
FLEXIBLE DATA STORAGE FOR MOBILE COMPUTING 

Nuno Preguica, J. Legatheaux Martins, Henrique J. Domingos. Jorge Simk 
Department of Computer Science 

Faculty of Sciences and Technology - New University of Lisbon 
Quinta da Terre, 2825 Monte da Caparica, Portugal 

{ nmp,jalm,hj,jsimao) @di.fct.unl.pt 

KEY WORDS 

Mobile computing; asynchronous collaborative 
applications; distributed data storage; object framework. 

ABSTRACT 

In this paper we describe a flexible object storage system 
aimed at supporting collaborative applications in large- 
scale environments that include mobile computers. We 
present an integrated solution to two major problems that 
arise in such environments: data availability and 
concurrency control. The first is tackled by the flexible 
combination of weakly consistent server replication and 
.client caching. The second is tackled through an open 
object framework that enables easy object development 
using type specific conflict detection and resolution. This 
object storage serves as a supporting platform to build 
distributed and mobile collaborative applications. 

INTRODUCTION 

Mobile computing is characterized by some intrinsic 
constraints related with available connectivity, power and 
hardware resources [I I]. Despite the impressive progress 
in hardware and communication technology [3], mobile 
hosts have to face lower and highly variable bandwidth 
capabilities when compared with those of stationary 
computers. Moreover, these reduced capabilities impose 
periods of complete disconnection. 

As users must be able to access data to perform useful 
work, the utility of any computer depends largely on the 
efficiency of the underlying storage system. In mobile 
environments, where periods of complete disconnection 
are frequent, data availability must be provided relying 
on local replicas of data To support collaborative 
applications effectively, users must be allowed to 
perform their contributions in any mobile host without 
any restrictions. even when disconnected. These 
concurrent updates must be subsequently merged. and 
their intended effects taken into account, to produce the 
final state of the shared data 

In this paper we present an overview of the DAgora 

Permission to make digital or hard copies of all a part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit w commercial 
advantage and that copies bear this notice sod the full citation on 
the lint page. To copy othmvise. to republish, to post on servers 
or to redistribute to lists, requires prior specific mission m&or a 
fee. 
SAC 99. San Antonio, Texas 
01998 ACM l-58113-086-4/99/0001 SS.00 

storage system, which has been designed to support 
asynchronous collaborative applications in large-scale 
settings that include mobile computers. 

SYSTEM OVERVIEW 

The DAgora distributed storage system manages objects, 
known as coobjects - from collaborative objects. These 
coobjects may be rather complex (such as documents or 
scheduler calendars) and be implemented as an arbitrary 
composition of regular objects. Sets of related coobjects 
are grouped in volumes that represent collaborative 
workspaces and store the data associated with a given 
Workgroup and/or cooperative project. 

To provide high availability of data and support for 
workgroups that are distributed across several physically 
disjoint locations, volumes of coobjects are replicated by 
groups of servers. The location of servers must be 
selected to decrease users’ connectivity requirements and 
nothing prevents a powerful mobile computer from 
hosting a DAgora server. 

Since traditional replication schemes providing one copy 
serializability and strict consistency yield unacceptably 
low write availability in partitioned networks or in the 
presence of disconnected computers [l]. weak 
consistency of replicated data is desirable. Consequently, 
DXgora has adopted a model in which clients can read 
and write to any replica independently - read any I write 
any model. 

Updates are propagated among servers during occasional. 
pair-wise communications known as anti-entmpy 
sessions [9]. thus taking into consikration the 
connectivity characteristics of mobile environments. This 
epidemic scheme guarantees that each server eventually 
receives all updates from every other, either directly or 
indirectly. Therefore. consistency among data r@CaS 
may be eventually achieved in a quiescent state when all 
updates have been propagated to all replicas. 

To increase data availability and system usefulness for 
mobile users. DAgora implements a caching mechanism 
in clients. Applications employ a get / modify loed& / 
prtr changes model of data access. Priv* copies of 
coobjects are obtained through the client component and 
they are modified by usual method invocations. Updates 
are exported to a sewer using a srore-u~!&%~u~ 
model: the client component stores the updates until 
incremental propagation is possible. The outlined 
architecture is depicted in figure I. 



Figure 1 - DAgora architecture composed by three 
computers with different configurations. &objects 

are replicated by servers. cached by clients uld 
manipulated by users’ applications. 

