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ABSTRACT

In this technical report we describe a flexiblerage system aimed at supporting collaborative agfitins in
large-scale environments that include mobile comewgutin such settings two major problems arisea dat
availability and concurrent updates merging. Thist fis tackled by the combination of weakly coreist
server replication and client caching. The sectm@ugh an open object framework that enables ebgct
construction, using type specific conflict detentiand resolution. Thus, our storage system serva as
supporting platform to produce new distributed aodirative applications. To face the mobile computin
characteristics, flexibility is a major concernaar system.
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1. INTRODUCTION

Distributed systems and applications for mobileimments must deal with a new set of communication
power and resource constraints [10,22]. Althougprassive developments have been achieved in wéreles
networking research [10], mobile users still haveface lower and highly variable bandwidth capéibdi
when compared with stationary computers. Moreowese reduced capabilities are usually restrictedosst
and battery power, imposing periods of completeatiaection. Hardware resources available in mdtuks
also tend to be limited, variable and heterogeneous

These characteristics impose flexibility as a keteda for mobile systems. These systems shoulflebéle
enough to accommodate different configurationsdifferent available hardware resources. Heteroggiei
an issue that must be handled as well. Usage ofmtmication resources should also be flexible, andtm
automatically adapt to the variable existent cotinigg.

The usefulness of mobile computers depends lamgelthe efficiency of the underlying storage systdim.
make useful work, users must be able to access Batehis reason, data availability is a majoraan in

mobile environments. The existence of periods ofiglete disconnection imposes the ultimate challdnge
availability: providing the needed data accesshiseace of connection to data servers. Server egjglicand

client caching techniques have been widely usgutdwide almost complete availability [8,12,14,23].

Due to mobile computing intrinsic characteristittga include the existence of long periods of diswtion),
traditional concurrency control mechanisms basetbdking and transactions are not suitable, or nigst
redefined in the new context [9]. To face mobilignstraints, weak consistency of replicated datsislly
used. Experience and prior research have proverotigof the main issues involved in the manageraént
data in such settings, which highly influences kmmlity and usefulness, is the handling of uncdmaited /
independent concurrent updates. It seems incobtesthat, in absence of conflicting concurrent upda
automatic merge should be done. However, the dieimand detection of conflicting updates is noti.
Moreover, whilst there are many actions that cataken in presence of conflicting updates, the adexjone
seems to be type and situation specific. Flexijpdfiould be a key criteria of the mechanisms neéulédndle
these updates.

In this technical report we present the DAgora iogpéd object repository that is aimed at suppgrtin
collaborative applications in large-scale heteregeis environments that include mobile and discaedec



computers. It uses server replication based orptogagation and client caching witlread any / write any
model of data access in order to maximize avaitgbiDifferent forms of flexibility and adaptabiitare
provided to cope with mobility inherent constraints

DAgora also provides an object framework that alomew data types to be composed from reusable
predefined components and regular object claskes,hiding from application programmers the comipyex
associated with data distribution. Different paiexist to apply concurrently made updates tcefft
replicas, thus allowing each data type to incuryadnl specific overhead. Flexibility in concurrenpdates
handling is achieved by our object framework dgfses composition and DAgora open implementatioat, th
allows new policies to be defined as required.

Our contribution in this technical report is twdefo define a data storage architecture offeringhhig
availability of service and allows flexible configiion and adaptation to mobility constraints; aedine an
open object framework that allows flexible handlio§ concurrent updates, thus allowing collaborative
activities to occur in presence of reduced or ewesvailable connectivity. In the remainder of ttashnical
report we present: the DAgora operational mode;@iAgora architecture and open object framewoekust
and intended future work; comparison with relatentkivand finally some conclusions.

2. DAGORA OPERATIONAL MODEL

The DAgora storage system is a distributed objgpository based ondlient / replicated servearchitecture.
DAgora manages specially structured objects, kn@sncoobjects (from_dlaborative _objects These
coobjects are structured according to the DAgorgabframework, and are specially designed to handl
concurrent updates. In this section we will justlioe system operation, whilst details about system
architecture and object framework will be preseiiteldter sections.

