DAgora: A Flexible, Scalable ad Reliable Object-Oriented Groupware
Platform

Jorge Paulo F. Siméo*, Nuno Manuel R. Preguica*,
HenriqueJodoDomingos, and José Let@aux Martins

Dept. of Computer Science
Faculty of Sciences and Technology, New University of Lisbon
2825 Monte Caparica - Portugal

{jsimao,nmp,hj,jalm}@i.fct.unl.pt

*Work partially supported by PRAXIS XXI scholarships.

Abstract

In this pape we decribe a flexible, scalable, and
reliable "object-aiented goupware platfam" specially

tailored as a foundation to support synchronous,

asynchronous, and multi-synchronousgyroupware
applicatiors. The platfoam relies on an hybid
replication approachwhere volatile object are actively
replicatal to suppat synchronows interaction, and
persistent objecs are lazly replicatedto mee scalability
and availability requirements.

1. Introduction

A wide body of groupware applications, both
synchronous and asynchronous, have been implemented
up © this point. However, most of these applications
continue to be implemented from scratch, relying only on
traditional client/server appoaches, without specific
support for groups, and on other non scalable and
unrdiable technologies. This imposes a considerable
burden on applcation programmers and distracts them
from applications main issues.

Some attempts have been mack to provide general
groupware frameworks and todkits to help programmers
in the process of structuring and implementing
groupware applications [1,2]. These frameworks,
however, do not usually provide generic mechanisms and
impose or suggest particular politi cs targeted to a narrow
range of applications. Curent distributed objet systems
although very useful in general settings, are also only of
limited utility as plaforms to support groupware. Often,
they fail to take into acocount the specific requirements of
groupware applications, namely, the requirement for low-
latency in system/application operation [3], and the need
for shared fealback awareness of group and user

ECSCW’'97 OOGP workshop

activities [4]. It seems that a gap s yet to be filled
between the mechanisms of distributed object systems,
currently available groupware frameworks and todkits,

and the wide variety of possible groupware applications.

In this paper we outline an ongoing research work to
devise an object-oriented groupware platform specially
tailored as a foundation to structure and implement
groupware applications. The requirement to support
synchronous, asynchronous (bath in connected and
disconneded mode of operation), and multi-synchronous
groupware applications, and the requirements for
flexibility, scalaility, and rdiability, has lead s to
deploy anhybrid objed replication appoach based on the
peer object-group design patern and a bosely conneded,
replicated object store service.

The rest of this paper is organized as follows. In
section 2 we describe the overall architedure underlying
the platform and provide the rationale for it. In section 3
the peer object-group design patern is introduced as a
means to structure synchronous groupware applications.
In sedion 4 we descibethe objectstorage sevice, which
allows bath conneded and disconneded modes of
operation. Sesson 5 refers to the combined use of the
provided services and abstractions. Session 6 comments
on current experience, as well as on ongoing and future
work. Finally, session 7 concludes the paper.

2. An Architecture to Support Cooperation

Groupware application can broadly be characterized as
synchronous or asynchronous. In asynchronous
groupware users work not necessarily in the same time-
frame and interact for long periods of time (e.g. in the
joint development of a software project). In synchronous
groupware users work in a tichtly-coupled manner

27

during relatively short common time-frame (e.g. duing a
distributed meeting). The synchronous and asynchronous
cooperation paadigns are not alternatives, but rather
complementary; real work is most often performed
alternating asynchronous work with synchronized
periods. Furthermore, the synchronous and asynchronous
characterizations only represent the edges of a
continuous spectrum representing different time-frames
baweenwhich uses see ach others work and interact.
Intermediate degrees of interaction ae possble. Some
applications may even support different levels of
synchronization - multi-synchronous applications. This
calls for a flexible plaform encompassng the
mechanisms required for each case.

In our plaform we male a clear distinction between
volatile, actively replicated objects, and persistent, lazily
replicated ohjects. Volatile objects are manipulated in the
context of synchronous sessons, and ae actively
replicated at the users workstations using tightly-coupled
group communication services (section 3). This enables
low-latency on object manipulation and activity
awareness functionalities. The lifetime of the shared
workspace manipulated in a synchronous sesson is
limited to the duration of the sesson. Mappihg to
persistent objects, if required, is performed by the
application or other layers of the system (section 5).

