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Abstract. It is common that, in a long-term asynchronous collaborative activ-
ity, groups of users engage in occasional synchronous sessions. In this paper,
we analyze the requirements for supporting this common work practice in typical
collaborative activities and applications. This analysis shows that, for some appli-
cations, it is necessary to rely on different data sharing techniques in synchronous
and asynchronous settings. We present a data management system that allows to
integrate a synchronous session in the context of a long-term asynchronous inter-
action, using the suitable data sharing techniques in each setting. We exemplify
the use of our system with two multi-synchronous applications.

1 Introduction

Groupware applications are commonly classified as synchronous or asynchronous
depending on the type of interaction they support. Synchronous applications
support closely-coupled interactions that allow multiple users to synchronously
manipulate the shared data. During synchronous manipulation, all users are im-
mediately notified about the updates produced by other users. At the data man-
agement level, it is necessary to maintain multiple copies of the data synchro-
nized in realtime, merging all concurrent updates produced by the users. Several
general-purpose systems have been implemented [37, 41, 39].

Asynchronous applications support loosely-coupled interactions that allow
users to modify the shared data without having immediate knowledge of the
modifications that are being or have been produced by other users. At the data
management level, it is usually necessary to support a model of temporary diver-
gence among multiple, simultaneous streams of activity [9] and to provide some
mechanism to automatically merge these streams of activity. Some general-
purpose (e.g. [27, 10]) and application-specific (e.g. [26] for document editors)
systems have been implemented.

A common work practice among groups of individuals seeking a common
goal is to alternate periods of closely-coupled interaction with periods of loosely-
coupled work. During the periods of closely-coupled interaction, individuals can
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coordinate themselves and create joint contributions. These closely-coupled pe-
riods may involve all elements of the group or smaller subgroups. Between two
periods of close interaction, individuals tend to work in a loosely-coupled way,
by producing their individual contributions in isolation.

In this paper, we address the problem of supporting this type of work prac-
tice by integrating synchronous and asynchronous support in a single platform
that can be used in a mobile computing environment. To this end, we have added
support for synchronous sessions in the DOORS system [33], a replicated stor-
age system designed to support asynchronous groupware. DOORS manipulates
coobjects: data objects structured according to the DOORS object framework,
allowing different data-sharing strategies to be used by different applications.

To support synchronous sessions, the following mechanisms have been im-
plemented. First, it has been added support for manipulating coobjects during
synchronous sessions: several replicas of a coobject can be maintained synchro-
nized in realtime. Second, relying on the object framework, a different reconcili-
ation technique can be used in each setting for the same coobject. This property
is important for some applications (e.g. in a text editor, operational transfor-
mation can be used to in synchronous mode, and versioning can be used in
asynchronous mode). Finally, we have added support to use different operations
in each setting. This property is also important for some applications (e.g. in a
text editor, insert/remove character operations are used in synchronous settings,
and update text element/region operations are usually used in asynchronous set-
tings).

The remainder of this paper is organized as follows. Section 2 analyzes the
requirements for supporting applications in synchronous and asynchronous set-
tings. Section 3 discusses our design options. Section 4 present the DOORS
system, detailing the integration of synchronous and asynchronous interactions.
Section 5 presents two applications that exemplify the use of our approach. Sec-
tion 6 discusses related work and section 7 concludes the paper with some final
remarks.

2 Analyzing synchronous and asynchronous requirements

In this section we analyze the data managements requirements of synchronous
and asynchronous interactions using a set of typical groupware applications.
For each application, we analyze how users use the application and what data
management techniques must be used.

While synchronous interactions usually last a short period of time, asyn-
chronous interactions tend to span for very long periods. Thus, we analyze how



to integrate the results of a synchronous interaction in a long-term asynchronous
collaborative activity.

2.1 Multi-user message/conferencing systems

A conferencing system allows multiple users to communicate with each other
by exchanging messages. In particular, we are interested in systems that do not
restrict communication to two users.

In synchronous settings, the paradigmatic conferencing application is the
chat system. This type of application has evolved from very simple text-based
applications, such as the chat tools available in old UNIX systems, to recent
applications (e.g. ICQ, Micosoft Messengerand Yahoo Messenger) with sophis-
ticated interfaces, advanced management tools, and integration of new features
(e.g. integration with messaging systems from wireless phone networks).

The basic functionality of chat systems have remained the same: to allow
multiple users to send messages to a shared space that is visible to all other
users1. The only operation that a user can execute is to add a message to the
shared space.

The only data management requirement is to maintain, in realtime, a shared
space composed by a sequence of messages. Usually, each participant maintains
its own private replica of the shared space. Each new message is propagated to
all participating sites using some sort of reliable group communication (either
based on a centralized or on a peer-to-peer architecture). When a new message
is received, it is added to the local replica — usually, it is not required that all
messages are added in all replicas by the same order (causal order is sufficient).

In asynchronous settings, newsgroups and message boards are the paradig-
matic conferencing applications. The basic functionality of this type of applica-
tion is the same of the chat systems: to allow multiple users to send messages to
a shared space that is visible to all other users. Regarding the data management
requirements, one major difference exists: the shared space must be stored reli-
ably for an extended period of time and even when no user is accessing the data.
To this end, unlike chat systems, the data of newsgroups and message boards is
usually stored in a server or group of servers that provide high data availabil-
ity. Clients access these servers to read and post messages in the shared space.
When the data is replicated in a group of servers, updates are usually propagated
using lazy-propagation techniques [8, 20] that guarantee eventual consistency.

Although synchronous and asynchronous conferencing tools have the same
functionality (and it is possible to extend a message board system that uses a

1 Some chat system include other types of interactions, such as allowing an user to send a private
message to another user.



single server to be used in a synchronous setting), users tend to use them in
different ways. While messages written in a synchronous tool tend to be small,
each one with a small amount of information that it is hard to understand outside
of the context of a specific conversation, messages written in an asynchronous
tool tend to be long and self-contained, often including transcripts of previous
messages.