Coobjects are organized in sets, known as volufBash coobject belongs to a single volume and has a
unique identifier relative to the volume. We amggtie that volumes will contain sets of related ¢ects, as

for instance, the coobjects produced by a workgiiaup specific task. Coobjects present in one velumay

be of different types (LaTeX documents, Java sofiteg scheduler timetables, etc), reflecting the défdr
kinds of data manipulated in any work. Thus, eachtume will represent a collaborative workspace,
containing coobjects relative to a given workgraumgl/or cooperative project.

DAgora applications run on client machines, allayirsers to collaborate through concurrent modificatf

the same coobjects. Coobjects may be rather confplesh as a document or a scheduler calendar) @and b
implemented as an arbitrary set of regular objespglications employ aet / modify locally / put changes
model of data access: they obtain local privateieomf coobjects, modify them by usual methods
invocations, and finally explicitly export updatesde.

When an application requests a given coobject,isf mot present in client machine’s cache, ieighed from

a server. A private copy of the coobject is creaad handed over to the application. The applicatises
this coobject as a regular object, invoking its e to query and modify its state. Updates made by
applications are registered as sequences of methedsations and are logged transparently by cadbje
Finally, users may explicitly save changes madeyged updates are then stored in persistent statathe
client machine, and later sent to a server (depgnain connectivity availability).

Upon arrival of updates sequences from a clienthina¢ the server hands them over to the coobjeetl lo
replica. Each coobject replica is responsible émging, ordering and locally applying each receiupdate.
Different coobjects will apply updates obeying eiffnt constraints based on different requireme3gsvers
establish pair-wise occasional communications tpagate newly received updates, synchronizingeteof
known updates. As a consequence of this mode afitipe, replicas of the same coobject may différa a
given time, in different servers, but they will etegally converge (as all updates are propagatedlito
replicas).

3. ARCHITECTURE

DAgora architecture is based on weakly consistentes replication and client caching. Each volumse i
replicated by a dynamically variable group of sesv&ervers synchronize among themselves durimgnpse
occasional contacts. Clients cache key coobjectsntible users to continue their work during periofls
disconnection. In figure 1 we depict the outlinechitecture.



Next, we introduce the rationale behind the usehef above techniques and present client and server
components. Finally, we emphasize the mechanismt atow flexible configuration and adaptation to
mobility constraints.
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Figure 1 — DAgora object storage architecture.

3.1 Rationale

In large-scale settings, connectivity among systemponents is often limited (due to low bandwidtid a
expensive connections), and at times, even undilédue to network and/or machine failures and
disconnected computers). Since a single storagensity not bgermanentlyreachable from some client
machine, replication is required in order to previdgh-availability of service. To avoid low writrailability

in presence of partitioned networks [3], weak cstasicy of replicated data is desirable [4].

For the above reasons, we have adoptexhd any / write anynodel, in which updates can be applied to any
replica independently. We have also adopted areep@scheme of update propagation among servets [19
where every server eventually receives all updates every other, either directly or indirectly. i§lscheme
requires only occasional pair-wise communicatiortween computers, thus taking into consideration
connectivity constraints. Some consistency acregdicas will eventually be reached (in absence @f n
updates) as all updates are propagated to albeepli

Mobile computers, with its inherent reduced coninégf only exacerbate the above constraints [1,9].
Moreover, the reduced hardware resources avai(ablpresented for instance by personal digitabtsds —
PDAs), often make impossible and/or undesirablechents to manage a full unit of replication (theually
corresponds to large amounts of data). Becauskesktreasons, DAgora has also adopted a clieningach
mechanism that allows users disconnected from seteecontinue their work, keeping copies only ef/ k
data.

Our system allows great flexibility. Server maclsireee in general fully connected, powerful andaidé.
Thus, it is wise to replicate big and critical vmles in servers, while clients, generally small amobile
machines, cache only part of the coobjects belgngirthese volumes. However, nothing prevents sqmet
machine from being a server of a small volume|lastiated in figure 1.

