technique for replicating databases, when COMkle allows us to execute transactions concurrently.

*This work was supported by FCT/MCTES, project HRDB [13] is a proposal for BFT replication of off-
PTDC/EIA/74325/2006. the-shelf databases which uses a trusted node to coor-

dinate the replicas. The coordinator chooses which reenforcing serializability, if a transaction writes some
quests to forward concurrently, in a way that maximizesdata item, any concurrent transaction that reads the same
the amount of parallelism between concurrent requestsiata item cannot execute (depending on whether the
HRDB provides good performance, but requires trustdatabase uses a pessimistic or optimistic concurrency
in the coordinator, which can be problematic if repli- control mechanism, the second transaction will either
cation is being used to tolerate attacks. Furthermoreblock until the first one commits or will have to abort due
HRDB ensures 1-copy serializability, whereas our ap-to serializability problems at commit time). With S, as
proach provides weaker (yet commonly used) semanticenly write-write conflicts must be avoided, both transac-
to achieve higher concurrency and good performance. tions can execute concurrently. This difference not only

. allows increased concurrency for transactions accessing
1.2 Paper Outline the same data items, but it is also beneficial for read-only
The remainder of the paper is organized as follows. Sectransactions, since they can always execute without ever
tion 2 presents an overview of the system. Section 3 defeeding to block or to abort.
scribes its design. Section 4 discusses correctness. Sec-The S| level is very popular, as many commer-
tion 5 addresses some implementation issues, and Segcial database systems implement it and it has been

tion 6 concludes the paper. shown that for many typical workloads (including the
most widely used database benchmarks, TPC-A, TPC-B,
2 Byzantium Overview TPC-C, and TPC-W), the execution under Sl is equiva-

lent to strict serializability [4]. Additionally, is has ke
2.1 System model shown how to transform a general application program
Byzantium uses the PBFT state machine replication also that its execution under Sl is equivalent to strict seri-
gorithm [3] as one of its components, so we inherit thealizability [6].

system model and assumptions of this system. Thus, we)

assume a Byzantine failure model where faulty node2-3 System Architecture

(client or servers) may behave arbitrarily. We assume th%yzantium is built as a middleware system that provides
adversary can coordinate faulty nodes but cannot breager repjication for database systems. The system ar-
cryptographic techniques used. We assume at 0iost pitecture, depicted in Figure 1, is composed by a set of

nodes are faulty outof = 3f + 1 replicas. n = 3f + 1 servers and a finite number of clients.
Our system guarantees safety properties in any asyn-

chronous distributed system where nodes are connected] A
by a network that may fail to deliver messages, corrupt T -
them, delay them arbitrarily, or deliver them out of or- tent, |, glent | 77 | \Ss—) Bent L P

@9 ProXY iy

der. Liveness is only guaranteed during periods where
the delay to deliver a message does not grow indefinitely.

3f+1
replicas

2.2 Database model Clont | B2 Bizantium | ()
& oo e -ﬂ

In a database, the state is modified by applying transac- Prowir))

tions. A transaction is started by e&BIN followed by

a sequence of read or write operations, and ends with a Figure 1: System Architecture.

CoMMIT or ROLLBACK. When issuing a BLLBACK,
the transaction aborts and has no effect on the database.
When issuing a OMMIT, if the commit succeeds, the Each server is composed by the Byzantium replica
effects of write operations are made permanent in theroxy, which is linked to the PBFT replica library [3],
database. and a database system. The database system maintains
Different semantics (dsolation levely have been de- a full copy of the database. The replica proxy is respon-
fined for database systems [1], allowing these systems teible for controlling the execution of operations in the
provide improved performance when full serializability database system. The replica proxy receives inputs from
is not a requirement. Byzantium provides greapshot both the PBFT replication library (in particular, it pro-
isolation (SI) level. In Sl, a transaction logically exe- vides the library with arexecut e upcall that is called
cutes in a database snapshot. A transaction can comndfter client requests run through the PBFT protocol and
if it has no write-write conflict with any committed con- are ready to be executed at the replicas), and it also
current transaction. Otherwise, it must abort. receives messages directly from the Byzantium clients
Sl allows increased concurrency among transaction§which are not serialized by the PBFT protocol).
when compared with serializability. For example, when The database system used in each server can be differ-

