Borrowing an ldentity for a Distributed Counter

[Work in progress report]

Vitor Enes”
HASLab / INESC TEC
Universidade do Minho
Braga, Portugal

Paulo Sérgio Almeida¥
HASLab / INESC TEC
Universidade do Minho
Braga, Portugal

ABSTRACT

Conflict-free Replicated Data Types (CRDTs) are data abstractions
(registers, counters, sets, maps, among others) that provide a relaxed
consistency model called Eventual Consistency. Current designs for
CRDT counters do not scale, having a size linear with the number of
both active and retired nodes (i.e., nodes that leave the system per-
manently after previously manipulating the value of the counter). In
this paper we present a new counter design called Borrow-Counter,
that provides a mechanism for the retirement of transient nodes,
keeping the size of the counter linear with the number of active
nodes.

CCS CONCEPTS

« Theory of computation — Distributed algorithms;

KEYWORDS

Distributed Counting, Eventual Consistency, CRDTs.

ACM Reference format:

Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and Jodo Leitdo. 2017.
Borrowing an Identity for a Distributed Counter. In Proceedings of PaPoC’17,
Belgrade, Serbia, April 23, 2017, 3 pages.

DOI: http://dX.dOi.Org/lO.l145/306488943064894

“Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with
Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).
The research leading to these results has received funding from the European Union’s
Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, project LightKone.

#The research leading to these results has received funding from the European Union’s
Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020,
under grant agreement No. 732505, project LightKone.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PaPoC’17, Belgrade, Serbia

© 2017 ACM. 978-1-4503-4933-8/17/04...$15.00

DOI: http://dx.doi.org/10.1145/3064889.3064894

Carlos Baquero™
HASLab / INESC TEC
Universidade do Minho
Braga, Portugal

Joao Leitao
NOVA LINCS, FCT
Universidade NOVA de Lisbon
Lisbon, Portugal

1 INTRODUCTION

Counting events in a large-scale distributed system where messages
can be duplicated and dropped is difficult: unreliable networks
often lead to over- and under-counting [7]. CRDTs [6] that emulate
the behaviour of counters, such as the GCounter, overcome this
problem by storing the number of events per node that manipulates
the value of the counter.

A GCounter is a grow-only counter that only supports the in-
crement operation. While the discussion on this paper could be
generalized to a counter supporting increment and decrement oper-
ations, we purposely opted to focus on this simpler case, discussing
the relevant aspects of the design of CRDT counters. A GCounter
can be specified as follows:

GCounter =1 — IN
1={}

incj(m) = m{i — m(i) + 1}

value(m) = Z m(j)
jedom(m)
mum’ = {j = max(m(j),m’(j)) | j € dom(m) U dom(m”)}

Each node has an unique identifier i € I, and increments its entry
in the map, which stores the number of increments performed by
the node associated with that entry. The value of the counter can
be computed by simply summing all entries in the map. This design
is immune to replays by calculating the maximum known value
for each entry when synchronizing two replicas. Moreover, since
the counter state grows monotonically, messages propagating the
counter state among nodes can be dropped without compromising
the (eventual) correctness of the counter value.

However, correctness comes with a price: scalability. The number
of entries in a GCounter is linear with the number of all nodes that
ever manipulated the value of the counter, including the retired ones
(transient nodes that have permanently left the system or stopped
replicating the counter). Almost all counter CRDT designs suffer
this problem, one notable exception being Handoff Counters [1],
which overcome the scalability problem but are considerably more
complex than a typical CRDT.

In this paper we propose the Borrow-Counter, a more simple,
and effective, solution for scaling distributed counters, also more

PaPoC’17, April 23, 2017, Belgrade, Serbia

Causal(T : DotStore) = T x CausalContext
where T : DotFun{_)

Vitor Enes, Carlos Baquero, Paulo Sérgio Almeida, and Joao Leitao

(m,c)u(m’,c") = ({k = m(k) um’(k) | k € dom(m) Nndom(m")} U {(d,v) em|d¢c’'}Uu{(d,v)em’ |dgc}cuc’)

where T : DotMap{_,)

(m,c)u (m’,c") = ({k = v(k) | k € dom(m) U dom(m’) A v(k) # L},cUc’)

where v(k) = fst((m(k), c) L (m’(k),c"))

Figure 1: Join-semilattice for Causal CRDTs

in the spirit of typical CRDTs, the design being itself a Causal
CRDT [3]. Instead of the generic hierarchical design of Handoff
Counters, here we propose a simple two layer design, distinguish-
ing only permanent nodes (e.g., datacenter nodes) and transient
nodes (e.g., end-clients). Borrow-Counter makes use of the Causal
CRDT concept to achieve the transfer of increments from transient
to persistent nodes in an elegant way, allowing node retirement
without incurring a permanent impact on state growth.

The remainder of this paper is organized as follows: Section
2 discusses fundamental concepts that are essential to the under-
standing of the contribution of the paper; Section 3 presents the
Borrow-Counter design, and finally Section 4 concludes this paper
with some final remarks.

