
November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

DATA MANAGEMENT PROBLEMS FOR SUPPORTING
MULTI-SYNCHRONOUS GROUPWARE AND A SOLUTION

NUNO PREGUIÇA – CORRESPONDING AUTHOR

CITI/DI, FCT, Universidade Nova de Lisboa

Quinta da Torre, 2845 Monte da Caparica, Portugal

J. LEGATHEAUX MARTINS

CITI/DI, FCT, Universidade Nova de Lisboa

Quinta da Torre, 2845 Monte da Caparica, Portugal

HENRIQUE DOMINGOS

CITI/DI, FCT, Universidade Nova de Lisboa

Quinta da Torre, 2845 Monte da Caparica, Portugal

SÉRGIO DUARTE

CITI/DI, FCT, Universidade Nova de Lisboa

Quinta da Torre, 2845 Monte da Caparica, Portugal

It is common that, in a long-term asynchronous collaborative activity, groups of
users engage in occasional synchronous sessions. In this paper, we analyze the data man-
agement requirements for supporting this common work practice in typical collaborative
activities and applications. This analysis shows that, as users interact in different ways
in each setting, some applications have different requirements and need to rely on dif-
ferent data sharing techniques in synchronous and asynchronous settings. We present a
data management system that allows to integrate a synchronous session in the context
of a long-term asynchronous interaction, using the suitable data sharing techniques in
each setting and an automatic mechanism to convert the long sequence of small updates
produced in a synchronous session into a large asynchronous contribution. We exemplify
the use of our approach with two multi-synchronous applications.

1. Introduction

Groupware applications are commonly classified as synchronous or asynchronous
depending on the type of interaction they support. Synchronous applications sup-
port closely-coupled interactions where multiple users synchronously manipulate
the shared data. In synchronous sessions, all users are immediately notified about
the updates produced by other users. At the data management level, it is usually
necessary to maintain multiple copies of the data synchronized in realtime, merging
all concurrent updates produced by the users. Several general-purpose systems have
been implemented1,2,3.

1

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

2 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

Asynchronous applications support loosely-coupled interactions where users
modify the shared data without having immediate knowledge of the updates pro-
duced by other users. At the data management level, it is common to support a
model of temporary divergence among multiple, simultaneous streams of activity4

and to provide some mechanism to automatically merge these streams of activ-
ity. Some general-purpose (e.g. Refs. 5,6) and application-specific (e.g. Ref. 7 for
document editors) systems have been implemented.

A common work practice among groups of individuals seeking a common goal
is to alternate periods of closely-coupled interaction with periods of loosely-coupled
work. During the periods of closely-coupled interaction, group elements can co-
ordinate and create joint contributions. Between two periods of close interaction,
individuals tend to produce their individual contributions in isolation.

In this paper, we address the data management problems of supporting this
type of work practice in groupware applications, dubbed as multi-synchronous ap-
plications. We describe the three main mechanisms we have used to add support for
synchronous sessions in the DOORS system8, a replicated storage system designed
to support asynchronous groupware.

First, a mechanism to allow applications to synchronously manipulate the data
stored in the data management system. Second, a mechanism that allows to use
different reconciliation and awareness techniques in each setting, as needed by some
applications (e.g.: text editing systems tend to use operational transformation9

in synchronous settings, and versioning10,11 in asynchronous settings). Finally, a
mechanism to automatically convert long sequences of synchronous operations into
a small sequence of asynchronous operations. This mechanism is needed to accom-
modate the difference of granularity in the operations used in each setting (e.g.
in text editing systems, insert/remove character operations are used in synchro-
nous settings, and update text line/paragraph/section operations are usually used
in asynchronous settings).

The remainder of this paper is organized as follows. Section 2 analyzes the re-
quirements for supporting applications in synchronous and asynchronous settings.
Section 3 discusses our design options. Section 4 present the DOORS system, detail-
ing the integration of synchronous and asynchronous interactions. Section 5 presents
multi-synchronous applications implemented in our system. Section 6 discusses re-
lated work and Section 7 concludes the paper with some final remarks.

2. Requirements of synchronous and asynchronous interactions

In this section we analyze the data managements requirements of synchronous and
asynchronous interactions in a set of typical groupware applications. For each ap-
plication, we analyze how users use the application and what data management
techniques must be used.

While synchronous interactions usually last a short period of time, asynchro-
nous interactions tend to span for very long periods. Thus, we also analyze how

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 3

to integrate the results of a synchronous interaction in a long-term asynchronous
collaborative activity.

2.1. Multi-user message/conferencing systems

A conferencing system allows multiple users to communicate with each other by
exchanging messages. In particular, we are interested in systems that do not restrict
communication to two users.

In synchronous settings, the paradigmatic conferencing application is the chat
system. This type of application has evolved from very simple text-based applica-
tions, such as the chat tools available in old UNIX systems, to recent applications
(e.g. ICQ, Micosoft Messenger and Yahoo Messenger) with sophisticated interfaces,
advanced management tools, and integration of new features (e.g. voice-based chats
and integration with messaging systems from wireless phone networks). However,
the basic functionality of chat systems have remained the same: to allow multiple
users to send messages to a shared space that is visible to all other usersa. The only
operation that a user can execute is to add a message to the shared space.

The only data management requirement is to maintain, in realtime, a shared
space composed by a sequence of messages. Usually, each participant maintains its
own private replica of the shared space. Each new message is propagated to all
participating sites using some sort of reliable group communication (either based
on a centralized or on a peer-to-peer architecture). When a new message is received,
it is added to the local replica — usually, it is not required that all messages are
added in all replicas by the same order (causal order is usually considered sufficient,
guaranteeing that a reply is always posted after the original message).

In asynchronous settings, newsgroups and message boards are the paradigmatic
conferencing applications. The basic functionality of this type of application is the
same of the chat systems: to allow multiple users to send messages to a shared space
that is visible to all other users. Regarding the data management requirements, one
major difference exists: the shared space must be stored reliably for an extended
period of time even when no user is accessing the data. To this end, unlike chat
systems, the data of newsgroups and message boards is usually stored in a server or
group of servers that provide high data availability. Clients access these servers to
read and post messages in the shared space. When the data is replicated in a group
of servers, updates are usually propagated using lazy-propagation techniques12,13

that guarantee that all replicas receive all messages.
Regarding awareness support, in synchronous tools, besides being able to imme-

diately observe new messages posted by other users, applications often include some
active mechanism (e.g. a sound or a pop-up window announces a new message) to
catch the users’ attention. In asynchronous tools several approaches have been used.

aSome chat system include other types of interactions, such as allowing an user to send a private
message to another user.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

4 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

Some applications simply do not have any awareness support. Other applications
use passive techniques, such as highlighting unseen messages when accessing the
message board. Finally, some applications use active techniques, either using email
notifications or simple applications that poll for changes to the shared data.

Although synchronous and asynchronous conferencing tools have the same func-
tionality, users tend to use them in different ways. While messages written in a syn-
chronous tool tend to be small, each one with a small amount of information that
is hard to understand outside of the context of a specific conversation, messages
written in an asynchronous tool tend to be long and self-contained, often including
transcripts of previous messages.

This difference complicates the integration of a synchronous and an asynchro-
nous conferencing tool. However, we can easily imagine scenarios where this integra-
tion could be useful: for example, a chat tool could be used to discuss some post in
a message board, and the transcripts of the synchronous discussion (or a summary
of the discussion) could be taken as the reply to the original post. In this case, the
sequence of messages posted in the synchronous interaction should be collapsed into
a single message in the asynchronous interaction.

2.2. Collaborative editing systems

Collaborative editing systems allow multiple users to jointly compose and edit a
shared document. In this section, we only consider structured documents composed
by text: for example, a LaTeX document, an XML document or a Java source file.

Many realtime collaborative editors have been implemented in the past. In older
editors (e.g. DistEdit14), users usually took turns at making changes (all other users
could only observe the changes in realtime). This approach avoids conflicts, thus
greatly simplifying concurrency control. In recent editors (e.g. Grove9, REDUCE15),
it is common to allow multiple users to modify the shared document concurrently.