3.2 Client Component

DAgora system presents an API (DAgora API) thabvedl applications taetrieve / store modifications to
coobjects and to manage volume replication andhspmization. To fulfil applications requests, theat

API module relies on the client kernel componertiisTcomponent is structured in three modules: cache
manager, log manager and network manager. The ecacHsle is responsible for managing the client each
(shared by all application in the same computehe Tog manager persistently stores invocationsetoess
(e.g. updates performed to coobjects). The netwaiddule is responsible for managing available
communication resources. In figure 2 we presentliest component structure. Although the existeoicthe
outlined modules has already been referred in atygtems [11], in DAgora we add a set of associpttidy
components that allow configuration and adaptatiospecific (hardware and communicational) constsai

Figure 2 — DAgora client.



The cache manager provides stable storage for tmgzés of coobjects. For each coobject two copiag
exist, anofficial one, fetched directly from a server, and a modifime, reflecting updates applied by the
local user to thefficial version. Applications may control the consistedegree of accessed coobjects by
specifying not only which version they want to abtaut also the acceptable consistency relatea derver
version (e.g., they may require a freshly fetchexsion).

To accomplish useful work while disconnected itessential to have the necessary information locally
available. However, different operational conditidead to different optimal caching policies (itshaeen
verified that different professional users haveedént access patterns [18]). Thus, the cache neariag
complemented by two modules, which are responsdsleefining the effective caching policy. The rark
module defines a ranking for coobjects that mustplesent in cache. Different algorithms may be used
[14,15]. The fetching module is responsible foruisg (pre-)fetching orders, based on ranking values
Aggressiveness of required pre-fetching policie8 wary, depending on computer type and connegtivit
guality of service (static, mobile with good wireteconnectivity, primarily disconnected mobile, ...).

The log invocation manager provides persistentag@rfor sending requests to servers (in a mechanism
similar to a deferred RPC). These requests correspmreplication management and synchronizatioles:,
coobjects fetching orders and updates sequencésrped by users to coobjects. Support for inteemnitt
connectivity is accomplished by allowing requestsrdering and incremental flushing to the servers.

An associated module exists, the processor moduies. module is responsible for pre-processing ldgge
invocations. Log reordering is used to give higbeority to operations upon which applications intisely
depend on (e.g. if an application requests a cobltfet is not present in cache, the associatethjecb
fetching operation should be executed before atperations). Another issue that processor modudecades
is log compaction. Simple truncation is provided $gstem primitive operations — e.g. duplicatedbject
fetching requests are filtered.

The network manager is responsible for network uesss. It may use different kinds of connectionthwi
different and variable associated quality of senand cost. Different protocols may also be avhilabhus,
adaptation to network conditions is possible bgralhtive protocol and connection selection. Theusee
policy module is responsible for determining whimbnnection and protocol (if any) should be useddor
given communication to a server (being respondiimedaptation policy). Usually, this module musika a
trade-off between network latency and communicatiost.

3.3 Server Component

Servers responsibilities are two-fold: reply toenls requests and manage volume replication. Tal&dan
clients requests, a simple underlying RPC protdsokstablished between clients and servers. Servers
implement the DAgora server API that allows clietetfetch coobjects, upload updates performed leysis
and manage volume replication and synchronization.

DAgora servers propagate updates among themsslugshironizing their coobjects replicas, during yeése
occasional communications, known asti-entropy sessions [19]. The two servers involved in a sessi
exchange updates so that when they finish botheagnethe set of updates known. Epidemic algorithm’s
theory guarantees that as long as servers and coicetion paths form a connected graph (i.e., ag s
servers are not permanently partitioned or failh)h update will eventually reach all servers.dseace of
new updates performed by clients, all servers eviintually receive all updates and hold the sane state.
This scheme of replication has been previously isegveral systems [6,8,12,23] for improving aafaillity,
simplicity and scalability.

