
Enriching Kademlia by Partitioning

João Monteiro
NOVA LINCS & DI/FCT/NOVA University of Lisbon,

Lisboa, Portugal

jmp.monteiro@campus.fct.unl.pt

Pedro Ákos Costa
NOVA LINCS & DI/FCT/NOVA University of Lisbon,

Lisboa, Portugal

pah.costa@campus.fct.unl.pt

João Leitão
NOVA LINCS & DI/FCT/NOVA University of Lisbon,

Lisboa, Portugal

jc.leitao@fct.unl.pt

Alfonso de la Rocha
Protocol Labs,

alfonso@protocol.ai

Yiannis Psaras
Protocol Labs,

yiannis@protocol.ai

Abstract—Decentralizing the Web is becoming an increasingly
interesting endeavor that aims at improving user security and
privacy as well as providing guaranteed ownership of content.
One such endeavor that pushes towards this reality, is Protocol
Labs’ Inter-Planetary File System (IPFS) network, that provides
a decentralized large scale file system to support the decentralized
Web. To achieve this, the IPFS network leverages the Kademlia
DHT to route and store pointers to content stored by network
members (i.e., peers). However, due to the large number of
network peers, content, and accesses, the DHT routing needs
to be efficient and quick to enable a decentralized web that is
competitive.

In this paper, we present work in progress that aims at improv-
ing the Kademlia DHT performance through the manipulation
of DHT identifiers by adding prefixes to identifiers. With this, we
are able to bias the DHT topological organization towards locality
(which can be either geographical or applicational), which creates
partitions in the DHT and enables faster and more efficient
query resolution on local content. We designed prototypes that
implement our proposal, and performed a first evaluation of our
work in an emulated network testbed composed of 5000 nodes.
Our results show that our proposal can benefit the DHT look up
on data with locality with minimal overhead.

Index Terms—Decentralized Web, Peer-to-Peer, Distributed
Hash Tables

I. INTRODUCTION

With the popularization of blockchain technology [1], [2]

there has been an increased interested in peer-to-peer tech-

nology as a way to realize a novel decentralized web vision

[3]. The decentralized web aims at decentralizing control

from centralized infrastructures and entities (i.e., the cloud

and its providers) towards end-users. Protocol Labs (https:

//protocol.ai) has been pushing this endeavor with products

such as IPFS [4] and FileCoin [5], that aim at building a large

community of users on a large scale decentralized network that

share content and build distributed applications.
In this paper, we are interested in the IPFS network in

particular. IPFS is a community driven peer-to-peer distributed

The work presented here was partially supported by FC&T through NOVA
LINCS (grant UID/CEC/04516/2013) and NG-STORAGE (PTDC/CCI-
INF/32038/2017). Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000.fr).

file system that aims to connect computing devices through

a shared file system. Currently, IPFS hosts a multitude of

content, that ranges from full web sites, such as Wikipedia, to

images and other user public files. To support the operation of

IPFS, a distributed hash table (DHT) – Kademlia [6] – is used

to locate and store content pointers within the IPFS network.

To this end, peers and content are encoded with an immutable

identifier that Kademlia leverages to organize peers and store

and find content.

The Kademlia DHT is widely popular, having been previ-

ously employed in BitTorrent [7] however, in the context of

IPFS, content resolution (i.e., locating and retrieving content)

can be extremely slow, sometimes even reaching latencies

higher than 2, 5 hours [8]. The reasons for this phenomenon

are still being investigated by the IPFS team and collabo-

rators. Nevertheless, one possible reason can be due to a

known challenge of peer-to-peer overlay networks – topology

mismatch [9], [10]. Topology mismatch occurs when the

topological organization of peers does not match the physical

network topology, generating logical paths among peers that

are suboptimal at the physical layer. This challenge can easily

lead to higher resolution latencies in DHTs [11], as DHTs

organize peers based on their identifiers, which are generated

from a uniform distribution (e.g., a SHA-256 of the IP and

Port of the peer) that does not encode any locality property

(e.g., geo-location of the peer, applications that the peer runs,

etc).

To address this challenge, in this paper we aim at presenting

effective solutions that will incur in minimal operational

overhead in modifications to IPFS. To this end, we present and

evaluate a scheme to bias the DHT topology towards locality.

