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ABSTRACT 
In this technical report we describe a flexible storage system aimed at supporting collaborative applications in 
large-scale environments that include mobile computers. In such settings two major problems arise: data 
availability and concurrent updates merging. The first is tackled by the combination of weakly consistent 
server replication and client caching. The second, through an open object framework that enables easy object 
construction, using type specific conflict detection and resolution. Thus, our storage system serve as a 
supporting platform to produce new distributed collaborative applications. To face the mobile computing 
characteristics, flexibility is a major concern in our system.  
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Large-scale; mobile computing; collaborative applications; flexible distributed data storage; weak consistency; 
flexible concurrent update merging; object framework. 

1. INTRODUCTION 
Distributed systems and applications for mobile environments must deal with a new set of communication, 
power and resource constraints [10,22]. Although impressive developments have been achieved in wireless 
networking research [10], mobile users still have to face lower and highly variable bandwidth capabilities 
when compared with stationary computers. Moreover, these reduced capabilities are usually restricted by cost 
and battery power, imposing periods of complete disconnection. Hardware resources available in mobile hosts 
also tend to be limited, variable and heterogeneous. 

These characteristics impose flexibility as a key criteria for mobile systems. These systems should be flexible 
enough to accommodate different configurations for different available hardware resources. Heterogeneity is 
an issue that must be handled as well. Usage of communication resources should also be flexible, and must 
automatically adapt to the variable existent connectivity. 

The usefulness of mobile computers depends largely on the efficiency of the underlying storage system. To 
make useful work, users must be able to access data. For this reason, data availability is a major concern in 
mobile environments. The existence of periods of complete disconnection imposes the ultimate challenge for 
availability: providing the needed data access in absence of connection to data servers. Server replication and 
client caching techniques have been widely used to provide almost complete availability [8,12,14,23]. 

Due to mobile computing intrinsic characteristics (that include the existence of long periods of disconnection), 
traditional concurrency control mechanisms based in locking and transactions are not suitable, or must be 
redefined in the new context [9]. To face mobility constraints, weak consistency of replicated data is usually 
used. Experience and prior research have proven that one of the main issues involved in the management of 
data in such settings, which highly influences availability and usefulness, is the handling of uncoordinated / 
independent concurrent updates. It seems incontestable that, in absence of conflicting concurrent updates, 
automatic merge should be done. However, the definition and detection of conflicting updates is not trivial. 
Moreover, whilst there are many actions that can be taken in presence of conflicting updates, the adequate one 
seems to be type and situation specific. Flexibility should be a key criteria of the mechanisms needed to handle 
these updates. 

In this technical report we present the DAgora replicated object repository that is aimed at supporting 
collaborative applications in large-scale heterogeneous environments that include mobile and disconnected 
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computers. It uses server replication based on log propagation and client caching with a read any / write any 
model of data access in order to maximize availability. Different forms of flexibility and adaptability are 
provided to cope with mobility inherent constraints. 

DAgora also provides an object framework that allows new data types to be composed from reusable 
predefined components and regular object classes, thus hiding from application programmers the complexity 
associated with data distribution. Different policies exist to apply concurrently made updates to different 
replicas, thus allowing each data type to incur only in specific overhead. Flexibility in concurrent updates 
handling is achieved by our object framework data types composition and DAgora open implementation, that 
allows new policies to be defined as required. 

Our contribution in this technical report is two-fold: define a data storage architecture offering high-
availability of service and allows flexible configuration and adaptation to mobility constraints; and define an 
open object framework that allows flexible handling of concurrent updates, thus allowing collaborative 
activities to occur in presence of reduced or even unavailable connectivity. In the remainder of this technical 
report we present: the DAgora operational model; the DAgora architecture and open object framework; status 
and intended future work; comparison with related work; and finally some conclusions. 

2. DAGORA OPERATIONAL MODEL 
The DAgora storage system is a distributed object repository based on a client / replicated server architecture. 
DAgora manages specially structured objects, known as coobjects (from collaborative objects). These 
coobjects are structured according to the DAgora object framework, and are specially designed to handle 
concurrent updates. In this section we will just outline system operation, whilst details about system 
architecture and object framework will be presented in later sections. 

