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‘[the] common and unfortunate fact of the lack of an adequate presentation of

basic ideas and motivations of almost any mathematical theory is, probably, due

to the binary nature of mathematical perception: either you have no inkling of

an idea or, once you have understood it, this very idea appears so embarrassingly

obvious that you feel reluctant to say it aloud; moreover, once your mind switches

from the state of darkness to the light, all memory of the dark state is erased and

it becomes impossible to conceive the existence of another mind for which the

idea appears nonobvious.’

– Mikhael Gromov, 1992, source: M. Berger, Encounter with a geometer II
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Abstract

Many modern applications are designed to provide interactions among users, including multi-

user games, social networks and collaborative tools. Users expect application response time to

be in the order of milliseconds, to foster interaction and interactivity.

The design of these applications typically adopts a client-server model, where all interac-

tions are mediated by a centralized component. This approach introduces availability and fault-

tolerance issues, which can be mitigated by replicating the server component, and even relying on

geo-replicated solutions in cloud computing infrastructures. Even in this case, the client-server

communication model leads to unnecessary latency penalties for geographically close clients and

high operational costs for the application provider.

This dissertation proposes a cloud-edge hybrid model with secure and e�cient propagation

and consistency mechanisms. This model combines client-side replication and client-to-client

propagation for providing low latency and minimizing the dependency on the server infras-

tructure, fostering availability and fault tolerance. To realize this model, this works makes the

following key contributions.

First, the cloud-edge hybrid model is materialized by a system design where clients maintain

replicas of the data and synchronize in a peer-to-peer fashion, and servers are used to assist

clients’ operation. We study how to bring most of the application logic to the client-side, us-

ing the centralized service primarily for durability, access control, discovery, and overcoming

internetwork limitations.

Second, we de�ne protocols for weakly consistent data replication, including a novel CRDT

model (∆-CRDTs). We provide a study on partial replication, exploring the challenges and

fundamental limitations in providing causal consistency, and the di�culty in supporting client-

side replicas due to their ephemeral nature.

Third, we study how client misbehaviour can impact the guarantees of causal consistency.

We propose new secure weak consistency models for insecure settings, and algorithms to enforce

such consistency models.

The experimental evaluation of our contributions have shown their speci�c bene�ts and

limitations compared with the state-of-the-art. In general, the cloud-edge hybrid model leads to

faster application response times, lower client-to-client latency, higher system scalability as fewer
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clients need to connect to servers at the same time, the possibility to work o�ine or disconnected

from the server, and reduced server bandwidth usage.

In summary, we propose a hybrid of cloud-and-edge which provides lower user-to-user la-

tency, availability under server disconnections, and improved server scalability – while being

e�cient, reliable, and secure.
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Resumo

Muitas aplicações modernas são criadas para fornecer interações entre utilizadores, incluindo

jogos multiutilizador, redes sociais e ferramentas colaborativas. Os utilizadores esperam que o

tempo de resposta nas aplicações seja da ordem de milissegundos, promovendo a interação e

interatividade.

A arquitetura dessas aplicações normalmente adota um modelo cliente-servidor, onde todas as

interações são mediadas por um componente centralizado. Essa abordagem apresenta problemas

de disponibilidade e tolerância a falhas, que podem ser mitigadas com replicação no componente

do servidor, até com a utilização de soluções replicadas geogra�camente em infraestruturas de

computação na nuvem. Mesmo neste caso, o modelo de comunicação cliente-servidor leva a

penalidades de latência desnecessárias para clientes geogra�camente próximos e altos custos

operacionais para o provedor das aplicações.

Esta dissertação propõe um modelo híbrido cloud-edge com mecanismos seguros e e�cientes

de propagação e consistência. Esse modelo combina replicação do lado do cliente e propagação

de cliente para cliente para fornecer baixa latência e minimizar a dependência na infraestrutura

do servidor, promovendo a disponibilidade e tolerância a falhas. Para realizar este modelo, este

trabalho faz as seguintes contribuições principais.

Primeiro, o modelo híbrido cloud-edge é materializado por uma arquitetura do sistema em

que os clientes mantêm réplicas dos dados e sincronizam de maneira ponto a ponto e onde os

servidores são usados para auxiliar na operação dos clientes. Estudamos como trazer a maior

parte da lógica das aplicações para o lado do cliente, usando o serviço centralizado principalmente

para durabilidade, controlo de acesso, descoberta e superação das limitações inter-rede.

Em segundo lugar, de�nimos protocolos para replicação de dados fracamente consistentes,

incluindo um novo modelo de CRDTs (∆-CRDTs). Fornecemos um estudo sobre replicação parcial,

explorando os desa�os e limitações fundamentais em fornecer consistência causal e a di�culdade

em suportar réplicas do lado do cliente devido à sua natureza efémera.

Terceiro, estudamos como o mau comportamento da parte do cliente pode afetar as garantias

da consistência causal. Propomos novos modelos seguros de consistência fraca para con�gurações

inseguras e algoritmos para impor tais modelos de consistência.

A avaliação experimental das nossas contribuições mostrou os benefícios e limitações em
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comparação com o estado da arte. Em geral, o modelo híbrido cloud-edge leva a tempos de resposta

nas aplicações mais rápidos, a uma menor latência de cliente para cliente e à possibilidade de

trabalhar o�ine ou desconectado do servidor. Adicionalmente, obtemos uma maior escalabilidade

do sistema, visto que menos clientes precisam de estar conectados aos servidores ao mesmo tempo

e devido à redução na utilização da largura de banda no servidor.

Em resumo, propomos um modelo híbrido entre a orla (edge) e a nuvem (cloud) que fornece

menor latência entre utilizadores, disponibilidade durante desconexões do servidor e uma melhor

escalabilidade do servidor – ao mesmo tempo que é e�ciente, con�ável e seguro.
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Chapter 1

Introduction

Many applications provide an experience where users interact with one another, examples in-

clude collaborative editing software, social networks, and multiplayer games. These applications

manage a set of shared objects, the application state, and each user reads and writes on a subset of

these objects. For example, in a collaborative text editor, users share the document being edited,

while in a multi-user game the users access and modify a shared game state. In these applications,

the user experience is highly tied with how fast interactions among users can occur.

Despite these applications being user-centric, and often are fully dedicated to enable inter-

action between users, the architectural model used to create such applications is typically based

on a complete separation between the client and server-side of the application – a client-server

communication model. In this model client devices communicate only with the server which

controls every aspect of running the application and mediates all interactions between users.

Although this model eases reasoning about application logic and how all parts communicate,

it promotes contention on the centralized component. This approach leads to several drawbacks,

not only for the end user (of the application), but also to application providers (those who develop

and/or monetize the application itself).

First, servers are a scalability bottleneck, as all interactions between users have to be managed

by them. The work performed by servers has polynomial growth in bandwidth usage with the

number of clients, as not only there are more clients producing changes but also as each change

must be disseminated to a larger number of clients. Second, when servers become unavailable,

clients become unable to interact and, in many cases, they cannot even access the application. Fi-

nally, the latency of interaction among nearby users is unnecessarily high since every interaction

among users, or communication between their devices, is always routed through a server.