© ® N o UA®WN R

function db_begin() : trxHandle 1 upcall FOR BFT.exec(<BEGIN, uid, coordreplica>)
uid = generatenew uid 2 DB_trx_handle = db.begin()
coord-replica = select random replica 3 openTrxs.put(uid ,<DB_trx_handle ,coordreplica>)
opsAndHRes =new list 4 end upcall
BFT_exec(<BEGIN, uid , coordreplica>) 5
trxHandle =new trxHandle(uid, coordreplica , 6 upcall for BFT_exec(<COMMI,uid, cltOpsAndHRes)
opsAndHRes) 7 : boolean
return trxHandle 8 <DB.trx_handle ,coordreplica> = openTrxs.get(uid)
end function 9 openTrxs.remove (uid)
10 if(coord.replica != THISREPLICA)
function db_op(trxHandle , op) : result 11 execOK = execand.verify(DB_trx_handle ,
result = replicaexec(trxHandle.coordreplica , 12 cltOpsAndHRes)
<trxHandle .uid , op>) 13 if (NOT execOK)
trxHandle .opsAndHRes. add€op ,H(result)}>) 14 DB_trx_handle . rollback ()
return result 15 return false
end function 16 endif
17 endif
function db_.commit(trxHandle) 18 if(verifySIProperties(DBtrx_handle))
result = BFT.exec(<COMMIT, trxHandle . uid , 19 DB_trx_handle .commit()
trxHandle . opsAndHRes) 20 return true
if(res == true) 21 else
return 22 DB_trx_handle . rollback ()
else 23 return false
throw ByzantineExecutionException 24 endif
endif 25 end upcall

end function

Figure 2: Byzantium client proxy code.

upcall for replicaexec(<uid,op>) : result
<DB_trx_handle ,coordreplica> = openTrxs.get(uid)
return DB_trx_handle.exec(op)

end upcall

ent, to ensure a lower degree of fault correlation, in par-
ticular if these faults are caused by software bugs [12,
13]. The only requirement is that they all must imple-
ment thesnapshot isolatiosemantics and support save- presented in Figure 3. We omitted some details (such as
points', which is common in most database systems. €rror and exception handling) from the code listing for

Users applications run in client nodes and access ougimplicity.
system using a standard database interface (in this case, The approach taken to maximize concurrency and im-
the JDBC interface). Thus, applications that access conprove performance is to restrict the use of the PBFT pro-
ventional database systems using a JDBC interface cawcol to only the operations that need to be totally or-
use Byzantium with no modification. The JDBC driver dered among each other. Other operations can execute
we built is responsible for implementing the client side speculatively in a single replica (that may be faulty and
of the Byzantium protocol (and thus we refer to it as theprovide incorrect replies) and we delay validating these
Byzantium client proxy). Some parts of the client side replies until commit time.
protocol consist of invoking operations that run through The application program starts a transaction by exe-
the PBFT replication protocol, and therefore this proxycuting a BEGIN operation function dhbegin Figure 2,
is linked with the client side of the PBFT replication li- line 1). The client starts by generating a unique iden-
brary. tifier for the transaction and selecting a replica respon-

In our design, PBFT is used as a black box. This ensible to speculatively execute the transaction — we call
ables us to easily switch this replication library with a this the coordinator replica for the transaction or simply
different one, provided both offer the same guaranteesoordinator. Then, the client issues the corresponding
(i.e., state machine replication with linearizable semanBFT operation to execute in all replicas (by calling the
tics) and have a similar programming interface. BFT.execk BEGIN,... >) method from the PBFT

) library, which triggers the corresponding upcall at all
3 System Design replicas, depicted in Figure 3, line 1). At each replica,
3.1 System operation a database transaction is started. Given the properties of
.) . _ the PBFT system, and as botlE&IN and GOMMIT op-

In this section, we describe the process of executing @rations execute serially as PBFT operations, this guar-
transaction. We start by assuming that clients are nojntees that the transaction is started in the same (equiva-
Byzantine and address this problem in the next sectionent) snapshot of the database in every correct replica.
The code executed by the client proxy is presented in After executing BEGIN, an application can execute a

Figure 2 and the code executed by the replica proxy issequence of read and write operatiosttion dhop,
1A savepoint allows the programmer to declare a point in astran Figur_e 2, line 11)_- Each of these oper_ations exeC_Utes
action to which it can later rollback. only in the coordinator of the transaction (by calling

Figure 3: Byzantium replica proxy code.

replica_exe¢ which triggers the corresponding upcall at other. Since PBFT already addresses the problem of
the coordinator replica, depicted in Figure 3, line 27).Byzantine client behavior in each individual operation,
The client proxy stores a list of the operations and cor-our system only needs to address the validity of the op-
responding results (or a secure hash of the result, if it igrations that are issued to the database engines running
smaller). in the replicas.