Coobjects are organized in sets, known as volumes. Each coobject belongs to a single volume and has a 
unique identifier relative to the volume. We anticipate that volumes will contain sets of related coobjects, as 
for instance, the coobjects produced by a workgroup in a specific task. Coobjects present in one volume may 
be of different types (LaTeX documents, Java source files, scheduler timetables, etc), reflecting the different 
kinds of data manipulated in any work. Thus, each volume will represent a collaborative workspace, 
containing coobjects relative to a given workgroup and/or cooperative project. 

DAgora applications run on client machines, allowing users to collaborate through concurrent modification of 
the same coobjects. Coobjects may be rather complex (such as a document or a scheduler calendar) and be 
implemented as an arbitrary set of regular objects. Applications employ a get / modify locally / put changes 
model of data access: they obtain local private copies of coobjects, modify them by usual methods 
invocations, and finally explicitly export updates made. 

When an application requests a given coobject, if it is not present in client machine’s cache, it is fetched from 
a server. A private copy of the coobject is created and handed over to the application. The application uses 
this coobject as a regular object, invoking its methods to query and modify its state. Updates made by 
applications are registered as sequences of methods invocations and are logged transparently by coobjects. 
Finally, users may explicitly save changes made. Logged updates are then stored in persistent storage at the 
client machine, and later sent to a server (depending on connectivity availability). 

Upon arrival of updates sequences from a client machine, the server hands them over to the coobject local 
replica. Each coobject replica is responsible for logging, ordering and locally applying each received update. 
Different coobjects will apply updates obeying different constraints based on different requirements. Servers 
establish pair-wise occasional communications to propagate newly received updates, synchronizing the sets of 
known updates. As a consequence of this mode of operation, replicas of the same coobject may differ, at a 
given time, in different servers, but they will eventually converge (as all updates are propagated to all 
replicas). 

3. ARCHITECTURE 
DAgora architecture is based on weakly consistent server replication and client caching. Each volume is 
replicated by a dynamically variable group of servers. Servers synchronize among themselves during pair-wise 
occasional contacts. Clients cache key coobjects to enable users to continue their work during periods of 
disconnection. In figure 1 we depict the outlined architecture. 
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Next, we introduce the rationale behind the use of the above techniques and present client and server 
components. Finally, we emphasize the mechanisms that allow flexible configuration and adaptation to 
mobility constraints.  
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Figure 1 – DAgora object storage architecture. 

3.1 Rationale 
In large-scale settings, connectivity among system components is often limited (due to low bandwidth and 
expensive connections), and at times, even unavailable (due to network and/or machine failures and 
disconnected computers). Since a single storage site may not be permanently reachable from some client 
machine, replication is required in order to provide high-availability of service. To avoid low write availability 
in presence of partitioned networks [3], weak consistency of replicated data is desirable [4]. 

For the above reasons, we have adopted a read any / write any model, in which updates can be applied to any 
replica independently. We have also adopted an epidemic scheme of update propagation among servers [19], 
where every server eventually receives all updates from every other, either directly or indirectly. This scheme 
requires only occasional pair-wise communication between computers, thus taking into consideration 
connectivity constraints. Some consistency across replicas will eventually be reached (in absence of new 
updates) as all updates are propagated to all replicas. 

Mobile computers, with its inherent reduced connectivity, only exacerbate the above constraints [1,9]. 
Moreover, the reduced hardware resources available (as presented for instance by personal digital assistants – 
PDAs), often make impossible and/or undesirable for clients to manage a full unit of replication (that usually 
corresponds to large amounts of data). Because of these reasons, DAgora has also adopted a client caching 
mechanism that allows users disconnected from servers to continue their work, keeping copies only of key 
data.  