It is not trivial to address these issues, especially if we take into account that users nowadays

expect almost minimal latency while the actual amount of users of an application can change by

an order of magnitude overnight. Latency is a key property in distributed applications – several

studies showing that user engagement drops when latency increases [11–14], even making users

believe a website may have compromised security [15] when perceived latency is high.

My thesis is that client-to-client latency can be greatly improved if client-devices are
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allowed to interact directly. Additionally, by enabling client-side replicas of the data we

are able to o�er very fast local writes, and with client-to-client connections we can allow

for disconnected operation from the server and increased server capacity as clients can

coordinate to reduce server load.

1.1 Context

Creating the next popular application or game might just require an idea that people will like,

but creating the underlying system to support that application is not trivial at all. It is di�cult to

create systems which are not only capable of providing the user with what is expected in terms

of availability and response time, but are also able to scale to a growing number of users.

Scaling out is typically not a problem if each user uses a single device to work on its own data

and sporadically communicates with a server. There are well studied replication and partitioning

techniques for such scenarios [16–18], which in the current world of cloud systems can easily

handle very large amounts of users. Providing static contents to a large number of users also

poses no problem with the usage of, for example, Content Distribution Networks (CDNs), as the

service can easily provide to a virtually unlimited amount of devices the required data [19, 20].

Creating highly available systems gets tricky when users want to share application state

among each other while being able to continuously change this state – CDNs are of no use and

cloud systems need to be tuned for each application. An application developer has to make sure

that all clients are able to operate on data (apply writes) and that clients are updated when data of

their interest changes. Interestingly, the supporting system has to deal with a possibly polynomial

increase in read and write load per additional client. This increase is polynomial if each new

client contributes with its own operations, as each new operation has then to be propagated to

all other connected clients. Coping with this increase in load has to be done while delivering

in an interactive manner (high availability and low latency) the correct outcome of every users’

actions to all users.

Besides having to deal with data-access and data-consistency, networking itself is an issue as

server instances are limited in how many connections they can keep open, and how much data

can be transferred on those connections. It is di�cult to design a per-application speci�c load

balancing system which has to keep hundreds of thousands of simultaneous connections to a

server farm [21].

In particular, it is challenging to devise general purpose techniques that allow an application

to balance the load imposed on servers by an increasing number of clients, and to enforce adequate

semantics over the data accessed and manipulated by clients.

In this work, we aim to support user-centric applications – where users use their devices to

interact directly – without sacri�cing the application’s scalability, reliability, and security.

Latency-sensitive applications A particularly interesting example is that of location-based and

augmented reality games, such as Ingress [22] and Pokémon Go [23], where a player interacts

with nearby players and low latency is crucial for interactivity. Pokémon Go, one of the most

2



1 .2 . A CLOUD-EDGE HYBRID

desired games at the time (2016), received much criticism for technical issues. While the game

was originally launched on Google Cloud, with regional launches to keep up with the increasingly

large user base, the issues were mainly related to the sheer amount of users that played the game.

Pokémon Go is a good example as the application is very data-intensive: client-devices

near-constantly apply writes (from catching Pokémon to continously updating the user device’s

location) and must be kept constantly updated with the events that happen around the user

(other user’s actions and locations). Each client device interacts continuously with a server, both

sending data back and forth nearly constantly as the application is used. There is no o�ine mode,

meaning the user is unable to do anything unless a server can be reached.

The application requires that all clients must, at all times, be able to read and write data to

and from the server, and that all clients must constantly be updated on any changes that must be

shown to the user as these can impact the users’ actions.

Another important aspect to consider is users misbehaving – in multiplayer games this is

especially important as a single cheating user can impact the experience of all other users. Users

should not be able to apply operations nor be able to observe data in a way that was not originally

intended by the application developer.

In summary, these are the main aspects to reason about when building a large scale application

with the focus on users interacting with each other:

• �rst, managing the supporting system, by keeping all clients connected (to the servers) and

coping with the aggregated required bandwidth and server load (networking and computing

capacity);

• second, keeping data consistent and fresh at all time, led by the continuous global write

load by all clients (data consistency and update latency);

• third, ensuring clients apply correct updates in what is possible in the context of the appli-

cation (application security).

1.2 A cloud-edge hybrid

1.2.1 Thesis

My thesis is that a hybrid interaction model, where client devices can interact with each other

directly while leveraging the server (cloud infrastructure) mostly for durability and assisting in

some key aspects for correct system operation, is the better approach for creating applications.

Especially for applications that focus on interactions among users, user experience can be

improved by introducing client-side data replicas and allowing for peer-to-peer interactions

among client devices.

With client-side data replicas it is possible to provide reduced application response time, as

well as the ability to continue operating even when disconnected from the server. A side e�ect is

the possibility for a reduction in server load as multiple operations can be compressed semantically

(for example, multiple counter increments can be merged into a single uni�ed operation).
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Figure 1.1: Architecture of a cloud-edge hy-

brid application.

 25

 50

 75

 100

5 10 25 100 200

C
D

F
 (

%
)

Latency (ms)

C-S P2P

Figure 1.2: Latency eCDF of update propagation

for peer-to-peer (P2P) and Client-server (C-S) de-

ployments, with a server on AWS Ireland and
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Peer-to-peer interactions among client devices, allowing for synchronization of state among

their local replicas, primarily bene�ts user-to-user interaction latency. If operations are allowed

to �ow directly among client-devices instead of always following the client-to-server-to-client

route, client-to-client latency can be reduced, especially noticeable for nearby users.

Additionally, clients are able to continue interaction even if temporarily disconnected from

the server (as long as client devices were connected before server disconnection). Server load

can also further be reduced as application instances on client devices that are connected to each

other no longer need to be all individually connected to the server. This possibly leads to a

further reduction in bandwidth usage if the connected clients e�ciently aggregate operations

from multiple clients into uni�ed (and smaller) updates (not only due to data compression, but

due to summarizing groups of operations).

1.2.2 Motivation

Many applications can bene�t from the direct interaction among nearby clients’ devices, from

collaborative applications such as document editors [24], games [22, 23] and audience engagement

applications [25], to location-dependent information sharing, such as geo-social [26, 27] or event

networks [28], tra�c information [29], and contact tracing applications [30]. Note that any direct

client-to-client interaction is especially relevant if client devices are located close to each other.

By leveraging client-local replicas and direct interactions among client devices many draw-

backs of the client-server model can be overcome, making the system less dependent on the

centralized infrastructure. Figure 1.1 depicts how such a cloud-edge model would look like: a

connected network including all actors, clients and server(s), where client devices connect di-

rectly and only subsets of clients connect to the server. A direct outcome of such a model is a

reduction in client-to-client latency, especially noticeable for nearby clients – in Figure 1.2 we

show client-to-client latency results comparing the proposed cloud-edge hybrid model to a typical

client-server deployment (these results are detailed in Section 3.3 and Section 5.5).
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1.2.3 Goals and challenges

We propose a gradual shift of responsibilities from the server-side to the client-side of the appli-

cation:

• replication of application data at the client, allowing for local operation generation and

execution and also o�ine work;

• peer-to-peer connections among client devices to synchronize application state.

The overall goals of allowing client-side replicas with client-to-client synchronization are

threefold.

First, considering communication among the client-side of the application, peer-to-peer con-

nections must be used among client devices, while leveraging e�cient network usage and elimi-

nation of redundancy (of network paths).