In both cases, each participant usually maintains a copy of the shared data and
all updates are propagated to all participants. In the last case, applications must also
handle possible conflicts in concurrent updates. Operational transformation9,16,17,18

has become the technique of choice in realtime editors because it ensures conver-
gence while preserving causality and users’ intentions. This technique transforms
operations to guarantee that: (1) all replicas converge to the same state despite
the different execution order; and (2) the users’ syntactic intentions are preserved
despite the fact that an operation may be executed in a state that is different from
the state observed by the user that has executed the operation.

For supporting collaborative edition in asynchronous settings, many systems
have been implemented19,20,7,11,10. A common model for data access is the copy-
modify-merge paradigm, in which a user gets its own private copy of the document,
modifies it in isolation and later uploads his changes to be merged with the modifi-
cations concurrently produced by other users. This approach has been implemented
using either a centralized (e.g. CVS11) or a peer-to-peer architecture (e.g. Iris7).

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 5

Asynchronous editing systems usually merge updates produced in different re-
gions of the document and create multiple versions for updates that modify the
same regionb. In systems that maintain the structure of the documents, the struc-
ture offers an obvious definition of a region (e.g. the leaves in documents structured
as trees). In system that do not maintain the structure of the document, it is
common to implicitly define a region — e.g. the popular RCS algorithm21 defines
each line as a region. Even when multiple versions are created and maintained by
the underlying storage system, it is usual that the document remains syntactically
consistent6, allowing users to continue accessing the document without the need to
merge the multiple versions immediately (unlike the usual approach in distributed
file systems22 that prevents any normal access before solving conflicts).

Although reconciliation in synchronous and asynchronous collaborative editing
systems has the same goal (to automatically merge modifications produced concur-
rently), different techniques are used. To understand the reason for this difference, it
is important to understand the limitations of each technique and how users interact
to overcome such limitations in both settings.

It is known that operational transformation can lead to semantic
inconsistencies23,24. The following example (from Ref. 23) illustrates the problem.
Suppose that a shared document contains the following text:

There will be student here.

In this text there is a grammatical error that can be corrected by replacing
“student” by “a student” or “students”. If two users concurrently correct the error
by executing different modifications (user 1 inserts the word “a” before the word
“student” and user 2 inserts an “s” in the end of the word “student”), operational
transformation guarantees that the syntactic intentions of each user are preserved,
leading to the following text:

There will be a students here.

However, the resulting text is semantically incorrect, as it contains a new gram-
matical error. Moreover, the merged version does not represent any of the users’
solution and it is likely that it does not satisfy any of the users.

In synchronous settings, this problem can be easily solved as users immediately
observe the modifications produced by other users. Thus, users can coordinate them-
selves and immediately agree on the preferred change. This is only possible because
users have strong and fine-grain awareness information about the changes produced
by other users. In this case, the automatic creation of multiple versions to solve
conflicts would involve unnecessary complexity. Moreover, it is not clear what user
interface widgets would be suitable for presenting these multiple versions.

bOlder systems (e.g. the original Lotus Notes13) used to retain only the most recently produced
version, but this approach was considered inappropriate for asynchronous settings where large
modifications are usually produced.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

6 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

In asynchronous settings, updates are not immediately merged and each asyn-
chronous contribution tends to be large. Thus, as users have no (strong) awareness
information about the modifications produced by other users, it is likely that us-
ing operational transformation to merge updates produced by different users to the
same semantic unit would lead to many semantic inconsistencies. This is the main
reason for not using this technique in asynchronous editing systems: it seems prefer-
able to maintain multiple versions that are semantically correct and let users merge
them later (with the possible help of merging tools), instead of maintaining a single
semantically incorrect version that does not satisfy anyone. There are also some
technical difficulties related with the management and execution of this technique
with a very large number of operations that hamper its use in asynchronous settings
— this issues has been partially addressed in Ref. 25. These problems suggest that
the granularity of operations used in asynchronous settings should be large — for
example, updating the value of some part in a structured document (e.g. a section
in a paper).

A system that supports synchronous and asynchronous interactions should ac-
commodate different reconciliation techniques for synchronous and asynchronous
settings. Moreover, it should handle operations with a different granularity: small,
character-based, for synchronous interactions and large, region-based, for asynchro-
nous settings. All updates produced during a synchronous interaction can be inte-
grated in the overall asynchronous activity as one (or a small sequence of) large-
grain operation.

Additionally, the system should allow different awareness techniques to be used.
As it has been said, in synchronous setting users tend to require strong awareness
that allows them to immediately observe the changes being produced by other users.
This level of awareness support requires sophisticated user interfaces, but it can be
usually implemented using only the information about the updates propagated to
maintain the data synchronized. In asynchronous settings, it is often sufficient to
maintain with each document a log that describes the changes produced by each
user in each isolated working-session (e.g. CVS11)c. Additionally, some systems (e.g.
BCSCW10) allow users to request active notification (e.g. by email) when documents
they are interested on are modified.

2.2.1. Tools for editing graphics

Several applications for collaborative synchronous creation of graphics have been
implemented26,27,28,29,30. Some applications use lock-based concurrency control
strategies that prevent conflicts. Some more recent solutions29 propose reconcili-
ation techniques that automatically merge updates that do not interfere with each
other and create multiple versions for updates that do interfere — for example, if

cThis information can also be used by a sophisticated user interface to allows users to graphically
identify changed areas, as in synchronous settings. However, the existence of additional information
explaining the rationale of the updates can be very useful.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 7

some object (line, square, etc.) is concurrently moved to two different locations,
two objects are created. In the user interface, object versions created due to conflict
are specially highlighted to allow users to differentiate these objects and solve the
conflict.

There are also applications that allow users to collaboratively edit graphics in
asynchronous settings31,32. In some of these applications31, asynchronous interac-
tion is limited to edit the same graphics at different times. In this case, a single
stream of activity exists.

In other applications32, several streams of activity may exist leading to divergent
versions of the same document. A common approach to merge the divergent streams
of activity is to define one stream of activity as the master copy and replay the
updates produced in all other streams in the master copy. The simplest approach
is to replay updates without trying to find out whether each update conflicts with
other concurrent updates or not — in case of conflicts, this approach tends to
be similar to a last-writer wins strategy. However, as discussed in the context of
collaborative edition of text documents, this approach may be inappropriate because
the overwritten work may be large and important. In this case, it is not acceptable
to arbitrarily discard (or overwrite) the contribution produced by some user, and
the creation of multiple versions seems preferable33.

From this discussion, it seems that creating multiple versions in face of conflicts
can be used in both synchronous and asynchronous settings. However, there are
some subtle but important differences. In synchronous settings, the multiple versions
are created immediately after the concurrent execution of the conflicting operations
and users can observe them immediately and act accordingly – for example, by
solving the conflict immediately. Moreover, the number and extent of conflicts is
expected to be small as the time to propagate updates is very small (and the strong
awareness information available allows users to coordinate among themselves).

In asynchronous settings, as an user may produce a long sequence of updates, it is
possible that a subset of these updates conflict with updates produced concurrently
by other users. For example, in a diagram composed by two green squares, an
user may decide to change the color of both squares to blue and another user may
decide to change their color to red. In this case, although two versions of each square
should be created, only two combinations of these version seem relevant: the first
including the two blue squares and the second with the two red squares. Therefore,
in asynchronous settings, it seems important to provide a mechanism to manage
configurations composed by versions of multiple objects33. This approach seems
unnecessarily complex for synchronous settings.

Regarding awareness, the requirements seem similar to those of text editing
tools. For synchronous setting, users must be able to immediately observe changes
being produced. In asynchronous settings, users should be able to observe changes
produced since they have last accessed the (graphical) document. In this case, a
small summary describing the rationale of the changes can be very useful. Addi-

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

8 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

tionally, support for active notification of modifications also seems interesting.

2.3. Group calendars

Group calendars manage schedules for groups of individuals and resources. A large
number of group calendars have been implemented in research projects34,35 and in
commercial products36,5,32.