Our system allows great flexibility. Server machines are in general fully connected, powerful and reliable. 
Thus, it is wise to replicate big and critical volumes in servers, while clients, generally small and mobile 
machines, cache only part of the coobjects belonging to these volumes. However, nothing prevents a personal 
machine from being a server of a small volume, as illustrated in figure 1. 

3.2 Client Component 
DAgora system presents an API (DAgora API) that allows applications to retrieve / store modifications to 
coobjects and to manage volume replication and synchronization. To fulfil applications requests, the client 
API module relies on the client kernel component. This component is structured in three modules: cache 
manager, log manager and network manager. The cache module is responsible for managing the client cache 
(shared by all application in the same computer). The log manager persistently stores invocations to servers 
(e.g. updates performed to coobjects). The network module is responsible for managing available 
communication resources. In figure 2 we present the client component structure. Although the existence of the 
outlined modules has already been referred in other systems [11], in DAgora we add a set of associated policy 
components that allow configuration and adaptation to specific (hardware and communicational) constraints. 

Figure 2 – DAgora client. 
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The cache manager provides stable storage for local copies of coobjects. For each coobject two copies may 
exist, an official one, fetched directly from a server, and a modified one, reflecting updates applied by the 
local user to the official version. Applications may control the consistency degree of accessed coobjects by 
specifying not only which version they want to obtain, but also the acceptable consistency related to a server 
version (e.g., they may require a freshly fetched version). 

To accomplish useful work while disconnected it is essential to have the necessary information locally 
available. However, different operational conditions lead to different optimal caching policies (it has been 
verified that different professional users have different access patterns [18]). Thus, the cache manager is 
complemented by two modules, which are responsible for defining the effective caching policy. The ranking 
module defines a ranking for coobjects that must be present in cache. Different algorithms may be used 
[14,15]. The fetching module is responsible for issuing (pre-)fetching orders, based on ranking values. 
Aggressiveness of required pre-fetching policies will vary, depending on computer type and connectivity 
quality of service (static, mobile with good wireless connectivity, primarily disconnected mobile, …). 

The log invocation manager provides persistent storage for sending requests to servers (in a mechanism 
similar to a deferred RPC). These requests correspond to replication management and synchronization orders, 
coobjects fetching orders and updates sequences performed by users to coobjects. Support for intermittent 
connectivity is accomplished by allowing requests reordering and incremental flushing to the servers. 

An associated module exists, the processor module. This module is responsible for pre-processing logged 
invocations. Log reordering is used to give higher priority to operations upon which applications immediately 
depend on (e.g. if an application requests a coobject that is not present in cache, the associated coobject 
fetching operation should be executed before other operations). Another issue that processor module addresses 
is log compaction. Simple truncation is provided for system primitive operations – e.g. duplicated coobject 
fetching requests are filtered. 

The network manager is responsible for network resources. It may use different kinds of connections with 
different and variable associated quality of service and cost. Different protocols may also be available. Thus, 
adaptation to network conditions is possible by alternative protocol and connection selection. The net usage 
policy module is responsible for determining which connection and protocol (if any) should be used for a 
given communication to a server (being responsible for adaptation policy). Usually, this module must make a 
trade-off between network latency and communication cost.  

3.3 Server Component 
Servers responsibilities are two-fold: reply to clients requests and manage volume replication. To handle 
clients requests, a simple underlying RPC protocol is established between clients and servers. Servers 
implement the DAgora server API that allows clients to fetch coobjects, upload updates performed by users, 
and manage volume replication and synchronization. 

DAgora servers propagate updates among themselves, synchronizing their coobjects replicas, during pair-wise 
occasional communications, known as anti-entropy sessions [19]. The two servers involved in a session 
exchange updates so that when they finish both agree on the set of updates known. Epidemic algorithm’s 
theory guarantees that as long as servers and communication paths form a connected graph (i.e., as long as 
servers are not permanently partitioned or failed) each update will eventually reach all servers. In absence of 
new updates performed by clients, all servers will eventually receive all updates and hold the same data state. 
This scheme of replication has been previously used in several systems [6,8,12,23] for improving availability, 
simplicity and scalability. 