This difference complicates the integration of a synchronous and an asyn-
chronous conferencing tool. However, we can easily imagine scenarios where
this integration could be useful: for example, a chat tool could be used to discuss
some post in a message board, and the transcripts of the synchronous discussion
(or a summary of the discussion) could be taken has the reply to the original
post. In this case, the sequence of messages posted in the synchronous interac-
tion should be collapsed into a single message in the asynchronous interaction.

2.2 Collaborative editing systems

Collaborative editing systems allow multiple users to jointly compose and edit a
shared document. In this section, we only consider structured documents com-
posed by text: for example, a LaTeX document, an XML document or a Java
source file.

Many realtime collaborative editors have been implemented in the past. In
older editors (e.g. DistEdit [25]), users usually took turns at making changes (all
other users could only observe the changes in realtime). This approach avoids
conflicts, thus greatly simplifying concurrency control. In recent synchronous
editors (e.g. Grove [14], REDUCE [47]), it is common to allow multiple users
to modify the shared document concurrently.

In both cases, each participant maintains a copy of the shared data and all
updates are propagated to all participants. In the last case, applications must
also handle updates that may conflict with other concurrent updates. Operational
transformation [14, 43, 2] have become the technique of choice in realtime ed-
itors because it ensures convergence while preserving causality and users’ in-
tentions. This technique transforms operations to guarantee that: (1) all replicas
converge to the same state despite the different execution order; and (2) the
users’ syntactic intentions are preserved despite the fact that an operation may
be executed in a state that is different from the state observed by the user that
has executed the operation.

For supporting collaborative edition in asynchronous settings, many systems
have been implemented [32, 16, 26, 7, 5]. A common model for data access is the
copy-modify-merge paradigm, in which a users gets its own private copy of the
document, modify it in isolation and later his changes are merged with the mod-



ifications produced by other users. This approach has been implemented using
either a centralized (e.g. CVS [7]) or a peer-to-peer architecture (e.g. Iris [26]).

Asynchronous editing systems usually merge updates produced in different
regions of the document and create multiple versions for updates that modify
the same region2. In systems that maintain the structure of the documents, the
structure offers an obvious definition of a region (e.g. the leaves in documents
structured as trees). In system that do not maintain the structure of the document,
it is common to implicitly define a region — e.g. the popular RCS algorithm [45]
defines each line as a region. Even when multiple versions are created and main-
tained by the underlying storage system, it is usual that the document remains
syntactically consistent [10], allowing users to continue accessing the document
without the need to merge the multiple versions immediately (unlike the usual
approach in distributed file systems [24] that prevents any normal access before
solving conflicts).

Although reconciliation in synchronous and asynchronous collaborative
editing systems has the same goal (to automatically merge modifications pro-
duced concurrently), different techniques are used. To understand the reason for
this difference, it is important to understand the limitations of each technique
and how users interact to overcome such limitations in both settings.

It is known that operational transformation can lead to semantic inconsisten-
cies [44, 29]. The following example (from [44]) illustrates the problem. Sup-
pose that a shared document contains the following text:

There will be student here.

In this text there is a grammatical error that can be corrected by replacing
“student” by “a student” or “students”. If two users concurrently correct the
error by executing different corrections (user 1 inserts the word “a” before the
word “student” and user 2 inserts an “s” in the end of the word “student”),
operational transformation guarantees that the syntactic intentions of each user
are preserved, leading to the following text:

There will be a students here.

However, the resulting text is semantically incorrect, as it contains a new
grammatical error. Moreover, the merged version does not represent any of the
users’ solution and it is likely that it does not satisfy any of the users.

2 Older systems (e.g. the original Lotus Notes [20]) used to retain only the most recently
produced version, but this approach was considered inappropriate for asynchronous settings
where large modifications are usually produced.



In synchronous settings, this problem can be easily solved as users immedi-
ately observe the modifications produced by other users. Thus, users can coor-
dinate themselves and immediately agree on the preferred change. This is only
possible because users have strong and fine-grain awareness information about
the changes produced by other users. In this case, the automatic creation of mul-
tiple versions to solve conflicts would involve unnecessary complexity. More-
over, it is not clear what user interface widgets would be suitable for presenting
these multiple versions.

In asynchronous settings, updates are not immediately merged and each
asynchronous contribution tends to be large. Thus, as users have no (strong)
awareness information about the modifications produced by other users, it is
likely that using operational transformation to merge updates produced by dif-
ferent users to the same semantic unit would lead to many semantic inconsis-
tencies. This is the main reason for not using this technique in asynchronous
editing systems: it seems preferable to maintain multiple versions that are se-
mantically correct and let users merge them later (with the possible help of
merging tools), instead of maintaining a single semantically incorrect version
that does not satisfy anyone. There are also some technical difficulties related
with the management and execution of this technique with a very large number
of operations that hamper its use in asynchronous settings — these problems
have been partially addressed in [40]. These problems suggest that the granular-
ity of operations used in asynchronous settings should be large — for example,
updating the value of some part in a structured document (e.g. a section in a
paper).

A system that supports synchronous and asynchronous interactions should
accommodate different reconciliation techniques for synchronous and asyn-
chronous settings. Moreover, it should handle operations with a different gran-
ularity: small, character-based, for synchronous interactions and large, region-
based, for asynchronous settings. All updates produced during a synchronous
interaction can be integrated in the overall asynchronous activity as one (or a
small sequence of) large-grain operation.

Graphics editing Several applications for collaborative synchronous edition of
graphics have been implemented [38, 31, 35, 42, 6]. Some applications use lock-
based concurrency control strategies that prevent conflicts. Some recent solu-
tions [42] propose reconciliation techniques that automatically merge updates
that do not interfere with each other and create multiple versions for updates
that do interfere — for example, if some object (line, square, etc.) is concur-
rently moved to two different locations, two objects are created. In the user in-



terface, object versions created due to conflict are specially highlighted to allow
users to differentiate these objects and solve the conflict.

