
Published in the Proceedings of the The Eighth International Workshop on Collaborative Editing Systems - integrated in ACM CSCW 2006, 2006.

Operational transformation based reconciliation in the
FEW File System∗

Marcos Bento, Nuno Preguica
CITI/DI, FCT, Universidade Nova de Lisboa

Portugal

ABSTRACT
Optimistic replication is used to provide high data availabil-
ity and support for disconnected operation in mobile com-
puting environments. As this approach may lead to concur-
rent updates, a system based on optimistic replication must
include a replica reconciliation mechanism. In this paper, we
describe the reconciliation mechanism implemented in the
Files EveryWhere (FEW) �le system for mobile computing.
Our reconciliation approach is based on operational transfor-
mation. However, as our system supports only asynchronous
collaboration, we propose a set of new techniques for oper-
ational transformation. First, we propose a new technique
for handling operations in operational transformation algo-
rithms that supports ef�cient epidemic dissemination. Sec-
ond, we propose a new set of transformation functions that
explicitly handle line versions in text �les. Finally, we pro-
pose a set of transformation functions that explicitly handle
�le versions for opaque �les. Our approach is implemented
as a new �le system, thus allowing users to continue using
their favorite applications.

Author Keywords
Optimistic replication, reconciliation, operational transfor-
mation.

INTRODUCTION
Mobile computing environments have changed in recent
years with the increasing use of different types of portable
devices, ranging from mobile phones to laptops, and from
MP3 players and digital cameras to portable storage devices,
such as �ash-disks. Most of these devices have large capac-
ity and can be used to transport users' data.

The Files EveryWhere (FEW) [6] system is a distributed �le
system that intends to explore the multiple available stor-
age devices to allow users to safely store their data while
providing high availability, good performance and low en-
ergy consumption. To this end, the system manages �les
that are automatically replicated in computing devices and
portable storage devices, allowing replicated data to be
shared amongst multiple users.

The system uses an optimistic replication approach, al-
lowing users to produce their contributions asynchronously
and concurrently. These approach may lead to concurrent
∗This work was partially supported by FCT/MCTES with FEDER
co-funding � project #POSC/59064/2004.

and con�icting updates. Unlike �le systems with support
for mobile computing [8, 9, 13], our synchronization pro-
cess is based on update propagation and includes a generic
reconciliation mechanism based on operational transforma-
tion [4, 11]. This generic approach must be customized for
each �le type.

For adapting operational transformation algorithms to mo-
bile computing environments, we propose a set of new tech-
niques. First, for supporting the typical epidemic dissemina-
tion of updates ef�ciently, we propose a technique that ma-
nipulates operations' dependency information at each site,
thus allowing a site that receives an operation to capitalize
the transformations performed in intermediate sites and re-
quiring a single version of each operation to be stored at each
site. Second, we propose a new set of transformation func-
tions that explicitly handle line versions in text �les, thus
addressing the shortcomings in reconciliation solutions typ-
ically used in asynchronous settings. Finally, we propose
a set of transformation functions that explicitly handle �le
versions for opaque �les.

The remainder of this document is organized as follows. The
next section brie�y presents the FEW �le management sys-
tem. Section 3 presents the generic reconciliation and type-
speci�c solution used in FEW. This paper ends with the dis-
cussion of related work and some �nal remarks.

FEW FILE SYSTEM
The FEW system is a distributed �le system that man-
ages groups of �les, called containers. A container typi-
cally stores the data of some (cooperative) project. A con-
tainer can be replicated at multiple storage devices, includ-
ing portable storage devices and internal storage units. Data
stored in a container can be shared among multiple users. To
this end, each user will typically have one (or more) replica
of the container in his storage devices.

The system adopts an optimistic replication approach, al-
lowing users to modify any replica at any time. Updates to
�les are propagated to all replicas using two mechanisms.
First, to accelerate the convergence process, new updates
are asynchronously propagated to all replicas using a best-
effort event-dissemination system that takes into consider-
ation portable devices' constrains, such as network condi-
tions, energetic levels, voluntary disconnection of devices or
voluntary isolation of devices (e.g. when editing a set of �les
containing program code, users may decide to work in iso-

1



 

D 

A

E

Pair-wise Epidemic
Dissemination 

 

Pro-active Event
Propagation 

B

C

F

Figure 1. FEW architecture.

lation until they have a stable version of their changes, so
that un�nished code from one user will not lead to compile
and execution errors to other users). Second, to guarantee
eventual convergence, replicas are synchronized in periodic
pairwise epidemic propagation sessions [3]. In these ses-
sions, replica A propagates to replica B all updates known to
A and unknown to B independently of the replica where the
update has been performed, and vice-versa. This approach
guarantees that all replicas will receive all updates, even if
they never communicate directly. In Figure 1, we depict a
sample FEW system, consisting of several computing de-
vices with connected portable storage devices.

