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ABSTRACT
Today’s global services and applications are expected to be
highly available, scale to unprecedented number of clients
and offer reliable, low-latency operations. This can be achieved
through geo-replication, especially when data consistency is
relaxed. There are however applications whose data must
obey global invariants at all times. Strong consistency proto-
cols easily address this issue but require global coordination
among replicas and inevitably degrade application through-
put and latency.

While coordination is an inherent requirement for maintain-
ing global application invariants, there are instances where
coordination on a per operation basis can be avoided. In
particular, it has been shown that either moving coordina-
tion outside the critical path for executing operations, or
having one coordination round for multiple operations, are
both effective ways to maintain global invariants and avoid
most of the penalties of coordination. Our stance is that
expanding this idea to geo-replicated settings has yet to be
fully realised.

In this paper, we review the design space of current solu-
tions for engineering geo-replicated applications and present
our guiding vision towards a general technique for providing
global application invariants under eventual consistency, as
a much cheaper alternative to strong consistency.

1. INTRODUCTION
The advent of global Internet-based services and applica-
tions has fuelled the rise of cloud computing and exposed
the challenges of building distributed applications target-
ing millions of users scattered across the globe. Turning
users into customers or potential customers of a whole new
economy of social networks and e-commerce platforms made
quality of service paramount to achieve success online.

A measure of quality of service that users perceive directly

is the responsiveness of their interactions with the service.
There is evidence from major industry players [29, 15, 25]
that even a slight degradation in latency correlates with in-
creased user dissatisfaction and, consequently, loss of rev-
enue. In recent years, a great deal of research and technology
advances have been directed to addressing this issue.

Geo-replication is a widely adopted technique to improve
the responsiveness of online services. It employs multiple
data centers, placed at strategic locations across the globe,
and attempts to redirect user requests to a nearby replica
of the service. Thus, the latency between end-users and the
servers can be significantly reduced, in addition to offering
improvements in system scalability and fault tolerance.

Under geo-replication, systems scale-out by partitioning data
requests [14, 5, 12, 18]. Yet, the need to replicate databases
over high latency, intercontinental network links forces sys-
tem designers to choose between system availability and data
consistency, since it is not possible to have both under net-
work partitions [10]. Eventually consistent and strongly con-
sistent systems are at the opposite extremes of that trade-off.

Eventually consistent systems forgo tight replica coordina-
tion to favor availability, allowing replicas to diverge un-
der network partitions. Operations are executed locally and
their effects are replicated asynchronously. This allows users
to observe the immediate effects of their actions, but can re-
sult in concurrency anomalies, due to conflicting operations
performed at other sites. In order to maintain global in-
variants, applications on top of eventually consistent data
stores require additional programming logic, thus compli-
cating their design and development.

Strongly consistent systems, in contrast, are well suited for
applications that need to enforce global application invari-
ants across replicas, at all times [9]. In these systems, data
consistency is achieved by limiting concurrency, either by
funnelling all updates to a central site, or running some con-
sensus algorithm, such as Paxos, so that all sites agree on
some global order of operations. However, performing this
level of coordination every time the application state is mu-
tated is expensive, particularly in the case of replicas that
are far apart, as expected in geo-replication settings. In
either case, throughput and scalability are compromised.

In an attempt to bridge the gap between availability and
consistency, researchers sought to figure out what guarantees



are attainable without impairing availability [3, 34]. They
determined that, under some conditions, Causality is the
strongest form of always-available consistency [3]. It also
happens this is insufficient for enforcing global application
invariants, such as ensuring non-negativity of an inventory
counter under concurrent decrements.

Others have pursued the approach of combining the best
aspects of eventual and strong consistency into systems that
choose the most appropriate consistency level for each of
the workload operations [33, 22]. Whether that choice is
made manually by the programmer (a delicate and error
prone process) or by a tool [21, 11, 19], it still remains that
the strongly consistent execution path can still undermine
availability and performance if those operations are frequent.