DAgora implements a protocol based on the time-gtatanti-entropyprotocol presented in [6]. It maintains
summaries of updates seen in each server (timeggctchich are exchanged duriagti-entropysessions and
are used to determine which updates need to belsemintains, additionally, in each server, adiractor to
acknowledge updates seen by all servers, whickclsamged and updated duriagti-entropysessions and is
used to purge updates from coobjects logs.

Some modifications and extensions have been intextito adapt it to DAgora. Notably, it was extentted
cope with the multiple and variable humber of ceclks that should be synchronized during each sgssio
taking into account newly created and deleted ofesthis end, in each contact, multiphati-entropy
sessions occur. An additional state-transfer mastrawas included to propagate coobjects initigkesta



It was also modified to enable and optimiaati-entropy sessions using asynchronous methods of
communication, such as e-mail. The changes codsistenly in the rearrangement of protocol steps, not
affecting its correctness. This modification is edplly interesting for mobile computing, becausallows
servers lodged in mobile computers to synchroniith each other without the need for direct conrmedi
between them. Thus, it allows all servers to begéad on mobile computers and guarantees eventual
propagation of updates even if no pair of serveiEmultaneous and directly connected in any moniéis
change also enables the overcoming of firewall gcuestrictions, thus allowing large-scale inter-
organizational cooperation.

The rate at which servers reach convergence kirmw all updates) is dependent on the frequency and
topology ofanti-entropysessions. In DAgora, we enalpler volume definition of frequency and topology of
synchronization sessions, which are automaticadlsfgpmed by servers. Similar to the client companen
different connections and protocols may be usezkéxute thenti-entropysessions.

The group of servers that replicate each volume vaay as a result of users (system administratxgl)icit
orders. To this end, DAgora uses a well-known cectin each volume to track membership changesitlig
weighted join and leave protocols are implemenimgosing contact with just a single server (thalicates
the volume). Membership changes are detected primormalanti-entropysessions (through use of view
identifiers), and require a special protocol todstablished between the two servers (this protscokry
light-weighted unless concurrent joins exist). pdbtocols used in DAgora are presented, in detajR1].

3.4 Flexibility
Flexibility in the DAgora architecture is achievedt only combining differently configured clientciserver
components, but also allowing different alternatpaicies to be used in each component. Thus, Dagor
allows adaptation to different and modifiable eamiment conditions. In this section we present thistent
flexibility mechanisms.

Different Client Caching and Communication Policies

The client component includes several policy moslulgeveral operational parameters may be tuned, thu
allowing different clients in the system to havéfatent configurations specially adapted to theirtigular
characteristics. For instance, a (primarily) molzitenputer will have a pre-fetching policy more aggive
than a (primarily) static one. Some PDA computext ik used to access data only when connectednte so
data server (or some strongly connected static atemnpmay be configured to have no cache nor inva@ca
log (setting their sizes to null). In the clientngoonent section we have already discussed diffgrelity
alternatives.

Different Epidemic Synchronization Policies

DAgora allowsper volume definition of epidemic synchronization pgli through definition of (interrelated)
topology and frequency ddnti-entropysessions. Flexibility in definition of topologyl@als, for instance,
efficient use of communicational resources througdpping ofanti-entropytopology to existent physical
infrastructure. For example, the right-most topglad figure 3, may be used in some collaborativejgut
between two distinct institution — servers insideteinstitution establish sessions with each cdhera single
connection links the two institutions.

Figure 3 — Some example topologiesdati-entropysessions.

Frequency and selection of time periods doti-entropysessions may also be defined, making a trade-off
between server consistency and communicationaliress usage. For the same volume, diffeastitentropy
links may have different frequencies. For instaneghe above example, servers in the same instituhay
synchronize among themselves several times per, white the anti-entropy session between the two
institutions may be executed only once a day (gesfehen communicational costs are lower).



Different Connections and Protocols

As it has already been referred in previous sestionlarge-scale and mobile settings, it is imaorthe use
of alternative communicational resources (differeahnections, protocols, ...) in order to providetsys
adaptation to different environments. Variable amtivity should also be tackled. In DAgora, we pdavthis
flexibility both in client/server and in server/ger communications, as it has been described.