In more detail, our scheme is rooted on the idea that by adding

prefixes to the DHT identifier, one can organize peers that have

the same prefix closely in the DHT, enabling faster resolutions

for local content. The prefix can encode geographical regions,

applications, or any other arbitrary proximity criteria among

peers. Leveraging this insight, we present two solutions that

partition the Kademlia DHT based on identifier prefixes. We

present a first solution that creates virtual partitions in the DHT

by adding the prefix to the identifier without further modifica-

33

2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)

2332-5666/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCSW56584.2022.00016

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s W

or
ks

ho
ps

 (I
CD

CS
W

) |
 9

78
-1

-6
65

4-
88

79
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
DC

SW
56

58
4.

20
22

.0
00

16

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

tions to the Kademlia protocol. We name this scheme Soft Par-
titioning. The second solution creates physical partitions in the

DHT, having nodes of each prefix participating in a segregated

DHT. To enable communication among nodes across different

prefix domains, our scheme leverages an additional protocol

that stores and retrieves contact points for each known prefix

(i.e., sub DHT). We name this scheme Hard Partitioning. Our

preliminary evaluation shows that both schemes can achieve

faster content resolution on data that presents locality (i.e.,

belongs to the same prefix/region/application) without adding

significant overhead to the remainder of queries of the system.

The remainder of this paper is organized as follows: Sec-

tion II discusses techniques to perform DHT topological

optimizations; Section III presents our solutions in more detail;

Section IV details our experimental work, that leverages an

emulated network testbed composed of 5000 peers; and finally,

Section V concludes the paper with future directions.

II. RELATED WORK

Distributed Hash Tables (DHTs) are crucial for the operation

of large scale systems, specially for the ones that require users

to find each other. A DHT, in short, provides a decentralized

method of mapping an identifier (of a resource) to one or

more nodes in the network. This resource is information that

is stored by some peer(s) in the network. To enable this,

DHT protocols build a structured overlay network on top of a

logical key space that allows to find any key (i.e., identifier)

by using application-level routing mechanisms. Examples of

DHTs include, Chord [12] that operates with a consistent

hashing [13] mechanism; Tapestry [14] and Pastry [15] that

leverage a Plaxton Mesh [16] key space and routing system;

SkipNet [17] that uses two different key spaces that are

ordered lexicographically; and Kademlia [6], the protocol we

are interested in this paper, that uses the XOR distance of keys

for routing. However, in the operation of these protocols, keys

are attributed based on a uniformly random distribution (e.g.,

the hash of an IP address), which does not encode any type of

locality. Previous works have addressed this. These works can

be divided in three categories: i) Peer Selection; ii) Coordinate
System Transformation; and iii) Identifier Manipulation.

Peer Selection. To enable routing in a DHT, each peer keeps

information about other peers with properties that usually

encode logarithmic jumps in the DHT key space (i.e., each

hop among peers should cut the distance to a target in

half). However, the peers stored locally can be suboptimal

due to physical network constraints, and thus lead to high

latencies when routing requests. Because DHTs are designed

to accommodate large numbers of peers in the system, there

are multiple peers that can provide (close to) logarithmic

jumps in the DHT. Peer selection means choosing a peer that

optimizes this jump through some additional property. The

most common property to optimize is latency among peers,

which was studied in CAN [11] and Coral [18]. Both works

present solutions to construct DHT topologies that can be

optimized towards latency among peers, by favoring to store

information about lower latency peers. However, to enable

this, active latency measurements need to be done, which can

highly influence the network traffic volume. Furthermore, and

due to latency being a dynamic metric (i.e., it fluctuates over

time), such techniques can generate unwanted instabilities and

be difficult to tune.

