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Abstract
The use of the Snapshot Isolation (SI) level in Transac-
tional Memory (TM) eliminates the need of tracking mem-
ory read accesses, reducing the run-time overhead and fas-
tening the commit phase. By detecting only write-write
conflicts, SI allows many memory transactions to succeed
that would otherwise abort if serialized. This higher com-
mit rate comes at the expense of introducing anomalous
behaviors by allowing some real conflicting transactions
to commit. We aim at improving the performance of TM
systems by running programs under SI, while guaranteeing
a serializable semantics. This is achieved by static analysis
of TM programs using Separation Logic to detect possible
anomalies when running under SI. To guarantee correct
behavior, the program code can be automatically modi-
fied to avoid these anomalies. Our approach can have an
important impact on the performance of single multi-core
node TM systems, and also of distributed TM systems by
considerable reducing the required network traffic.

1 Introduction
Multi-core architectures are becoming mainstream in com-
puter industry. To explore the power of these new archi-
tectures programs must include multiple threads of activ-
ity. Transactional Memory (TM) [22, 15], implemented
in software (STM) or hardware (HTM), was proposed
as a mechanism to simplify the development of parallel
programs, by providing software developers with transac-
tions, a simple and well-known abstraction to manage con-
current accesses to shared data. The TM runtime guaran-
tees a serializable semantics for concurrent transactions.

TM can also be used in a distributed setting to ad-
dress the data sharing among processes running in dif-
ferent nodes. Distributed Software Transactional Memory
(DSTM) inherits the same transactional model as defined
for TM, but strives for different implementations tech-
niques to better fit the distributed environment.
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TM runtime systems work by tracking the memory ac-
cesses made within transactions. This information is used
to validate the consistency of the transaction at commit
time. It is known that registering memory accesses is
slower than the actual memory access by orders of mag-
nitude, and is a main source of overhead in TM systems.

Database systems frequently rely on weaker isolation
models to improve performance. In particular, Snapshot
Isolation (SI) is widely used in industry. An interesting
aspect of SI for TM systems is that conflicts among con-
current transactions are detected only by comparing write-
sets. Thus, a TM that uses SI do not need to keep track
of read accesses, thus considerably reducing the book-
keeping overhead.

Relaxing the isolation of a transactional program may
lead previously correct programs to misbehave due to the
anomalies resulting from malign data-races that are now
allowed by the relaxed transactional runtime [2]. Fortu-
nately, most programs do not exhibit such anomalies (e.g.
it is known that most database benchmarks run without se-
rializability anomalies under SI [11]). For those transac-
tions that exhibit such anomalies, it is possible to modify
the transaction code to avoid such problems [12].

In this paper, we propose a methodology to identify
which transactions may lead to Snapshot Isolation anoma-
lies in a Java based TM program using static analysis tech-
niques. To guarantee correct behavior, the transaction code
can be automatically modified to avoid these anomalies.
Using this approach, we achieve improved performance
by relying on the less expensive Snapshot Isolation-based
TM runtime, while guaranteeing correctness of program
execution by protecting all possible anomalous situations.

We build our approach to detect SI anomalies on top
of Fekete et al. [12] work, which proposed to statically
detect SQL anomalies in a database setting. We extend
this approach to a general purpose programming language,
Java, which imposes no limits to the program’s data model
and uses memory references (pointers) to indirectly access
memory. These properties make the analysis process much
more complex than standard SQL. Since the granularity of
the operations inside memory transactions is at the level of
read and write of memory words, we need to capture these
accesses at the same granularity with the static analysis.



vo id Withdraw ( boolean b , i n t v a l u e ) {
i f ( x + y > va l u e )

i f ( b ) x = x − v a l u e ;
e l s e y = y − v a l u e ;

}

Figure 1: Withdraw program.

To this end, we use Separation Logic [20] to extract the
read- and write-sets for each transaction in the program,
and then use exactly the same technique as proposed by
Fekete’s to identify the existing anomalies.

The remainder of this paper is organized as follows.
Section 2 introduces SI and the respective anomalies. In
Section 3 we describe how the static analysis can be used
to detect the SI anomalies and we discuss some challenges
of this approach. Then, in Section 4, we present some pre-
liminary results of using SI in concrete TM systems. In
Section 5 we discuss the design of a system that integrates
the use of SI and static analysis to provide anomaly-free
execution of programs. Section 6 presents the related work
and we finish with some concluding remarks in Section 7.

