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Abstract

A large number of web applications are built around direct interactions among users,
from collaborative applications and social networks to multi-user games. While these ap-
plications are user-centric, they are usually supported by services running on servers that
mediate all interactions among clients. Often, users run these applications while being lo-
cated in close vicinity of each other. Relying on a centralized infrastructure for mediating
these user interactions leads to unnecessarily high latency while hampering fault-tolerance
and scalability. In this paper, we propose to extend user-centric Internet services with
peer-to-peer interactions. We have designed a framework that allows client web applica-
tions to replicate data from servers, and synchronize these replicas directly among them.
Our framework allows the use of extensions to leverage existing web platforms. We have
implemented one such extension that interacts and exports the same API as Google Drive
Realtime (GDriveRT), also allowing the co-existence of legacy clients accessing GDriveRT
directly with enriched clients using our new framework accessing the same shared objects.
The results of our experimental evaluation show that, besides supporting client interaction,
even when disconnected from the servers, our framework provides much lower latency for
update propagation while also decreasing the network traffic load on servers.

1 Introduction
A large number of Web applications are built around direct interactions among users, from
collaborative applications and social networks to multi-user games. These applications manage
a set of shared objects, with each user reading and writing to a subset of these objects. For
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example, in a collaborative text editor, users share the document being edited, while in a multi-
user game the users access and modify a shared game state, which usually consists of multiple
objects.

These applications are typically implemented using a centralized infrastructure that main-
tains the shared state and mediates all interactions among users. This approach has several
drawbacks. First, the servers become a scalability bottleneck, as all interactions have to be me-
diated by servers. While such bottlenecks can be partially mitigated through the use of elastic
resources available in the cloud, this might be too expensive for small startups and companies
launching their web applications. Second, when the servers become unavailable, clients can-
not interact anymore, and in many cases, they cannot even access the application. Finally, the
latency of interaction among nearby users is unnecessarily high, since operations are always
routed through servers when two clients interact. While this might not be noticeable for appli-
cations with low interaction rates, such as social networks, games and collaborative applications
rely on interactive response times below 50ms for satisfactory user experience [18].

One alternative that would allow to overcome the drawbacks discussed above is to rely
on direct interactions among clients, making the system less dependent on the centralized in-
frastructure. Besides avoiding the scalability bottleneck and availability issues of typical web
application architectures, such an approach can also improve user experience by lowering the
latency of interactions among clients. Additionally, it has the potential to reduce the load im-
posed on the centralized components, which can bring significant benefits when dealing with
flash crowds [26] while minimizing the infrastructure cost for web applications operators.

While there has been significant work in the past on peer-to-peer systems, exploring multiple
aspects of direct client-to-client communication and interaction models (e.g. [22, 14, 31, 5, 35,
21]), this body of work has not being leveraged to improve the operation of web applications, as
these usually run on web browsers which restrict the ability to establish direct communication
channels among clients. To circumvent this problem, users have to install plugins, an obstacle
that makes it difficult to deploy such architectures in practice. However, recently the Web Real
Time Communication (WebRTC) initiative [2] has developed simple APIs that enable direct
and real-time communication across browsers through a simple JavaScript interface, paving the
way for a new generation of web applications that leverage peer-to-peer interactions.

Despite the inherent drawbacks, the use of a centralized infrastructure simplifies the task of
circumventing connectivity issues posed by firewalls (and NAT boxes). Currently, the problem
of connectivity in such cases can be addressed relying on widely available techniques, such
as STUN and TURN [24]. When combined with WebRTC, these create a new ecosystem that
empowers web applications running in one browser (or native applications using WebView
components) to communicate directly with other application instances. Additionally, HTML5
makes it possible to locally store data that survives between sessions on browsers.

In this work, we present LEGION, a framework that exploit these new features for enriching
web applications. In LEGION, each client maintains a local data storage with replicas of a
subset of the application (shared) objects. Applications in LEGION experience low latency
when accessing objects by instantiating new (local) replicas of these data objects from existing
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copies located in other clients. Furthermore, applications can continue accessing these local
objects even when servers are not reachable.

LEGION adopts an eventual consistency model, where individual application instances can
modify their local replicas without coordination. This allows updates to be performed concur-
rently on different replicas while modifications are propagated asynchronously. To guarantee
that all replicas converge to the same state after all updates have been applied, LEGION relies
on CRDTs [29], replicated data types designed to provide eventual convergence of replicas.

Unlike other systems [17, 27, 36, 1] that support objects cached at client side that are syn-
chronized with a server, LEGION clients can also synchronize directly among them, using a
peer-to-peer interaction model. To support these interactions, (subsets of) clients form overlay
networks to propagate objects and updates among them. This leads to low latency for propagat-
ing updates between nearby clients.

In each overlay network, a small number of clients are responsible for synchronizing with
the servers (that form a centralized component), uploading updates executed by clients in the
network and downloading new updates executed by clients that have not joined the overlay net-
work. Unlike many overlay networks where all clients operate in a similar fashion [22, 14], our
system relies on a non-uniform design, where a few nodes are elected to act as bridges between
the decentralized infrastructure established between clients and the servers that store data per-
sistently (and serve as access points to legacy clients or clients that are unable to establish direct
connections with other clients). This approach has the advantage of reducing the load on the
centralized component, which no longer needs to broadcast each update a shared object directly
to all active clients (nor track these clients).