The transaction is concluded by executing anG First, replicas need to check if they are receiving a
MIT operation function dhcommit Figure 2, line 18). valid sequence of operations from each client. Most
The client simply issues the corresponding BFT operachecks are simple, such as verifying if a®N is always
tion that includes the list of operations of the transactionfollowed by a @MMIT/RoLLBACK and if the unique
and their results. At each replica, the system verifies ifidentifiers that are sent are valid.
the transaction execution is valid before committing it There is one additional aspect that could be exploited
(by way of theBFT_execk COMMIT, ... >) upcall, by a Byzantine client: the client first executes operations
Figure 3, line 6). in the coordinator and later propagates the complete se-

To validate a transaction prior to commit, the follow- quence of operations (and results) to all replicas. At
ing steps are executed. All replicas other than the prithis moment, the coordinator does not execute the op-
mary have to execute the transaction operations and veerations, as it has already executed them. A Byzantine
ify that the returned results match the results previouslyclient could exploit this behavior by sending a sequence
obtained in the coordinator. Given that the transactiorof operations during theommiT PBFT requests that
executes in the same snapshot in every replica (as exs different from the sequence of operations that were
plained in the EGIN operation), if the coordinator was previously issued to the coordinator, leading to diver-
correct, all other correct replicas should obtain the samgent database states at the coordinator and the remaining
results. If the coordinator was faulty, the results obtdine replicas.
by the replicas will not match those sent by the client. In To address this problem, while avoiding a new round
this case, correct replicas will abort the transaction antf message among replicas, we have decided to proceed
the client throws an exception signaling Byzantine be-with transaction commitment using the latest sequence
havior. In Section 5, we discuss some database issues operations submitted by the client.
related with this step. The code executed by the replica proxy for supporting

Additionally, all replicas including the coordinator, Byzantine clients is presented in Figure 4. To be able to
need to verify if the S| properties hold for the commit- compare if the sequence of operations submitted initially
ting transaction. This verification is the same that isis the same that is submitted at commit time, the coor-
executed in non-byzantine database replication systendinator also logs the operations and their results as they
(e.g. [5]) and can be performed by comparing the writeare executed (line 42). At commit time, if the received
set of the committing transaction with the write sets oflist differs from the log, the coordinator discards exe-
transactions that have previously committed after the beeuted operations in the current transaction and executes
ginning of the committing transaction. As this process isoperations in the received list, as any other replica.
deterministic, every correct replica will consequently ei For discarding the executed operations in the cur-
ther commit or abort the transaction. rent transaction, we rely on a widely available database

A transaction can also end with aRLBACK opera- mechanismsavepointsthat enables rolling back all op-
tion. A straightforward solution is to simply abort trans- erations executed inside a running transaction after the
action execution in all replicas. We discuss the prob-savepoint is established. When thed@n operation ex-
lems of this approach and propose an alternative in Seeecutes, a savepoint is created in the initial database snap-

tion 3.4. shot (line 3). Later, when it is necessary to discard ex-
. . . ecuted operations but still use the same database snap-
3.2 Tolerating Byzantine clients shot, the transaction is rolled back to the savepoint pre-

The system needs to handle Byzantine clients that mightiously created (line 17). This ensures that all replicas,

try to cause the replicated system to deviate from the inincluding the coordinator, execute the same sequence of

tended semantics. Note that we are not trying to prever@perations in the same database snapshot, guaranteeing

a malicious client from using the database interface tc correct behavior of our system.

write incorrect data or delete entries from the database . .

Such attacks can be limited by enforcing security/accesg"3 Tolerating a faulty coor dinator

control policies and maintaining additional replicas thatA faulty coordinator can return erroneous results or fail

can be used for data recovery [9]. to return any results to the clients. The first situation
As we explained, PBFT is used by the client to exe-is addressed by verifying, at commit time, the correct-

cute operations that must be totally ordered among eachess of results returned to all replicas, as explained pre-

upcall FOR BFT.exec(<BEGIN, uid , coordreplica>)
DB_trx_handle = db.begin ()
DB_trx_handle.setSavepoint('init ")
opsAndHRes =new list
openTrxs.put(uid ,<DB_trx_handle , coordreplica ,
opsAndHRes>)
end upcall

upcall for BFT_exec(<COMMIT, uid , cltOpsAndHRes>)
: boolean
<DB_trx_handle , coordreplica ,opsAndHRes =
openTrxs.get(uid)
openTrxs.remove(uid)
hasToExec = coordreplica != THISREPLICA
if(coord.replica == THISREPLICA)
if(different.list(cltOpsAndHRes, opsAndHRes))
DB_trx_handle.rollbackToSavepoint('init ")
hasToExec = true
endif
endif
if(hasToExec)
execOK = execand.verify (DB_trx_handle ,
cltOpsAndHRes)
if (NOT execOK)
DB_trx_handle . rollback ()
return false
endif
endif
if(verifySIProperties(DBtrx_handle))
DB_trx_handle .commit()
return true
else
DB_trx_handle . rollback ()
return false
endif
end upcall