Our goal in designing DAgora was to provide system 
support to ease the development of asynchronous 
collaborative applications for mobile environments. To 
this end, providing transparent data availability is just 
one of the problems involved. Another one, perhaps 
more difficult to solve, it is to handle concurrent updates 
in a weakly connected system based on weakly 
consistent replication. 

Distributed tile systems, such as Coda [6] and FICUS (81, 
use system and user defined conflict resolution programs 
to merge divergent replicas. These systems work very 
well in environments with few conflicts and their 
strategy is quite effective for objects with simple 
semantics - e.g. file directories. They have proven the 
value of semantic conflict detection and resolution. 
However. experimental results (30% unsolved 
update/update tile conflicts [8]) suggest that the 
resolution of conflicts based on simple state propagation 
may be very difficult for complex objects. 

We believe that the observed shortcomings can be 
overcome executing conflict resolution at the granularity 
of individual opera&ions and further exploiting domain- 
specific knowledge (thus extending the principles applied 
in Coda and Ficus). Several systems, such as Bayou (12). 
Rover [4] and Sync 171, use different approaches based 
on the above principles. In [IO] we discuss the reasons 
why we believe our system is more suitable for the target 
environment. 

In the DAgora storage system. updates performed by 
users are propagated to a server and among all the 
servers as method invocations. The effect of each update 
in the 0@51l state of a coobject is finally determined by 
the execution of the associated method in each server. 
Besides the cdmplexity of log management, this 
approach presents several problems that musf be taken 
into consideration: interpretation of results in user 
applications; consistency among servers; and respect by 
the user’s intentions when applying one update (to a 

‘different coobject state). To help programmcn solving 
these problems in their specific applications. DAgom 
presents an open object framework that eases coobject 
development reusing several predefined solutions. 

OBJECT FRAMEWORK 

The DAgora open object framework structures each 
coobject in the following five disjoint components: 
attributes, log, log-ordering, data and capsule. In this 
section we will briefly present each component, their 
available predefined implementations and outline how 
they are used to solve the problems mentioned earlier. 

Figure 2 -The Dmject framework. 

The component “attributes” is used to store gene& 
purpose information relative to the coobject and meta- 
information relative to the replication process. 

The component “log” stores the updates performed by 
users. For each sequence of updates exported by an 
application. the log adds a timevector representing the 
initial version of the coobject. For each sequence of 
updates received by a Server from a client, the log adds a 
timestamp that allows the establishment of a total order 
among all updates. 

The component “log-ordering” is used to order the 
execution of updates relying on the information added by 
the component “log”. Currently, several implementations 
are available, namely: no order, causal order, total order 
based on a sequencer replica. total causal order based on 
stability tests, and optimistic total o&r using undo/redo 
151. This component should be selected accMding to the 
semantics of operations to guarantee the desired 
consistency among servers. In [lo] we further discuss 
available implementations and their usage. 

The component “data” represents the real data type being 
created. with its associated state and operations. Finally. 
the component “capsule” aggregates the componenfs of a 
coobject and determines its composition. Common 
coobjects are composed by one instance of each 
component. Next. we present some base implementations 
available for these components and their usage in real 
applications. 

Previous research has concluded that the definition of 
two states for an update, committed and tentative. is very 
useful in mobile cnvironmcnts [4.12]. For instance. in a 
scheduler application, reservations executed by users 
must be considered tentative until they are committed. 
Users should be allowed to see tentative data to avoid 
possible conflicts (tentative data represent a foresight of 
the coobject’s state). In the DAgora system, a 
programmer may easily create a coobject Ih;rr Jtorrs a 
tentative and a committed versioa of the d8ta+ relying on 
simple data objects and using an exteaded capsule. This 
capsule is composed by two instrnccr of the components 
“log-ordering” and “data” and transparently maintains 
both states - committed data results from the execution 



of stored updates using a pessimistic total order, while 
tentative data results from the execution of unstable 
updates to the committed state using causal order. 

For some applications, it is impossible to solve conflicts 
automatically. For instance, if a base element (e.g. 
section) of a structured document is modified 
concurrently by two users. the system usually can neither 
decide which modification is the best, nor merge both 
modifications. In such cases, two versions of the 
conflicting element must be created and resolution must 
be left to users. In DAgora, we have created a component 
“data” that implements a set of generic objects with 
multiple versions. Concurrent modifications of the same 
object are detected and solved automatically creating 
multiple versions. Programmers may extend this 
component and define automatic merging procedures or 
let this work to users. Another component implements a 
generic tree-structured organization on top of the above 
set of objects and can also be extended by programmers. 
These base components have been used for implementing 
several structured documents manipulated by a 
collaborative editor [IO]. 