LEGION includes support for user defined extensions, to enable the framework to interact
and leverage existing centralized web infrastructures. We implemented an extension for API of
Google Drive Realtime (GDriveRT) a Google service that is used to support web applications
similar to Google Docs. Our extension allows LEGION to not only use GDriveRT infrastruc-
ture but also exposes an API fully compatible with the GDriveRT. We support the same data
types as GDriveRT, through a similar interface which allows to easily port existing applications
to leverage LEGION. Further, this layer provides additional integration of our framework with
GDriveRT by storing data as GDriveRT objects over GDriveRT centralized storage layer. In
addition, we allow legacy clients (that run an outdated version of an application or whose en-
vironment disallows direct connections between clients to be established) to access GDriveRT
objects and to interoperate with LEGION-enriched clients that access replicas of the same ob-
jects through our framework.

Our evaluation shows that porting existing GDriveRT applications can be achieved by chang-
ing only a few lines of code (2 lines in the common case). We also show that, in LEGION, the
latency to propagate updates is much lower than when relying on a traditional centralized in-
frastructure, as in GDriveRT. Since we avoid continuous access to the centralized infrastructure
by all clients, we can support a larger number of clients without degrading the latency of the ser-
vice. Furthermore, clients can continue to interact among them when the server is unreachable.
Finally, the network traffic induced on the centralized component is lower when leveraging our
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framework, lowering the operational cost of the centralized component.
In summary, we present the design of LEGION, a framework to enrich web applications with

local storage and direct peer-to-peer interactions in a transparent way. To achieve this, we make
the following contributions:
• a data storage for web client devices, providing CRDTs that can be accessed and modified

without coordination with other clients or servers. The use of CRDTs allows to guarantee
eventual convergence after applying all updates;
• an overlay network substrate that use WebRTC connections to propagate data directly

among clients;
• an extension that integrates LEGION with GDriveRT, by providing a seamless API, storing

data in the GDriveRT service, and allowing legacy clients and enriched clients to interoperate
while operating over the same data;
• the implementation of a prototype that was experimentally evaluated showing the benefits

of the proposed approach in terms of both latency for clients and reduced load on servers.
The remainder of this paper is organized as follows. Section 2 discusses related work.

Section 3 presents the design of the system. Section 4 details how to support legacy clients.
Section 5 discusses implementation details. Section 6 presents an evaluation of the system, and
Section 7 concludes the paper with some final remarks.

2 Related Work
Our work has been influenced by prior research in multiple areas.

Internet services: Internet services are supported by servers typically running in a data
center, often as part of some cloud infrastructure. Applications running in user devices access
these servers to read and modify the service state. These applications often run in the web
browser or as a standalone (mobile) application.

For applications with a large number of users, it is common to offer the service through
servers running on multiple data centers, by relying on a geo-replicated data storage subsystem
[12, 23, 4, 8, 9]. Some of these storage systems provide variants of weak consistency, such
as eventual consistency [12] and causal consistency [23, 4], where different replicas can be
concurrently updated by different clients. This approach allows updates to execute without the
need for coordination among replicas. As Google Drive Realtime, LEGION adopts an eventual
consistency model where updates of each object individually are applied in causal order.

Other storage systems adopt stronger consistency models, such as parallel snapshot isola-
tion [30] and linearizability [9], where concurrent updates are not allowed. These approaches
simplify the development of applications, as replicas do not diverge, at the price of requiring
coordination among replicas for executing each update. These protocols are prohibitively ex-
pensive for high throughput and large numbers of clients.

Replication at the clients: While many web applications use a stateless approach, where
data is fetched from the servers whenever necessary, a number of applications store data on
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the client side for providing fast response times and allowing operation when the device is
disconnected. For example, Google Docs and Google Maps can be used in offline mode and
Facebook recently announced offline feed access [3].

Parse [1] provides eventual consistency, by allowing applications to store data in client de-
vices, read, and modify these objects while disconnected. Updates are uploaded to the server
when connectivity becomes available, with the last write operation prevailing as the server state.
SwiftCloud [36] caches objects in the client machine, allowing updates to execute while discon-
nected. The system supports a weak form of transactions that enforce causality, while merging
concurrent updates using CRDTs. Simba [27] reliably stores data on client machines, allow-
ing applications to select the level of observed consistency: eventual, causal, or serializability.
Applications must provide functions for resolving conflicts that may arise when operating un-
der weaker consistency guarantees. Our work extends the functionality of these systems, by
allowing clients to synchronize directly with each other, thus reducing the latency of update
propagation and allowing collaboration when disconnected from servers.

A large number of data management systems for mobile computing have been proposed
[33]. Some of these systems, such as Coda [20] and Rover [19], cache data in client machines
for allowing disconnected operation. Clients synchronize with servers, with support for rec-
onciling concurrent updates employing some user-defined mechanism. On contrast, our work
focuses on supporting also direct peer-to-peer interactions among clients.

In Bayou [34], clients can hold a database replica and synchronize directly. In each replica,
updates are first tentatively executed and later committed after being totally ordered by a pri-
mary replica. Bayou introduces the notion of session guarantees, ensuring additional properties,
such as read your writes. Cimbiosys [28] replicates data in the multiple mobile devices of a user,
which are expected to be connected intermittently. Although our work share some of the goals
and design decisions with these systems, we also focus on the integration with an existing In-
ternet service, which poses new challenges regarding the techniques that can be used to manage
replicated data and the interaction with legacy clients.