There are also applications that allow users to collaboratively edit graph-
ics in asynchronous settings [15, 17]. In some of these applications [15], asyn-
chronous interaction is limited to edit the same graphics at different times. In
this case, a single stream of activity exists.

In other applications [17], several streams of activity may exist leading to
divergent versions of the same document. A common approach to merge the
divergent streams of activity is to define one stream of activity as the master
copy and replay the updates produced in all other streams in the master copy.
The simplest approach is to replay updates without trying to find out if each
update conflicts with other updates that have been concurrently executed — in
case of conflicts, this approach is similar to a last-writer wins strategy. How-
ever, as discussed in the context of collaborative edition of text documents, this
approach may be inappropriate because the overwritten work may be large and
important. In this case, it is not acceptable to arbitrarily discard (or overwrite)
the contribution produced by some user, and the creation of multiple versions
seems preferable [22].

From the above discussion, it seems that creating multiple versions in face
of conflicts can be used in both synchronous and asynchronous settings. How-
ever, there are some subtle but important differences. In synchronous settings,
the multiple versions are created immediately after the concurrent execution
of the conflicting operations and users can observe them immediately and act
accordingly – for example, by solving the conflict immediately. Moreover, the
number of conflicts is expected to be small as the time to propagate updates
is very small (and the strong awareness information available allows users to
coordinate among themselves).

In asynchronous settings, as an user may produce a long sequence of up-
dates, it is possible that a subset of these updates conflict with updates produced
concurrently by other users. For example, in a diagram composed by two green
squares, an user may decide to change the color of both squares to blue and
another user may decide to change their color to red. In this case, although two
versions of each square should be created, only two combinations of these ver-
sion seem relevant: the first including the two blue squares and the second with
the two red squares. Therefore, in asynchronous settings, it seems important to
provide a mechanism to manage configurations composed by versions of ob-
jects [22]. This approach is unnecessarily complex for synchronous settings.



2.3 Group calendars

Group calendars manage schedules for groups of individuals and resources. A
large number of group calendars have been implemented in research projects [4,
13] and in commercial products [28, 27, 17].

The typical operations include adding a new private appointment and
scheduling a group meeting or reserving a resource. For scheduling a private
appointment (or reserving a resource), it is only necessary to verify that the
user (resource) is free for the complete period of time. For scheduling a group
meeting, it is necessary that all users can attend the meeting. To guarantee the
participation of all, it is possible to simply verify that all users are available or
to require an explicit confirmation from each user. Some group calendar appli-
cations allow to specify a list of alternative time periods to increase the chance
of finding a compatible time period.

A group calendar is a typical asynchronous groupware application, where
each user can submit his operations without synchronous interaction with other
users. Depending on the underlying system architecture, it may be even possible
to submit operations during disconnected operation. When multiple replicas of
the calendar exist, the system guarantees that all replicas converge to the same
state.

When it is necessary to schedule a group meeting, it may be interesting to
have a synchronous session with other participants to decide the best time –
for example, the RTCAL application [16] provides such functionality. In the
underlying group calendar, the result of a synchronous session is the scheduling
of a new group meeting — if appropriate, the summary of the synchronous
interaction can be stored as additional meeting information.

2.4 Summary

Table 1 summarizes the previous analysis focusing on two important charac-
teristics: the granularity of update notification and the reconciliation techniques
used. We also present a strategy to integrate synchronous and asynchronous in-
teractions. In the previous subsections, we have made the case for the use of
these techniques, although it is possible to use different approaches with suc-
cess.

This analysis allows to identify some important characteristics that must
be taken into account when designing a system that supports synchronous and
asynchronous interactions.

First, for some applications, updates are propagated among participants us-
ing operations with a different granularity in synchronous and asynchronous



Conferencing system Multi-user editing tool
with structured document

Group calendars

synchronous updates technical: messages
social: small size

insert/remove character
add/remove element to the
structure

decision-making tools for
time agreement
add/remove appointment

reconciliation
/ concurrency
control

causal order operational transformation
for elements
merge structure ops. using
total order

merge updates using to-
tal order – alternatives for
conflict resolution

asynchronous updates technical: messages
social: large size

update region (e.g. section,
paragraph)
add/remove element for
document structure

add/remove appointment

reconciliation
/ concurrency
control

causal order versioning for elements
merge structure ops. using
total order

merge updates using to-
tal order – alternatives for
conflict resolution

integrating synchronous
and asynchronous

updates convert sequence of small
messages into a single long
message

compress character ops.
into a single update ele-
ment op.

use decision-making log as
appointment information

reconciliation
/ concurrency
control

use different techniques same technique

Table 1. Analysis of synchronous and asynchronous applications.

modes. In synchronous settings, updates tend to be small and to be propa-
gated as soon as a user executes some change to the shared data, thus allow-
ing a tightly-coupled interaction with strong awareness of other users’ actions.
In asynchronous settings, updates tend to be large, each one including a self-
contained contribution. For supporting both types of interaction, it seems neces-
sary to convert sequences of small updates executed in synchronous interactions
into one (or a few number of) large update for use in the long-term asynchronous
interactions.

Second, for some applications, different reconciliation techniques are pre-
ferred in different modes. In synchronous settings, reconciliation can be very
aggressive and merge all updates in the same data version because users can
immediately solve any problem that occurs. In contrast, in asynchronous set-
tings, it is usually preferable to preserve all contributions from users, even if it
is necessary to create multiple data versions, as these contributions can be long.

3 Design options

In this section we present the design options used to integrate synchronous in-
teractions in an object-based system designed to support the development of
asynchronous groupware applications. In this paper we only consider issues re-
lated with data management.