2 CAUSAL CRDTS
This section introduces the fundamental concepts related with the
design of Causal CRDTs, which compose the underlying building
blocks for the design of the Borrow-Counter presented in the fol-
lowing section.

Causal CRDTs, introduced in [3], generalize the techniques pre-
sented in [2, 5], for efficient use of meta-data state. The state of
Causal CRDTs is formed by a dot store and a causal context.

2.1 Causal Context
A causal context is a set of dots P(D), where each dot d € D
represents a unique event by a pair I X IN of node-identifier and
local sequence number.
CausalContext = P(D)
max;(c) = max({n | (i,n) € ¢} U{0})

next;(c) = (i, max;(c) + 1)

Function next; can be used to generate a new dot.

2.2 Dot Store

A dot store contains data type specific information, tagged with
event identifiers in the form of dots. In [3], three different dot stores
are presented:
e DotSet : DotStore = P (D), a set of dots
e DotFun(V : Lattice) : DotStore = D < V, a map from
dots to some join-semilattice V'
e DotMap(K,V : DotStore) : DotStore = K < V, a map
from keys in some set K to a dot store V'

2.3 Causal CRDTs

The state of a Causal CRDT is a pair, where the first component is a
dot store and the second component is a causal context, as illustrated

in Figure 1, where the lattice join is also defined for the two kinds
of dot store we will use.

3 BORROW-COUNTERS

In this section we present our main contribution, a new design
for counter CRDTs called Borrow-Counter. We start by discussing
the underlying system model we assume when designing this new
variant of CRDTs. We then present the Borrow-Counter design and
finally present a brief discussion on the relationship of our design
with that of a recent proposal [4].

3.1 System Model

When designing Borrow-Counter we consider systems composed
of multiple interconnected nodes that communicate through the
exchange of messages and replicate state among them by having
a local copy of that state encapsulated in CRDTs. We further con-
sider two different types of nodes: permanent and transient nodes.
Permanent nodes are nodes containing replicas of the system state
and whose life is entwined with the total system life. Transient
nodes, in contrast, exist in the system only temporarily. While in
the system, transient nodes also replicate fractions of the system
state. We assume nodes (both permanent and transient) can fail,
but eventually recover. When a node fails, it loses all transient state
(which includes messages received from other nodes but not yet
processed), and becomes unable to receive or transmit messages.
However, stable storage, where the state of CRDT replicas is stored,
can be recovered when the node itself recovers. We also assume
an asynchronous system model, where there is no time bound for
either computation or communication steps.

3.2 The Borrow-Counter Design

A Borrow-Counter is a Causal CRDT, where the dot store is a DotMap
from node identifiers I to another dot store # = DotFun(IB x IN).

As discussed previously, in Borrow-Counter nodes can either act
as permanent or as transient. A node i can increment the counter
with mutator inc;, if its entry in the BCounter map has at least one
active dot: a dot mapped to a (False,) pair. Dots are created by
mutator create;: when a node i calls create;(_, i), it creates a dot for
itself and becomes permanent; a permanent node i can also create
a dot for a transient node j by calling create;(_, j).

A transient node i can retire by invoking mutator retire;, which
makes all dots in its entry inactive. Mutator transfer; allows per-
manent nodes to incorporate increments from transient nodes, that
were registered in dots that have subsequently been made inactive,
removing such inactive entries (i.e., effectively performing garbage
collection of those entries from the Borrow-Counter). The transition
from active to inactive is irreversible, as given by the False < True

Borrowing an Identity for a Distributed Counter

lattice used in the pair; once a transient node makes a dot inactive,
it surrenders the capability of issuing further increments to that
entry, allowing a safe subsequent transfer to the permanent node
that created it.

F = DotFun(IB x IN)
1=
create;(m,d) = m{d — (False, 0)}
incj(m,d,n) = m{d — (False, snd(m(d)) + n)}
freezej(m,D) = m{d + (True,n)) | d € D A (d,(_,n)) € m}
active(m) = {d | (d, (False, _)) € m}
inactive(m) = dom(m) \ active(m)
value(m) = Z snd(p)
peran(m)
BCounter = Causal(DotMap(I,))
L=(L,1)
create;((m, c), j) = (m{j — create;(m(j),d)},c U {d})
where d = next;j(c)
inc;j((m, c),n) = (m{i — inc;(m(i),d,n)},c)
where d = random(active(m(i)))
retire;((m, ¢)) = (m{i — freeze;(m(i), active(m(i)))}, c)
transfer;((m, c),j) = (L, s) U inc;((m,c), n)
where s = inactive(m(j))

n=) snd(m()(d)

des

value((m, c)) = Z value(f)

feran(m)

Figure 2 shows an example with two nodes a, b € I: node a acts
as permanent and b as transient. Node a starts by creating dot a; for
itself, and later on dot ay for node b; node a increments the counter
by 9, and b by 8; node b disables its dot and node a transfers node
b increments to its entry in the BCounter. (Here we are denoting
inactive dots by bold numbers, and representing the causal context
by its maximal entries, i.e. {a1,a2,¢c1} = {a > 2,c — 1}).