The typical operations include adding a new private appointment and scheduling
a group meeting or reserving a resource. For scheduling a private appointment (or
reserving a resource), it is only necessary to verify that the user (resource) is free for
the complete period of time. For scheduling a group meeting, it is necessary that
all users can attend the meeting. To guarantee the participation of all elements,
it is possible to simply verify that all users are available or to require an explicit
confirmation from each user. Some group calendar applications allow to specify a
list of alternative time periods to increase the chance of finding a compatible time
period.

A group calendar is a typical asynchronous groupware application, where each
user can submit his operations without synchronous interaction with other users.
Depending on the underlying system architecture, it may be even possible to submit
operations during disconnected operation. When multiple replicas of the calendar
exist, the system guarantees that all replicas converge to the same state.

When it is necessary to schedule a group meeting, it may be interesting to
have a synchronous session with other participants to decide the best time – for
example, the RTCAL application20 provides such functionality. In the underlying
group calendar, the result of a synchronous session is the scheduling of a new group
meeting — if appropriate, the summary of the synchronous interaction can be stored
as additional meeting information.

2.4. Summary

Table 1 and table 2 summarize the previous analysis focusing on two important char-
acteristics: the granularity of update notification and the reconciliation techniques
used. It also presents a possible strategy to integrate synchronous and asynchronous
interactions. In the previous subsections we have presented the rationale for using
techniques, although it might be possible to use different approaches with success.

This analysis allows us to identify some important characteristics that must
be taken into account when designing a system that supports synchronous and
asynchronous interactions.

First, for some applications, updates are propagated among participants using
operations with a different granularity in synchronous and asynchronous modes. In
synchronous settings, updates tend to be small and to be propagated as soon as
a user executes some change to the shared data, thus allowing a tightly-coupled
interaction with strong awareness of other users’ actions. In asynchronous settings,
updates tend to be large, each one including a self-contained contribution. For

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 9

Conferencing system Group calendars
synchronous updates technical: messages

social: small size
decision-making tools for
time agreement
add/remove
appointment

reconciliation causal order merge updates using to-
tal order – alternatives
for conflict resolution

asynchronous updates technical: messages
social: large size

add/remove
appointment

reconciliation causal order merge updates using to-
tal order – alternatives
for conflict resolution

integrating
synchronous
and asyn-
chronous

updates compress sequence
of small messages into a
single long message

use decision-making log
as appointment informa-
tion

reconciliation use different techniques same technique

Table 1. Analysis of groupware applications – conferencing systems and group calendars.

Editing tool for struc-
tured text document

Editing tool for object-
based graphics

synchronous updates insert/remove character
add/remove element to
the structure

insert/modify/remove el-
ement

reconciliation merge updates using op-
erational transformation

merge updates using to-
tal order, create versions
for solving single op. con-
flicts

asynchronous updates update region (e.g. sec-
tion, paragraph)
add/remove element for
document structure

insert/modify/remove el-
ement

reconciliation versioning for elements
merge structure ops. us-
ing total order

merge updates using to-
tal order, create versions
for groups of ops.

integrating
synchronous
and asyn-
chronous

updates compress character ops.
into a single update ele-
ment op.

group sync. operation
into aggregates

reconciliation use different techniques variant of the same tech-
nique

Table 2. Analysis of groupware applications – structured text and graphics editing tools.

supporting both types of interaction, it seems necessary to convert sequences of
small updates executed in synchronous interactions into one (or a few number of)
large update for use in the long-term asynchronous interactions. This requirement
is best exemplified in the context of conferencing and text editing tools.

Second, for some applications, different reconciliation techniques are preferred
in different modes. In synchronous settings, reconciliation can be very aggressive
and merge all updates in the same data version because users have strong aware-
ness of other users’ activities and can immediately solve any problem that occurs.
In contrast, in asynchronous settings, it is usually preferable to preserve all contri-
butions from users, even if it is necessary to create multiple data versions, as these

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

10 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

contributions can be long.
Finally, regarding awareness, some applications also use different techniques.

The difference is usually an immediate consequence of the different coupling de-
gree. In synchronous settings, users must have immediate feedback about other
users’ actions. Thus, very accurate and detailed information must be constantly
disseminated and presented to users. However, as users tend to be tightly coordi-
nated, no additional information is usually needed. In asynchronous settings, users
must also be able to observe the changes produced by other users since they have
last accessed the shared data. However, as the coupling degree is smaller, it is often
interesting to have additional information explaining the rationale of the changes
(e.g. the summary associated with commit in CVS11). Additionally, approaches to
provide active notification tend to be different: in synchronous settings, user in-
terface widgets tend to capture the immediate attention of users; in asynchronous
settings, it is common to rely on email message (or even SMS/pager messages) to
provide feedback.

3. Design choices

In this section we present our approach to integrate synchronous interactions in an
object-based system designed to support the development of asynchronous group-
ware applications. In this paper we only consider issues related with data manage-
ment, including awareness support.

3.1. Basic requirements and design choices

We start our discussion by reviewing the basic requirements that must be addressed
to support synchronous or asynchronous interactions independently.

3.1.1. Synchronous interaction

In synchronous applications, users access and modify the shared data in realtime.
To this end, a common approach is to allow several applications running on different
machines to maintain replicas of the shared data. When an update is executed in
any replica, it must be immediately propagated to all other replicas. To achieve
this requirement, our support for synchronous replication lies on top of a group-
communication infrastructure, as it is usual in synchronous groupware.

In this kind of support, it is important to allow latecomers to join an on-going
synchronous session. We support this feature using a state-transfer mechanism in-
tegrated with the group-communication infrastructure.

The user interface of the synchronous application must be updated not only
when the local user updates the shared data, but also whenever any remote user
executes an update. To this end, our system allows applications to register call-
backs for being notified of changes in the shared data. These callbacks are used to
update the GUI of the application. This approach allows a synchronous application

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 11

to be implemented using the popular model-control-view pattern, with the model
replicated in all participants of the synchronous session.

3.1.2. Asynchronous interaction

In asynchronous interactions, users collaborate through the access and modification
of shared data. Therefore, to maximize the chance for collaboration, it is usually
important to allow users to access and modify the shared data without restrictions
(except from access control restrictions). To provide high data availability, our sys-
tem combines two main techniques. First, it replicates data in a set of servers to
mask networks failures/partitions and server failures. Second, it partially caches
data in mobile clients to mask disconnections. High read and write availability is
achieved using a “read any/write any” model of data access that allows any clients
to modify the data independently.

This optimistic approach leads to the need of handling divergent streams of
activity (caused by independent concurrent updates executed by different users).
Many different reconciliation techniques have been proposed for use in different set-
tings and applications (e.g. the use of undo-redo37, versioning11, searching the best
solution relying on semantic information38) but no single technique seems appro-
priate for all problems. Instead, different groups of applications call for different
strategies. Thus, unlike most systems35,11,5 that implement a single customizable
strategy for reconciliation, our system allows the use of different techniques in dif-
ferent applications.

Awareness has been identified as important for the success of collaborative activ-
ities because individual contributions may be improved by the understanding of the
activities of the whole group39,40. Our system includes an integrated mechanism
for handling awareness information relative to the evolution of the shared data.
Different strategies can be used in different applications, either relying on explicit
notification, using a shared feedback approach39, or combining both styles. Further
details on the requirements and design choices for asynchronous groupware only in
mobile computing environments are presented elsewhere8.

3.2. Integrating synchronous and asynchronous interactions

An asynchronous groupware activity tends to span over a long period of time. During
this period, each participant can produce his contributions independently. Groups of
participants can engage in synchronous interactions to produce a joint contribution.
Thus, it seems natural to consider the result of a synchronous interaction as a
contribution in the context of the long-term collaborative process. We have used
this approach in our object-based system.

In the following subsections, we address the specific requirements for implement-
ing this strategy.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

12 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

3.2.1. Updates with different granularities

As discussed in section 2, some applications, such as conferencing systems and
text editing tools, use operations with different granularities in synchronous and
asynchronous settings. To address this approach, our system includes a mechanism
to convert and compress the log of operations executed by users.

During a synchronous interaction, the small operations executed by users are
incrementally converted and compressed into a small sequence of large operations.
This sequence of large operations is the result of the synchronous session and it is
integrated in the asynchronous collaborative process as any contribution produced
by a single user. The same mechanism is used to compress the updates produced
by a single user.