Second, client-side replicas and client-to-client synchronization must be enabled and be ef-

�cient. Additionally, a replica on the client is unable to store large amounts of data, requiring

partial replicas for large settings.

Finally, dealing with malicious behaviour of replicas, as the replicas themselves are no longer

running solely on the centralized servers controlled by the application developer, but now run

directly on client devices.

Each of these goals has its challenges that need to be overcome. We summarized the challenges

the hybrid approach brings, which are explored throughout this thesis, as follows:

• a connected graph must exist among the server and all client devices which share interest

in the same data as to ensure all clients observe all operations (overlay networks);

• data on client-devices and the server must be kept consistent while allowing for high-

availability and network partitions (weak consistency models);

• data on client-devices must be partitionable to allow applications to only store at each

client the data that client is interested in (partial replicas);

• clients must not be able to tamper with the application’s underlying mechanisms for their

own bene�t, as malicious behaviour from users can impact all connected users (security).

1.2.4 Results

The main results can be semantically divided into three parts:

• a modular system design which allows for client-side replicas and client-to-client propaga-

tion of data;

• modules which allows for weak consistency guarantees and also partial replication on client

devices;

• security modules which allow for weak consistency semantics in insecure settings.
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1.2.4.1 Client-side replicas and client-to-client propagation

We designed a modular framework for creating web applications which we named Legion. Legion

enables the part of the application that is running on the client’s device to replicate data from

servers and continuously apply operations locally, while using the server mainly for durability.

More importantly, Legion allows for synchronization to happen directly among client devices,

moving from the client-server communication model to one where clients interact directly when

possible.

This approach, detailed in Chapter 3, enables many bene�ts to the application provider and

its users – the main outcomes are reduced user-to-user latency, reduced server load, and the

ability to operate disconnected (from the server).

This work supports the claim that instances of the application on the client-side working

together is a good approach for user-centric applications, especially if users interact with each

other. We thus envision a world where peer-to-peer systems at the client-side are intrinsically

connected with such applications.

Legion was built with a modular approach allowing the chosen backend services to be ex-

changed trivially by only implementing a small integration module. A concrete example is

switching long-term storage between local-storage (on the client device), Legion’s servers, some

centralized/cloud backend, or a combination of these. This approach allows for easy replacement

of each of the networking, data handling, and security stacks of the system, depending on the

application’s needs.

1.2.4.2 Consistency guarantees and partial replication

In Chapter 4 we discuss enabling client-side replication and how Legion implements causal

consistency using Con�ict-Free Replicated Data Types (CRDTs [31]). Legion provides a data

storage that spans a potentially huge number of clients and also the centralized infrastructure –

including a high turnover of dynamically spawning and removing replicas (user’s devices).

The design of ∆-CRDTs is detailed where the proposed communication model allows for a

broad range of implementations – not only does it allow for implementing the partial replication

algorithms as referenced next, it allowed to implement the secure models referenced in the next

section.

The base design of Legion provides causal consistency in a full replication model – altough

full-replication is partitioned per network of clients, within such a network each replica is unable

to dynamically choose which objects to replicate, even if only interested in a very small subset

of the data.

In Chapter 6 we investigate how to support partial replication at client devices operating under

weak consistency models. We prove the impossibility of providing genuine partial replication in

our system model – as we must account for ephemeral client-side replicas – and discuss practical

alternatives which aim to provide causal consistency without forcing full-replication.
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1.2.4.3 Weak consistency semantics for insecure settings

In many applications users have incentives for misbehaving. When reasoning about the previous

application examples (in particular multiplayer games), it is clear that users would attempt to

misbehave to gain an advantage, but most users whould only attempt such actions if they would

be able to do so without being discovered (or if it would be impossible to prove these users did

anything wrong).

Although Legion has security mechanisms for privacy and access control, it depends on the

non-malicious behaviour of its authenticated users. Legion works well in a setting where groups

of users work together to achieve a common goal, such as, for instance, collaborative document

editing. Users can easily cheat on any application running on the base Legion system, by altering

or circumventing the protocols the application depends on.

We explore the impact of malicious behaviour on the consistency guarantees of weak con-

sistency models in Chapter 5. We discuss possible attacks and explore in detail (malicious) cir-

cumventions to the guarantees provided by causal consistency. We detail how we designed,

implemented, and evaluated the algorithms which provide various levels of guarantees to explic-

itly deal with misbehaviour from client-side replicas.

1.3 Summary of contributions

The design of the cloud-edge applicational model led to the following speci�c contributions:

Communication – connecting client devices using peer-to-peer connections (Chapter 3):

• networking among client-side peers with modular choice of network overlay (provid-

ing implementation of cliques, randomized graphs, trees, and DHTs);

• an additional topology-aware overlay-network optimized for client location to im-

prove communication latency and e�ciency by reducing redundant paths;

• the combination of a leader election mechanism and data aggregation and message

compression modules to reduce redundant communication with the server;

• lightweight security mechanisms enforcing data privacy and integrity.

Replication – allowing for e�cient client-side data replication:

• transparent (to the user) client-side replication, using CRDTs, while allowing for the

choice of synchronization based on state or operations (Chapter 3);

• the design of ∆-CRDTs for e�cient synchronization in settings with dynamically

changing networks (Chapter 4);

• a study on the impossibility of providing causal consistency with genuine partial

replication, resulting in theorems on the minimum requirements for the proposed

system model (Chapter 6);
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• the algorithms that explore the edges of the impossibility and which aim to provide

causal consistency without forcing full-replication at all times or at every client (Chap-

ter 6).

Security – enforcing privacy and integrity while dealing with client misbehaviour (Chapter 5):

• a systematic study on how client misbehaviour can impact the guarantees of causal

consistency;

• the de�nition of secure consistency models, variants of causal consistency and also

eventual linearizability, preventing multiple types of misbehaviour;

• the algorithms for implementing the secure consistency models.

Prototypes and experimental evaluation – the implementation of the proposed systems and

evaluations, in particular a comparison of our system with existing cloud-based solutions

(Section 3.3) and an extensive evaluation of the security aspects (Section 5.5).

1.3.1 Publications

This work has led to the following publications.

Key publications

WWW’17 [1] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santiago Castiñeira,

and Annette Bieniusa. Legion: Enriching Internet Services with Peer-to-Peer Interactions.

In Proceedings of the 26th International Conference on World Wide Web, WWW ’17, page

283–292, Republic and Canton of Geneva, CHE, 2017. International World Wide Web Con-

ferences Steering Committee [overlay network, replication, security based on trusting

authenticated users]

PaPoC’16 [2] Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-CRDTs: Making δ-

CRDTs Delta-Based. In Proceedings of the 2nd Workshop on the Principles and Practice of

Consistency for Distributed Data, PaPoC ’16, New York, NY, USA, 2016. Association for

Computing Machinery [replication]

PaPoc’20 [3] Albert van der Linde, Diogo Serra, João Leitão, and Nuno Preguiça. On Combining

Fault Tolerance and Partial Replication with Causal Consistency. In Proceedings of the 7th

Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’20, New

York, NY, USA, 2020. Association for Computing Machinery [replication (partial replicas)]

PaPoC’20 [4] Albert van der Linde, Pedro Fouto, João Leitão, and Nuno Preguiça. The Intrinsic

Cost of Causal Consistency. In Proceedings of the 7th Workshop on Principles and Practice

of Consistency for Distributed Data, PaPoC ’20, New York, NY, USA, 2020. Association for

Computing Machinery [replication]
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VLDB’20 [5] Albert van der Linde, João Leitão, and Nuno Preguiça. Practical Client-Side

Replication: Weak Consistency Semantics for Insecure Settings. In Proceedings of the VLDB

Endowment, volume 13 (12), page 2590–2605. VLDB Endowment, July 2020 [security]

Other publications and communications

Parts of the thesis were also presented in the following.

