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Abstract

Bloom filters provide space-efficient storage of sets at the cost of a probability of false positives on membership queries. The
size of the filter must be defined a priori based on the number of elements to store and the desired false positive probability,
being impossible to store extra elements without increasing the false positive probability. This leads typically to a conservative
assumption regarding maximum set size, possibly by orders of magnitude, and a consequent space waste. This paper proposes
Scalable Bloom Filters, a variant of Bloom filters that can adapt dynamically to the number of elements stored, while assuring a
maximum false positive probability.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Bloom filters [1] provide space-efficient storage of
sets at the cost of a probability of false positive on mem-
bership queries. Insertion and membership testing in
Bloom filters implies an amount of randomization, since
elements are transformed using one-way hash functions.
Testing for the presence of elements that have actually
been inserted in the filter will always give a positive re-
sult; there are no false negatives. On the contrary, there
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is always some probability of false positives: elements
that have not been inserted into the filter can erroneously
pass the membership test.

An important property of Bloom filters is the lin-
ear relation between the filter size and the number of
elements that can be stored. For any given maximum
false positive probability, it is possible to determine how
much filter state is needed per element [1,2]. As ex-
pected, lower false positive rates require more state per
element.

If the maximum allowable error probability and the
number of elements to store are both known, it is
straightforward to dimension an appropriate filter. How-
ever, it is not always possible to know in advance how
many elements will need to be stored; this leads to over-
dimensioning the filters or relinquishing the maximum
error probability.
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In this paper we provide a solution for the case in
which not only is the number of elements not known in
advance but also we need to strictly enforce some max-
imum error probability. We prove that this is possible,
by means of a novel construction: Scalable Bloom Fil-
ters (SBF).

After a brief review of related work, this paper is
organized as follows. Section 3 reviews the basic mathe-
matical properties of Bloom filters. Section 4 introduces
Scalable Bloom Filters and gives an evaluation of their
properties. Section 5 ends the paper with our conclu-
sions.

2. Related work

In recent years, Bloom filters have received increased
attention, and they are now being used in a large number
of systems, including peer-to-peer systems [3,4], web
caches [5], database systems [6] and others [7,2]. Sev-
eral variants of the basic Bloom filter technique have
been proposed in the literature.

In [5] the authors introduce the idea of a counting
Bloom filter, allowing elements to be removed from
the set represented by the Bloom filter; Spectral Bloom
Filters [8] use a similar approach to store multi-sets;
[9] proposes a multi-segment Bloom filter that allows
efficient access when this data structure is stored on
disk; a similar approach [10] is used in a network rout-
ing algorithm; Compressed Bloom Filters [11] improve
performance when the Bloom filter is passed as a mes-
sage, by using larger but sparser filters that lead to
smaller compressed sizes; Bloomier filters [12] allow to
efficiently associate values with a subset of the domain
elements, by using sequences of pairs of Bloom filters.

All these variants suffer from the same limitation of
the original Bloom filters: it is necessary to dimension, a
priori, the size of the filters. We believe that it would be
possible to drop this limitation for most (or even all) of
these proposals by creating scalable variants along the
lines of SBF.

3. Bloom filters

A Bloom filter is traditionally implemented by a sin-
gle array of M bits, where M is the filter size. On filter
creation all bits are reset to zeroes. A filter is also pa-
rameterized by a constant k that defines the number of
hash functions used to activate and test bits on the fil-
ter. Each hash function should output one index in M .
When inserting an element e on the filter, the bits in the
k indexes h1(e), h2(e), . . . , hk(e) are set.

In particular, a filter with M = 15 bits and k = 3 hash
functions could become as follows, after the insertion of
one element:

0 0 1 0 0 0 0 0 0 0 1 0 1 0 0

The same procedure is used to insert other elements,
each time setting the bits given by the corresponding k

indexes.
In order to query a Bloom filter, say for element x, it

suffices to verify if all bits in indexes h1(x), h2(x), . . . ,

hk(x) are set. If one or more of these bits is not set, then
the queried element is definitely not present on the filter.
Otherwise, if all these bits are set, then the element is
considered to be on the filter. Given this procedure, an
error probability exists for positive matches, since the
tested indexes might have been set by the insertion of
other elements.