Collaborative applications: Several applications and frameworks support collaboration
across the Internet by maintaining replicas of shared data in client machines. Etherpad [13]
allows clients to collaboratively edit documents. ShareJS [16] and Google Drive Realtime [17]
are generic frameworks that are able to manage concurrent modifications to different types of
objects. All these systems use a centralized infrastructure to mediate interactions among clients.
Furthermore, they rely on operational transformation techniques for guaranteeing eventual con-
vergence of replicas [25, 32]. In contrast, our work relies on CRDTs [29] for guaranteeing
eventual convergence and to allow clients to synchronize replicas in a peer-to-peer fashion.
Collab [7] uses CRDTs for replication between peers and allows offline initialization and col-
laboration, but only on a local area network.

Peer-to-Peer systems LEGION follows the peer-to-peer model of direct communication
among clients. In particular we resort to the use of decentralized unstructured overlay net-
works [22, 35, 14] and gossip-based multicast protocols [5, 22, 6]. Both of these aspects of
peer-to-peer systems have been the focus of extensive research in the past, and we leverage
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and adapt some of the approaches found in the literature. In particular, we resort to an overlay
network that is heavily inspired by the HyParView overlay network [22], but while HyParView
handles faults by using gossip mechanism to maintain additional information about clients in
a system, we have adapted the protocol to leverage the centralized infrastructure effectively
minimizing the overhead imposed by the overlay management protocol.

For supporting gossip-based multicast, we resort to a typical push-based gossip strategy
that has been used in many systems in the past (e.g, [22, 5]). Our gossip strategy is biased for
providing a good balance between latency and communication overhead, and fault tolerance,
being a variant of the ideas proposed in [6].

3 System Design
In this section we present the system architecture and design of LEGION.

3.1 Architecture
LEGION allows programmers to design web applications that benefit from a hybrid commu-
nication model where clients can interact among them directly, and maintain replicas of data
objects with the (relevant) application state. This helps reducing the dependency on the central-
ized component, minimizing latency to propagate updates, as updates are distributed directly
among clients, while also minimizing the load on the server, as the centralized component is
no longer responsible to propagate updates to all clients. Furthermore, it allows clients to con-
tinue interacting when the connectivity to the servers is lost. End users can use LEGION-based
applications without installing any kind of software or browser plugins, making the use of the
framework completely transparent and non-intrusive.

LEGION has been designed to allow simple integration with different web service infras-
tructures. For supporting a new service, it is necessary to create a small layer that: (i) provides
methods for allowing LEGION to read and write data in the service; (ii) exposes a service-
specific API to applications running in clients. Besides using the existing web services for data
storage, thus ensuring the durability of application data, LEGION can also store information to
ease establishing direct communication channels among clients.

Figure 1 illustrates the architecture of LEGION in the client side, identifying the main com-
ponents and their dependencies/interactions:
• LEGION API: This layer exposes the API through which web applications interact with

our framework.
• Communication API: The communication API exposes two communication primitives,

one point-to-point and another point-to-multipoint. Although these primitives are available
to the application, we expect applications to communicate using shared objects stored in the
object store. This implies that, in most cases, these communication primitives will only be used
internally by LEGION.
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Figure 1: The LEGION Architecture.

• Object Store: This module maintains replicas of shared objects that encode relevant
application state. Sets of related objects are grouped in a container. This component resorts
to the communication API to propagate and receive updates to these objects in order to keep
replicas up-to-date. Internally, LEGION encodes all objects in the form of CRDTs [29]. LEGION

provides an extensible CRDT Library that includes lists, maps and strings.
• Overlay Network Logic: This module establishes a logical network among clients that

replicate each (shared) container. This network defines a topology that restricts the direct inter-
actions among clients, meaning that only overlay neighbors maintain (direct) WebRTC connec-
tions among them and exchange information directly.
• Connection Manager: This module manages the connections established by a client. In

order to exchange information directly, clients maintain a set of WebRTC connections among
them. (Some) Clients additionally maintain connections to central components, as discussed
next.

In addition to the modules discussed above, that reside on the client side, LEGION also re-
sorts to two additional third-party components that reside outside of the client domain. First, one
or more centralized infrastructures used for several purposes, being the most relevant: i) user
authentication; ii) guarantee durability of the application state; iii) allow server-mediated inter-
actions with legacy clients, or clients that run in environments that do not support WebRTC;
and iv) assist clients that leverage LEGION to initially join the system. Second, a collection of
STUN and TURN [24] servers which are used by our framework to circumvent firewalls and
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NAT boxes when establishing direct connection among clients1.
For the centralized infrastructure, LEGION provides a basic server implemented in Node.JS [10].

Clients can also rely on existing Internet services, which must be accessed through a service-
specific extension. We have implemented an extension for supporting integration with GDriveRT.
The GDriveRT extension provides functions that allow LEGION to read and store data in
GDriveRT service and optionally, it can also be used by LEGION to exchange control infor-
mation to establish direct WebRTC connections among clients. Additionally, this layer allows
applications to access shared objects using an interface similar to GDriveRT interface (usually
it is possible to port an application that uses the GDriveRT API by modifying only two lines of
JavaScript code).

In the remaining of this section we discuss in more detail the design of each of the modules
that compose the LEGION framework, focusing on the use of the framework with the GDriveRT
extension.