Different Structural Organization

In a large-scale environment including mobile cotemy different computers with different hardwarel a
communicational resources coexist. Thus, differeanfigurations must coexist. In DAgora, multiple
computer configurations are possible combining eseand client components in the same static or lmobi
computer. In figure 4 we present an example ofrgelscale DAgora setting, where multiple configionas
coexist.

M — Mobile Computer @ @

S — Static Computer

|:| Server Component
O Client Component

O Client Component With No Cache Nor Log

Figure 4 — Possible large-scale DAgora environment.

4. OBJECT FRAMEWORK

In a distributed system with an optimistic replioatscheme, as DAgora, it is possible that useesr
uncoordinated concurrent updates to the same dhtgaway system handles these concurrent updathly hig
influences the system’s overall productivity ancitbility. In DAgora we have devised a scheme tase
log-propagation and type and situation-specificflictrdetection and resolution. To this end, we énaefined
an open object framework that allows easy datastygmnstruction relying on pre-defined componenth wi
different semantics. Next, we introduce the ratierzehind our design, present the framework comgpisne
and show an example of framework’s usage.

4.1 Rationale

An important issue related to concurrent updatesiliveg, that highly influences possible system sohs, is
the way updates are propagated. Two models eJisstte propagation — where each update is imrtedgia
applied to data and its effects transmitted; amdpimpagation — where each update, besides bepigedo
data, is stored in a log which is used to propagetdifications.

State propagation main advantages are the follaviing simpler to implement because no log managgm
mechanism is required; it is straightforward to iempent for a replicated storage system based ogt/pug
model of access (the common use of file systems). fjropagation has also several advantages, nainely:
enables easy merging of concurrent updates (imabsef conflicts, merging concurrent updates isiced to
applying all updates sequentially); it enables iseeconflict detection, based on precise updatéitieh
(state propagation often leads to false confliet®ction since it is hard to exactly determine ¢glesmmade); it
enables flexible conflict resolution by update npahéation (which is allowed by knowledge about opiers
semantics); and it allows incremental progresefupdate propagation and facilitates operatiom [mve or
variable bandwidth links (both properties are cuan settings exhibiting reduced connectivity likebile
computing). Moreover log propagation encompastsde propagation has a special case.

Experience with systems that use state propagd8d?,14] demonstrates the complexity of concurrent
updates merging based on state propagation, maiigly{o mismatching manipulation/structuring graritiés
and lack of update semantics knowledge. In a sy$itemDAgora, that is aimed at supporting collabive
applications, easy update merging is fundamentaloHaboration purpose is contributions merging by



definition. Flexibility is also important becauseffekent applications (and associated data typesjeh
different conflict detection and resolution poliie

To face the complexity associated with log propagatDAgora presents an open object framework that
enables easy object construction. This object fremnie is constituted by several components that marthae
inherent complexity associated with data types ém@ntations (notably, updates logging and orderithg)s
restricting work involved in data type constructialmost to common object definition. For each afsin
components several predefined semantics are alaitatdl others can be defined, allowing data types t
exhibit different updates management policies.this reason, this framework enables each datattypeur
only on specific overhead dependent on specifiabieln.

4.2 Framework Components

The DAgora open object framework structures eadbjest in five disjoint components (objects), eacle
with a well-defined interface. These components thee following: capsule, data, attributes, log, dng-
ordering (figure 5).

| Capsule |
Pl

Attributes

Data (specific fo
each data type)

Log-ordering

Figure 5 - DAgora open object framework.

This framework allows inexperienced programmersriate coobjects relying on predefined components t
impose consistency among replicas, thus hiding dbmplexity associated with data distribution. New
components, with different semantics, may be implated, as required for new applications. Next, vesgnt
the framework components.

Capsule

Capsules aggregate the components of a coobjeey iffplement the interface used by the system tmre
interact with coobjects. Usually, a capsule jusbrdinates and redirects invocations to the appatgdi
components.