2 Snapshot Isolation
Snapshot Isolation (SI) [2] is a well known relaxed isola-
tion level widely used in databases, where each transac-
tion executes with relation to a private copy of the system
state—a snapshot— taken at the beginning of the transac-
tion and stored in a local buffer. All write operations are
kept pending in the local buffer until they are committed
in the global state. Reading modified items always refer to
the pending values in the local buffer.

Tracking memory operations introduces some overhead,
and TM systems running under serializable isolation level
must track both memory read and write accesses, incurring
in considerable performance penalties. Validating transac-
tions in SI only requires to check if any two concurrent
transaction wrote at a common data item. Hence the run-
time system only needs to track the memory write accesses
per transaction, ignoring the read accesses, possibly boost-
ing the overall performance of the transactional run-time.

Although appealing for performance reasons, the use
of SI may lead to non-serializable executions, resulting
in two kinds of consistency anomalies: write-skew and SI
read-only anomaly [12]. Consider the following example
that suffers from the write-skew anomaly. A bank client
can withdraw money from two possible accounts repre-
sented by two shared variables, x and y. The program listed
in Figure 1 can be used in several transactions to perform
bank operations customized by its input values. The be-
havior is based on a parameter b and on the sum of the
two accounts. Let the initial value of x be 20 and the initial
value of y be 80. If two transactions T1 and T2 execute con-
currently, calling Withdraw(true, 30) and Withdraw(false, 90)
respectively, then one possible execution history of these

two transactions under SI is:
H = R1(x,20) R2(x,20) R1(y,80) R2(y,80) R1(x,20)

W1(x,−10) C1 R2(y,80) W2(y,−10) C2

After the execution of these two transactions the final sum
of the two accounts will be −20, which is unacceptable.
Such execution would never be possible under Serializ-
able Isolation level, as the last transaction to commit would
abort because it read a value that was written by the first
(committed) transaction.

3 Static Analysis with Separation Logic
The foundations of static analysis to detect SI anomalies
were introduced by Fekete et al. [12] and later improved
by Jorwekar et al. [16]. Both works target the analysis of
SQL code in the database setting. The analysis described
in [12] may be divided in two phases. The first phase
covers the extraction of the lookup and update accesses
for each transaction, building their corresponding read and
write sets. These sets are then used in the second phase to
define dependency relationships between transactions that
can possibly trigger an anomaly. To detect anomalies in
the TM setting, only the first phase must be adapted to ex-
tract the memory read and write accesses, while the second
phase can be reused with no further adaptations. In a third
phase, the identifies anomalies can be corrected to make
the application behave as if executing under Serializable
Isolation level.

We propose to extract the read and write sets of each
memory transaction present in the program by using Sep-
aration Logic [20], a shape analysis technique that mod-
els the heap using first order logic and the separation con-
junction operator (∗). To fit our goal, the symbolic execu-
tion using Separation Logic must be adapted to model the
changes of the heap state rather than its validation. Using
Separation Logic, the heap can be modeled as a symbolic
heap [10] composed by a pure and a spatial part. The pure
part captures the aliasing between variables, while the spa-
tial part captures the structure of the heap. It is possible to
capture the changes in the heap by analyzing the effects of
a symbolic execution over the symbolic heap. From the
evolution of the symbolic heap during a memory transac-
tion, one can extract all the heap read and write accesses.
In the end of the symbolic execution we have an abstract
representation of the transaction read and write sets. This
abstract representation is an over approximation of the real
memory read and write accesses, which may include some
false positives introduced by the analysis process.

With the information provided by the analysis we can
define dependency relationships between memory trans-
actions and identify those that can possibly trigger an
anomaly. Knowing which variables are contributing to
conflict, one can look for the statements where those vari-
ables are accessed and devise a correction for the anomaly,
following the techniques described in [12]. Some tech-
niques have higher performance penalties than others, so



we have to evaluate carefully which one better suites the
needs of the program. The most common technique to
correct SI is running the malign transaction under serial-
izable isolation. This approach however imposes a strong
performance penalty. Alternatively, one can introduce se-
lective dummy write accesses on some of the variables,
introducing potential write-write conflicts and forcing the
transactions to follow the First-Committer-Wins rule. This
later approach has potential for much better performance,
but is also much harder to implement due to the difficul-
ties in devising the correct set of dummy writes that will
correct the anomaly.