Coordinate System Transformation. Alternatively, other

works such as GeoPeer [19], NL-DHT [20], and Geodemlia

[21], explore the transformation of an existing (physical)

coordinate system (e.g., GPS, logical Cartesian space) into

a logical key space that can be leveraged by a DHT pro-

tocol, that maintains the locality properties of the original

coordinate system. In the case of GeoPeer, peers leverage

the original coordinate system to organize themselves towards

locality based on delaunay triangulations [22]. NL-DHT, on

the other hand, propose the use of a modified Hilbert curve

[23] method to transform a three dimensional space, that

represents the location of a peer in a geographic space, into

a single dimension DHT key space. Geodemlia follows a

simpler approach, encoding the geographic space in a circle,

and dividing the circle into regions. The management of these

regions is similar to that of Kademlia. Unfortunately, these

techniques can become highly limiting and complex, as only

a single locality property can be encoded that depends on a

physical global coordinate system.

Identifier Manipulation. Lastly, works such as

Globase.KOM [24], LDHT [25], and the works presented

in [26] and [27], focus on manipulating peer and resource

identifiers (i.e., DHT keys). These works separate the key

in two parts, a global and a local part. Usually, the global

part is encoded by the most significant bits of the key, can

vary in length, and is used to encode a geographical region.

The local part of the key identifies the peer and is a unique

identifier generated randomly. In the case of Globase.KOM,

peers organize themselves in a hierarchical tree structure. In

this solution, interior peers (of the tree) are representatives

of the geographic region, and are identified by a key that

encodes a global identifier and a local identifier. Leaf peers

(of the tree) are only identified by a local identifier. In LDHT

all peers are identified by a key with a global and a local

part. The global part is based on the Autonomous System

Network (ASN) of the peer, while the local part is based on

the IP address of the peer. In [26] the authors propose to

have the global part of the key encode multiple encompassing

geographical regions (in a hierarchy). In [27] the authors

propose the use of landmark nodes, that do not participate in

the DHT, to compute the global part of keys. The techniques

used in these solution share the same insights as the ones

employed by our approach, however, these solutions mostly

consider geographical information and strict key designs. Our

mechanisms, although similar in concept, is more general and

flexible, and thus easier to integrate in the IPFS system.

Our mechanisms group nodes that share the most significant

bits of their identifiers by adding prefixes that encode some

locality property (geographical or applicational). There are

adjacent works that also group peers that share some prop-

erty. This is the case of the work in [28] that proposes an

34

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

algorithm for peers to self organize according to some order.

Furthermore, the works in [29] and [30] build DHTs with

groups of peers that encode the same interval in the DHT key

space, mostly as a failover and load balancing mechanism.

III. PROPOSED SOLUTION

Our proposals aim at improving the DHT resolution per-

formance for queries with locality. Locality here can mean

geographic, applicational, and/or logical proximity. To this

end, we leverage ideas from previous work that performs

identifier manipulation to bias the DHT organization towards

locality that is encoded in the identifier of peers and resources.

As such, we prepend to the keys used in the Kademlia DHT

a prefix that encodes locality. Due to the natural operation of

Kademlia, and the way peers are organized among themselves,

by prepending locality identifiers, peers organize themselves in

groups that represent each locality identifier. In the following,

we present a brief description of the Kademlia protocol to

support the description of our two proposed solutions that bias

Kademlia for locality: Soft Partitioning and Hard Partitioning.

A. Kademlia

Kademlia operates over an m bit key space (in IPFS the

value for m is the output length of a SHA-256), and uses

the XOR distance metric to order keys. Each peer holds a

routing table (named k-buckets) composed of multiple lists (or

buckets), of fixed maximum size of k (the value for k used

in IPFS is 20). Each bucket holds peers that can decreasingly

cut the distance to a target in the DHT from the local peer.

For example, bucket 0 holds peers that can perform jumps

that cover (i.e., cut the distance to a target in) half of the key

space, bucket 1 holds peers that can perform jumps that cover

a quarter of the key space, and so on. Peers are initialized

with a single bucket that is divided once it gets full. Only

the bucket that covers the least amount of space (i.e., the last

bucket) is divided. This means that a peer will always know

more peers which are closer in the key space.

Kademlia employs a generic method to locate resources in

the DHT, having optimizations for finding peers (FINDNODE

operation) and stored values (FINDVALUE operation). In short,

the method works as follows: for any arbitrary key, the peer

contacts the k peers that it knows of that are closest to the key.