3.2 Communication Modules

3.2.1 Communication API

The communication API provides the interface to exchange messages directly between clients.
This module also implements these communication primitives by leveraging the overlay net-
work(s) provided by the Overlay Management Logic module (whose design is discussed in
Section 3.2.2).

This module offers two main communication primitives. A multicast primitive that allows a
client to disseminate a message to all clients that replicate a given object container. In LEGION,
each container has a multicast group that clients join when they start replicating an object of
the container. This communication primitive operates through a biased push-gossip protocol
(similar to the one presented in [22]).

Additionally, this module also provides a point-to-point communication primitive, which
is internally implemented on top of our multicast primitive, albeit minimizing the number of
messages transmitted by each client. While this implementation is notably inefficient, we have
left to future work improving the performance of this primitive, as it currently is not used by
LEGION.

3.2.2 Overlay Network Logic

LEGION maintains an overlay network which provides a (partial) membership service to clients
using our framework, and defines the interaction patterns among clients (i.e, which clients com-
municate directly). While we allow an application to access multiple containers, we maintain

1While LEGION supports both these services, we only use STUN servers which indeed allows to establish
direct connections among clients. TURN is used to relay traffic between clients, that are unable to connect directly,
through a third party server however, for such clients we instead resort to the centralized infrastructure.
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an independent overlay network for each accessed container, which is used for supporting the
multicast group associated with that content.

We use an overlay network inspired by the design of the HyParView protocol [22] although
with a different mechanism for fault tolerance. This decision is related with the fact that in
LEGION we can leverage the centralized infrastructure to simplify the management of the over-
lay network topology in face of faults. At the overlay level, each client maintains a set of K
randomly selected neighbors (K is a system parameter). Similar to HyParView, neighboring re-
lationships are symmetric, meaning that if a node a is a neighbor of b, then b is also a neighbor
of a. Therefore, our overlay networks are k−random undirected graphs.

3.2.3 Connection Manager

The connection manager module manages all communication channels used by a LEGION

client. There are two types of communication channels: at most one connection to the cen-
tralized infrastructure (either LEGION server component or GDriveRT infrastructure) that we
call Server Connection and a set of connections to other LEGION clients, that we dub Peer
Connection. In the following we briefly discuss how these connections are managed.

Server Connection The native Server Connection provided by LEGION, relies on web sockets
to communicate with LEGION Node.JS server. This communication channel is then used by
LEGION to perform all necessary operations on the centralized component. When using an
extension, LEGION uses the functions provided by the extension to contact the Internet service.
For the GDriveRT extension, these connections are established taking into consideration the
document being accessed in GDriveRT, and are authenticated through the use of Cookies.

Independently of the employed centralized component, the Server Connections are only
kept open by active clients. Additionally, when a client joins the system, this connection is
leveraged to exchange the information required by WebRTC to enable the client to establish
its first peer connection. If a client becomes isolated, i.e, loses connection to all its overlay
neighbors, the server connection is used to allow such a client to obtain information to rejoin
the overlay, which greatly simplifies the handling of faults at the overlay level.

Peer Connection A peer connection materializes a direct WebRTC connection among two
clients. To create these connections, clients have to be able to exchange – out of band – some
initial information concerning the type of connection that each end-point aims at establishing
and their capacity to do so (this includes if the connection should be reliable), as well as infor-
mation necessary to circumvent firewalls or NAT boxes using the STUN/TURN servers. This
initial exchange is known, in the context of WebRTC, as signaling.

In LEGION we resort to the centralized infrastructure to perform the singling protocol be-
tween a client joining the system and a random active client (i.e, one that maintains an active
server connection). After a client establishes its first peer connection, it starts to use its overlay
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neighbors (initially one) to find new overlay neighbors. In the latter case, the signaling proto-
col required to establish these new peer connections is exchanged through the overlay network
directly. When using our extension for GDriveRT, this initial signaling can be performed rely-
ing on information exchanged using an hidden document associated with the (main) document
(this hidden file is managed by our extension) or through the use of LEGION native Node.JS
signaling server (which option to use is a configurable parameter in our extension).

3.3 Object Store
The object store maintains local replicas of containers. Application clients interact by modi-
fying shared objects. LEGION offers an API that enables an application to create and access
objects. LEGION provides an extensible library of data types, which are internally encoded un-
der the form of CRDTs. Objects are exposed to the application through object handlers (which
are transparent to the application) that hide the internal CRDT representation.

This module is responsible for using the multicast primitive of the Communication API
module to propagate operations that modify the state of the objects associated with the appli-
cation as well as for executing operations received from other clients in a way that respects
causality (of these operations).

3.3.1 CRDT Library

The CRDT Library included in LEGION supports the following data types: Strings, Lists, and
Maps. These CRDTs provide common methods for manipulating their internal state, which are
data type dependent. For instance a List supports methods to insert and remove elements from
the List at some given position, and an additional method toArray which returns the internal
state of the List as a JavaScript object array (for applications to access the contents of the list).
LEGION supports composition of objects by reference, i.e., it is possible to put an object in one
(or more) other objects (for instance, associate the same string to multiple keys in a map).