3.1 Pitfalls and Challenges
The idea of correcting unsafe transactional code using
static analysis is very appealing because we can provide
a TM system with high performance and, simultaneously,
maintain all the safety guarantees. But there are some is-
sues that must be addressed towards this objective.

Application Nature The optimization based in the use
of SI resorts on the assumption that in most applications
transactions perform many more read than write memory
accesses, and that the write-sets of concurrent transactions
are probably disjoint. In the cases where theses assump-
tions do not apply, the use of SI may have reduced impact
on the application’s performance.

False Positives The results of the static analysis are al-
ways an over approximation of the real results. There-
fore, for applications where the analysis generates a high
set of false positives, the corrections addressing the false
anomalies will necessarily incur in a strong the perfor-
mance penalty.

The false positive rate introduced by the analysis is
strongly influenced by the abstractions used to represent
the heap state. Using a lower abstraction level—meaning
that we manage more information—the false positive rate
decreases but the analysis time and space complexity in-
creases, possibly making it impracticable to use. By using
a higher abstraction level, the analysis will run faster and
will scale better for larger programs, but the false positive
rate will also probably increase. A tradeoff must be found
by carefully considering the kind of applications that use
transactional memory. Our insight is that transactions used
in implementing data structures are the most difficult to an-
alyze, while the transactions that use those data structures
will be easier.

Correction of Anomalies The correction of an anomaly
is also subject of some difficulties. The main difficulty is
that it may be hard or even impossible to precisely iden-
tify which code instructions trigger the anomaly, and in
this case it may be also difficult to decide where to inject
dummy writes to force transactions to synchronize. If a
dummy write is executed in every possible control flow

path of a pair of transactions, for instance at the beginning
or end of each transaction, then the transactions are being
serialized and the potential of parallelism inherent to the
transactions is lost. In this case it would be preferable to
run this transaction in serializable isolation instead of in-
jecting dummy writes.

Validation of the System There is a major problem con-
cerning the validation of the analysis as, to our best knowl-
edge, there are no real world applications using trans-
actional memory except the one described in [8]. Thus
we have to resort to STM oriented data structures mi-
cro benchmarks, such as manipulating Red-Black Trees,
Singly-Linked Lists and Skip Lists, or more complex ones,
such as STAMP [7], Lee-TM [1], and STMBench7 [13].
The STAMP benchmark is composed by a set of applica-
tions that emulate a diversity of real world problems, being
a good candidate for an overall validation of our proposals.
Because of the intensive use of pointer manipulation, the
data structures micro benchmarks may help in validating
the precision of the static analysis and dummy write code
injection.

4 Preliminary Results
As a preliminary testbed, we adapted JVSTM [5], a multi-
version STM, to support SI. We ran some performance
micro benchmarks comparing the throughput of a Linked
List and a Skip List running in Serializable and in SI.
Both implementations of the lists suffer from the write-
skew anomaly when running under SI, triggered by the
concurrent execution of the insert and remove transactions.
The execution of the micro benchmarks under SI follows
two variants. One executes the program with the anomaly
present in the code, while the other executes the program
with the anomaly corrected with dummy writes.

Figure 2 depicts the results of the execution of the
Linked List and Skip List micro benchmarks, with a max-
imum of 10000 keys, for two workloads that differ in the
number of update—insert and remove—transactions exe-
cuted, with approximately 50% and 90% of updates. The
tests were performed in a Sun Fire X4600 M2 x64 server,
with eight dual-core AMD Opteron Model 8220 proces-
sors @ 2.8 GHz and 1024 KB of cache in each processor.

The serializable isolation variant corresponds to the
original JVSTM algorithm. Since the JVSTM is a multi-
version STM, the read-only transactions are already highly
optimized and have the same performance as the read-
only transactions running in the snapshot isolation variant.
The observed performance improvement for SI depends
only on the read-write (RW) transactions. The original
JVSTM must keep track of the memory read accesses in
RW transactions to latter validate the transaction at com-
mit time, while the SI variant never tracks the memory read
accesses. This performance improvement is higher when
the frequency of updates increases. The SI variant per-
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Figure 2: Linked List (left) and Skip List (right) performance throughput benchmarks with 50% and 90% of write opera-
tions.