These peers will return the k peers that they known of that

are closest to the key. The original peer continues to contact

the k closest peers to the key gathered from the responses,

until it has contacted all the closest peers or has found the

resource that is mapped by the key. Storing values in the DHT

is similar. The operation first finds the k closest peers to the to

be stored key, and stores the value in those k peers. Kademlia

can be configured with two additional parameters that control

the parallelism of query resolution. These parameters are α,

that controls how many parallel messages can be sent when

locating a key, and β, that controls how many responses

the protocol has to wait before performing the next round

of messages for query resolution. In IPFS these values are

parameterized as: α = 10 and β = 3.

B. Sotf Partitioning

Our soft partitioning solution creates virtual partitions in the

Kademlia DHT. This is a consequence of adding the locality

prefix to peer and content identifiers and due to how the XOR

distance metric in Kademlia operates. The addition of prefixes

modify the XOR distance of any two keys that do not share a

prefix, making keys that do not share the same prefix to always

have higher distances between them than keys that share the

prefix. This causes Kademlia’s k-buckets to store more peers

that share the prefix (as these are closer), hence creating virtual

partitions in the DHT, as peers that share the same prefix will

have more connections among them.

To store content with this scheme, the generated content

identifier must also be prefixed. To preserve locality, the

content is prefixed with the prefix of the peer that publishes

the content. To find content, peers must also have knowledge

of the content’s prefix. This however, is a process that occurs

out-of-band and is not a concern of the protocol.

C. Hard Partitioning

The hard partitioning solution takes the locality concept

a step further by creating physical partitions in the Kadem-

lia DHT, effectively dividing the original DHT into smaller

disjoint DHTs, each encoded/indexed by a different locality

prefix. This allows for smaller average number of hops to be

needed to route queries with locality (i.e., queries for resources

that share the prefix of the peer performing the query). For

non-local queries (i.e., to resource that do not share the prefix

of the peer performing the query) an external service to the

DHT is used. We dubbed this service the indexer service
that maps prefixes to a list of peers that have that prefix.

This allows peers to find contact points for other prefixes

in other DHTs. The indexer service can be implemented in

a centralized way, having a single instance know all contact

points, or in a decentralized way, where multiple instances

know different contact points. The indexer service is updated

by having peers contact the service periodically and with a

configurable probability.

To avoid having peers constantly contacting the indexer

service, peers maintain a small cache with contacts of fre-

quently queried partitions (i.e., frequently contacted DHTs

with different prefixes). As such, anytime a peer performs a

query to a remote partition, it firsts tries to use the contacts it

has in its cache. If these fail to respond, the peer contacts the

indexer service for more contact points. Contacts are evicted

from cache when they fail to respond or after configurable

time-to-live (TTL) expires.

In this scheme, content is only stored in the local partition,

as it is expected to be accessed mostly by peers in the local

partition. However, if some content becomes overly popular,

it can be replicated to other partitions. Nevertheless, in IPFS,

we expect these to happen mostly by republishing the content

in a different partition.

35

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

D. Discussion

In this work we study the impact of these two solutions over

the base Kademlia protocol. Both solutions aim at improving

Kademlia’s query resolution for access patterns with locality.

The soft partitioning solution is a solution that can be easily

integrated with IPFS by simply changing peer and content

identifiers to also encode locality properties and enabling peers

and applications to leverage locality identifiers on the DHT. On

the other hand, the hard partitioning solution requires a larger

integration effort with IPFS, as the DHT protocol requires

modifications and a new service (the indexer service) has to

be developed and deployed. Nevertheless, the hard partitioning

solutions provides an additional advantage by enabling the

creation of jumps over large gaps in the key spaces through

contaict points to remote partitions.

IV. EVALUATION

We have conducted an experimental evaluation of both our

solutions. To this end, we have implemented simple prototypes

in the Go programing language of both our solutions and the

Kademlia protocol. The Kademlia protocol is implemented

as per the description in the original paper, using UDP

communication. We have additionally used code in libp2p

[31] (that is also used to implement IPFS) that implements the

XOR distance. Our solutions are implemented by extending

the Kademlia protocol prototype.

