
Replicated Software Components for Improved
Performance?

Paulo Mariano, João Soares and Nuno Preguiça

CITI / Dep. de Informática - Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa,

Quinta da Torre, 2829 -516 Caparica, Portugal

Abstract. In recent years, CPU evolution has shifted from the continu-
ous increase of speed to an increase in the number of processing cores. In
this paper, we propose to take advantage of the new multicore systems,
by diverse replication of software components. This approach, comple-
mentary to other directions that are being tackled, attempts to obtain a
better performance for a macro-component consisting of several diverse
implementations of the same specification, by returning, for each oper-
ation, the result from the replica that is faster for that operation. We
present an early design of a system that implements this approach.

Keywords: replication, parallel programming, multicore systems

1 Introduction

Until recently, CPUs evolution was a mix of improved functionality and a steadily
increase of clock speed. However, this path of evolution have reached its end, with
an increasing difficulty on further increasing clock speed [4]. Currently, hardware
manufacturers are deploying CPUs with an increasing number of processing
cores. With multicore CPUs, programs must include multiple concurrent threads
of activity to take benefit from the multiple cores available.

Previous experience in the field of concurrent/parallel programming shows
that creating such applications is a highly demanding task even for experienced
programmers. This problem has led to an intense research activity for finding
good abstractions for expressing parallel computations and to build suitable
runtime support [2,5,3] that simplifies this task in multicore environments.

In this paper, we propose a complementary approach that can be used by
both applications that include multiple threads and by applications that in-
clude a single thread. The main insight for our approach is that applications
almost always resort on a set of components with standard interfaces - e.g. data
structures, algorithms, etc. For these components, several implementations are
available, which have different performance for different inputs or for different

? This work was partially supported by FCT/MCTES, project
#PTDC/EIA/74325/2006 and #PTDC/EIA-EIA/108963/2008 and CITI.

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 95–98

Replica 1

Replica 2

Replica 4

Replica 3

M
anager

 Internal
Scheduler

Application
Method Call

Submit Job
Macro-Component

Executor 1

Executor N

Executor 2
...

 Work
Queue

Global Scheduler

Fig. 1. Macro-component system model.

operations. Thus, we propose to locally replicate these components using differ-
ent underlying implementations, building a macro-component.

This basic macro-component concept can be used for two different purposes.
Reliability, by masking software bugs, similar to n-version programming [1] but
on a smaller scale. Or improved performance, by returning the result obtained by
the fastest replica. In this case, an operation would be executed in the underlying
replicas concurrently and the first result returned by these would be the result
returned by the macro-component.

Although the idea seems simple, making it work in practice has a number
of technical challenges that must be addressed, including performance issues,
coordination among macro-components in an application, etc. In this paper we
present our initial design for building and supporting macro-components.

The remaining of this paper is organized as follows: Section 2 describes our
initial design and Section 3 concludes the paper with some final remarks.

2 Design

In this section we present the initial design for a macro-component runtime sys-
tem. To simplify this initial design a number of assumptions are made about
the macro-component underlying micro-components (or replicas). First, it is
assumed that the replicas do not fail arbitrarily. Second, they must be self con-
tained. Implementations are not allowed to interact with their exterior through
any means other than operation results. Third, operations must be deterministic.

In figure 1, we present the macro-component runtime architecture. The ar-
chitecture can be divided in two main components: the global scheduler and
the individual macro-components. The macro-components are composed of a
manager, which provides the interface of the implemented specification to the
exterior, a set of underlying replicas and an internal scheduler. It is not necessary
to have any knowledge on the implementation details of the underlying replicas
as long as they all implement the same specification. The global scheduler keeps
track of the several execution jobs in a work queue and schedules them for execu-
tion by a pool of executor threads in a producer-consumer scheme. More details
on the purpose and functioning of both the internal schedulers and the global
scheduler can be found in section 2.1.

96 INForum 2010 Paulo Mariano, Nuno Preguiça, João Soares

When the application calls an operation on the macro-component, the man-
ager forwards it to the internal scheduler. The internal scheduler creates one or
more jobs for the operation which are then submitted to the global scheduler. If
the operation can be executed asynchronously (i.e., it returns no result and can
never fail), the application thread can immediately continue execution, other-
wise it must block until a result is available. Operations submitted to the global
scheduler are kept in a work queue until they are handed for execution to one
of the executor threads.

2.1 Scheduling

The scheduling of operations in a macro-component environment takes two
forms in the proposed model, internal scheduling and global scheduling. Internal
scheduling is done internally in the macro-component and consists on the cre-
ation of jobs to be submitted to the global scheduler. These jobs consist on the
execution of an operation on a given replica. As such, the internal scheduler is
responsible to decide which replicas will run an operation. Global scheduling, on
the other hand, handles the choice of which job to execute at any given moment.

Internal Scheduling As replica states must be maintained coherent, opera-
tions which update this state must be executed everywhere. However, for read
operations this is not required. In our prototype we have implemented the fol-
lowing three internal scheduling strategies based on this property.

Read-all Reads are executed in all replicas and the result returned will be
that of the replica that finishes processing first. If the macro-component
experiences a light load, this strategy ensures the best performance for all
operations. However, stress tests reveal a problem for this strategy as replicas
can be held back by unnecessary slow operations instead of useful work.

Read-one With read-one, the macro-component directs a read operation to a
single replica. This replica is, hopefully, the one with the best performance
for this operation type. The issue with this strategy is how can we predict
which replica best fits an operation.

Read-multiple A compromise between read-all and read-one modes. An oper-
ation is assigned to a subset of the replicas.

Macro

Micro 1

Micro 2

Macro

Micro 1

Micro 2

Read-All Read-One

Fig. 2. Read-all vs read-one example timeline.

Replicated Software Components for Improved Performance INForum 2010 – 97

Global Scheduling This scheduler works as a distributor of jobs for the ex-
ecutors. Various scheduling strategies can be implemented, but some concerns
must be addressed in order to maintain proper functionality. First, the relative
order of update operations must be preserved. This means that update oper-
ations must be executed in the same order on all replicas. If these operations
are executed out of order, macro-component replicas’ internal state may diverge,
leading to incorrect or unexpected results. Also, while read operations can be
reordered they must be executed in a state that reflect all previous updates.

For simple independent macro-components, these ordering rules can be en-
forced for each macro-component independently, as there is no relationship be-
tween the replicas. In more complex cases, this independence may not hold due
to relationships between macro-components. For example, in a macro-component
based JDBC driver, the Connection macro-component cannot be allowed to com-
mit before all previous operations on its Statements are finished.

3 Final Remarks

In this paper, we introduce the concept of macro-component, a software com-
ponent that combines several different implementations of a given component
specification. We propose the use of macro-components as a mechanism to im-
prove the performance of applications in multicore systems and present an initial
design of a runtime system to support this concept.

The initial evaluation with an early prototype of our system shows that the
runtime system imposes non-negligible overhead. However, even with a non-
optimized implementation it was possible to obtain a better overall performance
for a macro-component that implements an in-memory SQL database.

References

1. A. Avizienis. The n-version approach to fault-tolerant software. IEEE Trans. Softw.
Eng., 11(12):1491–1501, 1985.

2. J. Larus and C. Kozyrakis. Transactional memory. Commun. ACM, 51(7):80–88,
2008.

3. E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing security checks
on commodity hardware. In S. J. Eggers and J. R. Larus, editors, ASPLOS, pages
308–318. ACM, 2008.

4. K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3(7):26–29,
2005.

5. C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In HPCA ’07: Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

98 INForum 2010 Paulo Mariano, Nuno Preguiça, João Soares