Using FEW, users may continue to use their favorite appli-
cations to modify �les as the system is accessible through
the traditional �le system interface. To this end, our pro-
totype uses FUSE to intercept �le system calls and redirect
them to the FEW daemon that is responsible to process them
(according to FEW functionalities).

SYNCHRONIZATION PROCESS
The synchronization process, which enables all replicas in
the system to achieve the same �nal state, is divided into
three different steps, as shown in Figure 2.

The �rst step is to infer the set of operations executed in
a �le. FEW infers operations comparing two versions of a
�le. To this end, when a user executes a �open-read/write-
close� session, the system automatically stores the original
and new version of the �le. After the �le is closed, a type-
speci�c program is executed to infer semantic-rich opera-
tions by comparing the original and the new version of the
�le.

In the second step, operations are propagated among repli-
cas. As explained before, an operation may be directly or
indirectly propagated to all other replicas using an event-
dissemination system or during peer-to-peer epidemic prop-
agation sessions.

Finally, when an operation is received in a given replica, it is
stored and integrated in the replica state using an operational
transformation approach. This approach guarantees eventual
convergence even when operations are received by different
orders in different replicas.

Reconciliation

new

old

write diff op

log

Transformation
Engine eop

Transformation
Function

on close

op

log

Figure 2. Synchronization process.

For reconciliation, we are using the Generical Operational
Transformation Optimized (GOTO) algorithm [11] to con-
trol the integration process. This algorithm (as all other OT
algorithms) transforms the received operation against con-
current operations so that the effect of executing the trans-
formed operations in the current replica state is identical to
the effect of executing the operation in the original data state.
The algorithm also maintains a log of executed operations
for each replica.

This algorithm was originally designed for synchronous en-
vironments, where each replica propagates its updates to
all other replicas. Thus, this algorithm assumes that each
replica receives the original version of the operation.

In our setting, where updates are propagated using an epi-
demic model, one replica may propagate to another replica
an operation received from a third replica. However, as
an operation is transformed upon reception and the origi-
nal GOTO algorithm expects to receive the original opera-
tion, propagation of third-party operation must be consid-
ered carefully. A possible solution would be to store, at each
replica, the original and the transformed version for each op-
eration. However, this approach requires additional storage
for storing both versions of the operation.

We propose an alternative solution, where a replica propa-
gates the transformed version of the operation. To guarantee
the correctness of the GOTO algorithm, upon reception of
the operation in the other replica, the transformation process
must take into consideration the transformations already ex-
ecuted. Achieving this is rather simple, as we explain next.

In our solution (as in most OT based solutions), we use ver-
sion vectors to trace causal dependencies for each opera-
tion. Additionally, each operation is uniquely identi�ed by
the replica identi�er and the number of the operation in that
replica (this information can be partially included in the ver-
sion vector, but for simplicity we omit this optimization).

When GOTO transforms the operation A to include the ef-
fects of concurrent operation B, the resulting operation A'
can be executed after executing B � thus, it is as if the A' had
been originally executed after B. Thus, we modify the value
of the version vector for A' to include B. When A' is propa-
gated to a third replica, upon reception, it is not considered
concurrent with B (due to the new value of the version vec-
tor). Thus, as expected, the transformation process will not
transform A' to include the effects of B again. It is simple to
show that this solution maintains the correctness of the OT
algorithm, as propagating a modi�ed version of an operation
and modifying the version vector is equivalent to perform

2



part of the transformation process in the original site. We
detail our solution in [1].

The proposed technique is not speci�c to the GOTO algo-
rithm and can be used to allow epidemic operation dissem-
ination in other OT algorithms. Moreover, this technique
minimizes the processing required when receiving an opera-
tion, as part of the needed transformation process has already
been executed.

Text File Reconciliation
Our reconciliation solution for text �les allows to maintain
multiple versions for each line � when two users concur-
rently modify the same line, two versions of the line are cre-
ated (as in CVS [2]). This approach, besides being widely
used in version management systems, seems suitable for
asynchronous edition, where update granularity tends to be
large and merging two updates performed concurrently to
the same line would probably lead to a semantic inconsis-
tency.