Persistent objects are managed by a global,
distributed and replicated object storage service. Objects
are aggegatd in volumes which congtitute the unit for
replication. Each volume is managed by a collection of
servers which lazily replicate the volume and the objects
contained in it using epidemic techniques. Clients cache
obects and perform operations locally, posshly in a
disconneded mode of operation. Latter, logged object
updaes are reintegrated in the system. Conflicting
updats are handled accordingly to operations semantics
(section 4). Figure 1 illustrates the overall architecture.

The rationale to introduce two kinds of objects -
actively replicated, volatile ohects, and lazily replicated,
persistent objeds, is beause the approach promotes
system flexihbility, efficiency, scalability, and reliahility.
Flexibility and efficiency is improved manly because the
typical granularity of updaée operations involved in
synchronous groupware is finer than for the
asynchronous case (e.g. in a text editing application, a
character or paagaph granularity may be used for
synchronous edition, and for asynchronous edition the
chaper or document level may be sdected). For
synchronous groupware, actively replicated objects
provide the means for the required levels of shared
feadback awareness and thightly-coupled cooperation. On
the other hand, persistent objects are used to store
durable pats of the shared workspace. The programner

ECSCW’'97 OOGP workshop

uses in each case the replication model and persistence
options that better suit application needs. In paticular,
some ohjects may not require persistent storage and some
persistent objects may not require synchronous
cooperative editing.

Scalability is promoted because persistent objects are
lazily replicated and users may access objds at the
closest available server. In synchronous sessions, the
number of expected interacting users is smaller so strong
consistency ohject replication and group protocols are a
realistic and feasible approach.

Finally, reliability and high availability arises from
the high degree of object replication; users workstations
replicate all objects required for user operation. In the
synchronous case, the volatile objects ensure that a ser
can continue to work even if other users workstations or
storage servers fail or become unreachable. In the
asynchronous case, cached persistent objeds allow users
to operate in a deconneded mode of operation, and
object replication at servers ensure high availability in
object access In both models, low-latency is achieved
using appropriate optimistic replication techniques and
particularly tailored protocols.

I UserWorkStation \.
5 —— _ Mobile }
== Participant
l ggf,;’;fﬁf‘ed !' celular / wireless
— s inte rk
—_— Workgroup & internetvorking

WORKSPACE 1

Remote Sationary
PersonaComputer

-]
¥ 0 Global Object _!I‘==‘=!
—= Storage <\£\’!’
Service
Stationary Canputer
inaLAN or MAN Object-Store
' ! Saver
" —

=
/ 'Synchmnus Session
WORKSPACE 2

Motile
Participant

Figure 1 - The DAgora architecture.

3. Synchronous Groupware Support

We use the peer object-group design patern as the main
structuring abstraction to support synchronous groupware
[5]. In the peer object-group appoach, the shared
workspace managed by applications is matrialized as a
collection of shared objects replicated anongst users
workstations. Each workstation holds a replica for every
obect the associated user is currently accesgng or
working on. The set of replicas for a given objed
congtitutes a peer object-group. Appropriate consistency
criteria amongst the replicas is kept using group-
communication services. Shared objects are mapped to

28

(object-)groups and operations on the objects are mapped
to (reliable) multicast operations. Users gain accessto
ohjects by dynamically joining the corresponding object-
groups - which may involve the transparent transfer of
the ohject's current state to the local replica. When no
longer intereged in the objets, usas leave the objet-
groups. Figure 2 schematically illustrates the model.

" Proccess

Address

Large Scale
Unreliable
Network
Infrastructurg

Proccess
Address Space

Proccess
Address

ObjectGroup 2|:|

User B BI:' [::] User D

Object Replicas

Figure 2 - The peer object-group design
pattern.

Different shared-objects require different replication
consistency requirements, meaning that goup-protocols
with different service semantics are required. To
accommodate this diversity we have implemented a
generic obect-oriented framework for protocol
implementation and composition as in [6]. Different
protocol semantics are encapsulated in different classes,
and concrete protocol layers are created as instance of
those classes. Complete protocol structures (or stacks) are
built attaching protocols objects together.

In the implementation of spedfic group-protocols we
have taken in geat consideration groupware specifics.
Beause uses objeds working-sds are epeded to
change often duing the lifetime of a sesson and users
should be able to enter and leave sesgons dynamically,
dynamic lightweight group membership services were
used. In particular, we have spedfied anew membership
and reliable multicast service semantics - linear
convergent synchrgn which is weaker than view
synchrony[7], the usually provided semantics by group
communication toolkits, and can be implemented by
protocds which incur less ovehead for group
membership management. Instead of requiring messages

ECSCW’'97 OOGP workshop

to be delivered in the same view by all members, we
allow messages to be delivered in future views, but
always before the view which removes the sending
members [8]. The semantics and protocol are linear, i.e
view and state merging is not allowed. This is motivated
by the already available state remnciliation service
provided by the external object store - case volatile
obects are mapped to persistent ones. Moreover, it is
expect that patitioning duing the lifetime of a
synchronous sesson is a rare event (provided that
suitable failure suspectors are used). This appoach ako
simplifies synchronous applications design. The protocol
uses a specially tailored FIFO reliable multicast protocol,
which does not incur high overhead for connection
management.