Two capsule implementations are available. On#hdsnormal capsule that aggregates an attributestola
data object, a log object and a log-ordering objé&hts is the usual configuration of a coobjecte decond
one aggregates an attributes object, two data tshjeo log-ordering objects and a log object. T$gsond
capsule is used to implement coobjects that stece wtersions of the data — tentative and commited —
independently from data object definition.

Attributes

The attributes component is used to store generglgse information relative to the coobject and anet
information relative to the replication process.dlimplementations are available: a simple and aenebed
one. The extended implementation should be usddsejuencer based orderings. It stores informatbout
sequencer identity, and defines methods for itsagament. Simple implementation should be used wiber
These classes may be extended to defined typefisptiibutes.

Log

The log is used to log and store updates perforoyedsers. It has a dual function: in clients, gdaipdates
temporarily; in servers, it stores updates receiliegctly from clients and/or froranti-entropysessions. For
each sequence of updates logged or stored, logaatttisSonal information necessary to order updatféih

this information it is possible to trace the updapeecedence graph. Similar to the attributes compp two
implementations are available: a simple and anneleg one. The extended one should be used with
sequencer based orderings. Both log implementag@asute compression while logging updates if ugslat
properties — commute and mask — are available (@daggdates are discarded).

Log-ordering
The log-ordering component is used to determine ditter by which updates should be applied to the
coobject. It has a dual function: in clients, itetenines if updates should be applied immediatelyoobject’s



private copy (usually, updates are applied immedliaio allow users to observe the expected resudta
their actions); in servers, it orders the applaatiof stored updates. Log-ordering component ukes t
information added by the log to establish an oedteong updates.

Currently, several log-ordering components arelalkd, namely: no order, causal order, total ofmied on

a sequencer replica, total causal order basedadnilitst tests, total causal order using undo/retig),[ total
causal order based on a sequencer regNcaorder and causal orderimpose almost no delay on update
application, thus enabling immediate commitmentuptiates in servers. However, as it is often hard to
guarantee replicas consistency using these ordgtioigl order is often required. Several techniques were
implemented to guarantee total order.

When no sequencer is used to commit updatedbi(ity based technique}, each server must gather enough
information about other servers to establish th& twrder. This information is propagated durangi-entropy
sessions. Unfortunately, as it requires feedbamt fall replicas, one simple disconnected replicg pravent
any update from being committed. To mitigate thisbfem, anoptimistic undo/redo implementation is
available, where all updates are applied immedjateting undone and redone later, if a new update i
received that should have been ordered prior @ir@ady executed one.

Alternatively, asequencer based orderings available, allowing updates to be committedsithe sequencer
replica is reachable (even in presence of multideonnected replicas). With this implementationpabject
replica is responsible for defining the officialnemit order for all received updates (which are jpiggted as
usual, during normal anti-entropy sessions).

Data

The data component implements the real data tyjng loeeated, with its associated state and operathyith
current log implementations, which are based singrlyupdates ordering, operations are responsible fo
detecting and solving conflicts among concurrerdatps. Our experience suggests that for most apiolis
careful operations definition associated with ragalperations preconditions check is enough.

Some others may require more complex updates coditection and resolution. Detecting the existenic
concurrent updates is easy, based on informatidadatb updates by the log component and the surasafi
applied updates. In the unlikely situation in whtble above facilities are not enough, concurrediatgs may
be accessed from the log to determine existinglictsind to execute update-specific conflict ragoh. The
above characteristics allow very flexible managet@nconcurrent updates, although we expect thatmo
applications will not need to resort to all thossgbilities.