• (Doctoral workshop) [6] Albert van der Linde. Edge-cloud hybrid model for distributed

apps. In Eurosys Doctoral Workshop, 2018 [discussion on security and partial replication].

• (Presentation) [7] Albert van der Linde, João Leitão, and Nuno Preguiça. Secure causal

delivery with client-side replication. In Presentation at the 6th Workshop on Principles and

Practice of Consistency for Distributed Data, 2019 [�rst approach on security].

• (Presentation) [8] Sara Simões, Albert van der Linde, and Nuno Preguiça. Composition of

CRDTs Using References in Key-value Stores. In Comunicações do 11º Inforum., 2019 [on

composing crdts by value or by reference].

• (Book chapter) [9] Georges Da Costa, Alexey L. Lastovetsky, Jorge G. Barbosa, Juan C.

Díaz-Martín, Juan L. García-Zapata, Matthias Janetschek, Emmanuel Jeannot, João Leitão,

Ravi Reddy Manumachu, Radu Prodan, Juan A. Rico-Gallego, Peter Van Roy, Ali Shoker, and

Albert van der Linde. Programming models and runtimes. In Ultrascale Computing Systems,

pages 9–63. Institution of Engineering and Technology, 2019 [of Legion and others].

• (National conference) [10] Tiago Costa, Albert van der Linde, Nuno Preguiça, and João

Leitão. Controlo de Acessos em Sistemas com Consistência Fraca. In Actas do 8º Inforum.,

2016 [approach of adding access control into crdts directly].

1.4 Outline

The remainder of the dissertation is organized as follows:

Chapter 2: Fundamental Concepts and Research Context – explains how client devices can in-

teract (WebRTC), target applications, and related work.

Chapter 3: Peer-to-peer and applications: Legion – details the Legion framework to create web

applications, the implementation of the proposed cloud-edge model;

Chapter 4: Client-side replication – details Legion’s consistency guarantees, the synchroniza-

tion model, and implementation of ∆-CRDTs;

Chapter 5: Securing causal consistency – details how replicas can maliciously circumvent the

guarantees of causal consistency, proposes secure consistency models with additional guar-

antees against those attacks, and details the design and implementation of algorithms

providing those guarantees;
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Chapter 6: Client-side partial replication – discusses the di�culty in providing weak consis-

tency models when considering partial replicas at the client, and proposes practical solu-

tions;

Chapter 7: Final considerations – presents the conclusions on this work and topics for future

research.
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Chapter 2

Fundamental Concepts and Research
Context

Interactive applications run in user devices, either in a web browser or as a standalone application

(desktop or mobile), and access Internet services to read and modify application state. These

services are typically supported by servers running in a data center, often running within a cloud

infrastructure.

We intend to dillute the clear boundary that exists between client-side instances of an appli-

cation and its cloud counterparts. As discussed in the introduction, the focus of this work is on

creating client-side replicas with direct connections between client devices, letting client-side

instances communicate directly among each other to synchronize application state.

We begin by explaining the main enabling technologies (Section 2.1), followed by a brief

overview of target applications (Section 2.2). The remaining sections cover the state-of-the-art

which applications can leverage, namely in terms of data storage (Section 2.3) and peer-to-peer

(Section 2.4).

Moving application state to the client-side requires special care in terms of security, especially

if considering malicious behaviour from end-users. As security related aspects are mostly covered

in Chapter 5, we leave the related work for Section 5.6.

2.1 Enabling technologies

Real time communication is used by many web services supporting applications (such as Skype

and Zoom), but requires large downloads, the use of native apps, or plugins. Downloading,

installing, and updating plugins can be complex for both the developer and end user. Additionally,

it is often di�cult to persuade a person to install plugins (or browser extensions), which impacts

the adoption of applications with this requirement.

Web browsers, in particular, restricted the ability to establish direct communication channels

among client devices. The Web Real Time Communication (WebRTC) initiative has solved this

limitation by enabling direct communication between browsers. WebRTC [32, 33] was speci�cally

designed to support plugin-free, realtime video, audio, and data communication, directly between

11



CHAPTER 2. FUNDAMENTAL CONCEPTS AND RESEARCH CONTEXT

browser instances (i.e., HTML pages with enabled JavaScript). Additionally, HTML5 makes it

possible for web applications to locally store data that persists across sessions on the same browser,

further motivating client-side replicas with weak consistency models.

WebRTC (and most HTML5 features such as local storage and multithreading support) has

increasing adoption by major browsers, being already supported my most.1 Besides support for

multiple browsers in di�erent devices (e.g., mobile), interoperability is possible (connections

between any pair of browsers such as Chrome and Firefox).

Firewalls and NAT boxes are also an important factor which restricted connectivity among

client devices. This limitation can currently be circumvented by relying on widely available

techniques, namely leveraging STUN [34] and TURN [35] services.

2.1.1 WebRTC API

WebRTC is an API speci�cation standardized by the W3C to allow web browsers to communicate

over peer-to-peer connections. To acquire and communicate streaming data, WebRTC o�ers the

following APIs:

• MediaStream, to get access to multimedia data streams, such as the user’s camera and

microphone;

• RTCPeerConnection, for audio or video calls, which facilitates encryption and bandwidth

management;

• RTCDataChannel, for peer-to-peer communication of generic data, using the same API as

WebSockets (full-duplex communication channels over TCP).

WebRTC audio and video engines dynamically adjust bitrate of each stream to match network

conditions between peers. When using a DataChannel this is not true, as it is designed to transport

arbitrary application data. When using DataChannels it is the application developer who is

responsible to compress data before sending. Similar to WebSockets, the DataChannel API accepts

binary and UTF-8 encoded application data and, in contrast to WebSockets, it gives the developer

choices on message delivery order and reliability. There is no choice on security: channels are

always end-to-end encrypted using DTLS [36].

Altough WebRTC is designed for peer-to-peer connections, applications using WebRTC rely

on servers in order for each of the following interactions, mediated by a centralized server, can

happen:

• before any connection can be made, WebRTC clients (peers) need to exchange network

information (the signaling protocol as detailed in the next section);

• for streaming media connections, peers must also exchange data about media such as video

format and resolution;

1

http://iswebrtcreadyyet.com
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• additionally, as clients often reside behind NAT gateways and �rewalls, these may have to

be traversed using STUN [34] (Session Traversal Utilities for NAT) or TURN [35] (Traversal

Using Relays around NAT) servers.

2.1.2 Signaling

Signaling is the process of communicating network information between future peers in WebRTC.