upcall for replicaexec(<uid,op>) : result
<DB_trx_handle , coordreplica ,opsAndHRes =
openTrxs.get(uid)
result = DB.trx_handle.exec(op)
opsAndHRes. add{op ,H(res)>)
return result
end upcall

ations, as any other replica. This ensures a correct be-
havior of our system, as all replicas, including replaced
coordinators, execute the same sequence of operations
in the same database snapshot.

3.4 Handling aborted transactions

When a transaction ends with @R BACK operation, a
possible approach is to simply abort the transaction in all
replicas without verifying if previously returned results
were correct (e.g., this solution is adopted in [13]). In
our system, this could be easily implemented by execut-
ing a BFT operation that aborts the transaction in each
replica.

This approach does not lead to any inconsistency in
the replicas as the database state is not modified. How-
ever, in case of a faulty coordinator, the application
might have observed an erroneous database state during
the course of the transaction, which might have led to the
spurious decision of aborting the transaction. For exam-
ple, consider a transaction trying to reserve a seat in a
given flight with available seats. When the transaction
gueries the database for seat availability, a faulty ceordi
nator might incorrectly return that no seats are available.
As a consequence, the application program may decide
to end the transaction with adRLBACK operation. If
no verification of the results that were returned was per-
formed, the client operation would have made a decision
to rollback based on an incorrect database state.

To detect this, we decided to include an option to force
the system to verify the correctness of the returned re-
sults also when a transaction ends with aLRBACK

Figure 4: Byzantium replica proxy code, supporting operation. When this option is selected, the execution of

Byzantine clients.

a rollback becomes similar to the execution of a commit
(with the obvious difference that it is not necessary to

viously. This guarantees that correct replicas will only check for write-write conflicts and that the transaction
commit transactions for which the coordinator has re-always aborts). If the verification fails, theoRLBACK

turned correct results for every operation.

If the coordinator fails to reply to an operation, the

operation raises an exception.

client selects a new coordinator to replace the previ4 Correctness

ous one and starts by re-executing all previously exey
cuted operations of the transaction in the new coordina
tor. If the obtained results do not match, the client abort

n this section we present a correctness argument for the
design of Byzantium. We leave a formal correctness

. . . Sproof as future work.
the transaction by executing @RLBACK operation and

throws an exception signaling Byzantine behavior. If theSafety Our safety condition requires that transactions
results match, the client proceeds by executing the newhat are committed on the replicated database observe S
operation. semantics.

At commit time, a replica that believes to be the coor- Our correctness argument relies on the guarantees
dinator of a transaction still verifies that the sequence oprovided by the PBFT algorithm [3], namely that the
operations sent by the client is the same that the replic®BFT replicated service is equivalent to a single, correct
has executed. Thus, if a coordinator that was replacederver that executes each operation sequentially. Since
is active, it will find out that additional operations have both the BGIN and the @MMIT operations run as
been executed. As explained in the previous sectionPBFT requests, this implies that every correct replica
it will then discard operations executed in the currentwill observe the same state (in terms of which trans-
transaction and it will execute the list of received oper-actions have committed so far) both when they begin a

transaction and when they try to commitit. Furthermore,databases by allowing for concurrent transaction pro-
they decide on whether a transaction should commit ocessing, which is essential for performance, by not de-
abort based on the sequence of values that clients olpending on any centralized components, on whose cor-
served (the same sequence is transmitted to all correcectness the entire system relies, and using weaker se-
replicas as an argument to the PBFT request), and aenantics that allow greater concurrency. Byzantium takes
cording to the Sl semantics of their own local databasesdvantage of the weaker SI semantics to avoid running
(whose state, as mentioned, is identical and reflects akbvery database operation through the expensive PBFT
transactions that have previously committed in the sysprotocol, yet it serializes enough operations with respect

tem). This implies that a correct replica will only allow a to each other to guarantee this semantics.

transaction to commit if it observed S| semantics (from We are currently completing our prototype and start-
the standpoint of this common database state) and ther@g the evaluation of the system. In the future, we also
fore the outcome of the PBFT commit operation is alsointend to evaluate the overhead imposed by the use of

conforming to this semantics.