Besides these methods used by applications, each CRDT data type also has the following
methods to allow the manipulation of the CRDT itself by the LEGION framework (these meth-
ods are only used internally by LEGION and are not exposed to the application). First, an apply
method, which executes one operation over the CRDT instance. This method is used to execute
operations received from other clients;

Second, a merge method that allows to merge the state of two (divergent) instances of a
given CRDT into a new instance. This method is used when two clients establish a new We-
bRTC connection and need to synchronize their state. In this case, it might be more efficient to
propagate the full object state instead of the list of executed operations.

Finally, a version method, which returns a version vector that summarizes the updates exe-
cuted to the CRDT instance. The container also includes a version method that summarizes the
updates executed to all objects of the container. These methods are used in the synchronization
process and for controlling the execution of operations. These version vectors have one entry
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for every client that has modified the state of that object. Because in our system any client can
modify each object, in the limit, there might be an entry for each client on the version vector.
However, we currently focus on applications that share objects among tens of users, which is
also the case for most applications that use GDriveRT which we support with our extension.
Due to this, we left the optimization of this aspect for future work.

3.3.2 Causal Propagation

In LEGION, we have implemented operation-based CRDTs [29]. To guarantee the convergence
of replicas of these CRDTs, all update operations for an object must execute according to their
causal order. Additionally, as we want to provide causal consistency for containers of objects
which are manipulated together by an application, we require all such operations to be delivered
in casual order on every client that hold local replicas of such objects. To achieve this, we use
the following approach:

For each container, each client maintains a list of received operations. The order of opera-
tions in this list respects causal order. A client propagates to every other client it connects to,
the operations in this list in order. The channels established between two clients are FIFO, i.e.,
operations are received in the same order they have been sent.

When a client receives an operation from some other client, two cases can occur. First, the
operation has been previously received, which can be detected by the fact that the operation
timestamp is already reflected in the version vector of the container. In this case, the operation
is discarded. Second, the operation is being received for the first time. In this case, besides exe-
cuting the operation, the operation is added to the end of the lists of operations to be propagated
to other nodes.

To prove that this approach respects causal order, we need to prove that when an operation
o is received in a client cr, all operations that precede o in the causal order have already been
received. This follows from the fact that if operation o has been received from client cs and we
know that client cs sends operations in causal order, then cs has already sent all operations that
precede o in the causal order. By the same reason, the lists of operations to propagate to other
nodes in cr continue respecting causal order after adding o to the end of their list. Due to space
limitations we cannot present the complete proof here, however it can be trivially achieved
through induction.

The actual implementation of LEGION only keeps a suffix of the list of operations received.
Thus, when two clients connect for the first time (or re-connect after a long period of discon-
nection), it might be impossible (or, at least, inefficient) to propagate the full list of operations.
In this case the two clients will synchronize their replicas by sending the state of objects (and
using the merge method to merge the two replicas). In this case, a client that has executed a
merge will need to synchronize with other clients it connects to also by sending its state (to
be merged in the receiving client). Additionally, clients exchange vectors periodically to avoid
sending operations that are known by their peers.
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3.4 GDriveRT Extension
LEGION resorts to a centralized component to ensure both the durability of application state
and to serve as an intermediary for the signaling messages used to establish the initial WebRTC
connections for each client. To provide this functionality, LEGION can rely on its own special-
ized server. However, it might be more convenient to the application operator to rely on an
existing centralized component. This is particularly relevant when adapting existing JavaScript
web applications to leverage our framework. To showcase this feature of LEGION, we wrote an
extension for GDriveRT.

Data model: The GDriveRT extension supports the same data model as GDriveRT, in which
collaboration among users is performed at the level of documents. A document contains a set
of data objects and is mapped in a LEGION container. Data objects types stored in these docu-
ments are similar to the ones supported natively by the LEGION object library. The extension
transparently converts the internal representation between (the equivalent) data types used by
GDriveRT and LEGION in both directions.

The extension provides applications with an API similar to the GDriveRT API. The main
functions of the API include a method to load a document that initializes the LEGION framework
(if not yet initialized). This method gives access to a handler for the document, which can be
used by the application to read and modify the data objects included in the document state. As
discussed, updates executed to the objects of a document replica are delivered to other document
replicas in causal order, i.e., LEGION enforces causal consistency for updates inside a document.

By adopting the same API of GDriveRT, any web application written in JavaScript that
uses the GDriveRT API can be (easily) adapted to use LEGION through the manipulation of
a few lines of JavaScript code, namely: i) adding an include statement to the script file with
the code of LEGION and ii) replacing the function call to load a document by the equivalent
function of the LEGION GDriveRT extension API. With the handler for the loaded document,
the application can use exactly the same function calls as in GDriveRT.

LEGION functionality: LEGION can leverage the GDriveRT infrastructure for the fol-
lowing objectives: serve as a gateway between partitioned overlays that replicate the same
GDriveRT document; and reliably store application state, i.e., documents and associated ob-
jects.