In order for a WebRTC application to set up a ‘call’ (i.e., a connection between two peers), two

devices �rst need to exchange information: i) session control messages used to open or close

communication channels; ii) error messages; iii) media metadata, such as codecs and codec

settings, bandwidth, and media types; iv) key data, used to establish secure connections; v) and

network data, such as a host’s IP address and port as seen by the outside world.

Figure 2.1 depicts the operation of the signaling protocol to establish a WebRTC connection.

A signaling channel can be any medium that allows messages to go back and forth between

clients. This channel is not implemented by the WebRTC APIs – it has to be implemented by the

application developer. As it is only required to exchange text initially to bootstrap the connection,

it can be as rudimentary as using e-mail or an instant messaging application (any medium that

allows an exhange of text). Ideally this process is done via a centralized server hosted by the

application developer to control connections that clients establish. Interestingly, WebRTC’s

DataChannels themselves can be used to further establish connections among other connected

clients (which we explore in this work).

As depicted in the �gure, when peers reside behind �rewalls or NATs they have to make use

of STUN [34] or TURN [35] services to establish connections. STUN is used to obtain the public

address for a peer to pass along via the signaling mechanism. If no connection can be made

between two peers (due to, for example, non-permissive �rewall rules), WebRTC can resort to the

use of TURN. TURN servers are used to relay encrypted data between peers as if a peer-to-peer

connection exists, but underneath (and transparent for both clients and application developer) a

client-server architecture is used.2

2.2 Applications

Applications where users interact among each other are typically implemented with a client-

server communication model (being it a web, mobile, or desktop application). Although this

eases reasoning about the application logic, and simpli�es the communication paths among

clients, it promotes contention on the centralized component.

In this section we focus on user-centric applications – applications where users interact and

share information – which may bene�t from our proposal of including a local data replica and

allowing client-side replicas to synchronize directly. In order to explore the design considerations

for a system that provides peer-to-peer interactions among client devices, we must �rst discuss

2

Altough TURN services are freely available, in our experiments (Section 3.3 and Section 5.5) we disabled the use

of TURN servers.
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Figure 2.1: Overview of WebRTC signaling, image from

www.html5rocks.com/en/tutorials/webrtc/infrastructure/. To establish a connection de-

vices use signaling to propagate the required data to establish a connection (such as addresses,

keys, and encoding for media). Devices behind NAT devices use STUN (which enables

peer-to-peer connections for clients behind NAT) or TURN (to communicate through a relay

server when NAT/�rewalls disallow such connections).

the target application’s requirements. Note that for many applications only including a local data

replica already enables many bene�ts, such as the ability to work o�ine and very fast application

response time.

2.2.1 Information dissemination

Many systems and applications operate based on small messages being delivered to the user’s

device. The application then shows these messages to the user or fetches additional data based

on these (typically small sized) noti�cations. The providing system needs to ensure all clients

receive all updates, by guaranteeing that all messages are delivered and that delivery itself is

timely. The services providing the building blocks for such applications seem to be well suited

to use peer-to-peer dissemination among client devices.

Such a service, when leveraging peer-to-peer dissemination, must ensure that all replicas

where information is generated are also able to propagate this information to all other interested

replicas. This means a connected network has to exist with e�cient communication, while being

resilient to the presence of replica churn. This is especially important as client-side replicas are

ephemeral in comparison to a traditional server. Note that security, namely data privacy (users

may can only access authorized data) and data integrity (the data is valid and accurate) must be

enforced.
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2.2.2 Collaborative applications

Several applications and frameworks support collaboration across the Internet by maintaining

replicas of shared data at the client’s device [24, 37, 38].

A collaborative editor (such as shared text or video editors) is a piece of software that allows

several people to edit �les using di�erent client-devices, working together through individual

contributions. In collaborative editing the main challenge is to �gure out how to apply updates

from remote users, who produced these updates on versions of the document that possibly never

existed locally, and that can potentially con�ict with the user’s own updates. Users can coordinate

to write on previously decided sub-parts of the document, reducing chances of con�icting changes,

or, on the other end of the spectrum, users can work simultaneously together on the same task.

For example, Etherpad [24] allows clients to collaboratively edit documents while ShareJS [37]

and Google Drive Realtime [38] are generic frameworks that are able to manage concurrent

modi�cations to di�erent types of objects.

The basic need for such systems is the possibility for collaborative (possibly in real time)

editing of objects while preserving user intent. Some approaches to manage concurrent access

to objects include:

Turn taking, where one participant at the time ‘has the �oor’. This approach lacks in concur-

rency but is easy to comprehend, trivially preserving user intent.

Locking based techniques, where concurrent editing is trivially possible as users work on di�er-

ent objects. Pessimistic locking (similar to turn taking but at smaller granularity) introduces

delays and optimistic locking introduces problems when the lock is denied, which can lead

to an user’s updates being rolled back to a previous state, leading to work being reverted

or lost.

Serialization can be used to specify a total order on all operations. Non-optimistic serialization

delays operations until all preceding operations have been processed while in optimistic

serialization, executing operations on arrival is allowed, but there might be a need to

undo/redo operations to repair out-of-order executions (possibly using programatically

de�ned merge procedures). Such solutions may require user input to come up with a

correct result (for example, merging two concurrent overlapping commits in git).

Operational Transformation or commutative operations can be leveraged to address the chal-

lenge of collaborative editing systems. By using such operations a high degree of concur-

rency can be achieved while capturing and preserving user intent (the most commonly

used techniques are detailed in Section 2.3.1).

A service supporting collaborative applications has to be able to maintain, besides some

method to communicate or propagate data and ensure secure interactions, also local replicas

on the users’ devices. This is important to ensure operations can be generated locally, as to

minimize operation latency and to allow for o�ine work (from the server, or from other replicas).
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Additionally, this allows client-side replicas to synchronize directly minimizing user-to-user

interaction latency.

Such local replicas, leading to high concurrency of all changes generated at many replicas,

lead to the necessity of e�cient synchronization mechanisms among a large number of replicas,

while keeping data consistent and fresh at all times.

2.2.3 Multiplayer games

Services [39, 40] providing multiplayer games typically divide the application into client and

server to provide a clear boundary on who does what – the centralized component, the server or

cloud, is used to execute and verify write operations on data, while restricting what clients can

read.

This separation ensures that the client component can provide the user only with what he

is allowed to see, serving mostly as thin client – an interaction proxy between the user and the

server. This separation is not only important due to the sensitive access to data (privacy and

integrity) but also as development is much easier when reasoning about correctness of application

data (consistency).

In fact, one major issue when creating a game is reasoning about, and eventually dealing with,

cheating players [41]. Altough for the previous application examples simple access control seems

enough, in games the users can cheat by tampering with the code of the game – one example is

modifying the rendering code in First-Person Shooters so that walls of a game are transparent,

making it easy to spot other players [42].

The main additional requirement is ensuring that users are not able to tamper with the

previously discussed requirements, namely connectivity and propagation latency, while also

having to deal with users being able (and having the strong incentive) to act maliciously.

Discussion From the previous examples, we can summarize the properties needed:

• low propagation latency among clients;

• scalable solution, implying low load increase on the components of the system as the system

scales to a large number of clients;

• ability to work o�ine or disconnected from the main server;

• the ability to continue interaction with other clients when the server becomes unreachable,

if a subset of connected peers are contributors of information;

• very fast application response time;

• addresses malicious clients.