Liveness Under the same assumptions as PBFT, w
guarantee that themlsIN, COMMIT, and ABORT opera-

tions are eventually executed. Furthermore, operations
that do not go through the PBFT protocol are simple

a BFT replication algorithm as a black box, when com-

ared with the use of a custom algorithm. We believe
this aspect is rather important, as it will help us under-
stand how useful BFT libraries can be for building com-
plex services that tolerate Byzantine faults.

RPCs which are live under the same set of assumptionRefer ences

This guarantees the system makes progress.

5 Implementation

Deter ministic behavior in database systems Our de-
sign requires deterministic behavior of operations, but
some database operations are not deterministic (e.g., S&3
lect). However, it is possible to force a deterministic
behavior using some standard techniques (e.g., as used
in[12, 13]).

Database locking issues When trying to commit a
transaction in a replica, the transaction operations musts)
be executed concurrently with other ongoing transac-
tions (for which the replica is the primary replica). For
database systems that use an optimistic concurrencys
control approach, this imposes no problems. However,
for database systems that rely on locks, this can causg,
problems because executing a write operation requires
obtaining a lock on the row that is being modified. How-
ever, some ongoing transaction could have already obL®
tained the lock on that row for another write operation.
This problem is similar to the problem experienced
by non-Byzantine replication systems that use snapshoig
isolation semantics and similar techniques can be used
to address it (e.g., [5]) — either using write-sets or using0l
widely available database operations for testing block-
ing behavior §elect ... for update nowait An ongoing
transaction that would block the execution of the com-[
mitment process can then be aborted (this transaction
would have to abort anyway due to a write-write con-
flict with the committing transaction). f12]

(1

(2]

6 Conclusion
[13]

This paper presented the design of Byzantium, a proto-
col for BFT database replication that provides S| seman-
tics. Byzantium improves on the few examples of BFT

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Bbeth O’Neil,
and Patrick O'Neil. A critique of ansi sq| isolation levels. Proceedings
of the 1995 ACM SIGMOD international conference on Managenoé
data pages 1-10. ACM Press, 1995.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Guel Concur-
rency control and recovery in database systemsldison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1987.

] Miguel Castro and Barbara Liskov. Practical byzantinelf tolerance.

In Proceedings of the third symposium on Operating systenigrdesd
implementationpages 173-186. USENIX Association, 1999.

Sameh Elnikety, Steven Dropsho, and Fernando Pedorghk&at: unit-
ing durability with transaction ordering for high-perfoamce scalable
database replication. IRroceedings of the 1st ACM EuroSys European
Conference on Computer Systems 2@@gjes 117-130. ACM Press, 2006.

Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedbagabase repli-
cation using generalized snapshot isolation. Ploceedings of the 24th
IEEE Symposium on Reliable Distributed Systems (SRD@ges 73—
84. IEEE Computer Society, 2005.

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’'NeilaRick O’Neil, and
Dennis Shasha. Making snapshot isolation serializabfdeCM Trans.
Database Syst30(2):492-528, 2005.

Hector Garcia-Molina, Frank M. Pittelli, and Susan B.Mison. Applica-
tions of byzantine agreement in database systek@MV Trans. Database
Syst, 11(1):27-47, 1986.

llir Gashi, Peter T. Popov, Vladimir Stankovic, and Lop® Strigini. On
designing dependable services with diverse off-the-ségllfservers. In
Rogério de Lemos, Cristina Gacek, and Alexander B. Romsiyowedi-
tors, WADS volume 3069 ofLecture Notes in Computer Sciengeges
191-214. Springer, 2003.

Samuel T. King and Peter M. Chen. Backtracking intrusiokCM Trans.
Comput. Syst23(1):51-76, 2005.

Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Rida Jimenez-
Peris. Middleware based data replication providing snapisblation. In
Proceedings of the 2005 ACM SIGMOD international confeesmt Man-
agement of datgpages 419-430. ACM Press, 2005.

Christian Plattner and Gustavo Alonso. Ganymed: $taleeplication
for transactional web applications. Rroceedings of the 5th ACM/I-
FIP/USENIX international conference on Middlewangages 155-174.
Springer-Verlag New York, Inc., 2004.

Rodrigo Rodrigues, Miguel Castro, and Barbara LiskBase: using ab-
straction to improve fault tolerance. Rroceedings of the eighteenth ACM
symposium on Operating systems principlpages 15-28. ACM Press,
2001.

Ben Vandiver, Hari Balakrishnan, Barbara Liskov, armf8Vladden. Tol-
erating byzantine faults in transaction processing systesing commit
barrier scheduling. ISOSP '07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principfegges 59-72, New York, NY,
USA, 2007. ACM Press.