To provide acequak levels in system response times,
we have anticipated the need for optimistic ordering and
concurrency control techniques. In particular, the
Undo/Redo delivery paradigm is povided as aroption to
reduce updae latency [9]. In this paadigm messages are
delivered locally whil e asynchronoudly multicasted to the
group. If ordering conflicts arise, some previously
delivered messages/updaes may have to be
undone/redone, but operations semantics (eg. the
commutative property) are explored to reduce the
probabilit y of this event. Other ordering services, namely,
total, causal and FIFO ordering of messages, and state
transfer protocols for transparent and highly concurrent
object state transfer are also provided.

Sincethe sharedworkspace of a gynchronous sessn
is congtituted not by a single object-group but by a
collection of them, services and abstractions are required
for managing the workspace as a whole. This includes
services for naming/binding to sessons, the creation and
management of olhjed-groups, and services to enable user
activity awareness.

We have defined and implemented an extensible
distributed object model which provides those services. In
addition to allow programners to create replicated
objects supprted by sdeded protocol structures, the
mode! introduces the concept of afully replicated Sesgon
object. A Sessobn object is supprted by a special
bodstrap objed-group, which all users must join to enter
a sesgon, that actively maintains information ebout the
shared workspace, namely, information &bout created
object-groups and users paticipating in the sesson. The
binding information required to enter a sesgon is fetched
from an external sevice (eg. the object tore sevice).
From an applcation programmer perspective, shelhe can
invoke the methods of a Sesgon object to create, destroy,
join or leave ohject-groups and to ohtain information
about users. A reactive programmig style can ako be
used to act on session related events (e.g. a ser entering

29

or leaving asesson, or an object-group being created or
destroyed). Conceptually, we abstract an appl¢ation & a
colledion of shared olject(-groups) and users organized
around the fully replicated Session objed. Figure 3

depicts an intuitive view of the distributed objects model.

Proccess Address Space

Session Object SessionBindingSevice Chject
Object-Group Direcory @ ™[CiientSde
—— Code

ObjectGroup S

Binding ‘. Communication to
&
Management
Data

User Direcory T Extemal
‘4, " SessonBinding - '

UserRecord - service
key I User u

Data
Other Application Objects Lalyer 3 |

Protocol |
p— Srructure || Layer 2 J
— Layer1 |

Figure 3 - Objects conceptual model.

Shared Application Object

Application
Code

4. Object Storage and Asynchronous
Groupware Support

In this section we will describe the object storage service
of our platform. As suggested before, to med scalability
and reliability requirements a system must employ
intensive caching and replication techniques.
Additionally, for effedive support of asynchronous
groupware a system should be able to: allow several users
to modify the same dataconcurrently even if operating in
a disconned mode, not restricting their actions besides
usual accesscontrol mechanisms and coordination rules
enforcement; conjugate all concurrent modifications in
the resulting data; ad enable type specific resolution of
conflicting updates.

To gain &cessto the persistent objects managed by
anobject store a (client) user processcreates alocal copy
of it; future operations are performed locally without
requiring communication with the servers of the object
store. Updat methods invocations are logged by clients,
until later re-integration with an object copy located at
the object store. Updaks performed concurrently by
different users, are combined as logged updaes are
propagaéd to servers. Server procedures ensures that

ECSCW’'97 OOGP workshop

updats are ordered accordingly to consistency criteria
sdlected on a per object class basis. If conflicts updags
not amenable to be solved aubmatically by the system
arise, users are asynchronoudly natified; task related
coordination is expected to make this an unlikely event.

To provide a reasonable degree of autbnomy, users
local environments cache the objets nealed for user
activity. This enables them to continue work even when
no server is accesshle (due to communication failures or
voluntary disconnection). Our current caching strategy
makes dedsions kased only on recent access,but more
complex and aggessie strategies based on pre-fetching
of sets of related objects and statistical analysis of user
activity can be considered [10,11].