3.1 Basic requirements and design options

We start our discussion by reviewing the basic requirements that must be ad-
dressed to support synchronous or asynchronous interactions independently.

Synchronous interaction In synchronous applications, users access and mod-
ify the shared data in realtime. To this end, the system must allow several ap-
plications running on different machines to maintain replicas of the shared data.
When an update is executed in any replica, it must be immediately propagated
to all other replicas. To achieve this requirement, our support for synchronous
replication lies on top of a group-communication infrastructure, as it is usual in
synchronous groupware.

In this kind of support, it is important to allow latecomers to join an on-going
synchronous session. We support this feature using a state-transfer mechanism
integrated with the group-communication infrastructure.

The user interface of the synchronous application must be updated not only
when the local user updates the shared data, but also whenever any remote user
executes an update. To this end, our system allows applications to register call-
backs for being notified of changes in the shared data. These callbacks are used
to update the GUI of the application. This approach allows a synchronous ap-
plication to be implemented using the popular model-control-view pattern, with
the model replicated in all participants of the synchronous session.

Asynchronous interaction In asynchronous interactions, users collaborate
through the access and modification of shared data. Therefore, one fundamen-
tal requirement to maximize the chance for collaboration is to allow users to
access and modify the shared data without restrictions (except from access con-
trol restrictions). To provide high data availability, our system combines two
main techniques. First, it replicates data in a set of servers to mask networks
failures/partitions and server failures.Second, it partially caches data in mobile
clients to mask disconnections. High read and write availability is achieved us-
ing a ”read any/write any” model of data access that allows any clients to modify
the data independently.

This optimistic approach leads to the need of handling divergent streams
of activity (caused by independent concurrent updates executed by different
users). Many different reconciliation techniques have been proposed in differ-
ent settings (e.g. the use of undo-redo [21], versioning [7], operational trans-
formation [14, 43, 46], searching the best solution relying on semantic informa-
tion [23]) but no single technique seems appropriate for all problems. Instead,
different groups of applications call for different strategies. Thus, unlike most



systems [13, 7, 27] that implement a single customizable strategy for reconcilia-
tion, our system allows the use of different techniques in different applications.

Awareness has been identified as important for the success of collaborative
activities because individual contributions may be improved by the understand-
ing of the activities of the whole group [11, 18]. Our system includes an inte-
grated mechanism for handling awareness information relative to the evolution
of the shared data. Different strategies can be used in different applications, ei-
ther relying on explicit notification, using a shared feedback approach [11], or
combining both styles. Further details on the requirements and design choices
for asynchronous groupware in mobile computing environments are presented
elsewhere [33].

3.2 Integrating synchronous and asynchronous interactions

An asynchronous groupware activity tends to span over a long period of time.
During this period, each participant can produce his contributions indepen-
dently. Groups of participants can engage in synchronous interactions to pro-
duce a joint contribution. Thus, it seems natural to consider the result of a syn-
chronous interaction as a contribution in the context of the long-term collabora-
tive process. We have used this approach in our object-based system.

In the following subsections, we address specific requirements for imple-
menting this strategy.

Updates with a different granularity As discussed in the previous section,
in some applications, updates are propagated between replicas using operations
with a different granularity for synchronous and asynchronous interactions. To
address this problem, our system includes a mechanism to compress the log of
operations submitted by users.

During a synchronous interaction, the small operations executed by users
are incrementally converted and compressed in a small sequence of large opera-
tions. This sequence of large operations is the result of the synchronous session
and it is integrated in the asynchronous collaborative process as any contribu-
tion produced by a single user. The same mechanism is used to compress the
updates produced by a single user.

Different reconciliation techniques As discussed in the previous section, in
some applications, it is interesting to use different reconciliation techniques in
different setting to handle updates executed concurrently. To address this prob-
lem, we structure data objects used in collaborative applications according to an
object framework that includes independent components to handle most aspects



related with data sharing, including reconciliation and awareness management.
Thus, when a programmer creates a data type to be used in a collaborative ap-
plication, she can specify different reconciliation techniques to be used in syn-
chronous and asynchronous settings.

The same approach can be used for handling awareness information in dif-
ferent ways during synchronous and asynchronous interactions. In our system,
when an operation is executed it is possible to generate specific awareness in-
formation that is processed by a component of the data object. For example, in
a shared document, it may be interesting to maintain a log of modification pro-
duced over time. This log can be updated by the awareness component used in
asynchronous settings. In synchronous settings, the needed awareness informa-
tion is usually provided by the applications as the result of updates to the shared
data. Therefore, this additional awareness information can be discarded.

4 DOORS

In this section, we present the DOORS system. We start by briefly presenting
the system architecture and the object framework. A more detailed description
of these elements of the system, and how they can be used to support only
asynchronous groupware can be found in [34]. Then, we detail the mechanisms
used for integrating synchronous sessions in the overall asynchronous activity.

4.1 Architecture

DOORS is a distributed object store based on a ”extended client/replicated
server” architecture. It manages coobjects: objects structured according to the
DOORS object framework. A coobject represents a data type designed to be
shared by multiple users, such as a structured document or a shared calendar.
A coobject is designed as a cluster of sub-objects, each one representing part of
the complete data type (e.g. a structured document can be composed by one sub-
object that maintains the structure of the document and one sub-object for each
element of the structure). Each sub-object may still represent a complex data
structure and it may be implemented as an arbitrary composition of common
objects. Besides the cluster of sub-objects, a coobject contains several compo-
nents that manage the operational aspects of data sharing — figure 1 depicts
the approach (we describe each component and how they work together later).
Sets of related coobjects are grouped in volumes that represent collaborative
workspaces and store the data associated with some workgroup and/or collabo-
rative project.
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Fig. 1. DOORS object framework.