With the above setup, all hash functions are used
to generate indexes over M . Since these hash func-
tions are independent, nothing prevents collisions in
the outputs. In the most extreme case we could have
h1(x) = h2(x) = · · · = hk(x). This means that in the
general case each element will be described by 1 to k

distinct indexes. Although for large values of M a col-
lision seldom occurs, this aspect makes some elements
more prone to false positives (and also complicates the
analytical derivation of probabilities) [13].

A variant of Bloom filters [2], which we adopt in this
paper, consists of partitioning the M bits among the k

hash functions, thus creating k slices of m = M/k bits.
In this variant, each hash function hi(), with 1 � i � k,
produces an index over m for its respective slice. There-
fore, each element is always described by exactly k bits,
which results in a more robust filter, with no element
specially sensitive to false positives.

For M = 15 and k = 3 a filter would have 3 slices
with 5 bits in each. After insertion of one element, the
resulting configuration would have exactly one bit set in
each slice. Each slice is depicted here in a column:

0 0 0
0 1 0
0 0 0
1 0 1
0 0 0︸ ︷︷ ︸

k

3.1. False positives

False positives can occur when testing for the pres-
ence of a given element x, not present in the filter, and
all k bits given by hi(x), 1 � i � k, happen to be set
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due to the insertion of other elements. Intuitively, if the
number of slices k or the slice size m are increased the
error probability will decrease.

The probability of a given bit being set in a slice is
the fill ratio p between the number of set bits in the
slice and the slice size m. For a large value m, this ratio
will be approximately the same across all slices, and the
false positive probability P for the filter will be

P = pk.

In the example above, with one element inserted, p is
1/5 and the overall error probability P is (1/5)3, thus
0.8%.

In each slice, the probability that a given 0 bit be-
comes set after introducing one element is 1/m; it will
remain unset with probability 1 − 1/m. If n elements
have been inserted, the probability that the given bit is
still 0 is (1 − 1/m)n. Therefore, the probability that a
specific bit in a slice is set after n insertions, which is
also the expected fill ratio p, is

p = 1 −
(

1 − 1

m

)n

.

3.2. Bounding the error

From the analysis in the previous section, it is evident
that the error probability P increases with n and de-
creases with m and k. We now determine how to choose
k (and thus m) such that, for a given filter size M , we
can maximize the number of stored elements n, while
keeping the error probability below a certain value P .

For usable values of m, 1 − 1/m is almost the same
as e−1/m (from the Taylor series expansion); we can use
this approximation to obtain:

p ≈ 1 − e−n/m,

from which we obtain

n ≈ −m ln(1 − p).

From M = km and P = pk we obtain m = M lnp/ lnP ;
therefore:

n ≈ M
lnp ln(1 − p)

− lnP
.

For any given error probability P and filter size M ,
n is maximized by making p = 1/2, regardless of P

or M . As p corresponds to the fill ratio of a slice, a filter
depicts an optimal use when slices are half full. With
p = 1/2 we obtain

n ≈ M
(ln 2)2

| lnP | .

Table 1
Several capacities for a bloom filter with 32 KB

P 0.1% 0.01% 0.001% 0.0001%

k 10 14 17 20
m 26 214 18 724 15 420 13 107
n 18 232 13 674 10 939 9116

In this expression it is clear that the number of ele-
ments n that can be stored, for a given error P , is linear
on the filter size M . Finally, from P = pk and with
p = 1

2 we obtain

k = log2
1

P
.

With these formulae it is now possible to determine
the optimal filter parameters in order to respect a max-
imum error probability. For example, to have a maxi-
mum error of 0.1% we should have at least 10 slices,
since log2

1
0.001 ≈ 9.96 (210 = 1024). If this filter is al-

located 32 kilobytes, each slice will have 26 214 bits and
the filter is predicted to hold up to 18 232 elements. See
Table 1.