DAgora implements a protocol based on the time-stamped anti-entropy protocol presented in [6]. It maintains 
summaries of updates seen in each server (timevectors), which are exchanged during anti-entropy sessions and 
are used to determine which updates need to be sent. It maintains, additionally, in each server, a timevector to 
acknowledge updates seen by all servers, which is exchanged and updated during anti-entropy sessions and is 
used to purge updates from coobjects logs. 

Some modifications and extensions have been introduced to adapt it to DAgora. Notably, it was extended to 
cope with the multiple and variable number of coobjects that should be synchronized during each session, 
taking into account newly created and deleted ones. To this end, in each contact, multiple anti-entropy 
sessions occur. An additional state-transfer mechanism was included to propagate coobjects initial state. 
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It was also modified to enable and optimize anti-entropy sessions using asynchronous methods of 
communication, such as e-mail. The changes consisted mainly in the rearrangement of protocol steps, not 
affecting its correctness. This modification is especially interesting for mobile computing, because it allows 
servers lodged in mobile computers to synchronize with each other without the need for direct connections 
between them. Thus, it allows all servers to be lodged on mobile computers and guarantees eventual 
propagation of updates even if no pair of servers is simultaneous and directly connected in any moment. This 
change also enables the overcoming of firewall security restrictions, thus allowing large-scale inter-
organizational cooperation. 

The rate at which servers reach convergence (i.e., know all updates) is dependent on the frequency and 
topology of anti-entropy sessions. In DAgora, we enable per volume definition of frequency and topology of 
synchronization sessions, which are automatically performed by servers. Similar to the client component, 
different connections and protocols may be used to execute the anti-entropy sessions. 

The group of servers that replicate each volume may vary as a result of users (system administrators) explicit 
orders. To this end, DAgora uses a well-known coobject in each volume to track membership changes. Light-
weighted join and leave protocols are implemented, imposing contact with just a single server (that replicates 
the volume). Membership changes are detected prior to normal anti-entropy sessions (through use of view 
identifiers), and require a special protocol to be established between the two servers (this protocol is very 
light-weighted unless concurrent joins exist). All protocols used in DAgora are presented, in detail, in [21]. 

3.4 Flexibility 
Flexibility in the DAgora architecture is achieved not only combining differently configured client and server 
components, but also allowing different alternative policies to be used in each component. Thus, DAgora 
allows adaptation to different and modifiable environment conditions. In this section we present the existent 
flexibility mechanisms. 

Different Client Caching and Communication Policies 

The client component includes several policy modules. Several operational parameters may be tuned, thus 
allowing different clients in the system to have different configurations specially adapted to their particular 
characteristics. For instance, a (primarily) mobile computer will have a pre-fetching policy more aggressive 
than a (primarily) static one. Some PDA computer that is used to access data only when connected to some 
data server (or some strongly connected static computer) may be configured to have no cache nor invocation 
log (setting their sizes to null). In the client component section we have already discussed different policy 
alternatives. 

Different Epidemic Synchronization Policies 

DAgora allows per volume definition of epidemic synchronization policy, through definition of (interrelated) 
topology and frequency of anti-entropy sessions. Flexibility in definition of topology allows, for instance, 
efficient use of communicational resources through mapping of anti-entropy topology to existent physical 
infrastructure. For example, the right-most topology of figure 3, may be used in some collaborative project 
between two distinct institution – servers inside each institution establish sessions with each other and a single 
connection links the two institutions. 

……..
 

Figure 3 – Some example topologies for anti-entropy sessions. 

Frequency and selection of time periods for anti-entropy sessions may also be defined, making a trade-off 
between server consistency and communicational resources usage. For the same volume, different anti-entropy 
links may have different frequencies. For instance, in the above example, servers in the same institution may 
synchronize among themselves several times per hour, while the anti-entropy session between the two 
institutions may be executed only once a day (perhaps when communicational costs are lower).  
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Different Connections and Protocols 

As it has already been referred in previous sections, in large-scale and mobile settings, it is important the use 
of alternative communicational resources (different connections, protocols, …) in order to provide system 
adaptation to different environments. Variable connectivity should also be tackled. In DAgora, we provide this 
flexibility both in client/server and in server/server communications, as it has been described. 