While coordination is necessary for enforcing global invari-
ants under concurrency, it should be possible to reap addi-
tional parallelism from the following observation: in many
cases, operations that in general are unsafe under concur-
rency, only actually break invariants when particular limit
conditions are reached. For instance, when a non-negative
counter is far from zero, concurrent decrements do not pro-
duce anomalous behaviour, regardless of the order they are
committed to the database. In other cases, the typical fre-
quency of unsafe operations in a given application workload
may provide an opportunity to save on coordination costs.
For instance, the frequency of operations that imperil a ref-
erential integrity invariant may be tiny compared to the rest
of operations. Treating all these operations in the same way
may miss the chance for optimizations - for instance, by
requiring the rarer operation to perform most of the bur-
den of global coordination may allow executing the most
frequent operation without need to contact other replicas
in the common case. These insights have motivated us to
improve geo-replication performance in a principled way by
moving coordination outside the critical execution path of
operations, instead of focusing on the ordering of operations
– the approach that is employed by most existing solutions.

The rest of the paper is structured as follows. In section
2, we further discuss the limitations of eventual consistency
(EC) using a social network application as an example. Sec-
tion 3 covers some work on using program analysis to deter-
mine which operations require coordination to ensure invari-
ants; then, in Section 4 we review additional techniques for
enforcing invariants. Section 5 presents the overall approach
of our work for providing global application invariants on top
of eventual consistency. Section 6 concludes the paper.

2. PITFALLS OF EVENTUAL
CONSISTENCY

Eventual consistency guarantees that in the future, if up-
dates cease, all replicas will converge to the same value, be-
coming indistinguishable [35]. In systems that offer eventual
consistency, clients can access any replica, which allows the
system to provide high availability despite failures as long
as a single replica is available. Additionally, these systems
tend to achieve low latency, as the client can access the clos-
est replica. These advantages come at the price of increased
complexity in application design [32].

In this section, we use a social network application to illus-

trate the anomalies that can occur in eventually consistent
systems and how to address them by requiring additional
guarantees from the system.

In particular, we start by discussing session guarantees [34],
which are an interesting set of additional guarantees that
can be implemented by eventually consistent systems.

In a social network, a user writes posts that are added to her
own wall and to the walls of all her friends. We say that the
system provides the monotonic reads session guarantee [34]
if, after observing some post, successive read operations re-
turn a state that includes the post (unless it was explic-
itly removed). The system provides read-your-writes if the
client will always reads her previous posts. These guaran-
tees respect only a single user session and can be supported
by requiring stick-availability, in which a client maintains
stickness or affinity with a server (or set of servers) [3] or
acts as a server by caching the writes and returning them in
subsequent reads.

Other session guarantees concern the state observable by
any client session. In particular, the system provides the
monotonic writes guarantee if when a client executes two
successive writes, any read that includes the effects of last
write also include the effects of the first write.

The final session guarantee is motivated by the fact that,
when a post is a reply to a previous post, a user expects to
observe the original post before the reply. A system provid-
ing the writes follows reads guarantee enforces this property
– more precisely, if a client does a write w after observing
the effects of a set of previous writes Sw, any client that ob-
serves the effects of w will also observe the effects of Sw. A
system that enforces causality [20] guarantees that all these
sessions guarantees are respected, as events are delivered to
different replicas according to the happens-before relation.
Many recent systems provide causal consistency [23, 1, 24,
38, 5].

In addition to session guarantees, there are other interesting
properties that eventually consistent systems may decide to
provide. For example, consider the following set of require-
ments. In social network systems, friendship is usually a bi-
directional relation, i.e., if user A is a friend of user B, user
B is also friend of user A. As such, when a friend request is
acknowledged, both friend lists must be updated. Updating
the friend lists without atomicity may result in some user
observing that A is friend of B but B is not friend of A or
vice-versa. This violates the friendship relation invariant.
To address this, some geo-replicated systems provide atom-
icity for a sequence of writes, while enforcing causality [24,
38, 33].