When the multi-version “data” components are not used, 
the programmer must take into consideration the DAgora 
model of operation. when implementing the component 
“data”. However. to guarantee that users’ intentions are 
respected when updates are applied in each server and 
eventuai conflicts are detected and solved, the DAgora 
object framework provides the necessary support to the 
usage of some simple techniques. First. the existence of 
concurrent updates may be tested using the timevector 
associated with each operation. Second, the defined 
preconditions for the execution of an update may be 
checked. Third, the definition of alternative actions to be 
executed dependent on the coobject’s state is possible. 
Fourth. the definition of state-independent operations is 
also possible. More complex techniques, such as updates’ 
transformations [2]. may also be implemented using the 
updates stored in the component “log”. 

Our experience with some implemented applications [IO] 
suggests that most applications will use one or two 
simple techniques (e.g.. a careful operation definition 
associated with a regular precondition checking has been 
used m a scheduler application, while our ntulfi-version 
components rely uniquely on the timevecton associated 
with each update). The creation of a new coobject is 
reduced to the implementation of the component “data” 
and to the selection of the desired available semantics for 
the other components. 

FINAL REMARKS 

The DAgora data storage presents an architecture that 
allows adaptation to specific environments using 
different system configurations. It provides high 
avulability of data taking into consideration the 
constraints of mobile computing. 

The associated DAgora open object framework SHOWS 

programmers to develop specific solutions for their 
problems. As there is no single solution that solves all 

problems. the flexibility that is provided by the open 
object framework is fundamental to support different 
types of applications. Moreover, the object framework 
eases the task of programmers allowing them to reuse 
several predefined components that handle most of the 
complexity associated with datadistribution. 

REFERENCES 

[ 11 CO~II B., Oki B.. Kolodner E. Limitations on database 
availability when networks partition. In Proceedings S’* 
ACM Symposium on Principles of Distributed 
Computing, August 1986. 

[2] Ellis C., Gibbs S. Concurrency Control in Groupware 
Systems. In Proceedings of rhe ACM SIGMOD 
Conference on rhe Management of Data, June 1989. 

[3] lmielinski T.. Korth H. Introduction to Mobile 
Computing. Mobile Computing, ed. T. lmielinski and H. 
Korth, Kluwer Academic Publisher, 1996. 

[J] Joseph A.. DeLespinasse A., Tauber J., Gifford D.. 
Kaashoek M. Rover: A Toolkit for Mobile Information 
Access. In Proceedings of rhe 15” ACM Symposium on 
Operaring Sysrems Principles, December 1995. 

[5] Karsenty A., Beaudouin-Lafon M. An algorithm for 
distributed groupware applications. In Proceedings ofrhc 
I.?‘” Inrernaiional Conference on Distributed Computing 
Systems. May 1993. 

[6] Mummert L., filing M., Satyanarayanan M. 
Exploiting Weak Connectivity for Mobile File Access. In 
Proceedings of the 1-v ACM Symposium on Operating 
Systems Principles, December 1995. 

[7] Munson J.. Dewan P. Sync: A Java Framework for 
Mobile Collaborative Applications. IEEE Computer. 
June 1997. 

[S] Page Jr. T., Guy R.. Heidemann J.. Ratner D.. Reiher 
P.. Goel A.. Kuenning G., Popek G. Perspectives on 
Optimistically Replicated, Peer-to-Peer Filing. k$ware- 
Practice and Experience. vol. 28(Z), February 1998. 

[9] Petersen K.. Spreitzer M.. Terry D.. Theimer M.. 
Demen A. Flexible Update Propagation for Weakly 
Consistent Replication. In Proceedings of the 16 ACM 
Swtposium on Operating Systems Principles, 1997. 

[IO] Preguiqa N.. Martins J.. Domingos H.. Simb J. 
System Support for Large-Scale Collaborative 
Applications. Technical Report, TR-01-98 DI-FCl’-UNL. 
Dep. Computer Science, New University of Lisbon. 1998. 

[I I] Satyanarayanan M. Fundamental Challenges in 
Mobile Computing. In Proceedings of the lf ACM 
Symposia on Principles of Distributed Computing. 1996. 

[ 121 Teny D.. Theimer M., Petersen K.. Demers A., 
Spreitzer M.. Hauset C. Managing Update Conflicts in 
Bayou, a Weakly Connected Replicated Storage System 
In Proceedings of the I.? ACM Symposium on -raring 
Systems Principles, December 1995. 