For serving as the gateway between partitioned overlays, for each document, the extension
maintains an additional list in GDriveRT with the operations executed in the document. As
discussed before, in each overlay, a set of active clients are responsible for uploading operations
executed by the clients in the overlay and download and disseminate the new operations from
other clients through the overlay. If more than one client executes this process in each overlay,
this does not affect correctness, as when an operation is received in a client, if its timestamp is
already reflected in the version vector of the replica, it will be discarded. By the same reason
that the list of operation in a client respects causal order, it follows that the list maintained
in GDriveRT also respects causal order. As a consequence, the operation downloaded from
GDriveRT are also disseminated in an order that respects causality.
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GDriveRT is also used to reliably keep a snapshot of the CRDT representation of a doc-
ument, including all CRDT objects. When a client first obtains a replica of a document, it
downloads the snapshot and then applies the operations in the list of operations that have not
been applied yet. This snapshot is created periodically by clients, when they check that the list
of operations has grown over a given threshold. These snapshots are used for efficiency pur-
poses, allowing to create a replica of a document faster in the clients and to discard from the list
of operations, the prefix that is reflected in the snapshot.

4 Support for Legacy Applications
While LEGION allows web applications to explore peer-to-peer interactions using the LEGION

infrastructure, it also allows legacy applications to continue accessing data using the original
GDriveRT interface. For each data object, LEGION keeps two versions: the version manipulated
by LEGION and the version manipulated by the legacy applications. The key challenge is to keep
both versions synchronized. This process is executed by a LEGION client, as follows.

Applying operations executed in LEGION clients to the GDriveRT object is a straightforward
process that requires converting the CRDT operations stored in the list of executed operations
to the corresponding GDriveRT operations and executing them in the GDriveRT object.

Applying operations executed in a GDriveRT object to the LEGION object is slightly more
complex. In this case, it is necessary to infer the executed operations. To this end, the client
executing the synchronization process records the version number of the GDriveRT document
in which the process is executed. In the next synchronization, the list of updates executed by
legacy clients is inferred by comparing the current version of the document against the version
after the last synchronization (using a diff algorithm). The list of inferred operations is then
added to the log of executed operations, guaranteeing that the operations are applied to the
LEGION objects.

Both synchronization steps need to be executed by a single client to guarantee an exactly-
once transfer of updates from one version to the other. We implement an election mechanism
for selecting the client relying on a GDriveRT list. When no client is executing this process,
a client willing to do it checks the version number of the document and the current size of the
list, and then writes in the list the tuple < id, n, t >, with id being the client identifier, n the
observed size of the list, and t the time until when the client will be executing the process (for
periods in the order of seconds or minutes). The client then reads the following version of the
document, which guarantees that its write has been propagated to GDriveRT servers. If the tuple
the client has written is in position n + 1, the client is elected to execute the process. This is
correct, as if two clients concurrently try to be elected, the tuple of only one will be in position
n+ 1 of the list in the new version of the document.
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5 Implementation Details
Here we provide a few implementation details of our prototype. The code is publicly available
at: https://github.com/albertlinde/Legion.

5.1 Overlay networks
To achieve the threshold of K neighbors we do the following. When a new client wants to
access a new container it needs to first join the corresponding overlay, to do that it resorts to the
LEGION centralized component to become aware of other clients using LEGION and currently
accessing the same container. The new client then uses the LEGION centralized component to
exchange signaling information to connect to one such randomly select client.

After establishing this initial peer connection, the new client will establish new peer con-
nections (up to the threshold of K) using its current overlay neighbors to execute the signaling
protocol.

5.2 Selection of Active Clients
In our design, we resort to a small subset of clients (that we dub active clients) to propagate
updates over objects to the centralized infrastructure and also to bias the gossip-based dissemi-
nation of messages as to speedup the propagation of updates among clients.

To select these clients we resort to a bully algorithm [15] where initially all clients act as
active client, and periodically, every Tms, each client sends to all its overlay neighbors a no-
tification message containing its (locally generated) unique identifier – in our experiments we
set T = 7000ms. Whenever a client receives a notification from a neighbor whose identifier is
lower than its own, it switches its own state to become a passive client, and stops disseminating
periodic announcements. Additionally, and to address the departure or failure of active clients,
if a passive client does not receive an announcement for more than 3 × T ms, it switches its
own state back to become an active client.

Passive clients disable their connection to the centralized infrastructure (through the Con-
nection Manager module). The result of executing this algorithm is that only a small subset of
(non-neighboring) clients remain active clients.

5.3 Biased Gossip-based Dissemination
Our gossip protocol is biased to ensure that, when a passive node selects the peers to whom it
will gossip a message, the active node to which it is connected is always selected. Furthermore,
we adapt the fanout (i.e, the number of nodes to whom a node gossips each message) used by
active nodes as to ensure that the message is forwarded to all its overlay neighbors with the
exception of the one from whom the message was received. Each client only changes the set of
peers with whom it gossips, in reaction to changes in its overlay neighbors.
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5.4 GDriveRT Extension
When using our extension, operations that resorted to the LEGION centralized component can
be executed by leveraging the GDriveRT infrastructure. To achieve such functionality, clients
have to be able to determine which other LEGION clients in the system are accessing the same
objects (within the scope of a document) as to be able to join the appropriate overlay network.
To implement this feature we use an hidden file associated with the main document. This file is
leveraged by the new client to exchange the necessary information with a random client already
in the system to establish its initial WebRTC connection.

When an application tries to load a document, LEGION attempts to access the requested
document at GDriveRT, a step which also serves as authentication for our framework (as the
GDriveRT API will implicitly authenticate the user at this point). After authenticating the user,
LEGION will access a hidden document containing control objects, managed by our frame-
work (and created by the first client using LEGION that accessed the document). These objects
can be used to exchange signaling information for creating peer connections besides carrying
information about membership. A copy of the (main) document is then obtained from the de-
centralized network (or from the GDriveRT infrastructure if there is no other client running
that uses LEGION) and, at this point, most clients disconnect from the GDriveRT infrastructure
(except active clients).