We execute our prototypes in a network of 5000 peers with

emulated latencies among them. This network was generated

with the help of a graph analysis tool [32]. In this network,

peers that are close by have very low latency among them, and

some peers that are farther apart also have low latency among

them. This network tries to emulate latencies experienced in

the Internet, where peers are expected to have low latency links

to other peers that are in the same ISP, and can occasionally

have a low latency link to a peer outside their ISP. After this,

we calculated partitions of different sizes (3, 10, and 100) on

the generated network based on the proximity of peers in the

network. Table I shows the properties of the generated network

and the calculated partition sizes. Note that the average latency

decreases with the higher number of partitions as the partitions

are smaller and are more tighly packed in the network.

To effectively emulate the network we leverage Docker

containers. We execute 100 Docker containers spread evenly

across 20 servers in the Grid5000 platform, each with an

Intel Xeon Gold 5220 CPU, with 18 cores, and 96 GiB of

memory. Each container executes 50 independent instances of

our prototypes. Each instance is identified by the IP of the

container and the assigned UDP port. Latencies are emulated

with the Linux tc tool with a rule for each pair of instances.

In the following we discuss the performance evaluation with

this network.

A. Performance Evaluation

Our evaluation is centered on the average latency of FIND-

NODE and FINDVALUE operations. Furthermore, we config-

ured all solutions with the following parameters: k = 5, α = 3,

TABLE I: Average network latency and partition sizes.

Graph Local (ms) Remote (ms) Partition Size
Avg Min Max

3 Partitions 275.52 495.77 1667 1254 1519
10 Partitions 145.03 449.68 500 358 744
100 Partitions 43.82 418.26 50 26 102

β = 2. These values are substantially lower than those used

in IPFS. This is due to the scale of our emulation being

smaller than the IPFS network (otherwise most queries would

be resolved on the first hops), and to operational limitations

(to avoid overloading servers with too many messages). In

our experiments for the hard partitioning solution, we use a

single indexer service that is hosted by one of the peers of

the network. The indexer service is configured to hold five

contacts for each partition, and peers are configured to update

their contact entry on the service every 20 seconds with a

probability of 30%. Furthermore, hard partitioning peers also

cache 3 peers per partition that have been used with a TTL of

60 seconds.

Experiments run for an average of 10 minutes. The first

2 minutes of the experiment are used as a grace period

for all peers to join the network. In experiments with the

FINDNODE operation, peers perform 5 minutes for queries of

a our workload. The remainder of the time is used for queries

to finish gracefully. In experiments with the FINDVALUE

operation, each peer stores five values in the DHT and waits

for another minute grace period. This is followed by 5 minutes

of queries of our workload, using the remainder of the time

as before. We perform experiments with fault-free scenarios

and faulty scenarios. In the following we present the results

for each scenario. Results show the average of 3 repetitions

of each experiment.

a) Fault-Free Scenario: In the Fault-Free scenario, we

configure the percentage of queries that are performed to the

local partition of the peer. This is expressed through a probabil-

ity over a random number. Once it is decided if the query is to

be performed over the local partition or not, a random existing

key is chosen that matches the previous decision. Figure 1

shows the results for the FINDNODE operation for networks

with 3, 10, and 100 partitions. Figure 2 shows the results

for the FINDVALUE operation for networks with 3, 10, and

100 partitions. In our experiments we varied the percentage

of locality in queries as follows: 1%, 25%, 50%, 75%, 90%,

and 95% (this is represented in the x axis of figures, while

the y axis represents the average latency of each operation).

The results presented in Figure 1 show that both solutions

improve the average query resolution of Kademlia when the

queries present locality accesses. As expected, query patterns

with higher locality present higher improvements in our so-

lutions. Furthermore, our solutions also benefit from higher

number of partitions. This is due to creating smaller partitions

and hence routing in these smaller partitions is faster. Another

thing to note, is that the hard partition solution only presents

a slight advantage over the soft partition solution with higher

numbers of partitions. We believe this to be a consequence of

36

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

(a) 3 Partitions. (b) 10 Partitions. (c) 100 Partitions.

Fig. 1: Fault-Free scenarios average FINDNODE latency.

the high latency of contacting the single instance of the indexer

service. With more partitions, this effect is attenuated by the

fact that partitions are very small (50 peers) and queries are

resolved in fewer hops than in the soft partitioning solutions.