Persistent objeds are organized in volumes, which
are sets of related ohects. For user convenience a
volume is internally organized as anhierarchical space of
objects identified by symbdic names (as in traditional
file systems). We anticipated that different volumes be
assigned to different collaborative work groups, allowing
admnigrative boundaries and case-dependent access-
control and security politics to be established.

Each volume is replicated by a (posshly)
dynamically variable set of servers, using an epidemic
communication infrastructure [12,13]. Defined pars of
servers communicate with each other, from time to time,
to synchronize their current knowledge of objects state.
Provided that the communicating pars form a fully
conneded graphof replicating servers, objed updaes are
eventually propagaed to all servers. The concrete
topological placement of server (pars) should be
conducted by the requirements of minimizing
communication overhead (onsidering bath server and
client neals), distribution of server workload and
reducing probability of client isolation from all servers.
Appropriate placement of servers, scheduling of server
epidemic interaction, and structuring of objects in
volumes is required to promote system scalability and
availability.

When a pair of servers engages in a epidemic
interaction, they must determine which updats must be
propagakd to the other server. This is be done by
identifying updat (sequences) with time-vectors [14],
and compaing them with time-vectors reported by the
peer. Updae stability is chedked using an acknowledge
time-vector [13]. After server interaction, the newly
receved updaes are logged for each objed, and applied
to the server's local copy accordingly to the ordering
congtraints selected. Class programners may select one
of the available orderings or (meta-)program new log
orderings. Curently, we provide causal ordering, free
ordering, (pessimigtic) total ordering, optimistic total
ordering with undo/redo, and optimistic total ordering.

30

When using optimistic total ordering, conflicting updags
may cause the system to natify users, if unable to resolve
them aubmatically (e.g. wsing operation semantic
information). Figure 4 pictorially represents the object
store architecture.

Becuse the set of severs managing each volume
may vary with time, a state transfer mechanism exist to
allow new servers to contact an existing server to obtain
the volume's content and join volume's replicating server
set. Membership information is managed by a special
volume ohject which is propagaed duing epidemic
interactions. Servers aubmatically resolve conflicting
views of the membership befae procealing with norma
operation.

Client Object Sbrage

Severs

X

A B |

Vol vol.i

|F00: |Bar:
)

Figure 4 - Object Store architecture.

5. Combined use of Synchronous and
Asynchronous Support

While we have mack a clear distinction between volatile
and persistent objects, in medium or long-term real
cooperation scenarios the two abstractions must be used
in combination. Persistent objeds convey the durable part
of the cooperative workspace, volatile objects provide the
means for users to engacg in tightly-coupled interactions.
The synchronous and asynchronous interaction modes
also benefit from each other. Information related with
synchronous sessons (e.g. naming/binding,
browsing/awvareness and user information) can be
persistently saved in the olject store. On the other hand,
conflicts updaes to persistent objects detected by the
object $ore and reported to uses @n be conveniently
resolved using synchronous goupware merging tools.
We are investigating issues related to the transparent
mapping of the two kinds of objets for those casesin
which that is required.

ECSCW’'97 OOGP workshop

6. Experience, Ongoing and Future Work

Becawrse we wanted to maximiz flexibility, allow
application and system components to be loaded on-
demand, and support heterogeneity, we have chosen the
Java language for implementing our gystem [15]. The
integration with the Web was an additional motivation.

As an hitial effort to test the suitability of the
synchronous groupware support, we have implemented a
demo white-board tod. It is asimple tool which manages
a shared drawing canvas and requires only one object-
group to be implemented. It was tested with only a small
number of users in a local network. In this restricted
setting, system response has revealed to be quite
acceptable, i.e. gstem performance did not suffer
significant degradatbn when operating on replicated
shared objects. Additional experience and performance
measures are required to analyse system behaviour in
more general environments.

To test the suitahility of the asynchronous groupware
supprt we have defined a simpé class of structured
persistent objeds. These objets are composed of
containers, that contain leaves and/or other containers,
and leaves, containing data with (posshly) multiple
versions. We have also implemented asimple text editor
that allows several users to asynchronoudy edit the same
document. A document is supjrted by a persisient object
and the document structure is mapped to the object's
structure (e.g. a document is a container of chapters, a
chapter a container of sections or a &xt leaf, and so on).
When all users save their changes, the final document
reflects all changes, and concurrent changes to the same
leaves (chapierg/sections text) are resolved by creating
multiple versions of the conflicting components.