The DOORS architecture is composed by servers and clients, as depicted
in figure 2. Servers replicate volumes of coobjects to mask network fail-
ures/partitions and server failures. Server replicas are synchronized during pair-
wise epidemic synchronization sessions. Clients partially cache key coobjects to
allow users to continue their work while disconnected. A partial copy of a coob-
ject includes only a subset of the sub-objects (and the operational components
needed to instantiate the coobject). Clients can obtain partial replicas directly
from a server or from other clients.

Applications run on client machines and use a ”get/modify locally/put
changes” model of data access. First, the application obtains a private copy of
the coobject (from the DOORS client). Second, the application invokes sub-
objects’ methods to query and modify its state (as it would do with common ob-
jects). The update operations are transparently logged (and compressed) in the
coobject. Finally, if the user chooses to save her changes, the logged sequence
of operations is (asynchronously) propagated to a server.
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Fig. 2. DOORS architecture composed by four computers with different configurations. Coob-
jects are replicated by servers, partially cached by clients and manipulated by users’ applications.



When a server receives operations from a client, it delivers the operations
to the local replica of the coobject. It is up to the coobject replica to store and
process these operations. Coobject replicas are synchronized during epidemic
synchronization sessions. During these sessions, servers propagate sets of oper-
ations between coobjects’ replicas.

As described, DOORS is fully built around the notion of operation-based
update propagation. The system core only executes the minimal services that
represent the common aspects of data management (to propagate sequences of
updates and to maintain the client cache). DOORS delegates on the coobjects
most of the aspects related with the management of data sharing, such as concur-
rency control and the handling of awareness information. The rationale behind
this design is to allow the implementation of flexible type-specific solutions.

4.2 DOORS object framework

The outlined design imposes a heavy burden on coobjects, which must handle
several aspects that are usually managed by the system. To alleviate program-
mers from much of this burden and to allow the reuse of good solutions in multi-
ple data types, we have defined an object framework that decomposes a coobject
in several components that handle different operational aspects (see figure 1).
In this subsection we outline the complete object framework, introducing each
component in the context of the local execution of an update operation.

Each coobject is composed by a set of sub-objects that may reference each
other using sub-object proxies. These sub-objects store the internal state and
define the operations of the implemented data-type. The cluster manager is
responsible to manage the sub-objects that belong to the coobject, including:
the instantiation of sub-objects (when needed); and the control of sub-objects’
persistency (e.g. using garbage-collection).

Applications always manipulate coobjects’ data through sub-objects’ prox-
ies. When an application invokes a method on a sub-object proxy, the proxy
encodes the method invocation (into a simple object that includes information
to trace its causal dependencies and to order them) and hands it over to the
adaptation component. The adaptation component is responsible for interac-
tions with remote replicas. The most common adaptation component executes
operations locally. But other implementations are available, allowing to execute
operations in a server or to change the execution location depending on the con-
nectivity.

Local execution is controlled by the capsule component. Query operations
are executed immediately in the respective sub-object and the result is returned
to the application. Update operations are logged in the log component. When-



ever an operation is logged, the capsule calls the concurrency control component
to execute it.

The concurrency control/reconciliation component is responsible to ex-
ecute the operations stored in the log. In the client, operations are usually ex-
ecuted immediately. The result of this execution is tentative (showing the ex-
pected result) [13], as an update only affects the official state of a coobject when
it is finally executed in the servers. To guarantee that all (server) replicas evolve
in a consistent way and that users intentions are respected, different concur-
rency control/reconciliation components implementing different strategies may
be used in the server (this problem is discussed extensively in [33]).

During the execution of the operations some awareness information may be
produced. This information is handed over to the awareness component that
immediately processes it (storing it to be later presented in applications and/or
propagating it to the users using the systems’ notification services).

Besides controlling the local execution of operations, the capsule compo-
nent defines the coobject’s composition and aggregates its components. The
composition described in this subsection represents a common coobject, but
it is possible to define different compositions — for example, it is possible to
maintain a tentative and a committed version of the sub-objects using two differ-
ent reconciliation components to execute updates stored in a single log using an
optimistic and a pessimistic total order strategy respectively. The capsule com-
ponent also defines the interface with the system for exposing the logged oper-
ations and processing the operations received during epidemic synchronization
sessions. Finally, the attributes component stores the system and type-specific
properties of the coobject.

To create a new data-type (coobject) the programmer must do the follow-
ing. First, he must define the sub-objects that will store the data state and de-
fine the operations (object methods) to query and to change the state. From the
sub-objects’ code, a pre-processor generates the code of sub-object proxies and
factories to be used to create new sub-objects, handling the tedious details auto-
matically.

Second, the programmer must define the coobject composition selecting the
adequate pre-defined components (or defining new ones if necessary). Different
components can be specified for use in the server and in the client during pri-
vate and shared (synchronous) access. As these components encode most of the
data-sharing semantics, different data-sharing approaches can be obtained using
different pre-defined components.



4.3 Integration of synchronous sessions

In this subsection we detail the integration of synchronous sessions in the overall
asynchronous activity.

Manipulate coobjects in synchronous sessions: As we have seen in sec-
tion 2, each site that participates in a synchronous section usually maintains its
own copy of the shared data. To this end, we need to maintain several copies of
a coobject synchronously synchronized.

To achieve this goal, we use an adaptation component (called synchronous
adaptation component) that propagates updates executed in any replica to all
replicas that participate in the synchronous session. This component relies on a
group communication sub-system for managing communications among partic-
ipants of the synchronous (GCSS) session (two different implementations exist,
one relying on JGroups [1] and other relying on the Deeds event-dissemination
system [12]).

An application (user) may start a synchronous session in a client when it
loads a coobject from the data storage. In this case, the coobject is instantiated
with the components specified for shared access in the client3. In particular, the
adaptation component must be a version of the synchronous adaptation compo-
nent. This component creates a new group (in the GCSS) for the synchronous
session.