Read-Set Write-Set TrafficAvg Max Avg Max
Serializable 1992.9 4929 1.6 2 100%
Snap. Isol. 0.0 0 1.6 2 0.08%
Safe S. Isol. 0.0 0 2.0 2 0.1%

Read-Set Write-Set TrafficAvg Max Avg Max
Serializable 36.3 103 2.0 20 100%
Snap. Isol. 0.0 0 2.0 22 5.2%
Safe S. Isol. 0.0 0 2.6 22 6.8%

Table 1: Read- and write-set statistic per transaction for a Linked List (left) and a Skip List (right).

forms better than the Serializable one for both lists, and
scales much better for the Linked List than for the Skip
List. This is due to the internal structure and organization
of each data structure. The Skip List is a case where SI op-
timization opportunities are limited, as transactions have a
much higher rate of write accesses.

Another important fact of these results is that the
corrected version of the Snapshot Isolation, which is
anomaly-free, has almost the same performance as the
non-safe version. In this case the correction was a single
dummy write introduced in the remove operation for both
benchmarks.

These results on performance and scalability confirmed
the potential performance benefits of using snapshot iso-
lation in STM. To gain some insight about the potential
performance gains of using SI in a Distributed Software
Transactional Memory (DSTM) setting, we calculated the
size of the read and write-sets for each variant. The size of
the read- and write-sets is directly related to the network
traffic generated by the DSTM runtime, hence we can ex-
trapolate on the potential impact of using SI with DSTM.

Table 1 depicts the average and maximum size of the
read- and write-sets for the execution of the three variants
of the Linked List and Skip List micro benchmarks, with
a maximum of 10000 keys and 90% of write operations.
The SI variants always have an empty read-set. For the
Linked List under JVSTM, the read-set has an average size
of 1992.9. This result clearly depends on the nature of
the benchmark application, and in the case of the Linked
list, to insert a node in the middle of the list one has to
traverse all nodes until the right position, implying large
read sets. The average size of the write-set for all variants
in both data structures is almost the same. The difference
between the two SI versions is due to the dummy write
introduced in the safe version of both data structures. This
result allows to infer that the correction used to remove the
anomaly was adequate, with a null or negligible impact on
the transfer time of the write-set size over the network.

These preliminary results are encouraging and we plan
to further investigate on the use of static analysis to allow
the distributed transactional run-time to safely use snap-
shot isolation while providing serialization semantics.

5 System Design
Current STM systems are implemented either as an ap-
plication library, as a language construct supported by a
source-to-source compiler, or as annotations in the source
code. DeuceSTM [17] is a framework for Java that sup-
ports transactions using method annotations in the source
code. The programmer is required to annotate the meth-
ods that are to be executed as memory transactions and the
framework transforms the Java bytecode of the application
by injecting callbacks to the STM runtime. Although our
preliminary results were produced using JVSTM, we in-
tend to implement both the snapshot isolation algorithm
and the static analysis in the DeuceSTM framework, ex-
ploring the already existing capabilities of this framework
to perform the static analysis of Java Bytecode.

Before instrumenting the program code to inject the
STM runtime callbacks, we will analyze the program us-
ing a technique based in Separation Logic to extract the
read- and write-sets of each transaction in the program.
Then, for each pair of transactions that may trigger an SI
anomaly, we make a call to a module that is responsible
for patching the Bytecode of one or both of the transac-
tions, preventing the anomaly from happening. After the
correction being made we can let DeuceSTM instrument
the code with the runtime callbacks.

The DeuceSTM framework can be easily extended to
support snapshot isolation (without multi-version) STM
algorithms, but the real challenge is on how to support the
implementation of snapshot isolation DSTM algorithms
within the framework. For that purpose the instrumenta-
tion module of DeuceSTM must be modified to support
distribution of object across different machines and sup-
port atomic communication primitives to allow the im-



plementation of distributed commits between distributed
transactions. The framework must be able to uniquely
identify each object independently from its location, and
support an API to allow different implementations of the
read- and write-accesses to distributed objects and differ-
ent commit protocols. This will enable the implementation
of a distributed snapshot isolation algorithm, and in con-
junction with the initial verification of the code we can
ensure the program will execute under SI as if under Seri-
alizable Isolation.