Many potential work diredions were revealed duing
the course of our work. In the synchronous support, we
plan © continue the processof specifying suitable group-
communication semantics and implementing new
protocols to support object-groups. In particular, we
exped to develop layers for light-weighted groups,which
in turn may call for the definition of multiple-group
service semantics. Failure-detectors consistency should
alo be addesed. In the agnchronous supprt, we
intend to develop a gneric event natification service to
provide usegs with shared feedback awareness of
activities related with the persistent workspace. We also
intend to implement the conflicts notification service
with the generic notifications mecianisms. Common to
bath the synchronous ad agnchronous supprt, we
expect to tackle the always important issle of access
control and security, and plan b develop additonal tools
and applcations to help validatihng more clearly the
usefulness of the abstractions outlined in the paper.

31

Finally, we intend to build appopriated linguistic
support to simplify the task of applications programming.

7. Conclusions

Our work contribution is two-folded: identify the
abstractions required to adequatly supprt groupware
and study the technical problems involved in the
realization of them; devise a plaform based on those
abstraction to be used in the development of realistic
groupware applications.

We bdieve that the provision of sevea kinds of
ohects by an object-oriented goupware plaform
promotes flexibility in application programming, because
groupware applications are very broad in range
Programners are freeto malke use of the abstractions that
better suit their neals. In paticular, an object store is
suitable to support asynchronous cogperation and
manage the persistent pat of shared workspaces, and
peer object-groups are a suitable base abstraction to
structure and implement synchronous applications.
Because modern cooperation scenarios may involve many
entiti es, scattered world-wide, posshly using the Internet
as the main cooperation infrastructure, scalability and
reliability are important requirements. Still, further
research is yet reguired to more clearly validae the
usefulnessof the identified abstractions and mechanisms.
Incorporation in standard distributed object systems can
also be a contribution in that direction.

References

[1] Mark Roseman, and Saul Greenberg, "GroupKit: A
Groupware Toolkit for Building Real-Time Conferencing
Applications", Proc. ACM CSCW 92, November 1992.

[2] Tim Kindberg, George Couloris, Jean Dollimore and Jyrki
Heikkien, "Sharing Objects over the Internet: the
Mushroom Approach”, IEEE Global Internet 96, London,
November 1996.

[3] C.A. Ellis, S.J. Gibbs and G.L. Rein, "Groupware - Some
issues and experience", Communication of the ACM, vol.
34, n.1, January 1991.

[4] Paul Dourish, and Victoria Belloti, "Awareness and
Coordination in Shared Workspaces", Proc. CSCW 92,
November 1992.

[5] Jorge Simao, J. Legatheaux Martins, HergiBomingos,
and Nuno Preguica, "Supporting Groupware with Peer
Object-Groups", USENIX COOTS 97, "Reliable
Distributed Objects Panel", Portland/Oregon, June 1997.

[6] Robbert van Renesse, Kenneth Birman, Roy Fridman, Mark
Hayden, and David A. Karr, "A Framework for Protocol
Composition in Horus", Proc. 14th IEEE International
Conference on Distributed Computing Systems, 1994.

[7] Kenneth P. Birman, and Thomas A. Joseph, "Exploiting
Virtual Synchrony in Distributed Systems", Department of
Computer Science, Cornell University, 1987.

ECSCW’'97 OOGP workshop

[8] Jorge Simao, "System Support for Distributed Synchronous
Groupware Applications", MSc. Thesis, Dept. Computer
Science, New University of Lisbon, July 1997.

[9] Alain Karsenty, and Michel Beaudouin-Lafon, "An
Algorithm for Distributed Groupware Applications", Proc.
13th IEEE International Conference on Distributed
Computing Systems, 1993.

[10] G. Kuenning, "The Design of the Seer Predictive Caching
System", IEEE, 1994.

[11] J. Kistler, and MSatyanarayanan, "Disconnected
Operation in the Coda File System", Proc. 13th ACM
SOSP, 1991.

[12] Rivka Ladin, et al., "Providing High Availability Using
Lazy Replication", ACM Transactions on Computer
Systems, 10(4):360-391, November 1992.

[13] Richard Golding, "Weak-consistency group communication
and membership", Ph.D dissertation, University of
California - Santa Cruz, December 1992.

[14] D. Parker, et al., "Detection of Mutual Inconsistency in
Distributed Systems", IEEE Transactions on Software
Engineering, vol. SE-9(3):240-247, May 1983.

[15] James Gosling, and Henry McGilton, "The Java(tm)
Language Environment: A White Paper", Sun
Microsystems, 1995.

32