Finally, as a more challenging requirement, consider the fol-
lowing example scenario. Social networks allow the creation
of groups where users can interact. The only invariant that
tends to exist is that a user can only join a group for which
she has been invited. This rule is easily enforced by using
causal consistency, which guarantees that the acceptance of
an invitation will always follow the invitation itself. How-
ever, stricter semantics would be impossible to enforce rely-
ing only on causal consistency, particularly when concurrent



operations can lead to a state where the invariant is violated.
For example, it is impossible to guarantee that every mem-
ber of the group is friend of the administrator of the group,
since a friendship relationship could be cancelled while a user
concurrently joins the group. This invariant can instead be
repaired after the violation is detected – e.g., by removing
from the group the members that are no longer friends of
the administrator.

However, some other invariants may not have a trivial re-
pair function – consider that an award is given to a limited
number of users in the group. A system relying on causal
consistency could concurrently give out more awards than
the limit. In this case, there is no trivial solution to select
the users that should remain in the set of awardees, and the
situation can be particularly problematic in case the award
emails have been sent out.

The examples presented in this section show that there are
several additional guarantees that eventually consistent sys-
tems should provide. However, in some cases these guaran-
tees can be particularly difficult to enforce under eventual
consistency, even with the help of a repair function. As such,
to address these requirements, applications tend to adopt
strong consistency models (or at least provide support for
both weak and strong semantics [33, 22]).

3. MAKING THE RIGHT CHOICE
In the previous section we have seen that not all operations
have the same consistency requirements. For this reason,
many existing systems take the approach of supporting dif-
ferent levels of consistency to implement applications effi-
ciently.

Gemini [22], BloomL [11], Walter [33] and Lazy Replica-
tion [19] allow developers to choose between different levels
of consistency to ensure application correctness. This ap-
proach allows developers to use eventual consistency when
operations are compatible with any possible concurrent up-
dates, and only use strong consistency when concurrent op-
erations can make the database inconsistent. This allows for
fine tuning the consistency requirements of each operation.
However, it poses an heavy burden on the programmer, who
must decide the correct level of consistency to use: if the pro-
grammer is too conservative, this may lead to an inefficient
application; if the programmer is too relaxed due to incor-
rect reasoning about the application semantics, this can lead
to incorrect behaviour. Recent work has proposed to iden-
tify the best consistency level automatically, which provides
good results free of human error. In particular, Sieve [21] de-
termines the consistency level for operations that run on top
of Gemini, under RedBlue consistency. It combines static
and dynamic analysis to determine which operations are safe
under causal consistency, and which operations need serial-
izability to maintain invariants. The analysis considers a
set of user-provided invariants and small annotations that
specify the convergence techniques used for concurrent op-
erations on the same objects.

The first step of the analysis, completed offline, generates ab-
stract models that represent the space of possible concurrent
executions during runtime and, for each model, determines
the set of minimal pre-conditions for being safe to execute

the operation without coordination.

At runtime, an operation executes under causal consistency
if the minimal pre-conditions for weak execution determined
offline are matched. Otherwise, the operation executes un-
der strong consistency.

For example, the offline algorithm would determine that any
operation that adds a negative value to a non-negative stock
is unsafe to be executed under eventual consistency (as con-
current operations can lead the stock to become negative).
At runtime, if an operation adds a positive value, it will
execute under eventual consistency; otherwise it needs to
execute under strong consistency.

BloomL[11] is a logic programming language for distributed
applications that maintains application invariants. It is based
on the observation that monotonic programs never retract
information that is previously known, and therefore they
converge regardless the delivery order of messages in differ-
ent replicas. A total order of messages is only required for
non-monotonic operations. An important part of BloomL

is the CALM analysis that allows to identify which parts of
the program are non-monotonic.

The BloomL language provides a library of semi-lattice con-
structs that ensure convergence, similar to CRDTs[30]. The
language supports non-monotonic operators: operators that
may give different results depending on the arrival order of
remote messages. For executing a non-monotonic operator,
a coordination protocol must be executed, to ensure that
the result of the non-monotonic operation is equivalent in
all replicas.