The results presented in Figure 2 are similar for all solu-

tions, where the most significant difference is that all solutions

experience higher latency. This is because the FINDVALUE

operations, operates similarly to the FINDNODE operation,

with the addition that peers perform an additional interaction

to effectively fetch the stored content. These results show that

our solutions has a minimal impact over the DHT operation,

other than providing an advantage when queries have locality.

b) Faulty Scenarios: In these set of experiments, we

fix the probability of locality to 50% of our workload and

execute the FINDNODE operation in networks with 10 and

100 partitions. Furthermore, we generate a simultaneous peer

fault of 30% of the network after a period of 2 minutes in the

experiment (after the initial grace period). Figure 3 shows the

results for these experiments. These experiments measure the

success rate (y axis) over time (x axis) of queries.

These results show that all solutions, for low numbers of

partitions (Fig. 3a) have similar fault tolerance, with the soft

partition solution being the most affected by the failure of

peers. With higher numbers of partitions (Fig. 3b), the hard

partition solution has significantly more fault tolerance than

the competing alternatives. This is due to the fact that the

failure has less impact on the smaller DHTs as these smaller

DHTs are more connected (i.e., peers have more connections

among themselves), and that finding remote content (i.e.,

that is not on the local partition) is done primarily via the

indexer service. It is also important to note that the operation

of the hard partition is highly dependent on the indexer

service, which as a single instance, is a single point of

failure. However, the indexer service can be easily materialized

by more than one (independent) instances with virtually no

coordination among them.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented two solutions capable

of improving the performance of Kademlia for DHT query

patterns that present locality, without incurring in a strong

operational overhead. Our soft partitioning solution is capable

of influencing the routing table maintained by each peer to

encode locality, and hence improve the DHT query routing

on queries that exhibit locality. On the other hand, the hard

partitioning solution presents a higher tolerance to churn in

the network when the number of partitions is high.

The work presented in this paper is still work in-progress,

and we aim at following these first findings to further improve

these solutions. In particular, we aim at improving the soft

partition solution with caching of peer contacts as employed

by the hard partition solution, to enable larger shortcuts on the

soft partition solution. Regarding the hard partition solution,

the indexer service has a large design space worth exploring

to remove the single point of failure and improve the latency

required to contact the service. Furthermore, we plan to

continue the evaluation of these solutions with different setups

and by using data extracted from the operation of the IPFS

network, to fully understand the impact that our solutions can

have in a real system such as the IPFS network.

REFERENCES

[1] G. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” Tech. Rep., 2014. [Online]. Available: arXiv:1011.1669v3

[2] G. Zyskind, O. Nathan, and A. S. Pentland, “Decentralizing privacy:
Using blockchain to protect personal data,” in 2015 IEEE Security and
Privacy Workshops, 2015.

[3] “Web 3.0 technology stack,” https://web3.foundation/about/, accessed
July 2021.

[4] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” Tech.
Rep. Draft 3, 2014. [Online]. Available: http://arxiv.org/abs/1407.3561

[5] J. Benet and N. Greco, “Filecoin: A Decentralized Storage Network,”
Tech. Rep., 2017. [Online]. Available: https://filecoin.io/filecoin.pdf

[6] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002.

[7] B. Cohen, “The bittorrent protocol specification.” [Online]. Available:
https://www.bittorrent.org/beps/bep\ 0003.html

[8] ConsenSys, “Consensys: Ipfs look up measurement,” https://github.com/
ConsenSys/ipfs-lookup-measurement/, accessed February 2022.

[9] J. Leitão, “Topology management for unstructured overlay networks,”
PHD Thesis.

[10] S. Ratnasamy, I. Stoica, and S. Shenker, “Routing algorithms for
dhts: Some open questions,” in International workshop on peer-to-peer
systems. Springer, 2002.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” in Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’01. New York, NY,
USA: ACM, 2001, p. 161–172.

37

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

(a) 3 Partitions. (b) 10 Partitions. (c) 100 Partitions.

Fig. 2: Fault-Free scenarios average FINDVALUE latency.

(a) 10 partitions. (b) 100 partitions.

Fig. 3: Faulty scenarios FINDNODE succaess rate with 30% instant failure.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, Aug. 2001.