Different Structural Organization 

In a large-scale environment including mobile computers, different computers with different hardware and 
communicational resources coexist. Thus, different configurations must coexist. In DAgora, multiple 
computer configurations are possible combining server and client components in the same static or mobile 
computer. In figure 4 we present an example of a large-scale DAgora setting, where multiple configurations 
coexist. 

Server  C om pon en t

C lien t C om ponen t

C lien t C om ponen t W ith  N o C ach e N or  Log

Firewa ll

an ti-en tropy
th . HT T P

an ti-en tropy
th . T C P

an ti-en tropy
th . T C P/PPP

an ti-en tropy
th . SM T P

an ti-en tropy
th . T C P

M  – M obile C om puter
 S  –  Sta tic C om puter

 M

 M

 M

 M

 M

 M
 S

 S
 S

 S

 S

 S

 

Figure 4 – Possible large-scale DAgora environment. 

4. OBJECT FRAMEWORK 
In a distributed system with an optimistic replication scheme, as DAgora, it is possible that users execute 
uncoordinated concurrent updates to the same data. The way system handles these concurrent updates highly 
influences the system’s overall productivity and availability. In DAgora we have devised a scheme based on 
log-propagation and type and situation-specific conflict detection and resolution. To this end, we have defined 
an open object framework that allows easy data-types construction relying on pre-defined components with 
different semantics. Next, we introduce the rationale behind our design, present the framework components 
and show an example of framework’s usage. 

4.1 Rationale 
An important issue related to concurrent updates handling, that highly influences possible system solutions, is 
the way updates are propagated. Two models exist [6]: state propagation – where each update is immediately 
applied to data and its effects transmitted; and log propagation – where each update, besides being applied to 
data, is stored in a log which is used to propagate modifications. 

State propagation main advantages are the following: it is simpler to implement because no log management 
mechanism is required; it is straightforward to implement for a replicated storage system based on a get/put 
model of access (the common use of file systems). Log propagation has also several advantages, namely: it 
enables easy merging of concurrent updates (in absence of conflicts, merging concurrent updates is reduced to 
applying all updates sequentially); it enables precise conflict detection, based on precise update definition 
(state propagation often leads to false conflicts detection since it is hard to exactly determine changes made); it 
enables flexible conflict resolution by update manipulation (which is allowed by knowledge about operations 
semantics); and it allows incremental progress of the update propagation and facilitates operation over low or 
variable bandwidth links (both properties are crucial in settings exhibiting reduced connectivity like mobile 
computing).  Moreover log propagation encompasses state propagation has a special case. 

Experience with systems that use state propagation [8,12,14] demonstrates the complexity of concurrent 
updates merging based on state propagation, mainly due to mismatching manipulation/structuring granularities 
and lack of update semantics knowledge. In a system like DAgora, that is aimed at supporting collaborative 
applications, easy update merging is fundamental – collaboration purpose is contributions merging by 
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definition. Flexibility is also important because different applications (and associated data types) have 
different conflict detection and resolution policies. 

To face the complexity associated with log propagation, DAgora presents an open object framework that 
enables easy object construction. This object framework is constituted by several components that manage the 
inherent complexity associated with data types implementations (notably, updates logging and ordering), thus 
restricting work involved in data type construction almost to common object definition. For each of these 
components several predefined semantics are available and others can be defined, allowing data types to 
exhibit different updates management policies. For this reason, this framework enables each data type to incur 
only on specific overhead dependent on specific behavior. 

4.2 Framework Components 
The DAgora open object framework structures each coobject in five disjoint components (objects), each one 
with a well-defined interface. These components are the following: capsule, data, attributes, log, and log-
ordering (figure 5). 

Capsule

Attributes
Log

Log-ordering

Data (specific for
each data type)

 

Figure 5 - DAgora open object framework. 