When a new user wants to join a synchronous session, the user’s applica-
tion has to join the group for the synchronous session (using the name of the
session and the name of one computer that participates in the session). During
the entrance process, the application receives the current state of the coobject
(including all instantiated sub-objects) from a designated primary in the group
(relying on the state transfer mechanism of the GCSS). A private copy of the
coobject is created (instantiated) using the received state. Any user is allowed to
leave the synchronous session at any moment.

In DOORS, the sub-objects are only instantiated by the cluster manager
when they are accessed. When a coobject is being manipulated in a synchronous
session, the initial state of a sub-object is obtained from the designated primary

3 It is also possible to start a synchronous session using a private copy of a coobject that is being
modified. In this case, the system starts by replacing the components used for private access
by the components used for shared access (when they are different). The new components are
initialized with the state of the old components. To this end, we have defined an interface to
export and import the relevant state of components in a generic way. If some used component
does not implement this interface, it is only possible to start a synchronous session with a
freshly loaded cooobject.



in the group to guarantee that all replicas instantiate all sub-objects in a coherent
way4.
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Fig. 3. Synchronous processing of an update operation in three replicas of a coobject.

Applications manipulate coobjects as usual, i.e., by executing operations
in sub-objects’ proxies. The proxy encodes the operation and delivers it to the
adaptation component for processing. Query operations are processed locally as
usual (see details in section 4.2).

For an update operation, the adaptation component propagates the operation
to all elements of the synchronous session, as depicted in step 2 of figure 3.
The GCSS delivers all operations in the same order in all replicas. When the
operation is received in (the adaptation component of) a replica, including the
replica where the operation has been initially executed, its execution proceeds as
usual (by handing the operation to the capsule for local execution, as explained
in section 4.2). Using this approach, it is very simple to maintain all replicas
consistent: as all update operations are received in all replicas in the same order,
the concurrency control component just has to execute all operations in the order
they are received5.

4 Whenever a replica needs to instantiate a sub-object, it sends a request to the group. The
primary replies to this request by sending the initial state of the sub-object (as obtained from
the DOORS client) to all replicas — all replicas cache the initial state of the sub-object for
future use.

5 Note that even using this approach it is possible to preserve users’ intentions executing opera-
tional transformation techniques before executing an update.



An alternative approach has also been implemented: the operation is prop-
agated using a FIFO order (only guaranteeing per-sender ordering). This order
guarantees that the operation is delivered immediately in the local replica, thus
imposing no delay on local execution of operations (local execution proceeds
as usual). In this case, as operations are delivered in different orders in different
replicas, it is usually necessary to rely on operational transformation to guaran-
tee that all replicas remain consistent.

To update the application GUI, an application may register callbacks in
the adaptation component to be notified when sub-objects are modified due to
operations executed by remote users (or local users). These callbacks are called
by the adaptation component when the execution of an operation ends (step 9).

The DOORS approach to manage synchronous interactions, described in
this subsection, does not imply any contact with the servers. An application
running on a DOORS client can participate in a synchronous session if it can
communicate with other participants using the underlying GCSS. Thus, a group
of mobile clients, disconnected from all servers, may engage in a synchronous
interaction even when they are connected using an ad hoc wireless network.

Saving the result of a synchronous interaction as an asynchronous con-
tribution: As discussed in section 3.1, for some applications, it is necessary to
convert the small operations used during synchronous interaction into the large
operations used for asynchronous interaction.

Compress (seqOps: list, newOp: operation) =
FOR i:= seqOps.size - 1 TO 0 DO

IF Compress( seqOps, i, newOp) THEN
RETURN seqOps

ELSE IF NOT Commute( seqOps.get(i), newOp) THEN
BREAK

END FOR
seqOps.add( ConvertToLarge( newOp))
RETURN seqOps

Fig. 4. Algorithm used for log-compression.

In the DOORS system, this is achieved by the log compression mechanism
implemented by the log component. As described in section 4.2, all update op-
erations executed in a synchronous session are stored in the log before being
applied to the local replicas of the sub-objects. Besides the full sequence of
operations, the log component also maintains a compressed version of this se-
quence. An operation is added to the compressed sequence just before being



stably executed (and after the reconciliation component executes the last undo
or transformation to the operation) using the algorithm presented in figure 4.

The basic idea of the algorithm is to find out an operation already in the
log that can compress the new operation (e.g. an insert/remove operation in a
text element can be integrated into an operation that sets a new value to the text
element by changing the value of the text). If no such operation exists, the new
operation is converted into an asynchronous operation and added to the sequence
of operations in the log (e.g. an insert/remove operation in a text element can be
converted into an operation that sets a new value – the current value of the text
modified by the operation – to the text element).

To use this approach it is necessary to define the following methods used in
the compression algorithm: Compress, for merging two operations; Commute,
for testing if the result of executing two operations does not depend on the ex-
ecution order; ConvertToLarge, for converting a small synchronous operation
into a large asynchronous operations — this operation has access to the current
state of the coobject. The examples presented in the next section show that these
methods are usually simple to write.

The result of the synchronous session is the compressed sequence of oper-
ations stored in the log. Only the designated primary can save the result of the
session. In respect to the overall evolution of the coobject, the compressed se-
quence of operations that is the result of the synchronous sessions is handled in
the same way as the updates executed asynchronously by a single user. Thus,
the sequence of executed operations is propagated to the servers, where it is
integrated according to the reconciliation policy that the coobject uses in the
server.

Using different reconciliation strategies: As discussed in section 3.1, for
some applications, it is important to use different reconciliation techniques dur-
ing synchronous and asynchronous interactions. In the DOORS system, it is
possible to use different techniques by specifying that a coobject is composed
by different components in the server and during shared access in the client.