3.2.2. Different reconciliation and awareness techniques

As discussed in section 2, some applications use different reconciliation techniques in
synchronous and asynchronous settings. To address this requirement, we structure
data objects used in collaborative applications according to an object framework
that includes independent components to handle most aspects related with data
sharing, including reconciliation and awareness management. Thus, when a pro-
grammer creates a new data-type to be used in a collaborative application, he can
specify different reconciliation techniques (components) to be used in synchronous
and asynchronous settings.

The same approach is used for handling awareness information in different ways
during synchronous and asynchronous interactions. In our system, when an oper-
ation is executed it is possible to generate specific awareness information that is
processed by a component of the data object. For example, in a shared document,
it may be interesting to maintain a log of modification produced over time. This
log can be updated by the awareness component used in asynchronous settings. In
synchronous settings, the needed awareness information is usually provided by the
applications as the result of updates to the shared data. Therefore, this additional
awareness information can be discarded.

An interesting aspect is the dependence between the support for using differ-
ent reconciliation techniques and the support for using operations with different
granularities in each setting. The reason for this lies in the fact that the reconcilia-
tion techniques used in each setting tend to expect operations with the granularity
usually used in that setting. The same applies for awareness support, as the gran-
ularity of awareness information needed in each setting is closely related with the
granularity of operations.

4. DOORS

In this section, we start by briefly presenting the DOORS system architecture and
the DOORS object framework. A more detailed description, discussing support for

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 13

asynchronous groupware, can be found elsewhere8. Then, we detail the integration
of synchronous sessions in the overall asynchronous activity.

4.1. Architecture

DOORS is a distributed object store based on an “extended client/replicated server”
architecture. It manages coobjects: objects structured according to the DOORS
object framework. A coobject represents a data type designed to be shared by
multiple users, such as a structured document or a shared calendar. A coobject
is designed as a cluster of sub-objects, each one representing part of the complete
data type (e.g. a structured document can be composed by one sub-object that
maintains the structure of the document and one sub-object for each element of
the structure). Each sub-object may still represent a complex data structure and
it may be implemented as an arbitrary composition of common objects. Besides
the cluster of sub-objects, a coobject contains several components that manage the
operational aspects of data sharing — figure 1 depicts the approach (we will later
describe each component and how they work together).

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

A
w

ar
en

es
s

sub-objects sub-object proxies

A
pp

lic
at

io
n

System

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

Fig. 1. DOORS object framework.

Figure 2 depicts the DOORS architecture, composed by servers and clients.
Servers replicate workspaces composed by sets of related coobjects to mask network
failures/partitions and server failures. Server replicas are synchronized during pair-
wise epidemic synchronization sessions. Clients partially cache key coobjects to
allow users to continue their work while disconnected. A partial copy of a coobject
includes only a subset of the sub-objects (and the operational components needed to
instantiate the coobject). Clients can obtain partial replicas directly from a server
or from other clients. They can also update their local copies directly from other

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

14 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

Key
 Server

 Client

Sub-objects

 Application

����������������
����������������

sub-objects

updates

���
���
���
���
���
���
���
���
���
���

epidemic
propagation ���

���
���
���
���
���
���
���
���

sub-objects

updates

sub-objects
& updates sync sessions

Fig. 2. DOORS architecture with four computers with different configurations. Coobjects are
replicated by servers, partially cached by clients and manipulated by applications.

clients, thus exposing to users the recent contributions executed by other users.
Applications run on client machines and access data using a “get/modify lo-

cally/put changes” model. First, the application obtains a private copy of the coob-
ject (from the DOORS client). Second, it invokes sub-objects’ methods to query
and modify its state – update operations are transparently logged in the coobject.
Sub-objects are only loaded (instantiated) when they are accessed - this process is
transparent for the applications. Finally, if the user chooses to save her changes,
the logged sequence of operations is (asynchronously) propagated to a server.

When a server receives operations from a client, it delivers the operations to the
local replica of the coobject. It is up to the coobject replica to store and process
these operations. Servers synchronize coobject replicas by exchanging unknown op-
erations during pairwise epidemic synchronization sessions.

4.2. DOORS Object Framework

As outlined above, the DOORS system core executes minimal services and it del-
egates to the coobjects most of the aspects related with data sharing, including
reconciliation and the handling of awareness information. This approach allows the
implementation of flexible type-specific solutions but requires coobjects to handle
several aspects that are usually managed by the system. To help programmers to
create new applications reusing good solutions, we have defined an object framework
that decomposes a coobject in several components that handle different operational
aspects (see figure 1). We now outline this object framework, introducing each com-
ponent in the context of the local execution of an operation.

Each coobject is composed by a set of sub-objects that may reference each other
using sub-object proxies. These sub-objects store the internal state and define the
operations of the implemented data-type. The cluster manager is responsible to

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 15

manage the sub-objects that belong to the coobject, including: the instantiation of
sub-objects (when needed); and the control of sub-objects’ persistency (e.g. using
garbage-collection).

Applications always manipulate a coobject using sub-objects’ proxies. When an
application invokes a method on a sub-object proxy, the proxy encodes the method
invocation (into an object that includes all needed information) and hands it over
to the adaptation component. The adaptation component is responsible for interac-
tions with remote replicas. The most common adaptation component only executes
operations locally.

The capsule component controls local execution of operations. Queries are im-
mediately executed in the respective sub-object and the result is returned to the
application. Updates are logged in the log component. When an operation is logged,
the capsule calls the concurrency control component to execute it.

The concurrency control/reconciliation component is responsible to execute the
operations stored in the log. In the client, operations are usually executed immedi-
ately. The result of this execution is tentative35. An update only affects the official
state of a coobject when it is finally executed in the servers. In Ref. 8, we have
discussed extensively how to use different reconciliation strategies (components) in
the context of asynchronous groupware applications.

The execution of an operation may produce some awareness information. The
awareness component immediately processes this information (e.g. by storing it to
be later presented in applications and/or propagating it to the users).

Besides controlling operation execution, the capsule defines the coobject’s com-
position. The composition described in this subsection represents a common coob-
ject, but different compositions can be defined. The capsule implements the inter-
face used by the system to access the coobject. The attributes component stores the
system and type-specific properties of the coobject.

To create a new data-type (coobject) the programmer must do the following.
First, he must define the sub-objects that will store the data state and define the
operations (methods) to query and to change that state. From the sub-objects’
code, a pre-processor generates the code of sub-object proxies and factories used to
create new sub-objects, handling the tedious details automatically. Second, he must
define the coobject composition, selecting the suitable pre-defined components (or
defining new ones if necessary). Different components can be specified for use in the
server and in the client during private and shared (synchronous) access. Different
data-sharing semantics are obtained using different components.

4.3. Integration of Synchronous Sessions

In this subsection we detail the integration of synchronous sessions in the overall
asynchronous activity.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

16 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

4.3.1. Maintaining coobjects’ replicas in synchronous sessions

Each site that participates in a synchronous session usually maintains its own copy
of the shared data. To this end, we need to maintain several copies of a coobject
synchronously synchronized.

To achieve this goal, we use the synchronous adaptation component that prop-
agates updates executed in any replica to all replicas. This component relies on a
group communication sub-system (GCSS) – JGroups41 in the current implementa-
tion – for managing communications among session participants.

An application (user) may start a synchronous session in a client when it loads
a coobject from the data storage. In this case, the coobject is instantiated with the
components specified for shared access in the clientd. In particular, a version of the
synchronous adaptation component must be used. This component creates a new
group (in the GCSS) for the synchronous session.

When a new user wants to join a synchronous session, the user’s application
has to join the group for the synchronous session (using the name of the session and
the name of one computer that participates in the session). During this process, the
application receives the current state of the coobject (relying on the state transfer
mechanism of the GCSS) and creates a private copy of the coobject. Any user is
allowed to leave the synchronous session at any moment.

In each group there is a designated primary (that can change during the group
lifetime). Besides being responsible to save the result of the synchronous session,
the primary plays an important role in the instantiation of sub-objects. When the
cluster manager of any replica needs to instantiate a new sub-object, it asks the
primary to send the initial state of the sub-object (as obtained from the DOORS
client) to all replicas. This approach guarantees that all replicas instantiate all sub-
objects in a coherent way.