4. Scalable Bloom Filters

A Scalable Bloom Filter addresses the problem of
having to choose an a priori maximum size for the set,
and allows an arbitrary growth of the set being repre-
sented. The two key ideas are:

– A SBF is made up of a series of one or more (plain)
Bloom filters; when filters get full due to the limit
on the fill ratio, a new one is added; querying is
made by testing for the presence in each filter.

– Each successive bloom filter is created with a
tighter maximum error probability on a geomet-
ric progression, so that the compounded probability
over the whole series converges to some wanted
value, even accounting for an infinite series.

The SBF starts with one filter with k0 slices and er-
ror probability P0. When this filter gets full, a new one
is added with k1 slices and P1 = P0r error probabil-
ity, where r is the tightening ratio with 0 < r < 1. At a
given moment we will have l filters with error probabil-
ities P0,P0r,P0r

2, . . . ,P0r
l−1. The compounded error

probability for the SBF will be:

P = 1 −
l−1∏
i=0

(
1 − P0r

i
)
.
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We can use the known approximation

1 −
∏
i

(1 − Pi) �
∑

i

Pi,

to obtain an upper bound (which will be tight for
small Pi ):

P �
l−1∑
i=0

P0r
i � lim

l→∞

l−1∑
i=0

P0r
i

and therefore

P � P0
1

1 − r
.

The number of slices for each filter will be:

k0 = log2 P −1
0

and

ki = log2 P −1
i = k0 + i log2 r−1.

To have each ki as an integer, a natural choice will be
r = 1/2, resulting in:

ki = k0 + i,

which means an extra slice per new filter. The com-
pounded error probability for the SBF will be bounded
by:

P � 2P0 = 21−k0 .

Another possibility is to use an r other than 1/2 and
round up the resulting ki ’s to obtain the number of
slices. We will see below that choosing r around 0.8–0.9
will result in better average space usage for wide ranges
of growth.

4.1. Scalable growth

The estimation of the set size that is to be stored
in a filter may be wrong, possibly by several orders of
magnitude. We may also want to use not much more
memory than needed at a given time, and start a filter
with a small size. Therefore, a SBF should be able to
adapt to variations in size of several orders of magni-
tude in an efficient way.

When a new filter is added to a SBF, its size can be
chosen orthogonally to the required false positive prob-
ability. A flexible growth can be obtained by making
the filter sizes grow exponentially. We can have a SBF
made up of a series of filters with slices having sizes
m0,m0s,m0s

2, . . . ,m0s
l−1.

Given that filters stop being used when the fill ratio
reaches 1/2, filter i will hold approximately:

ni ≈ m0s
i ln 2

Fig. 1. Space usage as a function of set size. Two SBFs, with slice
growth factors s = 1 and s = 2, are compared with a static bloom.
Both with r = 0.5, m0 = 128 and P = 10−6.

elements. The SBF with l stages will hold about

(ln 2)m0

l−1∑
i=0

si

elements. This geometric progression allows a fast
adaptation to set sizes of different orders of magnitude.
A practical choice will be s = 2, which preserves mi as
a power of 2, if m0 already starts as such; this is useful,
as the range of a hash function is typically a power of 2.

In general, other values of s may be used. Fig. 1
shows the required size for the SBF as a function of set
size, n, for s = 1 and s = 2. The case s = 1 gives a con-
stant m in all stages; this case is not feasible as it would
lead to much inefficiency, as the number of stages re-
quired grows linearly with set size, and in each stage an
extra slice would be required (for r = 1/2); this would
result in rapidly increasing space per element and com-
putational cost for the hash functions. For s = 2 we can
see that not only the number of stages remains low, as it
increases logarithmically with the set size, but also the
space required for the 22 624 element set is only slightly
more than for a static filter dimensioned for that size.