The reconciliation component used during shared access in the client con-
trols how updates are applied to each replica maintained by the participants of
the synchronous session. Thus, this component defines the reconciliation strat-
egy for synchronous interaction.

The reconciliation component used in the server controls how updates are
applied to the stable replicas maintained by the servers. Thus, this component
defines the reconciliation strategy for asynchronous interactions.

A similar approach is used for the awareness component, allowing to use dif-
ferent approaches to handle information created during synchronous and asyn-
chronous interactions.



5 Applications

In this section, we present two applications that exemplify our approach to inte-
grate synchronous and asynchronous interactions. These applications have been
implemented in Java 2. The DOORS prototype has also been implemented in
Java 2 (the pre-processor is implemented using JavaCC).

5.1 Multi-synchronous document editor

The multi-synchronous document editor allows users to produce structured doc-
uments collaboratively — these documents are represented as coobjects. A doc-
ument is a hierarchical composition of two types of elements: containers and
leaves. Containers are sequences of other containers and/or leaves. The com-
plete structure of a document, including all containers, is stored in a single sub-
object. Leaves represent atomic units of data that may have multiple versions
and that may be of different types. Each leaf is represented by a sub-object.

For example, a LaTeX document has a root container that may contain a
sequence of text leaves and/or scope containers. A scope container may also
contain a sequence of text leaves and/or scope containers. There is no direct
association between these elements and LaTeX commands/elements. Users are
expected to use scope elements to encapsulate the document structure. For ex-
ample, a paper can be represented as a sequence of scope elements, each one
containing a different section (see figure 5). The file to be processed by LaTeX
is generated by serializing the document structure - all text is contained in text
leaves.
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Fig. 5. Multi-synchronous document editor with a LaTeX document, while synchronously editing
one section.



Asynchronous edition: When editing the document asynchronously, users
are allowed to change the same elements independently. The coobject manages
concurrent modifications automatically, maintaining syntactic consistency, as
follows. Concurrent modifications to the same text leaf are merged using the
pre-defined strategy implemented in the multi-version sub-object (text leaves are
defined as a sub-type of this sub-object): two versions are created if the same
version is concurrently modified; a remove version is ignored if that version
has been concurrently modified; otherwise, both updates are considered. Users
should merge multiple versions into a single version later. Concurrent modifi-
cations to the same container are merged executing all updates in a consistent
way in all replicas (using an optimistic total order reconciliation component the
server).

Synchronous edition: The multi-synchronous editor allows multiple users
to synchronously edit a document. To this end, a document coobject is main-
tained synchronously synchronized using the synchronous adaptation compo-
nent that immediately executes operations locally. Thus, users observe their op-
erations without any delay. For handling reconciliation during a synchronous
session, a reconciliation component that implements the GOTO operational
transformation algorithm [43] is used.

For supporting synchronous edition, a text element also implements opera-
tions to insert/remove a string in a given version. These operations are submitted
when the user writes something in the keyboard or executes a cut or paste op-
eration. Updates to the structure, versions or current contents of a text version
executed locally or remotely are reflected in the editor’s user interface using the
callback mechanism provided by the adaptation component. For example, fig-
ure 5 shows a synchronous session with two users. The updates produced by
each user to the selected text version are presented using different colors. In the
structure and versions windows, elements that have been modified during the
current session are presented in red.

For converting synchronous operations into asynchronous the following
rules are used. Operations commute if they act upon different structure elements
or different versions. Otherwise, they do not commute. The update version oper-
ation compresses insert/remove string operations — the new value of the version
is updated to reflect the insert/remove operations. No other compression rule is
needed for converting a synchronous session into an asynchronous contribu-
tion6. An insert/remove operation can be converted to a large update version

6 Additional compression rules are applied as part of the normal log compression mechanism:
create/delete version pairs are removed; add/remove element pairs are removed; an update
version replaces a previous update version.



operation, with the new value of the version equals to the result of applying the
given operation to the current state of the version.

For supporting synchronous edition it would also be possible to implement
the following alternative approach: the multi-synchronous editor maintains the
document’s coobject synchronously synchronized as explained before using
only large operations and it relies on an external editor for synchronous edi-
tion of the same text element. An update version operation is submitted when
the participants decide to finish the edition of a text element. In this case, the
small operations, typical of a synchronous setting, are executed outside of the
coobject’s control. Thus, the coobject does not need to convert synchronous op-
erations into asynchronous operations — this conversion is executed implicitly
by the editor.

5.2 Multi-synchronous conferencing tool

In this section we describe a conferencing tool that integrates synchronous and
asynchronous interactions using the approach described in section 2.1. This ap-
plication maintains a newsgroup-like shared space where users can post mes-
sages asynchronously. A shared space is used to discuss some topic and it may
include multiple threads of discussion. A shared space is represented as a coob-
ject and each thread of discussion is stored in a single sub-object. In each shared
space, there is an additional sub-object that is used to index all threads of dis-
cussion.

Two operations are defined: create a new thread of discussion with an initial
message and post a message to a thread of discussion (as a reply to a previous
message). The following reconciliation strategy is used in the servers: all up-
dates are executed in all replicas using a causal order. This approach guarantees
that all reply messages are stored in all replicas before the original message, but
it does not guarantee that all messages are stored in the same order7.

Our tool also allows users to maintain several replicas of a shared space
synchronously synchronized. This is achieved using the synchronous adapta-
tion component, as in our previous example. The reconciliation component ex-
ecutes all operations immediately in a causal order (as in the servers). During
synchronous interaction, users can engage in synchronous discussions that are
added to the shared space as a single reply to the original post — replies are
created using a chat tool.