[13] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the 29 Annual ACM Symposium on Theory of Computing, ser. STOC
’97. New York, NY, USA: ACM, 1997, p. 654–663.

[14] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, 2004.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware
2001, R. Guerraoui, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 329–350.

[16] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,” in Proceedings
of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures, ser. SPAA ’97. New York, NY, USA: ACM, 1997, p.
311–320. [Online]. Available: https://doi.org/10.1145/258492.258523

[17] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman, “SkipNet: A scalable overlay network with practical
locality properties,” in 4th USENIX Symposium on Internet Technologies
and Systems (USITS 03). Seattle, WA: USENIX Association, Mar.
2003. [Online]. Available: https://www.usenix.org/conference/usits-03/
skipnet-scalable-overlay-network-practical-locality-properties

[18] M. J. Freedman and D. Mazieres, “Sloppy hashing and self-organizing
clusters,” in International Workshop on Peer-to-Peer Systems. Springer,
2003.

[19] F. Araujo and L. Rodrigues, “Geopeer: a location-aware peer-to-peer
system,” in Third IEEE International Symposium on Network Computing
and Applications, 2004. (NCA 2004). Proceedings., 2004, pp. 39–46.

[20] S. Ratti, B. Hariri, and S. Shirmohammadi, “Nl-dht: A non-uniform
locality sensitive dht architecture for massively multi-user virtual envi-
ronment applications,” in 2008 14th IEEE International Conference on
Parallel and Distributed Systems, 2008, pp. 793–798.

[21] C. Gross, D. Stingl, B. Richerzhagen, A. Hemel, R. Steinmetz, and
D. Hausheer, “Geodemlia: A robust peer-to-peer overlay supporting

location-based search,” in 2012 IEEE 12th International Conference on
Peer-to-Peer Computing (P2P), 2012, pp. 25–36.

[22] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
delaunay triangulation overlays,” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 8, pp. 1472–1488, 2002.

[23] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis of the clus-
tering properties of the hilbert space-filling curve,” IEEE Transactions
on Knowledge and Data Engineering, vol. 13, no. 1, pp. 124–141, 2001.

[24] A. Kovacevic, N. Liebau, and R. Steinmetz, “Globase.kom - a p2p over-
lay for fully retrievable location-based search,” in 2007 7th International
Conference on Peer-to-Peer Computing. Los Alamitos, CA, USA: IEEE
Computer Society, sep 2007, pp. 87–96.

[25] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, and X. Li,
“Ldht: Locality-aware distributed hash tables,” in 2008 International
Conference on Information Networking, 2008, pp. 1–5.

[26] S. Zhou, G. R. Ganger, and P. A. Steenkiste, “Location-based node ids:
Enabling explicit locality in dhts,” Tech. Rep., 2003. [Online]. Available:
https://kilthub.cmu.edu/articles/journal contribution/Location-based
node IDs enabling explicit locality in DHTs/6607025

[27] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Decentralized
and locality aware replication method for dht-based p2p storage sys-
tems,” Future Generation Computer Systems, vol. 84, pp. 32–46, 2018.

[28] V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R. van Re-
nesse, “Slicing distributed systems,” IEEE Transactions on Computers,
vol. 58, no. 11, pp. 1444–1455, 2009.

[29] F. Maia, M. Matos, R. Vilaca, J. Pereira, R. Oliveira, and E. Riviere,
“Dataflasks: Epidemic store for massive scale systems,” in 2014 IEEE
33rd International Symposium on Reliable Distributed Systems (SRDS).
Los Alamitos, CA, USA: IEEE Computer Society, oct 2014, pp. 79–88.

[30] J. Paiva, J. Leitão, and L. Rodrigues, “Rollerchain: A dht for efficient
replication,” in Procceedings of the 12th International Symposium on
Network Computing and Applications, Aug 2013, pp. 17–24.

[31] Protocol Labs, “libp2p: A modular network stack.” https://libp2p.io,
accessed February 2022.

[32] T. P. Peixoto, “graph-tool: Efficient network analysis,” https://graph-tool.
skewed.de, accessed February 2022.

38

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 11:22:35 UTC from IEEE Xplore. Restrictions apply.