6 Related Work
Software Transactional Memory (STM) [22, 15] systems
commonly implement the full serializability of memory
transactions to ensure the correct execution of the pro-
grams. To the best of our knowledge, SI-STM [21] is
the only current implementation of a STM using Snapshot
Isolation. Their work focuses on improving the transac-
tional processing throughput by using a snapshot isolation
algorithm. They propose a SI safe variant of the algo-
rithm where anomalies are dynamically avoided by enforc-
ing validation of read-write conflicts. Our approach avoids
this validation by using static analysis and correcting the
anomalies before executing the program.

Recently, the STM community has started showing
interest in transactional memory on a distributed envi-
ronment. The Distributed Multiversioning (DMV) [19]
is a serializable transactional memory system for clus-
ters, based on a broadcast cache coherence scheme
which distinguishes between update and read-only trans-
actions. The Distributed Software Transactional Mem-
ory (DiSTM) [18] is built on top of the DSTM2 [14] en-
gine with the purpose of serving as a testbed for transac-
tional distributed algorithms. This work evaluates three
broadcast-based transactional memory coherence proto-
cols: TCC, serialization lease and multiple leases. All pro-
tocols are serializable. Bocchino et al. [4] created a highly
scalable distributed transactional memory (cc-STM) that
provides weak atomicity based on a PGAS model but the
transactions run in serializable isolation. Couceiro et al.
in [9] presents a study and implementation of four dif-
ferent implementations of cache coherence algorithms for
distributed transactional memory systems. They reduce
network traffic by using bloom-filters to encode part of
the information to be transmitted. Performance evalua-
tions show that the use of bloom filters greatly improve the
performance of the overall system, even in the presence of
false conflicts. Bieniusa et al. [3] present the implementa-
tion of a decentralized DSTM algorithm that executes un-
der a variant of snapshot isolation. They avoid the anomaly
problem by also tracking read accesses in read-write trans-
actions and validate the read-set at commit time.

In our work, we aim at providing the serializability se-
mantics under snapshot isolation for STM and DSTM sys-
tems. This is achieved by performing static analysis of

the Bytecode and asserting that no SI anomalies will occur
when executing the transactional application. This allow
to avoid tracking read accesses in both read-only and read-
write transactions, thus reducing the amount of network
traffic and increasing system performance.

The use of Snapshot Isolation in databases is a common
place, and there are some previous works on the detection
of SI anomalies in this domain. Our work clearly builds
on [12], which presents the theory of SI anomaly detec-
tion and a syntactic analysis to detect SI anomalies for the
database setting. They assume applications are described
in some form of pseudo-code, with no conditional (if-then-
else) or cyclic (for/while) structures. The proposed anal-
ysis is informally described and applied to the database
benchmark TPC-C [23]. A sequel of that work [16], de-
scribes a prototype which is able to automatically analyze
database applications. Their syntactic analysis is based on
the names of the columns accessed in the SQL statements
that occur within the transaction. They also discuss some
solutions to reduce the number of false positives produced
by their analysis.

Although targeting similar results, our work deals with
significantly different problems. The most significant one
is related to the full power of general purpose languages
and the use of dynamically allocated heap data structures.
To tackle this problem, we use Separation Logic [20, 10]
to model operations that manipulate heap pointers. Sep-
aration Logic has been subject of research in the last few
years for its use in static analysis of dynamic allocation
and manipulation of memory, allowing one to reason lo-
cally about a portion of the heap. It has been proven to
scale for larger programs, such as the Linux kernel [6].

7 Conclusion
This position paper presents a framework to allow TM pro-
grams to execute under Snapshot Isolation, a relaxed iso-
lation level, without any of the problems associated with
SI anomalies. This approach allows for improved perfor-
mance while guaranteeing correct program execution. The
framework makes use of Separation Logic, a shape anal-
ysis technique, to detect transactions that may exhibit SI
anomalies. These anomalies can be avoided by automati-
cally modifying the transaction code.

We discuss the advantages and pitfalls of our approach.
Our preliminary results show that running transactions un-
der SI may have an important performance impact in both
single-node STM and DSTM. Although the precision of
the static analysis will have an important role on the per-
formance achieved by the system, we believe that the ap-
plications that cannot be handled properly by our approach
are rare. Although several works have previously proposed
the use of SI in transactional memory, to our knowledge,
ours is the first to address the problem of statically enforc-
ing execution correctness.
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