3.3 Relation with other CRDT counter Designs

While the proposed design is new, we note that there is a relevant
particularity with Bounded Counters, a CRDT counter introduced
in [4]. In Bounded Counters, a design based on escrow is employed,
which enables replicas, holding a copy of a counter, to synchronize
outside the critical path of user operations in order to exchange
fractions of the counter among them. This design allows to enforce
constraints over the (global) value of the counter while enabling
replicas to perform operations locally (provided they locally hold a
large enough fraction of the counter to execute that operation).
We note however that this design contrary to ours suffers from
the same linear growth in state controlled by the total number
of nodes that have manipulated the value of the counter, since
operations performed by individual replicas have to be kept (ex-
plicitly) as part of the counter state, whereas our design allows
to garbage collect any state associated with transient nodes that

PaPoC’17, April 23, 2017, Belgrade, Serbia

so =1

()

({a—{a1 =0t} {a1})

({a {a1 — 0},
b {az — 0}},{a 2})
|
({aw {a; — 9},
b {ay — 8}}, {a— 2})
|
({a {a1 = 9},
b {ay — 8}},{a 2})

{ar {a1 — 17}},{a— 2})

createq(so, a)

S1

sy = createg(sq, b)

s3 = incg(s2, 9)
s4 = incp(s3, 8)

s5 = retirep(sq)

s¢ = transfer,(ss, b)

Figure 2: BCounter example with a,b € I

explicitly informed the system that they are no longer replicating
the counter.

4 FINAL REMARKS

In this paper we have proposed an alternative design for CRDT
counters based on Causal CRDTs called Borrow-Counter. While we
focused our presentation on increment-only counters, we argue
that this design can be easily extended for general purpose counters.
The design presented in this paper allows to perform an efficient
management of state, by enabling garbage collection of entries
associated with nodes that no longer are part of the system. This
design can be an interesting starting point for a new class of CRDT
designs suited for systems with large number of replicas, partic-
ularly systems that enable replication of state at the edge of the
network (e.g., directly at the client [8, 9]) and systems supporting
partial replication.

REFERENCES

[1] P.S. Almeida and C. Baquero. Scalable Eventually Consistent Counters over
Unreliable Networks. CoRR, abs/1307.3207, 2013.

[2] P.S. Almeida, C. Baquero, R. Gongalves, N. M. Preguica, and V. Fonte. Scalable
and Accurate Causality Tracking for Eventually Consistent Stores. In Distributed
Applications and Interoperable Systems, DAIS 2014, Berlin, Germany, June 3-5, 2014,
Proceedings, pages 67-81, 2014.

[3] P.S.Almeida, A. Shoker, and C. Baquero. Delta State Replicated Data Types. CoRR,
abs/1603.01529, 2016.

[4] V. Balegas, D. Serra, S. Duarte, C. Ferreira, M. Shapiro, R. Rodrigues, and N. M.
Preguica. Extending Eventually Consistent Cloud Databases for Enforcing Nu-
meric Invariants. In 34th IEEE Symposium on Reliable Distributed Systems, SRDS
2015, Montreal, QC, Canada, September 28 - October 1, 2015, pages 31-36, 2015.

[5] A.Bieniusa, M. Zawirski, N. M. Preguica, M. Shapiro, C. Baquero, V. Balegas, and
S. Duarte. An optimized conflict-free replicated set. CoRR, abs/1210.3368, 2012.

[6] M. Shapiro, N. M. Preguica, C. Baquero, and M. Zawirski. Conflict-Free Replicated
Data Types,. In Stabilization, Safety, and Security of Distributed Systems - 13th
International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011, 2011.

[7] Sylvain Lebresne. Add a proper retry mechanism for counters in case of failed
request. https://issues.apache.org/jira/browse/CASSANDRA-2495, 2011.

[8] A.van der Linde, P. Fouto, J. Leitdo, N. Preguica, S. Castifieira, and A. Bieniusa.
Legion: Enriching Internet Services with Peer-to-Peer Interactions. In Proceed-
ings of the 26th International Conference on World Wide Web (WWW’17), Perth,
Australia, Apr. 2017.

[9] M. Zawirski, N. M. Preguica, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro.
Write fast, read in the past: Causal consistency for client-side applications. In
Proceedings of the 16th Annual Middleware Conference, Vancouver, BC, Canada,
December 07 - 11, 2015, pages 75-87, 2015.

https://issues.apache.org/jira/browse/CASSANDRA-2495

	Abstract
	1 Introduction
	2 Causal CRDTs
	2.1 Causal Context
	2.2 Dot Store
	2.3 Causal CRDTs

	3 Borrow-Counters
	3.1 System Model
	3.2 The Borrow-Counter Design
	3.3 Relation with other CRDT counter Designs

	4 Final Remarks
	References