The implementation of the GDriveRT Extension includes the wrapper interfaces for the
native data types provided by LEGION, as well as the code to access the GDriveRT server.
We have used Count Lines of Code [11] and verified that this extension has 1, 251 LOC
in JavaScript. While the whole implementation of LEGION (including the simple server that
materializes the centralized component) has 3, 602 LOC of JavaScript.

6 Evaluation
This section presents an evaluation of LEGION with an emphasis on the operation of LEGION

when using the extersion to interoperate with the GDriveRT infrastructure. Our evaluation
mainly focus on two complementary aspects. We start with an analysis of how complex it
is to design application with LEGION in contrast to alternative approaches. Then, we present
an experimental evaluation of our prototype, comparing it to the centralized infrastructure of
GDriveRT regarding the following practical aspects:
•What is the latency for update propagation?
• How does the system behave when the connection to the central server is (temporarily)

lost?
•What is the network load introduced by the peer-to-peer approach?
•How much overhead is induced by the support for seamless integration with legacy clients?
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6.1 Designing Applications
In this section, we describe a set of applications that we have ported to LEGION using the
GDriveRT extension.

Google Drive Realtime Playground The Google Drive Realtime Playground2 is a web appli-
cation that allows to create a document with objects of any of the types supported by GDriveRT.
We were able port this applications to LEGION, by changing only 2 lines in the source code (as
discussed in Section 3.4).

Multi-user Pacman We have also adapted a version of the popular arcade game Pacman for
it to be multiplayer and to operate under the GDriveRT API, which we enriched to also support
multiple passive observers that can watch a game in real time. In this adaptation3, up to 5
players can play at the same time, one player controlling Pacman and the remaining controlling
each of the four Ghosts. To manage the multi-player aspect of the game, only the GDriveRT
API is used.

In this game, we employed the following data types provided by the GDriveRT API: (i) a
map with 5 entries, one for Pacman and the remaining for each Ghost, where each entry contains
the identifier (ID) of the player controlling the character (each user generates its own random
ID); (ii) a list of events, that is used as a log for relevant game events, which include players
joining/leaving the game, a Ghost being eaten, Pacman being captured, etc. (iii) a list represent-
ing the game map, used to maintain a synchronized view of the map between all players. This
list is modified, for instance, whenever a “pill” is eaten by Pacman; (iv) a map with 2 entries,
one representing the width and the other the height of the map. This information is used to
interpret the list that is used to encode the map; (v) a map with 2 entries, one used to represent
the state of the game (paused, playing, finished) and the other used to store the previous state
(used to find out which state to restore to when taking the game out of pause); finally, (vi) 5
maps, one for each playable character, with the information about each of these entities, for
maintaining a synchronized view of their positions (this is only altered when the corresponding
entity changes direction, not at every step), directions, and if a ghost is in a vulnerable state.

Besides extending and porting this application to use the GDriveRT API, we also imple-
mented the same game (with all functionality) using Node.JS to run a centralized server for
the game through which the clients connect using web sockets (this implementation does not
leverage LEGION). This enables us to investigate the effort in implementing such an interactive
application using both alternatives. The Node.JS implementation of the game is approximately
2, 200 LOC for the client code, and 100 LOC for the JavaScript code to materialize the server. In
contrast, the implementation leveraging the GDriveRT API has approximately 1, 620 LOC for
the client code, and 40 lines of code for the server side (used to run multiple games in parallel).

2https://github.com/googledrive/realtime-playground
3The original implementation that runs locally in the browser can be found here: https://github.com/

daleharvey/pacman
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This shows that an API such as the one provided by GDriveRT and LEGION simplifies the task
of designing such interactive web applications.

When adapting the game implementation that resorts to the GDriveRT API to leverage LE-
GION (using the GDriveRT extension), we had only to change two lines of code (as discussed
previously). We verified that the game runs much more smoothly (from a user perspective) when
leveraging LEGION which we believe happens due to the fact that the latency for propagating
user issued commands is much lower.

Spreadsheet We have also explored an additional application: a web-based collaborative
spreadsheet editor. Each spreadsheet represent a grid of uniquely identifiable rows and columns,
whose intersection is represented by an editable cell. Each cell can hold numbers, text, or for-
mulas that can be edited by different users.

A prototype of the spreadsheet web application was built using AngularJS and supporting
online collaboration through GDriveRT. The spreadsheet cells were modelled using a GDriveRT
map. Each cell was stored in the map using its unique identifier (row-column) as key.

Porting this application to the LEGION API only required the change of 2 lines of code (as
described before).

6.2 Experimental evaluation
In our experimental evaluation, we compare LEGION using our extension against GDriveRT, as
a representative system that uses a traditional centralized infrastructure.

In our experiments, we have deployed clients in two Amazon EC2 datacenters, located at
North Virginia (US-East) and Oregon (US-West). In each DC, we run clients in 8 m3.xlarge
virtual machines with 4 vCPUs and 8 ECUs of computational power, and 15GB of RAM. In our
experiments, half of the clients run in each DC. The average round-trip time measured between
two machines in the same DC is 0.6 ms and 80 ms across DCs.