Applications manipulate coobjects by executing operations in sub-objects’ prox-
ies, as usual. The proxy encodes the operation and delivers it to the adaptation
component for processing. Query operations are processed locally as usual. For an
update operation, the adaptation component propagates the operation to all ele-
ments of the synchronous session using the GCSS (step 2 of figure 3).

The GCSS may deliver operations in the same total order or in FIFO order
to all replicas. When the operation is received in (the adaptation component of)
a replica, including the replica where it has been initially executed, its execution
proceeds as usual (by handing the operation to the capsule for local execution, as
explained in section 4.2). When total order is used, replicas are kept consistent by

dIt is also possible to start a synchronous session using a private copy of a coobject that is
being modified. In this case, the system replaces the components used for private access by the
components used for shared access (when they are different). The new components are initialized
with the state of the old components. To this end, we have defined an interface to export and import
the relevant state of components in a generic way. If some used component does not implement
this interface, it is only possible to start a synchronous session with a freshly loaded cooobject.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 17

A
w

ar
en

es
s A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

 A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

A
w

ar
en

es
s

A
w

ar
en

es
s

2
Group communication
system

1

3

4 5

6

7

8

9

3

4 5

6

7

8

9

3

4 5

6

7

8

9

Fig. 3. Synchronous processing of an update operation in three replicas of a coobject.

simply executing all operations by the order they are received. When FIFO order
is used, no delay is imposed on local operations, but replicas receive operations in
different orders. Thus, it is usually necessary to use an operational transformation
reconciliation component to guarantee replica convergence.

To update the application GUI, an application may register callbacks in the adap-
tation component to be notified when sub-objects are modified due to operations
executed by remote users (or local users). These callbacks are called by the adapta-
tion component when the execution of an operation ends (step 9) – the application
receives information about the executed operation, including its target sub-object.

The DOORS approach to manage synchronous interactions, described in this
subsection, does not imply any contact with the servers. An application running
on a DOORS client can participate in a synchronous session if it can communicate
with other participants using the underlying GCSS. Thus, a group of mobile clients,
disconnected from all servers, may engage in a synchronous interaction even when
they are connected using an ad hoc wireless network.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

18 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

4.3.2. Saving the result of a synchronous session

As discussed in section 3.2, some applications need to convert the small operations
used in synchronous mode into the large operations used in asynchronous mode.

In the DOORS system, this is achieved by the log compression mechanism im-
plemented by the log component. As described in section 4.2, all update operations
executed in a synchronous session are stored in the log before being executed. Be-
sides the full sequence of operations, the log component also maintains a compressed
version of this sequence. An operation is added to the compressed sequence after
being stably executed (and after the reconciliation component executes the last
undo or transformation to the operation) using the algorithm presented in figure 4.
This process is executed in background to have minimal impact on the performance
of the synchronous session.

CompressLog (seqOps: list, newOp: operation) : list =

FOR i:= seqOps.size - 1 TO 0 DO

IF Compress(seqOps, i, newOp) THEN RETURN seqOps

ELSE IF NOT Commute(seqOps, i, newOp) THEN BREAK

END FOR

seqOps.add(ConvertToLarge(newOp))

RETURN seqOps

Fig. 4. Algorithm used for log-compression.

The basic idea of the algorithm is to find out an operation already in the log that
can compress the new operation (e.g. an insert/remove operation in a text element
can be integrated into an operation that sets a new value to the text element by
changing the value of the text). If no such operation exists, the new operation is
converted into an asynchronous operation and logged (e.g. an insert/remove oper-
ation can be converted into an operation that sets a new value to the text element
– the value of the text after being modified).

To use this approach, the coobject must define the following methods of the
compression algorithm: Compress, for merging two operations; Commute, for testing
if it is possible to execute some operation in a different log position with the same
result; ConvertToLarge, for converting a small synchronous operation into a large
asynchronous operation The examples presented in the next section show that these
methods are usually simple to write.

The result of the synchronous session is the compressed sequence of operations.
Only the designated primary can save the result of the session. In respect to the
overall evolution of the coobject, the sequence of operations is handled in the same
way as the updates executed asynchronously by a single user. Thus, the sequence
of operations is propagated to the servers, where it is integrated according to the
reconciliation policy that the coobject uses in the server.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 19

4.3.3. Using different reconciliation and awareness strategies

As discussed in section 3.1, some applications need to use different reconciliation
and awareness techniques during synchronous and asynchronous interactions. In our
system, different techniques can be used by specifying that a coobject is composed
by different components in the server and during shared access in the client.

The reconciliation and awareness components, defined for use during shared
access, control data evolution and awareness in the synchronous session. The recon-
ciliation and awareness components, defined for use in the servers, control behav-
ior during asynchronous interactions, i.e., how stable replicas stored in the servers
evolve and what awareness information is maintained.

5. Applications

In this section, we present two applications that exemplify our approach to integrate
synchronous and asynchronous interactions. These applications and the DOORS
prototype have been implemented in Java 2 SE.

5.1. Multi-synchronous Document Editor

The multi-synchronous document editor allows users to produce structured docu-
ments collaboratively — these documents are represented as coobjects. For example,
users may use a synchronous session to discuss and create the outline of the doc-
ument and to edit controversial parts. Each user may, after that, asynchronously
produce his contributions editing the sections he is responsible for.

A document is a hierarchical composition of containers and leaves. Containers
are sequences of other containers and leaves. A single sub-object stores the complete
structure of a document, including all containers. Leaves represent atomic units of
data that may have multiple versions and different data types. A sub-object that
extends the multi-version sub-object stores each leaf.

For example, a LaTeX document has a root container with text leaves and scope
containers. A scope container may also contain text leaves and scope containers.
Scope containers can encapsulate the document structure but they have no direct
association with LaTeX commands. For example, a paper can be represented as
a sequence of scope elements, one for each section (see figure 5). The file to be
processed by LaTeX is generated by serializing the document structure.

5.1.1. Asynchronous edition

During asynchronous edition, users can modify the same elements independently.
The coobject maintains syntactic consistency automatically, as follows. Concurrent
updates to the same text leaf are merged using the pre-defined strategy defined in its
super-class: two versions are created if the same version is concurrently modified; a
remove version is ignored if that version has been concurrently modified; otherwise,

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

20 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

structure (modified
elements in red)

versions

chat & sync.
session members

jalm
updates

nmp
updates

Fig. 5. Multi-synchronous document editor with a LaTeX document, while synchronously editing
one section.

both updates are considered. Users should merge multiple versions later. Concurrent
changes to the same container are merged by executing all updates in a consistent
way in all replicas (using an optimistic total order reconciliation component in the
server).

5.1.2. Synchronous edition

The multi-synchronous editor allows multiple users to synchronously edit a docu-
ment. To this end, a document coobject is maintained synchronously synchronized
using the synchronous adaptation component that immediately executes operations
locally. Thus, users observe their operations without any delay. For handling recon-
ciliation during a synchronous session, a reconciliation component that implements
the GOTO operational transformation algorithm23 is used.

For supporting synchronous edition, a text element also implements operations
to insert/remove a string in a given version. These operations are submitted when
the user writes something in the keyboard or executes a cut or paste operation.
Remote changes are reflected in the editor’s interface using the callback mechanism
provided by the adaptation component. For example, figure 5 shows a synchronous
session with two users. The selected text version presents updates from each user
with a different color. In the structure and versions windows, elements that have
been modified in the current session are presented in red.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 21

5.1.3. Saving the result of synchronous sessions

The result of a synchronous editing session is stored as a small set of large oper-
ations. For converting synchronous operations into asynchronous operations, it is
necessary to define the Commute, Compress and ConvertToLarge methods used in
the compression algorithm presented in section 4.3.2.

As mentioned before, small operations are only defined in text leaf elements.
Therefore, it is only necessary to compress these operations. In figure 6, we present
the low-level operations defined in text leaf elements, grouped in small and large
operations. The version identifiers used in these operations are hidden from appli-
cation programmers by the objects that represent the text leaf and its versions. For
example, the version object defines the operation UpdateVersion(newText) that
internally executes the low-level operation UpdateVersion(oldId, newId, newText)
with oldId the internal identifier of the version and newId a newly created unique
identifier. The same approach is used for all other operations.