There are many requirements to be able to provide these properties:
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• allow for client-side replicas, where changes can be created and applied locally without

coordination;

• ensure that any pair of replicas can synchronize their local data while keeping state con-

sistent at all times;

• ensure all replicas are connected and, when failures happen, that they are able to reconnect

and re-synchronize e�ciently;

• ensure propagation latency is low, especially for close-by clients where interaction latency

is noticeable;

• provide a secure system, ensuring not only data privacy, integrity, and non-repudiation,

but also resilience against general malicious behaviour.

2.3 Data storage systems

Interactive services often store client data on geographically distributed data-centers, trying to

provide low latency and high availability for interacting with the data. Typically, replication

and distribution of state across geographically separated data centers is required to ensure low

latency and fault tolerance.

In such systems, a problem arises, formally captured by the CAP theorem [43]. The CAP

theorem states that it is impossible for a distributed system to simultaneously provide all three of

the following: Consistency (linearizability of all operations, where every request must act as if it

were executed atomically at a single replica), Availability (every request receives a response about

whether it succeeded or not), and Partition tolerance (the system continues to operate despite

arbitrary message loss, partial failure of the system, or unavailability due to network partitions).

Due to systems being distributed, and as network and device failures will eventually happen,

partition tolerance cannot be precluded, leading developers the choice about whether to sacri�ce

consistency or availability.

More recent works detail that CAP isn’t as strict as stated – availability can range from

0 to 100 percent, partitions are rare and nuanced, and consistency can provide many di�erent

guarantees [44]. Nevertheless, our system model aims to provide an as high as possible availability

while partitions, especially taking into account client-side replicas, are expected to be frequent.

Therefore we must consider weakening the provided consistency guarantees. We can broadly

classify consistency as follows:

Strong consistency [45, 46]. A system is said to provide strong consistency if all accesses to

data are seen by all clients in the same order (sequentially). These approaches simplify

the development of applications, as replicas do not diverge, at the price of requiring coor-

dination among replicas for executing operations. Operations may execute concurrently,

but concurrent write operations on the same data items are not allowed. This leads to
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distributed systems providing strong consistency coming to a halt if enough replicas be-

come network-partitioned, as coordination is necessary to ensure con�icts do not happen.

Some examples include linearizability [46], parallel snapshot isolation [45], and serializ-

ability [47] where concurrent (con�icting) updates are not allowed without some form of

coordination. Coordinating replicas for executing all updates is prohibitively expensive for

high throughput and large numbers of clients (manipulating the same set of data objects).

Consistency can be maintained but the system must sacri�ce availability.

Eventual consistency [48]. Distributed computing systems which aim to achieve high avail-

ability must weaken their consistency guarantees – for example, eventual consistency

informally guarantees that, if no new updates are made to a given data item, eventually all

accesses to that item will return the same value. This allows these systems to, even during

network partitions, always serve read and write operations over data – write operations

may execute concurrently. Eventual consistency is thus not suitable for every application.

Consider a message board, where user A creates a post to which user B replies. Due to

network latency, user C may receive B’s reply before receiving A’s initial post. Although

eventually all replicas receive all updates and converge to a common state, this example

shows that using eventual consistency can lead to confusion and error-prone application

development.

Causal consistency [49, 50]. A system provides causal consistency if potentially causally re-

lated operations are seen by every replica of the system in an order that respects their

causal dependencies (i.e., the happens before relations between operations as de�ned by

Lamport [49]). Concurrent writes (write operations which are not causally related) may

execute at di�erent replicas in di�erent order. When a replica performs a read followed

by a write, even on di�erent objects, the newer write is said to be causally dependent on

the write that originated the read value, because the result of the read value may have

had an impact on the write value. Intuitively, returning to our previous message board

example, such a system would never show B’s reply before A’s initial post as the former is

causally dependent on the latter – a replica may only present B’s reply after all of its causal

dependencies, in this case A’s post, have been applied.

Using weak consistency models (eventual or causal consistency) usually comes with a cost:

state divergence. To address state divergence, con�ict resolution techniques must be used such

as the ones discussed in the next section.

2.3.1 Con�ict resolution techniques

Relaxing from a strong consistency model to a weaker model, such as causal consistency, min-

imizes the amount of coordination required among replicas at the expense of having to deal

with concurrent updates. When multiple replicas can concurrently write to the same data, some
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control on object versioning has to be done using, for example, logical clocks or version vec-

tors [49, 50] and con�ict resolution techniques have to be applied. Common con�ict resolution

techniques include:

Last writer wins In this case, the last write based on a total order (typically using physical clocks)

will overwrite older ones. Besides potential problems that may arise due to clock skew, this

approach leads to lost updates, where the e�ects of one update are silently overwritten by

a concurrent update with a larger timestamp.

Programatic merge In this case the programmer can decide what to do when con�icts arise. As

an example, an application maintaining shopping carts can choose to merge the con�icting

versions by returning a single uni�ed cart. This con�ict resolution technique requires repli-

cas to be instrumented with a merge procedure (e.g., Coda [51]), or alternatively, requires

replicas to expose diverging states to the client application, which then reconciles and

writes a new value (e.g., Dynamo [48]).

Commutative operations If all operations are commutative, con�icts can easily be solved. In-

dependently of the order, when all operations have been received (and applied), the �nal

outcome will be the same. An always incrementing counter, where each operation is

uniquely marked by the writing replica, is a simple example: independently of the order

of operations, the �nal result re�ecting all operations will be the same. Commonly used

commutative operation techniques are:

Operational Transformation (OT) [52, 53] The idea of OT is to transform the parameters

of an operation to take into consideration the e�ects of previously executed concur-

rent operations, so that the outcome converges to a common and consistent state.

Consider the example depicted in Figure 2.2. Two users concurrently edit a text doc-

ument that initially contains ‘abc’. User A inserts ‘x’ at position 0 and user B deletes

‘c’ from position 2. If both users execute their operation locally and later receive

the operation of the other user (due to network latency), the �nal states diverge at

user A and at user B, respectively, to ‘xac’ and ‘xab’. Transforming the operations

when receiving them resolves this problem – when user A receives the delete, it is

transformed to increment one position and when user B receives the insert, it remains

unchanged. Both outcomes then become ‘xab’, independently of the order in which

operations are applied.

Although many algorithms for implementing OT have been proposed [54–56], it

was shown that most algorithms proposed for decentralized architectures are incor-

rect [57].

Con�ict-free Replicated Data Types (CRDTs) [31, 58, 59] CRDTs are replicated data types

that are guaranteed to eventually converge towards a common state (that is, when

all updates are received by all participating replicas). An example is a CRDT counter,

which converges because its increment and decrement operations are commutative.
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abc xabc

abc ab
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insert(x, 0)
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delete(2)

T(delete(2))=

delete(3)

T(insert(x, 0))

Figure 2.2: Operational Transformation. If user A and user B directly apply the remote operations,

they obtain diverging state. By applying a transformation function T before executing operations,

the state of both users converges.

Most CRDTs use some form of metadata to ensure that all operations on an object,

for example concurrent writes on the same key in a map, are commutative.

No coordination is required to ensure convergence, so updates always execute locally

(immediately), un-a�ected by network latency, faults, or disconnections.