4.3 Using The Object Framework
To create a new coobject type, a programmer muBhedéhe data component and select the desired
components implementations. This allows easy dgda-tonstruction, through massive code reuse.



public class SchedulerCapsule
extends dagora.dscs.TwoVersionsCapsule
implements java.io.Serializable

public SchedulerCapsule() {
attrib = new dagora.dscs.AttribSeq();
logcore = new dagora.dscs.LogCoreSelfmp
commitData = new SchedulerData();
commitlogorder = new dagora.dscs.LogiR#qCausal( false);
tentativeData = new SchedulerData();
tentativelogorder = new dagora.dscsNa@rder( true);

}
}

public class SchedulerData
extends dagora.dscs.DagoraData
implements java.io.Serializable

public Vector appointments( int year, int rtfgnint day) {
/* method code here */

public loggable void insertReservation( ReagonEntry[] altRes) {
/* method code here */

public loggable void removeReservation( ResonEntry res) {
/* method code here */

}
}

Figure 6 — Scheduler coobject implementation.

In figure 6, we present the code needed to implénfencoobject used in a scheduler application axeeh
implemented (similar to the one presented in [2BRis application enables users to reserve a giesource
for a period of time giving a set of alternativeripds. Two versions of the data exist for each daler
coobject: a committed one reflecting only stableergations and a tentative one reflecting all known
reservationsSchedulerDatamplements a simple scheduler object, as it wasldally be implemented. Two
modifications are required: objects must extendodagscs.DagoraDatand implemenjava.io.Serializable
(which requires no new method definition); publiethrods that may modify the object state must haweva
qualifier —loggable SchedulerCapsuldefines the components used in the coobject, =imhes the selected
capsule.

Coobjects definitions are preprocessed to genstatelardJava code, which is later compiled using standard
development tools. Coobjects using undo/redo amderiare required to define undo methods. Ordering
information associated with each update may besaseckby parameters implicitly addeddggablemethods.

5. STATUS AND FUTURE WORK

We have implemented a first DAgora prototype uding Java language — which allows us to tackle the
heterogeneity problem. The prototype implementslairacteristics described in this technical regmesides
the client component modularity. The experiencagaiwith our monolithic client component lead to naw
configurable and adaptable design.

To demonstrate system’s operation and to evalt&t@échanisms, we have developed two applicat2eis |
a collaborative multi-user editor of tree structurdocuments (with multi-versioleave$ and a scheduler
application. Both applications allow users in dizgected computers to make their contributions coeatly.
The DAgora object framework revealed itself suigafdr implementing the associated data types wible t
specific conflict detection and resolution.

Many potential work directions were revealed durthg course of our work, such as the introductién o
alternative access mechanism to large coobjegsdalatabase) based on partial replication or te@cess.
Other issues that we intend to explore in the &toclude the creation of generic notification megbms to
provide users with shared feedback of activitidateel with coobjects. Suitable access control awlisty
mechanisms must also be addressed. Coordinatiomgamgers is other issue that requires further
investigation in large-scale settings. However, ribgt step in DAgora evolution, besides the impletaigon
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of the new client design, will be the creation efwnapplications and associated coobjects and coamp®ito
further refine our basic model. We are speciallgriested in using the updates precedence grapkab d
automatic and transparently from data objects, waathcurrent updates, either discarding conflictipglates,
creating multiple version, merging conflicting upek[16], or executing updates transformations [5].

6. RELATED WORK

Several systems have been developed to managmdartge-scale environments including mobile corepsit
Notably, somemobile database systems [7], based on transactions, usellainderstood model of
concurrency control. However, transactions defindoa restrictive model of concurrency control for
collaborative applications (discarding executedtigbutions is usually unacceptable).

Lotus Notes [12] is a replicated document databBeeuments have a record-like structure composed by
typed fields defined in forms. Notes architectisecomposed by a group of servers that replicatebdats
(sets of documents) using epidemic techniques gnclibnts that cache documents. Notes propagatssfi
values, handling concurrent updates by creatiomualfiple versions of data that must be manuallygedr

We believe that this approach is rather inflexiatel often inadequate, being automatic conflict lcg&m
preferable and often possible.