Unlike previous reconciliation solutions for text �les (in-
cluding CVS and an OT-based solution for asynchronous
edition similar to CVS/RCS [5]), our solution considers line
versions �rst-class citizens of the solution. Thus, it allows
users to postpone merging multiple versions and continue to
modify �les with versions (including lines with versions).
Additionally, it also allows new updates to be integrated ac-
cording to users' intentions (unlike previous solutions).

Consider the example in �gure 3, where a user at site X mod-
i�es line 2 of the �le from B to B1 and later to B3, and a
user at site Y modi�es line 2 from B to B2. In a CVS-like
solution adapted for peer-to-peer synchronization (and in so-
lution proposed in [5]), in reconciliation step 1, when site Y
receives the �rst update from X, it leads to two versions of
line 2 ([B1 and B2]). In reconciliation step 2, when Y
receives the second update from site X, a new con�ict is de-
tected and the previous two versions of line 2 are marked
in con�ict with the new version of line 2 (leading to an hi-
erarchy with three version of line 2 - [B3 and [B1 and
B2]]). This shows that those solutions do not correctly con-
sider users' intentions as it seems clear that version B1 is
only a temporary state and it should not be included in the
�nal reconciliation solution - our solution reaches the ex-
pected resulted, including only line versions B2 and B3 in
the �nal reconciliation result. This would have been the rec-
onciliation result in those systems only if reconciliation step
1 had not been executed.

In our solution, we model the replicated �le as an object con-
taining a sequence of line. Each logical line of text can have
several versions. The following example shows a text �le
where the second line has two versions. Although logically
the �le has only 4 lines (as shown by the line number in front
of each line), the actual number of lines in the �le is larger
due to the multiple version at line 2 and to the additional
lines for marking multiple versions. Each version is identi-
�ed by a unique identi�er stored in the �le, as shown in the
example.

A
B1
C

A
B2
C

A
<<

B1
--

B2
>>

C

A
B3
CA

B
C A

<<

B3
--

<<

B1
--

B2
>>
>>

C

A
<<

B3
--

B2
>>

C

1 2

Replica X

Replica Y

Figure 3. CVS con�ict resolution.

To be, or not to be: that is the question 1
<<< version 1
Whether 'tis nobler in the mind to suffer 2
--- version 2
Whether 'tis nobler in the mind to joy 2
>>>
The slings and arrows of outrageous fortune, 3
Or to take arms against a sea of troubles, 4

In our solution, we have de�ned the following operations:

• insert(t, p, pw) - inserts a new text line t at position p
according to information stored in the position word pw;

• delete(p) - deletes the text line at position p;

• update(t, p) - updates the content of line p with the text t;

• create version(vnew, t, p, vcon) - creates a line version at
position p with content t � the new version vnew is orig-
inated by an operation with the same identi�er, concur-
rency executed with an operation identi�ed by vcon;

• insert version(vnew, t, p, vdel) - inserts a line version at
position p with content t � the new version vnew is orig-
inated by an operation with the same identi�er, concur-
rency executed with a delete operation identi�ed by vdel;

• update version(vnew, t, p, vold) - updates a line version at
position p with content t � the version to update is identi-
�ed by vold, and the execution of this operation generates
version vnew;

• delete version(vdel, p) - deletes a line version at position
p � the version to delete is identi�ed by vdel.

Besides the usual operations for manipulating lines, we have
added operations for explicitly manipulating line versions.
Users can manipulate text �les as usual (inserting, remov-
ing or updating text lines). If a line containing a version is
modi�ed, an operation that manipulates versions is inferred.
Usually, line version creation is originated by con�ict reso-
lution, but users can explicitly create versions by explicitly
adding lines for marking line versions.

For using GOTO, we had to de�ne transformation functions
for each pair of possible operations. Due to space limi-
tations, we cannot exhaustively present all transformations
functions in this paper (they are presented in [1]). We just ex-
emplify our solution by showing how the system resolves an
update/update and an update/delete con�ict � see �gure 4.

3



Create

Version(v1, 2, “B1”, v2)

A
B
C

A
B1
C

A
<< v1

B1
-- v2

B2
>>>

C

A
B
C

A
B2
C

Update(2, “B1”)

Create

Version(v2, 2, “B2”, v1)

Update(2, “B2”)

A
<< v1

B1
-- v2

B2
>>>

C

A
B
C

A
B1
C

A
<< v1

B1
-- v2
>>>

C

A
B
C

A
C

Update(2, “B1”)

Create

Version(v2, 2, “”, v1)
Insert

Version(v1, 2, “B1”, v2)

Delete(2)

A
<< v1

B1
-- v2
>>>

C

Update/Update Conflict Update/Delete Conflict

Figure 4. Example of con�ict resolution.