Both strategies identify which operations may break invari-
ants and require coordination among replicas to execute
them. This strategy is conservative, as in many executions it
is safe to execute the operations without coordination. For
instance, in the stock example, coordination is only neces-
sary when the number of available units becomes low, but
the system is forced to coordinate on every request because
it does not take the current level of the stock into account.

When determining if an operation can execute without co-
ordination. BloomL looks only at the code of operations,
while Sieve takes into consideration both the code of the op-
eration and the value of parameters. In the latter case, the
final decision on whether coordination is necessary or not is
executed in runtime. We argue that it is possible to extend
this approach by considering also the state of the database.
This has the potential to reduce, or even completely avoid,
the cost of global coordination by extending conflict anal-
ysis with runtime information about the database and the
participants.

In the literature, some proposals use the estimation of replica
divergence to avoid coordination [37, 17], either by using de-
terministic or stochastic models. However, these techniques
cannot be applied to general invariants and only give a es-
timation of the divergence, allowing invariants to be broken
in certain scenarios.



4. OLD TECHNIQUES REVISITED
In this section, we revisit two works that inspire our vision
for enforcing invariants without requiring coordination in
the critical path of operation execution: the escrow trans-
actional method [26] and the demarcation protocol [7]. We
discuss the use of these protocol to provide the invariants
from Section 2 without using strong consistency, or replica
coordination in the general case.

The escrow model [26] was proposed to allow long-lived
transactions to commit without interfering with other on-
going transactions. The key idea is to divide resources into
escrows that can be used concurrently by different nodes. If
the client has enough resources in its escrow, it can execute
the operation without coordination and release the remain-
ing resources on commit, or abort.

In the example of the limited number of awards, consider
that each group has a limit of K awards. Each node i that
holds a copy of group G grants awards up to a limit Yi such

that
n∑

i=1

Yi <= K, where n is the number of copies of G.

While the number of given awards do not exceed the local
limit Yi, each node can execute the operations locally with
low-latency.

This model has been extended to support different partition-
able data types [36] and operations [27, 31], but all imple-
mentations rely on a central component to manage escrows.

The demarcation protocol [7] has a insight similar to the es-
crow model, but enforces invariants over multiple variables.
For each variable, the protocol defines a limit for the value
of the variable. The combination of the defined limits for all
variable guarantee that the defined invariants remain valid.
Thus, operations are safe if updates do not exceed the de-
fined limits.

If an operations requires a variable to exceeds its limit, an-
other peer must change its limit to make that operation
safe: a node sends a request with the change in the limit it
requires; the node that accepts the request adjust its own
limits and notifies the requester of the change; the requester
then increase its safety limits with the received delta and
the operation executes safely.

Changing the limits with point-to-point communication can
be fast when nodes know enough information about the
other peers. When the resources are scarce and nodes change
the limits more frequently some request might fail leading
to multiple point-to-point messages. Additionally, the point-
to-point protocol needs to enforce exactly-once delivery or
the limits may become more restrictive than necessary.

The authors have used this protocol to maintain a numeric
invariant over resources distributed in multiple machines,
enforcing the uniqueness invariant and to provide referential
integrity constraints.

A referential integrity constraint is modelled by a logical
implication: predicate(A) ⇒ predicate(B). Each nodes
stores a boolean value for each predicate. The idea is to
enforce that whenever a node updates a predicate to a value

that may turn the expression false (unsafe), it must enforce
that the other nodes changes the value of their predicate
to maintain the expression true. In our example, we have
JoinGroup(A,G) ⇒ isFriend(A,B), with A a user, B the
administrator and G a group of users1. Making JoinGroup(A,G)
true is unsafe because that value is only allowed if isFriend(A,B)
is true, otherwise the expression is false. The node requests
the peer holding the predicate isFriend(A,B) to change
the minimum value for that predicate to true. The con-
verse must also be ensured, to make isFriend(A,B) false -
the node must ask the peer holding the value for predicate
JoinGroup(A,G) to ensure it is false.