Leaf large operations:
CreateVersion(id, text) creates a new version with the given identifier and text

DeleteVersion(id) deletes the version with the given identifier

UpdateVersion(oldId,
newId, newText)

replaces the version oldId by the version newId with
the given new text

Leaf small operations:
InsertString(oldId, oldVer-
sionRef, newId, pos, string)

insert the given string in position pos of version oldId
that becomes newId

DeleteString(oldId, oldVer-
sionRef, newId, pos, len)

deletes len characters in position pos of version oldId
that becomes newId

Fig. 6. Operation defined in a leaf object – small operations are only used during synchronous
sessions.

As operations on the same text elements are not necessarily executed in se-
quence, and may be mixed with operations on other containers and elements, the
Commute method must be defined for all operations, allowing the compression
algorithm to consider all operations on one element together. Thus, the Commute
operation returns true for: every pair of operations that act upon different elements;
and for every pair of operations that act upon the same leaf element, if they act
upon different versions. Otherwise, the two operations do not commute.

The convertToLarge method is responsible to convert the first small operation
into a large operation. In this case, convertToLarge only converts InsertString and
DeleteString operations in the correspondent UpdateVersion(oldId, newId, new-
Text) operation, with newText being computed by applying the defined operation
to the value of the old data version.

The Compress method compresses InsertString and DeleteString operations ex-
ecuted in the resulting version of an UpdateVersion or CreateVersion operation,
by updating the parameters of these operations: the newText is updated with the

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

22 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

correspondent operation and the resulting version identifier is set to the new identi-
fier of the small operation. The pseudo-code of the defined methods is presented in
figure 7 (for simplicity, the Compress method only includes compression with the
UpdateVersion operation)e

Commute (op1: operation, op2: operation) : boolean =

IF(op1.targetSubObj() != op2.targetSubObj())

RETURN TRUE;

ELSE IF(op1.targetSubObj() instanceof TextLeaf)

RETURN NOT op1.targetVersions().overlap(op2.targetVersions());

ELSE

RETURN FALSE;

ConvertToLarge (op: operation) : operation =

IF(op == "InsertString(oldId, oldVersionRef, newId, pos, string)")

newText = oldVersionRef.getValue().insert(pos, string);

RETURN "UpdateVersion(oldId, newId, newText)";

ELSE IF(op == "DeleteString(oldId, oldVersionRef, newId, pos, len))"

newText = oldVersionRef.getValue().delete(pos, len);

RETURN "UpdateVersion(oldId, newId, newText)";

ELSE

RETURN op;

Compress (largeOp: operation, smallOp:operation) : boolean =

IF(smallOp == "InsertString(oldId2,oldVRef,newId2,pos,string)" AND

largeOp == "UpdateVersion(oldId,newId,newText)" AND oldId2 == newId)

newText2 = newText.insert(pos, string);

largeOp = "UpdateVersion(oldId, newId2, newText2)";

RETURN TRUE;

ELSE IF(smallOp=="DeleteString(oldId2, oldVRef, newId2, pos, len)" AND

largeOp=="UpdateVersion(oldId, newId, newText)" AND oldId2 == newId)

newText2 = newText.delete(pos, len);

largeOp = "UpdateVersion(oldId, newId2, newText2)";

RETURN TRUE;

ELSE

RETURN FALSE;

Fig. 7. Methods defined for log compression in the multi-synchronous text editor.

eNote that the parameters of the Commute and Compress methods defined in figure 7 include
the two operations involved. The methods defined in the log compression algorithm presented in
figure 4 receive the new operation and the log of already executed operations, being the second
operation identified by its position in the log. This approach allows to easily identify the second
operation, but also allow to transform the new operation to improve the change of being able to
commute and compress it, if appropriate (as in operational transformation).

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 23

5.2. Multi-synchronous Conferencing Tool

The multi-synchronous conferencing tool allows to maintain an integrated reposi-
tory of synchronous and asynchronous messaging interactions produced in the con-
text of some workgroup. To this end, the application manipulates a newsgroup-like
shared data space that users can use to discuss some topic. Besides allowing users
to post new messages in the shared data space, the application allows to integrate
conversations produced in a chat tool as posts of some discussion.

A shared space is used to discuss some topic and it may include multiple threads
of discussion (see figure 8). A shared space is represented as a coobject and each
thread is stored in a single sub-object (called thread sub-object). In each shared
space, there is an additional sub-object that indexes all threads of discussion (called
index sub-object).

Fig. 8. Multi-synchronous conferencing tool, while a post is being synchronous edited.

5.2.1. Asynchronous mode

In asynchronous mode, users can update the shared data space by creating new
threads of discussion or posting replies to existent messages. To this end, the fol-
lowing operations are defined. The thread sub-object includes an operation to create
a reply to an existent message. The index sub-object includes an operation to create
a new thread of discussion with an initial message. The execution of this operation
creates a new thread sub-object.

When users update the shared data space, the application immediately saves
its state sending the executed operations to a server. As it is usual in DOORS, the
operations are disseminated to all server replicas using a lazy epidemic propagation
strategy. The following reconciliation strategy is used in the servers to handle con-

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

24 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

current updates: all updates are executed in all replicas using a causal order (the
causal order component is used). This approach guarantees that all reply messages
are stored in all replicas after the original message. However, it does not guarantee
that all messages are stored in the same order in all replicas.

Regarding awareness, the current version of the application is very limited: it
only displays the new messages with a different color. The inclusion of active notifi-
cation techniques would be interesting, for example, for allowing users to be actively
notified when a new message is posted to a thread the user is interested on.

5.2.2. Synchronous mode

Our tool also allows users to maintain several replicas of a shared space synchro-
nously synchronized. This is achieved using the synchronous adaptation component,
as before. The reconciliation component executes all operations immediately in a
causal order (as in the servers). During synchronous interaction, users can engage
in synchronous discussions that are added to the shared space as a single reply to
the original post — replies are created using a chat tool.

For supporting these synchronous interactions, the thread sub-object defines one
additional operation: add a message to a post (that is being synchronously edited).
Each message of the synchronous conversation is propagated using this operation.

Our application includes an additional operation in the thread sub-object : delete
a message in a post. This operation was added to allow users to keep only a partial
transcript of the synchronous conversation in the asynchronous discussion thread.
To this end, in the end of the synchronous conversation the users are allowed to
select messages to be removed from the final text (by selecting the checkboxes
displayed with each message – see figure 8).

5.2.3. Saving the result of synchronous sessions

The result of a synchronous conversation is stored as a common post in the appropri-
ate thread sub-object. To this end, when an user decides to start a new synchronous
discussion, it issues a post message. The following add and delete message opera-
tions are compressed into this post message operation as explained in the remaining
of this section.

Thread sub-object large operation:
PostMessage(id, replyToId, subject,
message)

posts a reply to message replyToId with the
given subject and message

Thread sub-object small operations:
AddMessage(postId, msgId, text) adds the given message (text) to post postId

DelMessage(postId, msgId, len) delete the message msgId from post postId

Fig. 9. Operation defined in a thread sub-object – small operations are only used during synchro-
nous conversations.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 25

Commute (op1: operation, op2: operation) : boolean =

IF(op1.targetSubObj() != op2.targetSubObj())

RETURN TRUE;

ELSE IF(op1.targetSubObj() instanceof ThreadSubObject)

RETURN op1.targetThread() != op2.targetThread() OR

NOT op1.targetMsgs().overlap(op2.targetMsgs());

ELSE

RETURN FALSE;

ConvertToLarge (op: operation) : operation =

RETURN op;

Compress (largeOp: operation, smallOp:operation) : boolean =

IF(largeOp == "PostMessage(id, replyToId, subject, message)" AND

smallOp == "AddMessage(postId, msgId, text)" AND postId == id)

newMessage = message.appendLine("["+msgId+"]: " + text);

largeOp = "PostMessage(id, replyToId, subject, newMessage)";

RETURN TRUE;

ELSE IF(largeOp == "PostMessage(id, replyToId, subject, message)" AND

smallOp == "DelMessage(postId, msgId, len)" AND postId == id)

newMessage = message.removeStartingWith("["+msgId+"]:",len);

largeOp = "PostMessage(id, replyToId, subject, newMessage)";

RETURN TRUE;

ELSE

RETURN FALSE;

Fig. 10. Methods defined for log compression in the multi-synchronous conferencing tool.