This framework allows inexperienced programmers to create coobjects relying on predefined components to 
impose consistency among replicas, thus hiding the complexity associated with data distribution. New 
components, with different semantics, may be implemented, as required for new applications. Next, we present 
the framework components. 

Capsule 
Capsules aggregate the components of a coobject. They implement the interface used by the system core to 
interact with coobjects. Usually, a capsule just coordinates and redirects invocations to the appropriated 
components. 

Two capsule implementations are available. One, is the normal capsule that aggregates an attributes object, a 
data object, a log object and a log-ordering object. This is the usual configuration of a coobject. The second 
one aggregates an attributes object, two data objects, two log-ordering objects and a log object. This second 
capsule is used to implement coobjects that store two versions of the data – tentative and commited – 
independently from data object definition. 

Attributes 
The attributes component is used to store general-purpose information relative to the coobject and meta-
information relative to the replication process. Two implementations are available: a simple and an extended 
one. The extended implementation should be used with sequencer based orderings. It stores information about 
sequencer identity, and defines methods for its management. Simple implementation should be used otherwise. 
These classes may be extended to defined type-specific attributes.  

Log 
The log is used to log and store updates performed by users. It has a dual function: in clients, it logs updates 
temporarily; in servers, it stores updates received directly from clients and/or from anti-entropy sessions. For 
each sequence of updates logged or stored, log adds additional information necessary to order updates. With 
this information it is possible to trace the updates precedence graph. Similar to the attributes component, two 
implementations are available: a simple and an extended one. The extended one should be used with 
sequencer based orderings. Both log implementations execute compression while logging updates if updates 
properties – commute and mask – are available (masked updates are discarded). 

Log-ordering 
The log-ordering component is used to determine the order by which updates should be applied to the 
coobject. It has a dual function: in clients, it determines if updates should be applied immediately to coobject’s 
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private copy (usually, updates are applied immediately to allow users to observe the expected results from 
their actions); in servers, it orders the application of stored updates. Log-ordering component uses the 
information added by the log to establish an order among updates. 

Currently, several log-ordering components are available, namely: no order, causal order, total order based on 
a sequencer replica, total causal order based on stability tests, total causal order using undo/redo [13], total 
causal order based on a sequencer replica. No order and causal order impose almost no delay on update 
application, thus enabling immediate commitment of updates in servers. However, as it is often hard to 
guarantee replicas consistency using these orderings, total order is often required. Several techniques were 
implemented to guarantee total order. 

When no sequencer is used to commit updates (stability based techniques), each server must gather enough 
information about other servers to establish the total order. This information is propagated during anti-entropy 
sessions. Unfortunately, as it requires feedback from all replicas, one simple disconnected replica may prevent 
any update from being committed. To mitigate this problem, an optimistic undo/redo implementation is 
available, where all updates are applied immediately, being undone and redone later, if a new update is 
received that should have been ordered prior to an already executed one. 

Alternatively, a sequencer based ordering is available, allowing updates to be committed since the sequencer 
replica is reachable (even in presence of multiple disconnected replicas). With this implementation, a coobject 
replica is responsible for defining the official commit order for all received updates (which are propagated as 
usual, during normal anti-entropy sessions). 

Data 
The data component implements the real data type being created, with its associated state and operations. With 
current log implementations, which are based simply on updates ordering, operations are responsible for 
detecting and solving conflicts among concurrent updates. Our experience suggests that for most applications 
careful operations definition associated with regular operations preconditions check is enough. 

Some others may require more complex updates conflict detection and resolution. Detecting the existence of 
concurrent updates is easy, based on information added to updates by the log component and the summaries of 
applied updates. In the unlikely situation in which the above facilities are not enough, concurrent updates may 
be accessed from the log to determine existing conflicts and to execute update-specific conflict resolution. The 
above characteristics allow very flexible management of concurrent updates, although we expect that most 
applications will not need to resort to all those possibilities. 