In Chapter 4 we explore common CRDT designs, discussing the drawbacks when applying

them direct within our system model, and explore an alternative design (∆-CRDTs, in Section 4.3).

The proposed cloud-edge systems (described in Chapter 3 and Chapter 5) apply the usage of

commutative operations with programatic merge for cases where the CRDTs are unable to decide

a value.

2.3.2 Data storage systems

A number of data storage system have been designed for supporting distributed applications. We

give a brief overview of some of these systems.

PNUTS [60] One way to avoid state divergence, as achieved in Yahoo!’s PNUTS, is to funnel all

state changing operations through a per record chosen primary site and lazily propagating

updates to other replicas. This increases latency and reads can return stale data, but data

exposed to users is always consistent. The problem of this approach is availability as the

primary site is a potential single point of failure.

Spanner [46] is a system which provides scalable data storage and synchronous replication.

Spanner provides strong consistency using 2-phase commit and the Paxos algorithm as part

of its operation to replicate data across data-centers. It also makes use of hardware-assisted

time synchronization using GPS clocks and atomic clocks to ensure global consistency.

One server replica is elected as the Paxos leader for a replica group, which will become

the entry point for all transactional activity for that group. Groups may include read-only

replicas, which do not vote in the Paxos algorithm and cannot become group leaders.

Furthermore all transactions in Spanner are globally ordered as they are assigned a hard-

ware assisted commit timestamp. These timestamps are used to provide multi-versioned

consistent reads without the need for taking locks. A globally safe timestamp is used to

ensure that reads at the timestamp can run at any replica and never block behind running

transactions.
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Dynamo [48] is a highly-available key-value storage system. To achieve high availability, con-

sistency is sacri�ced using object versioning and application-assisted con�ict resolution,

exposing data consistency issues and reconciliation logic to the developers. During net-

work partitions operations are allowed to continue, and update con�icts are detected using

a vector clock scheme where client-side con�ict resolution is preferred.

Data is partitioned and spread over di�erent replicas using consistent hashing. Dynamo

ensures that adding and removing replicas can be done without manual e�ort by using a

gossip based failure detection and membership protocol, creating a decentralized system.

Each replica is aware of the data being hosted at its peers and each replica actively gossips

the full routing table with other replicas in the system.

Gemini and RedBlue consistency [61] build on the premise that while a system can be leveraged

to use eventual consistency for higher performance, strong consistency may be necessary

to ensure correctness of some operations.

RedBlue consistency labels each operation as red or blue. Blue operations are to be fast

(eventually consistent) while red operations are slow (strongly consistent) – blue is used

whenever possible and red only when needed. Gemini is a system implementing RedBlue

consistency, with experimental results showing that RedBlue consistency provides high

performance while being able to maintain application invariants. The downside is that

transactions have to be individually modi�ed and correctly labelled.

Saturn [62] is a metadata service for geo-replicated data management systems that enforces

causal consistency. It builds on the idea of decoupling the metadata path from the data

path. Saturn uses labels and tree-based metadata dissemination aiming to provide high

throughput and data visibility, implementing partial replication [63]. Updates are serial-

ized within the metadata path and transmitted in FIFO order ensuring that operations are

delivered (and executed) in an order that respects causality. The methods for building an

optimal metadata-path limit scalability, making the system impractical if new replicas are

dynamically added and removed.

Bayou [64] provides a weakly consistent replicated database where updates are �rst tentatively

executed at the replica which �rst receives the write, and later committed after being totally

ordered by a primary replica. Access control is checked at the tentative execution and,

again, at the �nal commit, possibly rejecting previously accepted operations. To handle

concurrent updates, individual write operations can have rules for application-speci�c

con�ict detection and resolution. Bayou also introduces the notion of session guarantees,

ensuring additional properties, such as read-your-writes.

SwiftCloud [65] is an eventual consistency data storage system with low latency that relies

on CRDTs to maintain client caches, providing fast reads and writes at the expense of

data staleness. The main focus of this work is to integrate client and server-side storage.
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Responsiveness is improved when accessing objects which are locally available at the client

cache, allowing also for disconnected operation (on cached objects).

In the presence of infrastructure faults, a client-assisted failover solution allows client exe-

cution to resume immediately and access consistent snapshots without blocking. Addition-

ally, the system supports merge-able and strongly consistent transactions that target either

client or server replicas and provide access to causally-consistent snapshots e�ciently.

By keeping client-side caches, updates can be applied locally and later sent to datacenters.

As soon as updates are visible to a number of datacenters to ensure no data-loss, they

become visible to clients with the datacenters pushing noti�cations to clients. SwiftCloud

internally uses CRDTs for convergence and con�ict resolution.

Simba [66] is a system designed to remove the complexities of network and data management

from the development path of applications. The motivation is for allowing developers

to focus on interface and features, with the system o�ering data synchronization with

�exible policies while handling failures and e�ciently utilizing mobile resources. Simba

lets developers choose the desired consistency of data that is stored separately as binary

objects (e.g., images) and of tabular data, enforcing the consistency semantics on both

types of data and on the relation between them. It proposes consistency abstractions

for application data, allowing applications to choose among various consistency models

(strong, causal, and eventual consistency).

Diamond [67] is a data management platform that aims to support reactive applications. Appli-

cations created to be reactive must make it seem that devices and cloud are continuously

being synchronized among each other, which is a complex distributed data management

problem for programmers. This is achieved by using reactive data types, which are syn-

chronized between client and cloud, and reactive transactions, which are re-executed as

data changes.

This work demonstrates that a system, which hides the complexity of distributed data

management, can greatly simplify and expedite the design of applications.

2.3.3 Client-side replication

At the client-side, many applications (especially web applications) use a stateless approach, where

data is fetched from the servers whenever necessary. A number of applications store data at the

client-side to provide faster response times and to allow continued local operation when the

device is disconnected from the network. For example, Google Maps can be used in o�ine mode

and Facebook supports o�ine feed access [68].

A large number of data storage systems for mobile computing have been designed [69]. Some

of these systems, such as Parse [70], Coda [51], and Rover [71], support disconnected opera-

tion by caching data in clients and by synchronizing clients with servers, but leverage eventual

consistency models using last-writer wins to merge concurrent updates.
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The previously discussed SwiftCloud [65] systen also caches objects in the client machines.

SwiftCloud allows updates while disconnected and client replicas are noti�ed of changes to update

cache contents. The system supports highly available transactions [72] that enforces causality,

merging concurrent updates using CRDTs.

Simba [66] stores data on client machines, allowing applications to select the level of observed

consistency: eventual, causal, or serializability. Applications must provide functions for resolv-

ing con�icts that may arise when operating under weaker consistency guarantees (programatic

merge).

Parse [70] is a system where data can be stored in client devices. Objects can be read and

modi�ed while disconnected, with updates being uploaded to the server when connectivity is (re-

)established. Parse adopts an eventual consistency model, with the last write operation prevailing

as the �nal state.

Cimbiosys [73] and Bayou [64] are systems where clients hold data replicas and that exploit

decentralized synchronization strategies (either among clients [73] or servers [64]). Cimbiosys

replicates data across multiple devices of a user, which are expected to be connected intermittently.