At the data management level, the thread sub-object defines an additional
operation to add a message to a previous message. When the user decides to

7 This property is usually considered sufficient in this type of application. For guaranteeing the
same order in all replicas, a component that implements an optimistic total order could be used
instead of the causal order component).



start a new discussion, it issues a post message. This initial post message opera-
tion compresses all following add message operations issued in the synchronous
discussion (by incorporating the new messages). In this case, the other rules
needed for the log compression algorithm are very simple: two operations, a
and b, commute if they neither modify the same message nor b posts a reply to
the message posted by a, or vice-versa; no rule is need for converting operations
as all add messages are compressed into the initial post message.

6 Related work

Several systems have been designed or used to support the development of asyn-
chronous groupware applications in large-scale distributed settings (e.g. Lotus
Notes [27], Bayou [13], BSCW [5], Prospero [10], Sync [30], Groove [17]).
Our basic system shares goals and approaches with some of these systems but
it presents two distinctive characteristics. First, the object framework not only
helps programmers in the creation of new applications but it also allows them to
use different data-management strategies in different applications (while most
of those systems only allow the customization of a single strategy). Moreover,
it is the base for supportting the integration of synchronous sessions. Second,
most of those systems (excluding BSCW) concentrate their attention on the
reconciliation problem and do not address awareness support. Our system al-
lows to integrate a solution for handling awareness information. From these
systems, at least three can provide some integration between synchronous and
asynchronous interactions.

In Prospero [10], it is possible to use the concept of streams (that log the
sequence of operations executed) to implement synchronous and asynchronous
applications (depending on how often streams are synchronized). This mecha-
nism can be used to implement the integration of synchronous and asynchronous
sessions when the same operations can be used in both styles of cooperation.
However, the authors do not address the problem of applications that need to
use different operations or different reconciliation strategies.

In Bayou, a replicated database system, the authors claim that it is “possi-
ble to support a fluid transition between synchronous and asynchronous mode
of operation” [13] by connecting to the same server. However, without imple-
menting a notification mechanism that allows applications to easily update their
interface, it is difficult to support synchronous interactions efficiently. Moreover,
relying on a single replica for synchronous sessions may lead to unacceptable
latency.

In Groove [17], while some applications can only be used in asynchronous
mode (e.g. Notepad), others can be used in synchronous and asynchronous (off-



line) modes (e.g. Sketchpad). In Sketchpad, the same reconciliation strategy
seems to be used (execute all updates by some coherent order leading to a so-
lution similar to the last-writer wins). However, as discussed in section 2, this
may lead to undesired results in asynchronous interactions as the overwritten
work may be large and important. In this case, it is not acceptable to arbitrarily
discard (or overwrite) the contribution produced by some user, and the creation
of multiple versions seems preferable [42, 22].

Other groupware systems have presented solutions to integrate synchronous
and asynchronous interactions. In [15] the authors define the notion of a room,
where users can store objects persistently. Applications also run inside the room.
A user may connect to the central server that stores the room to observe and
modify the room state (using the applications that run inside the room). Users
can work in a synchronous mode if they are inside the room at the same time.
Otherwise, they work asynchronously. In [19] the authors present a hypertext
authoring system that allows users to work synchronously and asynchronously.
A tightly coupled synchronous session, with shared views, should be estab-
lished to allow more than one user to modify the same node or link simulta-
neously (a locking mechanism prevents any other concurrent modification of
those elements). In [36], the authors describe a distance-learning environment
that combines synchronous and asynchronous work. Data manipulated during
synchronous sessions is obtained from the asynchronous repository, using a sim-
ple locking or check-in/check-out model.

Unlike DOORS, these systems lack support for asynchronous groupware in
mobile computing environments, as they do not support disconnected operation
(they all require access to a central server while using the system). Furthermore,
either they do not support divergent streams of activity to occur (besides very
short-time divergence during synchronous sessions) or they solve the problem
through a single solution (versioning). Our solution is more general, allowing to
use the appropriate reconciliation solution for each setting.

In [40], the authors propose a general notification system that can be used to
support synchronous and asynchronous interactions by using different strate-
gies to propagate updates. They also present a specific notification compo-
nent for group editors that implements an operational transformation algorithm
(in both settings) that solves some of the problems for using this approach in
asynchronous settings. However, as discussed in section 2, when used in asyn-
chronous settings, this technique may lead to unexpected results that do not
satisfy any user — creating multiple version seems preferable. Our approach,
allowing the use of a different reconciliation technique in each setting, can ad-
dress this problem.



In [29], the authors present a brief overview of SAMS, an environment that
supports synchronous, asynchronous and multi-synchronous interactions using
an operational transformation algorithm extended with a constraint-based mech-
anism to guarantee semantic consistency [3]. Although addressing the prob-
lem of semantic consistency is important for integrating synchronous and asyn-
chronous interaction, the solution does not seem to allow the use of different
strategies to merge updates executed in different settings (as it is important for
integrating synchronous and asynchronous interactions in some applications).

7 Final remarks

In this paper, we have analyzed the requirements for supporting the integration
of synchronous and asynchronous interactions in different types of applications.
Based on this analysis, we have presented a model to integrate synchronous and
asynchronous interactions in mobile computing environments. Our approach is
built on top of the DOORS replicated object store, that support asynchronous
groupware relying on optimistic server replication and client caching.

To integrate synchronous sessions in the overall asynchronous activity we
address three main problems (identified as important in the analysis of sec-
tion 2). First, our system maintains multiple replicas of the data objects stored
in the DOORS repository synchronized in realtime. To this end, we rely on a
group communication infrastructure to propagate all executed operations to all
replicas.

Second, our system addresses the problem of using different reconciliation
strategies in different settings. To this end, the programmer may use the DOORS
object framework to specify that a different reconciliation component should be
used in each setting.

Finally, it addresses the problem of using operations with a different gran-
ularity for propagating updates in synchronous and asynchronous settings. To
this end, it integrates a compression algorithm that converts a long sequence of
small operations used in synchronous settings into a small sequence of large
operations.

More information about the DOORS system is available from [blanked out].
DOORS code is available on request.
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