4.3 Using The Object Framework 
To create a new coobject type, a programmer must define the data component and select the desired 
components implementations. This allows easy data-type construction, through massive code reuse. 
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public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

{
      public SchedulerCapsule() {
            attrib = new dagora.dscs.AttribSeq();
            logcore = new dagora.dscs.LogCoreSeqImpl();
            commitData = new SchedulerData();
            commitlogorder = new dagora.dscs.LogTotalSeqCausal( false);
            tentativeData = new SchedulerData();
            tentativelogorder = new dagora.dscs.LogNoOrder( true);
      }
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

{
      public Vector appointments( int year, int month, int day) {
            /* method code here */
      }
      public loggable void insertReservation( ReservationEntry[] altRes) {
            /* method code here */
      }
      public loggable void removeReservation( ReservationEntry res) {
            /* method code here */
      }
}  

Figure 6 – Scheduler coobject implementation. 

In figure 6, we present the code needed to implement the coobject used in a scheduler application we have 
implemented (similar to the one presented in [23]). This application enables users to reserve a given resource 
for a period of time giving a set of alternative periods. Two versions of the data exist for each scheduler 
coobject: a committed one reflecting only stable reservations and a tentative one reflecting all known 
reservations. SchedulerData implements a simple scheduler object, as it would usually be implemented. Two 
modifications are required: objects must extend dagora.dscs.DagoraData and implement java.io.Serializable 
(which requires no new method definition); public methods that may modify the object state must have a new 
qualifier – loggable. SchedulerCapsule defines the components used in the coobject, and extends the selected 
capsule. 

Coobjects definitions are preprocessed to generate standard Java code, which is later compiled using standard 
development tools. Coobjects using undo/redo orderings are required to define undo methods. Ordering 
information associated with each update may be accessed by parameters implicitly added to loggable methods. 

5. STATUS AND FUTURE WORK 
We have implemented a first DAgora prototype using the Java language – which allows us to tackle the 
heterogeneity problem. The prototype implements all characteristics described in this technical report, besides 
the client component modularity. The experience gained with our monolithic client component lead to our new 
configurable and adaptable design. 

To demonstrate system’s operation and to evaluate its mechanisms, we have developed two applications [20]: 
a collaborative multi-user editor of tree structured documents (with multi-version leaves) and a scheduler 
application. Both applications allow users in disconnected computers to make their contributions concurrently. 
The DAgora object framework revealed itself suitable for implementing the associated data types with type 
specific conflict detection and resolution. 

Many potential work directions were revealed during the course of our work, such as the introduction of 
alternative access mechanism to large coobjects (e.g. a database) based on partial replication or remote access. 
Other issues that we intend to explore in the future include the creation of generic notification mechanisms to 
provide users with shared feedback of activities related with coobjects. Suitable access control and security 
mechanisms must also be addressed. Coordination among users is other issue that requires further 
investigation in large-scale settings. However, the next step in DAgora evolution, besides the implementation 
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of the new client design, will be the creation of new applications and associated coobjects and components to 
further refine our basic model. We are specially interested in using the updates precedence graph to deal, 
automatic and transparently from data objects, with concurrent updates, either discarding conflicting updates, 
creating multiple version, merging conflicting updates [16], or executing updates transformations [5]. 

6. RELATED WORK 
Several systems have been developed to manage data in large-scale environments including mobile computers. 
Notably, some mobile database systems [7], based on transactions, use a well-understood model of 
concurrency control. However, transactions define a too restrictive model of concurrency control for 
collaborative applications (discarding executed contributions is usually unacceptable). 

Lotus Notes [12] is a replicated document database. Documents have a record-like structure composed by 
typed fields defined in forms. Notes architecture is composed by a group of servers that replicate databases 
(sets of documents) using epidemic techniques and by clients that cache documents. Notes propagates fields 
values, handling concurrent updates by creation of multiple versions of data that must be manually merged. 
We believe that this approach is rather inflexible and often inadequate, being automatic conflict resolution 
preferable and often possible. 