Figure 9 presents the operations defined in the thread sub-object and figure 10
presents the methods used in the log compression algorithm that converts small
operations into large operations. As in the previous example, to allow compression,
it is necessary to consider operations on the same post together. To this end, the
Commute method returns true for: any pair of operations on different threads;
any pair of operations on the same thread of discussion, if they act upon different
messages. Otherwise, messages do not commute.

No rule is need for converting small operations to large operations, as in the be-
ginning of the synchronous conversation a post message is executed. This operation
is used to compress all the following small messages.

The compression rules are very simple. The add message operation is compressed
in a post message operation by appending the add message text to the end of
the post message text. A convention is used to allow the deletion of messages – a
message starts with “[msgId]”, where msgId is a unique identifier of the message.
The application interface skips this prefix when displaying messages.

The delete message operation is compressed in a post message operation by
deleting the message text from the post message text. The start of the message to
delete is identified using the message identifier.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

26 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

6. Related Work

Several systems have been designed or used to support the development of asynchro-
nous groupware applications in large-scale distributed settings (e.g. Lotus Notes5,
Bayou35, BSCW10, Prospero6, Sync42, Groove32). Our basic system shares goals and
approaches with some of these systems but it presents two distinctive characteris-
tics. First, the object framework not only helps programmers in the creation of new
applications but it also allows them to use different data-management strategies in
different applications (while most of those systems only allow the customization of
a single strategy). Second, unlike our system and BSCW, all other systems handle
the reconciliation problem but do not address awareness support. From these sys-
tems, three can provide some integration between synchronous and asynchronous
interactions.

In Prospero6, it is possible to use the concept of streams (that log executed
operations) to implement multi-synchronous applications (by varying the frequency
of stream synchronization). This approach cannot support application that need to
use different operations or different reconciliation strategies.

In Bayou, a replicated database system, the authors claim that it is “possi-
ble to support a fluid transition between synchronous and asynchronous mode of
operation”35 by connecting to the same server. However, without a notification
mechanism that allows applications to easily update their interface and relying on
a single replica, it is difficult to support synchronous interactions efficiently.

In Groove32, some applications can be used in synchronous and asynchronous
(off-line) modes. In Sketchpad, the same reconciliation strategy seems to be used
(execute all updates by some coherent order, using a last-writer wins strategy).
This may lead to undesired results in asynchronous interactions as the overwritten
work may be large and important. In this case, it is not acceptable to arbitrarily
discard (or overwrite) the contribution produced by some user, and the creation of
multiple versions seems preferable29,33.

Other groupware systems support multi-synchronous interactions. In Ref. 31, the
authors define the notion of a room, where users can store objects persistently and
run applications. Users work in synchronous mode if they are inside the room at the
same time. Otherwise, they work asynchronously. In SEPIA43, the authors present
a multi-synchronous hypertext authoring system. A tightly coupled synchronous
session, with shared views, can be established to allow multiple users to modify the
same node or link simultaneously. In Ref. 44, the authors describe a distance-learning
environment that combines synchronous and asynchronous work. Data manipulated
during synchronous sessions is obtained from the asynchronous repository, using a
simple locking or check-in/check-out model.

Unlike DOORS, these systems lack support for asynchronous groupware in mo-
bile computing environments, as they do not support disconnected operation (they
all require access to a central server). Furthermore, either they do not support di-
vergent streams of activity to occur during asynchronous edition or they use a single

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 27

reconciliation solution (versioning). Our solution is more general, allowing to use
the appropriate reconciliation solutions for each setting.

In Ref. 25, the authors propose a general notification system that supports multi-
synchronous interactions by using different strategies to propagate updates. They
also present a specific solution for text editors that implements an operational
transformation (OT) algorithm that solves some technical problems for using OT
in asynchronous settings. However, as discussed in section 3.2, in asynchronous
settings, OT may lead to unexpected results that do not satisfy any user – creating
multiple version seems preferable. Our approach, allowing the use of a different
reconciliation technique in each setting, can address this problem.

SAMS24 is an environment that supports multi-synchronous interactions using
an OT algorithm extended with a constraint-based mechanism to guarantee seman-
tic consistency. The proposed approach seems difficult to use and, as the previous
one, it does not allow to use different operations or reconciliation techniques in each
setting (as it is important for supporting some applications).

In Ref. 45, the authors present a system that supports both synchronous and
asynchronous collaboration using a peer-to-peer architecture to replicate shared ob-
jects. In this system, replica consistency is achieved in both settings by executing all
operations in the same order – an optimistic algorithm using roll back/roll forward
is used. Again, this approach does not address the need of using different operations
and different reconciliation strategies in each setting.

7. Final Remarks

In this paper, we have proposed a model to integrate synchronous and asynchronous
interactions in mobile computing environments, detailing the work presented in 46.
We have implemented the proposed approach on top of the DOORS replicated
object store, that supports asynchronous groupware relying on optimistic server
replication and client caching.

To integrate synchronous sessions in the overall asynchronous activity we ad-
dress the three main problems identified as important in section 3. First, our system
maintains multiple replicas of the data objects stored in the DOORS repository syn-
chronized in realtime. To this end, we rely on a group communication infrastructure
to propagate all operations to all replicas.

Second, our system addresses the problem of using different reconciliation and
awareness strategies in different settings. To this end, the programmer may use an
extension to the DOORS object framework that allows to use different reconciliation
and awareness components in each setting.

Finally, it addresses the problem of using operations with different granularities
for propagating updates in synchronous and asynchronous settings. To this end, it
integrates a compression algorithm that converts a long sequence of small operations
used in synchronous settings into a small sequence of large operations.

The combination of these mechanisms allows our system to provide support for

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

28 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

multi-synchronous applications – the applications presented in section 5 exemplify
the use of the proposed approach. To our knowledge, our system is the only one
to provide an integrated solution for all those problems in a replicated architecture
that supports disconnected operation. More information about the DOORS system
is available from http://asc.di.fct.unl.pt/doors/.

8. Acknowledgments

This work was partially supported by FCT/MCTES through POS Conhecimento /
FEDER.

References

1. Mark Roseman and Saul Greenberg. Building real-time groupware with groupkit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction (TOCHI),
3(1):66–106, 1996.

2. Hyong Sop Shim, Robert W. Hall, Atul Prakash, and Farnam Jahanian. Providing flex-
ible services for managing shared state in collaborative systems. In Proceedings of the
Fifth European Conference on Computer Supported Cooperative Work (ECSCW’97),
pages 237–252. Kluwer Academic Publishers, September 1997.

3. Christian Schuckmann, Lutz Kirchner, Jan Schümmer, and Jörg M. Haake. Designing
object-oriented synchronous groupware with COAST. In Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work, pages 30–38. ACM Press, 1996.

4. Paul Dourish. The parting of the ways: Divergence, data management and collabora-
tive work. In Proceedings of the European Conference on Computer-Supported Coop-
erative Work ECSCW’95, pages 213–222. ACM Press, September 1995.

5. Lotus. IBM Lotus Notes. http://www.lotus.com/notes.
6. Paul Dourish. Using metalevel techniques in a flexible toolkit for cscw applications.

ACM Transactions on Computer-Human Interaction (TOCHI), 5(2):109–155, 1998.
7. M. Koch. Design issues and model for a distributed multi-user editor. Computer Sup-

ported Cooperative Work, 3(3-4):359–378, 1995.
8. Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, and Sérgio Duarte. Data

management support for asynchronous groupware. In Proc. of the 2000 ACM Confer-
ence on Computer supported cooperative work, pages 69–78. ACM Press, 2000.

9. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proceedings
of the 1989 ACM SIGMOD International Conference on Management of data, pages
399–407. ACM Press, 1989.

10. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and
G. Woetzel. Basic Support for Cooperative Work on the World Wide Web. Interna-
tional Journal of Human Computer Studies: Special issue on Novel Applications of
the WWW, 46(6):827–856, 1997.

11. Per Cederqvist, Roland Pesch, et al. Version management with CVS, date unknown.
http://www.cvshome.org/docs/manual.

12. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, and John Larson. Epidemic algo-
rithms for replicated database maintenance. In Proceedings of the sixth Annual ACM
Symposium on Principles of distributed computing, pages 1–12. ACM Press, 1987.

13. L. Kawell Jr., S. Beckhardt, T. Halvorsen, R. Ozme, and I.Greif. Replicated document
management in a group communication system. In D. Marca and G. Bock, editors,
Groupware: Software for Computer-Supported Cooperative Work, pages 226–235. IEEE
Computer Society Press, Los Alamitos, CA, 1992.

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

Data management problems for supporting multi-synchronous groupware and a solution 29

14. Michael J. Knister and Atul Prakash. DistEdit: a distributed toolkit for supporting
multiple group editors. In Proceedings of the 1990 ACM Conference on Computer-
supported cooperative work, pages 343–355. ACM Press, 1990.

15. Yun Yang, Chengzheng Sun, Yanchun Zhang, and Xiaohua Jia. Real-time cooperative
editing on the internet. IEEE Internet Computing, 4(3):18–25, 2000.

16. Chengzheng Sun and Clarence Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In Proceedings of the 1998 ACM Con-
ference on Computer supported cooperative work, pages 59–68. ACM Press, 1998.

17. Gérald Oster Abdessamad Imine, Pascal Molli and Michaël Rusinowitch. Proving
correctness of transformation functions in real-time groupware. In Proceedings of the
8th European Conference on Computer-Supported Cooperative Work (ECSCW’03),
September 2003.

18. Nicolas Vidot, Michelle Cart, Jean Ferrié, and Maher Suleiman. Copies convergence
in a distributed real-time collaborative environment. In Proceedings of the 2000 ACM
Conference on Computer supported cooperative work, pages 171–180. ACM Press,
2000.

19. François Pacull, Alain Sandoz, and André Schiper. Duplex: a distributed collaborative
editing environment in large scale. In Proceedings of the 1994 ACM Conference on
Computer supported cooperative work, pages 165–173. ACM Press, 1994.

20. Irene Greif and Sunil Sarin. Data sharing in group work. ACM Transactions on In-
formation Systems (TOIS), 5(2):187–211, 1987.

21. Walter F. Tichy. RCS - a system for version control. Software - Practice and Experi-
ence, 15(7):637–654, 1985.

22. James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda File
System. ACM Transactions on Computer Systems (TOCS), 10(1):3–25, 1992.

23. Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving
convergence, causality preservation, and intention preservation in real-time coopera-
tive editing systems. ACM Transactions on Computer-Human Interaction (TOCHI),
5(1):63–108, 1998.

24. Pascal Molli, Hala Skaf-Molli, Gérald Oster, and Sébastien Jourdain. SAMS: Synchro-
nous, Asynchronous, Multi-Synchronous Environments. In Proceedings of the 2002
ACM Conference on Computer supported cooperative work in design, 2002.

25. Haifeng Shen and Chengzheng Sun. Flexible notification for collaborative systems. In
Proceedings of the 2002 ACM Conference on Computer supported cooperative work,
pages 77–86. ACM Press, 2002.

26. Dave Webster Saul Greenberg, Mark Roseman and Ralph Bohnet. Issues and expe-
riences designing and implementing two group drawing tools. In Proceedings of 25th
Annual Hawaii International Conference on System Sciences, pages Vol. 4: 139–150,
1992.

27. R. E. Newman-Wolfe, M. L. Webb, and M. Montes. Implicit locking in the ensemble
concurrent object-oriented graphics editor. In Proceedings of the 1992 ACM Confer-
ence on Computer-supported cooperative work, pages 265–272. ACM Press, 1992.

28. Dongqiu Qian and M. D. Gross. Collaborative design with NetDraw. In Proceedings
of Computer Aided Architectural Design (CAAD) Futures ’99, 1999.

29. Chengzheng Sun and David Chen. Consistency maintenance in real-time collabora-
tive graphics editing systems. ACM Transactions on Computer-Human Interaction
(TOCHI), 9(1):1–41, 2002.

30. Jeffrey D. Campbell. Usability and interference for collaborative diagram develop-
ment. In Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Work: Third Annual collaborative editing workshop. ACM Press,

November 16, 2005 19:37 WSPC/INSTRUCTION FILE ijcis

30 Nuno Preguiça, J.Legatheaux Martins, Henrique Domingos, Sérgio Duarte

2001.
31. Saul Greenberg and Mark Roseman. Using a room metaphor to ease transitions in

groupware. Technical Report 98/611/02, Department of Computer Science, University
of Calgary, Alberta, Canada, January 1998.

32. Groove. Groove workspace v. 2.5. http://www.groove.net.
33. Randy H. Katz. Toward a unified framework for version modeling in engineering data-

bases. ACM Comput. Surv., 22(4):375–409, 1990.
34. David Beard, Murugappan Palaniappan, Alan Humm, David Banks, Anil Nair, and

Yen-Ping Shan. A visual calendar for scheduling group meetings. In Proceedings of
the 1990 ACM Conference on Computer-supported cooperative work, pages 279–290.
ACM Press, 1990.

35. W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike J. Spreitzer, Dou-
glas B. Terry, and Marvin M. Theimer. Designing and implementing asynchronous
collaborative applications with Bayou. In Proceedings of the 10th Annual ACM Sym-
posium on User interface software and technology, pages 119–128. ACM Press, 1997.

36. Microsoft. Microsoft outlook. http://www.microsoft.com/outlook.
37. Alain Karsenty and Michel Beaudouin-Lafon. An algorithm for distributed group-

ware applications. In Proceedings of the 13th International Conference on Distributed
Computing Systems, pages 195–202. IEEE Computer Society Press, May 1993.

38. Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and Peter Druschel. The
IceCube approach to the reconciliation of divergent replicas. In Proceedings of the
twentieth Annual ACM Symposium on Principles of distributed computing, pages 210–
218. ACM Press, 2001.

39. Paul Dourish and Victoria Bellotti. Awareness and coordination in shared workspaces.
In Proceedings of the 1992 ACM Conference on Computer-supported cooperative work,
pages 107–114. ACM Press, 1992.

40. Carl Gutwin and Saul Greenberg. Effects of awareness support on groupware usability.
In Proceedings of the SIGCHI Conference on Human factors in computing systems,
pages 511–518. ACM Press/Addison-Wesley Publishing Co., 1998.

41. JGroups. http://www.jgroups.org.
42. Jonathan P. Munson and Prasun Dewan. Sync: A java framework for mobile collabo-

rative applications. IEEE Computer, 30(6):59–66, June 1997.
43. Jörg M. Haake and Brian Wilson. Supporting collaborative writing of hyperdocu-

ments in SEPIA. In Proceedings of the 1992 ACM Conference on Computer-supported
cooperative work, pages 138–146. ACM Press, 1992.

44. Changtao Qu and Wolfgang Nejdl. Constructing a web-based asynchronous and syn-
chronous collaboration environment using webdav and lotus sametime. In Proceedings
of the 29th Annual ACM SIGUCCS Conference on User services, pages 142–149. ACM
Press, 2001.

45. Werner Geyer, Jörgen Vogel, Li-Te Cheng, and Michael Muller. Supporting activity-
centric collaboration through peer-to-peer shared objects. In GROUP ’03: Proceedings
of the 2003 International ACM SIGGROUP Conference on Supporting group work,
pages 115–124, New York, NY, USA, 2003. ACM Press.

46. Nuno M. Preguiça, José Legatheaux Martins, Henrique João L. Domingos, and Sérgio
Duarte. Integrating synchronous and asynchronous interactions in groupware applica-
tions. In Hugo Fuks, Stephan Lukosch, and Ana Carolina Salgado, editors, CRIWG,
volume 3706 of Lecture Notes in Computer Science, pages 89–104. Springer, 2005.