The idea of distributing data by multiple nodes in an infras-
tructure has been widely adopted in other contexts to do
load balancing for distributed memory multiprocessor [13],
quota enforcement in grid [16] and cloud environments [8].
More recently MDCC [18] uses a variation of the demarca-
tion protocol to extract more concurrency of commutative
operations that maintain numerical constraints invariants.
The homeostasis protocol [28] also extends the demarcation
protocol, but requires a new set of conditions to be com-
puted and installed in all replicas using two-phase commit.
We argue that it is possible to leverage these old ideas in
the new geo-replicated settings relying on peer-to-peer and
unreliable asynchronous communication protocols only, as
discussed in the next section.

5. LOW-COST INVARIANTS
In the previous sections, we have shown techniques that al-
low the maintenance of database invariants in two different
ways: by identifying what operations are not safe and use
strong consistency to execute those or by enforcing local con-
straints to ensure that operation are safe, while the system is
divergent. We argue that a combination of these techniques
can be used to provide a principled approach to execute op-
erations that maintain invariants without coordination in
the general case.

We envision a system that identifies operations that require
strong consistency, but use an efficient protocol to guarantee
that local executions are safe instead of using global coordi-
nation. The system would exchange the necessary resources,
outside the critical path of execution, to guarantee that op-
erations can execute safely, but could still resort to strong
consistency when those requirements are not met.

Our preliminary investigations indicates that Sieve is a good
candidate to build our system. We could modify the analysis
that determines the weakest pre-conditions to accept more
facts, computed during runtime, to enable the execution of
more operations locally. For instance if the weakest pre-
condition to execute joingroup(A,G) is that isFriend(A,B),
than we could add some fact that gives the local replica the
exclusive right to modify that predicate, which would ensure
it does not become false. On execution, if the current replica
holds that guarantee it can execute the operation without
coordination because it has the guarantee that the value of
that predicate can only change locally. Otherwise, it should
resort to strong consistency to execute the operation.

1The invariant presented is simplified for illustration pur-
pose, it should also ensure that B is administrator of G



We have a preliminary design of a data-type that maintains
numerical invariants [6]. Our data-type maintains the full
state of the invariant, which allows the current value to be
queried by a client, in opposition to the demarcation proto-
col, that may require to contact multiple nodes before know-
ing the actual value of the inequality. Evaluation shows that
all operations execute locally while they do not contend for
the last available resources. This is a first stepping stone to
provide data-types that are able to preserve the demarcation
protocol invariants in a replicated system.

Our approach is able to maintain different forms of invari-
ants and we already have a data-type that realises the nu-
merical invariants, but it remains an open question what is
the extent of invariants can we capture. Baillis et Al. [4]
made a survey on the typical invariants on benchmarks and
concluded that the most common invariants have the form of
referential integrity, numerical constraints and uniqueness,
which all can be implemented with the demarcation proto-
col.

To our knowledge, none of the previous approaches can be
directly applied to implement our vision. None of the former
works addresses all the key points in building geo-replicated
data-bases: Either they only capture limited forms of in-
variants, do not deal with data-replication, rely on a cen-
tral components to manage resources or do not provide low-
latency, fault tolerance and scalability to million of clients.

6. CONCLUSION
Current systems give up low-latency and availability for con-
sistency when invariants are essential to applications. At
best, only those invariants that are compatible with eventual
consistency can be enforced with low latency. For the rest,
the default has been to rely blindly on strong consistency.
To help figure out which case applies, recent research has
produced techniques that help programmers sort out which
parts of a program are unsafe under concurrency and need
global coordination. Avoiding coordination over expensive
inter-continental links has proved to be an important opti-
misation with noticeable impact on performance.

In this paper, we propose leveraging additional techniques
to further avoid paying the full cost of coordination while
enforcing global invariants on top of eventual consistency.
To the best of our knowledge, no current implementations
are tailored to harness these techniques on cloud infrastruc-
tures.

After reviewing the literature, we concluded that the ap-
proach applies to the most frequent application invariants.
We have already confirmed this in part with the design of
a data-type that maintains numerical invariants with low-
latency. We are now adapting these protocols to be deployed
on geo-replicated systems and have been using existing anal-
ysis techniques to determine when our optimizations can be
applied.
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