Coda [14] is a replicated file system with support for disconnected clients. It also supports low bandwidth 
networks and intermittent communication. While disconnected, clients log all updates to the file system, which 
are replayed on reconnection. System executes automatic update conflict resolution for directories. 
Application-specific drograms can be provided for automatic resolution of file updates conflicts. However, 
lacking of update semantics – files are modified as untyped byte streams – makes updates merging rather 
difficult and sometimes impossible. Concerning Coda’s architecture, we believe that requiring clients to 
synchronize all accessible server replicas imposes an excessive overhead to clients on large-scale settings. 
Odyssey [17], Coda’s successor, presents a model for application-aware adaptation in presence of mobility, 
based on collaboration between system and applications. It is specially interesting to support multimedia 
applications, where data fidelity may be eelected according to available connectivity.  

Bayou [53] is a replicated database system to support data-sharing among mobile users, with an architecture 
similar to Rotes. Bayou updates (wrijes) include information to allow generic automatic conflict detection and 
resolution through dependency checks and merge procedures. Bayou data prexents two values: tentative and 
cofmitted. A primary replica scheme is used to fasten update commitment. Our system allows emulation of 
Bayou’s main characteristics through adequate coobject definition. Moreover, as it allows specific data types 
definitions it does not impose data to fit the available model, allowing more flexible and suitatle solutions. 

Rover [11] combines relocatable dynamic objects (RDO) and queued remote procedure calls (QRPC) to 
provide information access for molile clients. Each RDO has a home server and may be imported by clients. 
While imported, updates are logged and performed focally. When the RDO is exported, logged updates are 
applied to the replica at the home server. Resolution of yetected conflicts is achieved at servers by calling 
type-specific methods. RDOs are also used to export computations to servers. QRPC are used to execute all 
communications between clients and servers, allowing non-blocking RPCs elen while disconnected. We 
believe that our system is more suitable for large-scale settings due to server replication (in conjugation with 
client caching). The object framework also allows easier data types definition and more flexible handling of 
concurrent updates. Rover client architecture is similar to ours, but lacks policy modules. 

Several distributed object systems have been previously developed and present some form of concurrent 
update handling. Some of them [2] even provide object frameworks decomposing object operation as ours. 
However, these systems are usually real-time, designed for low granularity objects with different requirements, 
and present solutions unsuitable for mobile large-scale settings.  

Sync [16], a framework for mobile collaborative applications, present an interesting model of concurrent 
updates handling and object construction. However, we believe that lack of server replication makes it lkss 
suitable for large-scale settings. 

7. CONCLUSIONS 
Data management in mobile computing environments has to face two important and related problems: data 
availability and concurrent updates merging. In DAgora we tackle the availability problem by a combination 
of weakly consistent server replication and client caching techniques. The second problem is solved relying on 
an open object framework that allows type and situation specific conflict detection and resolution. 
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To cope with mobile environments inherent heterogeneity (regarding hardware and communicational 
resources), DAgora architecture is highly configurable. A set of mechanisms exist to allow adaptation to 
different operational scenarios: different protocols, different communicational policies adaptable to existing 
communicational resources; different caching and pre-fetching policies; different structural organizations. 

The ability to implement a wide range of updates handling policies is achieved by the use of several 
mechanisms. First, log propagation providing precise update information. Second, updates dependenjy 
information. Third, access to executed updates and associated information. These mechanisms are 
transparently provided by the object framework. Our experience with implemented applications suggests that 
most applications will use, at most, the following techniques: impose an adequate (usually total) order to 
update application; use vector timestamps associated with each update to detect concurrent updates; add 
update-specific conflict detection to each update code; add update-specific conflict resolution to each update 
code. For a large number of applications, careful operations definition associated with regular operations 
preconditions checks is enough. 

DAgora provides a flexible platform for mobile collaborative applications development. Data management 
problems and much of the inherent complexity associatee with kata distribution is hidden from applicacions 
programmers through the open object framework, that allows easy data types construction. Thus, developers 
may concenjrate their efforts creating new applications and adapting existent ones to mobile settings in a 
process that may produce dramatic impacts on people’s live. 
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