Coda [14] is a replicated file system with support disconnected clients. It also supports low lveidth
networks and intermittent communication. While disgected, clients log all updates to the file systehich

are replayed on reconnection. System executes atitonupdate conflict resolution for directories.
Application-specific drograms can be provided fatoanatic resolution of file updates conflicts. Huee,
lacking of update semantics — files are modifieduat/ped byte streams — makes updates mergingrrathe
difficult and sometimes impossible. Concerning Csdarchitecture, we believe that requiring clietts
synchronize all accessible server replicas impasegxcessive overhead to clients on large-scatmget
Odyssey [17], Coda’s successor, presents a modelpijolication-aware adaptation in presence of nitgpil
based on collaboration between system and applicatilt is specially interesting to support multdize
applications, where data fidelity may be eelectmbeding to available connectivity.

Bayou [53] is a replicated database system to sugiata-sharing among mobile users, with an archite
similar to Rotes. Bayou updates (wrijes) includeimation to allow generic automatic conflict deteno and
resolution through dependency checks and mergeeguoes. Bayou data prexents two values: tentatide a
cofmitted. A primary replica scheme is used todastipdate commitment. Our system allows emulatfon o
Bayou’s main characteristics through adequate emblgjefinition. Moreover, as it allows specific @aypes
definitions it does not impose data to fit the &akdle model, allowing more flexible and suitatldusions.

Rover [11] combines relocatable dynamic objects QR[2and queued remote procedure calls (QRPC) to
provide information access for molile clients. E&®RIRO has a home server and may be imported bytslien
While imported, updates are logged and performedlfip. When the RDO is exported, logged updates are
applied to the replica at the home server. Reslutif yetected conflicts is achieved at serverséiiing
type-specific methods. RDOs are also used to exqmriputations to servers. QRPC are used to exatlute
communications between clients and servers, allgpwion-blocking RPCs elen while disconnected. We
believe that our system is more suitable for laggale settings due to server replication (in coetjiog with
client caching). The object framework also allovasier data types definition and more flexible hargdbf
concurrent updates. Rover client architecturenslar to ours, but lacks policy modules.

Several distributed object systems have been pusliadeveloped and present some form of concurrent
update handling. Some of them [2] even provide abjemeworks decomposing object operation as ours.
However, these systems are usually real-time, dedifpr low granularity objects with different regaments,

and present solutions unsuitable for mobile lacmessettings.

Sync [16], a framework for mobile collaborative dpations, present an interesting model of conarre
updates handling and object construction. Howewer believe that lack of server replication makekkss
suitable for large-scale settings.

7. CONCLUSIONS

Data management in mobile computing environmengstbdace two important and related problems: data
availability and concurrent updates merging. In Dfsgwe tackle the availability problem by a combima

of weakly consistent server replication and clieaxthing techniques. The second problem is solMgohgeon

an open object framework that allows type and 8inaspecific conflict detection and resolution.
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To cope with mobile environments inherent hetereggn(regarding hardware and communicational
resources), DAgora architecture is highly confijplea A set of mechanisms exist to allow adaptaton
different operational scenarios: different protacalifferent communicational policies adaptableexisting
communicational resources; different caching amdfptching policies; different structural organiaas.

The ability to implement a wide range of updatesidiag policies is achieved by the use of several
mechanisms. First, log propagation providing pmecigpdate information. Second, updates dependenjy
information. Third, access to executed updates asdociated information. These mechanisms are
transparently provided by the object framework. @gperience with implemented applications suggesis
most applications will use, at most, the followiteghniques: impose an adequate (usually total)raime
update application; use vector timestamps assaciatth each update to detect concurrent updated; ad
update-specific conflict detection to each updatée¢ add update-specific conflict resolution tohreapdate
code. For a large number of applications, carefdrations definition associated with regular operet
preconditions checks is enough.

DAgora provides a flexible platform for mobile calblorative applications development. Data management
problems and much of the inherent complexity asdeei with kata distribution is hidden from applioas
programmers through the open object framework, allatvs easy data types construction. Thus, deeetop
may concenjrate their efforts creating new applcest and adapting existent ones to mobile settings
process that may produce dramatic impacts on padple.
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