In update/update con�icts, the system generates multiple
versions of the same line of text by transforming an update
operation into a create version operation. The resolution of
update/delete con�icts is executed by transforming the up-
date operation into a insert version operation, or the delete
operation into a create version operation. Both operations
create two versions for some line, but the create version re-
stores the logical deleted line.

Opaque Content File Reconciliation
We have also de�ned two solutions that can be used with
�les for which the contents are considered opaque. The idea
of the �rst solution is, when the �le is concurrently modi�ed,
to coherently select a version and keep that version in all
replicas. This solution is similar to the original Lotus Notes
solution and can be used, for example, for executable �les.

The idea of the second solution is to maintain multiple ver-
sions of the entire �les. This solution will keep all versions
originated by concurrent updates, so that no information is
lost due to concurrent updates and that the user can access
all concurrent versions when merging them.

RELATED WORK
Several generic operational transformation algorithms and
speci�c solutions for real-time text editors have been pro-
posed in the past [4, 7, 10�12]. Our solution differs from all
these solutions by proposing a technique that allows opera-
tion to be propagated ef�ciently using an epidemic propaga-
tion model.

Our solution for text �les differs from typical solutions in
version management system like CVS [2] as it allows users
to postpone merging of multiple versions and allows the evo-
lution of line versions created during con�ict resolution. Be-
ing more suited for systems that allow background peer-to-
peer synchronization, our approach always allows the inte-
gration of new updates received from all users without creat-
ing bogus new line version. In this case, our implementation
is also very different. An OT based solution similar with
CVS has also been proposed [5] in the context of a generic
�le synchronizer. This solution has the same limitations of
CVS, thus not guaranteeing the preservation of users' inten-
tions when versions are created.

FINAL REMARKS
This paper presents the reconciliation solution in the FEW
system. We propose a new set of operational transforma-
tion techniques suited for mobile computing environments,
where updates are propagated among replicas using epi-
demic propagation. We also propose a new solution for han-
dling concurrent updates to text �les in an asynchronous set-
ting, that allows multiple line version to be maintained. Our
approach is implemented as a new �le system, thus allowing
users to continue using their favorite applications.

REFERENCES
1. M. Bento. Contributions for the design and implementation of

a �le system for portable devices. Master's thesis, FCT/UNL,
August 2006.

2. P. Cederqvist, R. Pesch, et al. Version management with CVS,
2005.

3. A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson.
Epidemic algorithms for replicated database maintenance. In
Proc. of the 6th annual ACM PODC, pages 1�12. ACM Press,
1987.

4. C. Ellis and S. Gibbs. Concurrency control in groupware
systems. In Proc. of the 1989 ACM SIGMOD'89, pages
399�407, NY, USA, 1989. ACM Press.

5. P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the
transformational approach to build a safe and generic data
synchronizer. In Proc. of the ACM SIGGROUP GROUP'03,
pages 212�220, NY, USA, 2003. ACM Press.

6. N. Preguiça, C. Baquero, J. L. Martins, M. Shapiro,
P. Almeida, H. Domingos, V. Fonte, and S. Duarte. Few : File
management for portable devices. In Proc. of the IWSSPS'05,
2005.

7. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser. An
integrating, transformation-oriented approach to concurrency
control and undo in group editors. In Proc. of CSCW'96,
pages 288�297, NY, USA, 1996. ACM Press.

8. M. Satyanarayanan. The evolution of coda. ACM Transactions
on Computer Systems (TOCS), 20(2):85�124, 2002.

9. S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao, C. Zhang,
E. Ziskind, A. Krishnamurthy, and R. Y. Wang. Segank: A
distributed mobile storage system. In Proc. of FAST'04, San
Francisco, CA, March 2004.

10. M. Suleiman, M. Cart, and J. Ferrié. Concurrent operations in
a distributed and mobile collaborative environment. In Proc.
of ICDE '98, pages 36�45, Washington, DC, USA, 1998.
IEEE Computer Society.

11. C. Sun and C. Ellis. Operational transformation in real-time
group editors: issues, algorithms, and achievements. In Proc.
of CSCW '98, pages 59�68, NY, USA, 1998. ACM Press.

12. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
convergence, causality preservation, and intention
preservation in real-time cooperative editing systems. ACM
Trans. Comput.-Hum. Interact., 5(1):63�108, 1998.

13. N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan.
Integrating portable and distributed storage. In Proc. of
FAST'04, San Francisco, CA, March 2004.

4