Latency: To measure the latency experienced by clients for observing an update, we con-
duct the following experiment. Each client inserts in a shared list an (init) string containing
his identifier and a timestamp. When a client observes such a string, it adds to the list, as a
reply, another string that concatenates the original string and an additional timestamp. When
a client observes a reply to his original message, it computes the round-trip time for the client
that issued the reply, with latency being estimated as half of that time.

All clients start by writing one string at approximately the same time and reply to all (init)
strings added by other clients. Thus, this simulates a system where the load increases with the
number of clients.

Figure 2 presents the latency observed for both LEGION and GDriveRT. In LEGION, all
clients are included in a single overlay, which is used to propagate messages. The results show
that the latency using LEGION is much lower than using GDriveRT for any number of clients.
The main reason for this is that the propagation of updates does not have to incur a round-
trip to the central infrastructure in LEGION. Furthermore, for 64 clients, the 95th percentile
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Figure 2: Latency for the propagation of updates.

for GDriveRT is more than 10× worse than with LEGION, suggesting that LEGION’s peer-
to-peer architecture is better suited to handle higher loads than the centralized architecture of
GDriveRT.

One could expect an even lower latency for many messages when using LEGION, as mes-
sages are being propagate to clients in the same DC. This does not happen as our overlay
network is not biased towards creating connections with peers that are closer. In the future, we
intend to study how to achieve this while keeping the properties of the algorithm we used.

Effect of disconnection: We study the effect of disconnection by measuring the fraction of
updates received in a client. In the results we present, clients share a Map object, and each client
executes one update per second to the map (similar behavior was observed with the other objects
supported by LEGION). We simulate a disconnection from the Google servers, by blocking all
traffic to the Google domain using iptables, 80 seconds after the experiment starts. We unblock
traffic 100 seconds later, so that connections can again be re-established.

Figure 3 shows, at each moment, the average fraction of updates observed by clients since
the start of the experiments (computed by dividing the average number of updates received by
the total number of updates executed). As expected, the results show that during the disconnec-
tion period, GDriveRT clients no longer receive new updates, as the fraction of updates received
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Figure 3: Effect of disconnection

decreases over time. When the connectivity is reestablished, GDriveRT is able to recover. With
LEGION, as updates are propagated in a peer-to-peer fashion, the fraction of updates received is
always 100%.

Network load: We now study the network load induced by our approach. To this end, we
run experiments where 16 clients share a single map object. Each client executes one update
per second. The workload is as follows: 20% of updates insert a new key-value pair and 80%
replace the value of an existing key selected randomly. The value is a string of 16 characters
and the key has 8 characters. We measure the network traffic by using iptraf, an IP network
monitor. In these experiments, we run an additional configuration of LEGION (dubbed LEGION

Mixed) where all signalling is routed through the native LEGION server.
Figure 4(a) shows the total network load of the setup process, which includes making the

necessary connections to the GDriveRT infrastructure and peer-to-peer connections. The load
is similar across all competing alternatives, which shows that the overhead imposed by the
setup of the peer-to-peer component of LEGION is negligible when compared with a centralized
architecture.

Figure 4(b) shows the average peer-to-peer communication traffic for each client during the
setup of WebRTC connections (Setup) and while clients issue and propagate operations (Oper-
ations). The results show that the traffic of each client is larger than the traffic of each client
with the server in GDriveRT (which can be computed by dividing the server load – in Fig-
ure 4(c) – by the number of clients). This happens because our dissemination strategy resorts
to a gossip-based protocol, which has inherent redundancy, whereas in GDriveRT there is no
need to propagate redundant information between each client and the centralized infrastruc-
ture. However, an average of 35kbps does not represent a huge fraction of available bandwidth
nowadays.

Figure 4(c) shows the network load of the server without considering the initial setup load
(computed by adding the traffic of all clients to and from the centralized infrastructure) for all
competing alternatives. Results show that the load imposed over the centralized component is
much lower when using LEGION. This is expected, as only a few clients (active clients) interact
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Figure 4: Network load.

with the GDriveRT infrastructure, being most interactions propagated directly between clients.
Interestingly, when performing signalling through our LEGION server, the load in the central-
ized component drops slightly. This happens because the signalling mechanism performed
through the GDriveRT API is less efficient.

The results presented in Figure 4(d), measure the overhead imposed on the centralized com-
ponent for supporting legacy clients (LEGION WL) and compares it with LEGION with this
option disables (LEGION NL) as well as the load imposed over the centralized component of
GDriveRT when clients do not use LEGION. Results show that supporting legacy clients in-
curs in significative overhead, leading the load imposed on the centralized component to rise
to values similar to the centralized architecture. This happens because the mechanism used to
support legacy clients requires a large number of accesses to the centralized infrastructure as
to infer which operations should be carried from legacy clients to the LEGION clients and vice
versa.
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7 Final remarks
In this paper we presented the design of LEGION, a framework that allows to extend web ap-
plications, by supporting replication at the client machine and using peer-to-peer interactions
to propagate updates among clients. Furthermore, we propose a mechanism to allows the co-
existence of legacy clients accessing GDriveRT directly and clients using our new framework.
The evaluation of our prototype shows that latency for update propagation is much lower with
LEGION when compared with using GDriveRT, and that clients continue to receive updates
while disconnected from the servers.

As future work we plan to design and implement extensions to integrate LEGION with stor-
age services such as Cassandra, Riak, and Redis.
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