To better understand adaptation to growth, we should
not plot space usage against an absolute set size, but
against the relative growth over the initial size. We
should have a scale-free graph telling us how much
space will be used according to the orders of magnitude
in size the filter has to adapt to. Fig. 2 plots the space us-
age relative to a static filter dimensioned for the required
size. Here we can see that if the set had to grow by 6 or-
ders of magnitude, for s = 2 the SBF would use about
twice the space of a static filter exactly dimensioned for
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Fig. 2. Relative space usage with respect to a static filter as a function
of set growth. With r = 0.5 and P = 10−6.

Fig. 3. Number of stages as a function of s.

the final size, and for s = 4 about 50% more space. In
terms of space usage we can see that practical values of
s like 2, 4 or above can be chosen, and values below 2
and approaching 1 will give progressively worse results.

Another aspect to consider in the choice of s is the
number of stages required for the SBF. Fig. 3 plots the
number of stages as a function of s, for two cases of set
growth: 102 and 106. This figure confirms that s should
not be chosen near 1 and that the practical choice of s

as a power of two is a sensible one with this respect.
From these figures one could be led to think that the

larger the s the better. However, as s tends to infinity,
each successive stage of the SBF will take considerably
more space which will remain poorly used for consid-
erably more time until it gets full. A better criterion is
to consider the average space usage over the lifetime of

Fig. 4. Average relative space usage as a function of s, for different
combinations of set growth and P , for optimal r .

the SBF from an empty set until the final set size. Fig. 4
plots this average space usage relative to a static filter
(dimensioned for the final set size), as a function of s,
for several combinations of error probability (10−3 and
10−6) and set growth (102 and 106). These curves cover
a wide range of scenarios; they show that, as long as s

is not very close to 1, increasing s is not profitable.
Combining these two criteria, i.e., average space and

number of stages, with the convenience of having a
power of two, we can conclude that 2 or 4 will be a sen-
sible choice for s. To keep the number of stages small,
we can choose s = 2 if we expect a small set growth and
s = 4 if we expect a larger growth.

4.2. Choosing the error probability ratio

The other parameter of a SBF that we need to choose
is the error probability ratio r . We can choose values
other than 0.5 and round up the resulting number of
slices for stage i:

ki = k0 + i log2 r−1.

Fig. 5 compares the space usage as a function of set
growth for different combinations of P and r . It shows
that if we use an r larger than 0.5, although we start by
using more space (we need more initial slices, k0, as P0
needs to be smaller for the geometric series to converge
to the same P ), after some point we end up using less
and less space as the set grows, as we add slices less
frequently at each new stage. It specially pays to use a
large r for a tighter error probability P , as the few extra
slices needed initially will be a small overhead over the
already large number of slices needed for r = 0.5.
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Fig. 5. Relative space usage as a function of growth, for different com-
binations of P and r and s = 2.

Fig. 6. Optimal r as a function of growth magnitude, for s ∈ {√2,2,4}
and P = 10−6.

Fig. 4 shows average relative space usage, calculated
for the optimal r that minimizes average space, for each
combination of growth and s values (the optimal r does
not depend on P ).

In order to select an appropriate value for r we can
observe how the optimal r behaves for different growth
and s values. Fig. 6 shows the optimal r as a function
of set growth, for three different values of s (

√
2,2,4).

Considering the choice of s = 2 for small expected
growth and s = 4 for larger growth, one can see that
r around 0.8–0.9 is a sensible choice, that gives better
space usage than the natural r = 1/2.

5. Conclusions

Bloom filters and the existing variants require a pri-
ori dimensioning of the maximum size of the set to be
stored in the filter. Given that it is not always possible
to know in advance how many elements will need to be
stored, this leads to over-dimensioning the filters, possi-
bly by several orders of magnitude.

In this paper we have introduced Scalable Bloom Fil-
ters (SBF), a mechanism that allows representing sets
without having to know a priori the maximum set size
and yet being able to choose from the start the maxi-
mum false positive probability. The mechanism adapts
to set growth by using a series of classic Bloom filters
of increasing sizes and tighter error probabilities, added
as needed.

A SBF is parameterized not only by the initial size
and error probability but also by the growth rate of the
size and by the error probability tightening rate. In this
paper we have studied the impact of these parameters
on space usage and shown how they can be chosen for a
range of scenarios.
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