This system only provides static data items, with increasing version numbers for an updated item

– the only guarantee is that a connected device eventually receives the newest version of items of

interest. Con�icts are solved automatically or by letting the user decide which to keep, creating

a new item with a higher version number.

Although our work shares some of the goals and design decisions with the previous systems,

the di�erence on letting user devices share mutable data directly among each other (through peer-

to-peer interactions). Our focus is on reducing latency of update propagation and permitting

user-interactions even when disconnected from servers.

2.4 Peer-to-peer systems

Peer-to-peer systems typically have a high degree of decentralization, using the resources avail-

able at each available replica. Each replica, commonly referred to as node in peer-to-peer systems,

implements both client and server functionality to distribute bandwidth, computation, and stor-

age across all of the participants of a distributed system [74]. This is achieved by allocating state

and tasks among peers with few, if any, dedicated peers.

Nodes are initially introduced to the system and typically little or no manual con�guration

is needed to maintain a connected network (a network is connected if there is at least one com-

munication path from each node to every other node).

Peer-to-peer systems are interesting due to their low barrier to deployment, their organic

growth (as more nodes join, more resources are available), resilience to faults/ malicious attacks,

and the abundance/diversity of systems [75]. Popular peer-to-peer applications include sharing

and distribution of �les, streaming media, telephony, and volunteer computing. Peer-to-peer

technologies were also used to create a diversity of other applications, for example Amazon’s

Dynamo storage system [48].
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It is important to note that the chosen network topology has a high impact on the performance

of peer-to-peer services and applications as, for nodes to be able to cooperate, they need to be

aware of the network and methods of communication. The typical approach is to create a logical

network of links on top of the underlying network, called an overlay network. To achieve an

e�cient and robust method of delivering data through a peer-to-peer approach an adequate

overlay network is necessary – it is very important to study the mechanisms for creating and

managing overlay networks that match the application’s requirements.

2.4.1 Overlay networks and communication models

An overlay network is a logical network of nodes, built on top of another network. Links be-

tween nodes in the overlay network are virtual links, possibly composed of various links on the

underlying network. Overlay networks can be constructed on top of the Internet, with each link

being a connection between two peers. When designing an application, the programmer must

�rst decide on the overlay network to deploy and use, choosing between degrees of centralization

as well as on structured or unstructured network designs.

Considering the use centralized components, a peer-to-peer (or overlay) network can be

classi�ed as being:

Partly centralized networks – these networks typically leverage components of dedicated nodes

or a central server to control and index available resources. The centralized components

can e�ectively be used to coordinate system connections, facilitate the establishment of

communication patterns, and coordinate node co-operation. As an example, when client

nodes want to execute a speci�c query only the central component is contacted, which in

turn can return the set of nodes that match the query (and possibly facilitate in establishing

a peer-to-peer connection). These systems are relatively simple to design but come with the

drawback of a potential single point of failure and bottleneck – this approach is therefore

not as resilient and scalable as a fully decentralized system. Well known examples include

Napster [76], Bittorrent using trackers [77], BOINC [78], and Skype [79].

Decentralized networks – these networks aim to avoid the use of dedicated nodes. All net-

work and communication management is done locally by each participating node, using

decentralized coordination mechanisms. This way a singe bottleneck and point of failure

is avoided, increasing the potential for scalability and resilience.

In this type of architecture, nevertheless, a few selected nodes may act as supernodes, as to

leverage potential higher CPU or bandwidth available, gaining additional responsibilities

such as storing state or even becoming the entry point for new nodes. Example protocols

include Gnutella [80] and Gossip [81].

Besides the degree of centralization, one aspect that de�nes an overlay network is the kind of

structure it forms. For example, some may form a random graph or mesh network, while others

may result in an e�cient tree like network to reduce redundancy:
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Structured overlays – these typically force nodes into speci�c positions in the overlay structure,

often determined by the node’s identi�er. Identi�ers are chosen in a way that peers are

usually uniformly distributed at random over the key space. This allows to create a structure

similar to a hash table, a distributed hast table (DHT). This type of overlay graph is typically

chosen when e�cient (logarithmic complexity) key-based routing is required – a lookup

method used in conjunction with distributed hash tables that enables to �nd the node that

has the closest identi�er to the key being searched. Structured overlays typically use more

resources to maintain the overlay, but in return get e�cient queries at the cost of poor

performance when churn is high. Well known examples are Chord [82] and Pastry [83].

Unstructured overlays – these are used when no particular structure in the network is required,

and where queries may be propagated by �ooding the network. There is a (small) fraction

of all peers in the system with whom each participant can interact directly and queries are

typically disseminated among the connected peers. Each peer keeps a local index of its

own resources and, in some cases, the resources of its neighbours. To ensure that a query

returns all possible results, the query must be disseminated to all participants. Examples

include Cyclon [84], Scamp [85], HyParView [86] and PlumTree [87].

Choosing between structured and unstructured overlays depends mostly on the usefulness of

key-based routing algorithms and the amount of churn that the system is expected to be exposed

to. For example, churn, the participant turnover in the network (the amount of nodes joining and

leaving the system per unit of time), has a major impact in both how to maintain data and how

to coordinate among nodes [75]:

Maintaining data – in partially centralized systems data is typically stored at the nodes upload-

ing and downloading data. The central component maintains metadata, typically an index

of the stored data, including where it is located. In decentralized systems queries are either

�ooded or some speci�c network structure must allow for e�cient lookups.

In unstructured systems, data can be stored on uploading and downloading nodes but to

locate data the queries are �ooded through the network. For faster and more e�cient

queries, nodes may distribute metadata among neighbours.

In structured overlays distributed state can be maintained using, for example, distributed

hash tables. Primitives are similar to any hash table, and easily implemented when a key-

based routing function is available. When churn is high it becomes very ine�cient to store

large amounts of data at peers responsible for the keys, therefore indirection pointers are

commonly used, pointing to the node (or nodes) that e�ectively holds the data.

Coordination – in partially centralized systems, the centralized component can be used to

achieve coordination among nodes.

In unstructured overlays, epidemic techniques are typically used because of their simplic-

ity and robustness to churn. Information tends to propagate slowly throughout the whole
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network and scaling to very large overlays is costly. Spanning trees – a logical tree connect-

ing all nodes in the network – can increase e�ciency but maintaining the tree structure

requires maintenance which becomes costly when churn is high.

In contrast, when using structured overlays, key-based routing algorithms allow for fast

coordination and good e�ciency among large amounts of nodes as long as the overhead

of churn is small.

2.4.2 Examples of peer-to-peer overlay networks

Structured overlay networks such as Chord [82], o�er high network e�ciency as all requests are

routed e�ciently to the right nodes. E�cient lookups can be implemented using distributed hash

tables, for example Amazon’s Dynamo storage system [48] which internally heavily relies on

DHTs. Unstructured network overlays typically �ood the network, reducing e�ciency, but create

tolerance to network churn. Such networks can be combined with partial centralized services

enabling e�cient indexing, resource management, and access control (Napster [76], Bittorrent

using trackers [77], BOINC [78], and Skype [79]).

A large suite of reliable broadcast gossip [81, 88] protocols exist. For example, Cyclon [84],

Scamp [85], and HyParView [86] each show the importance of updating network knowledge

periodically, of reacting to changes of the network, of being able to discover such changes timely,

and of using random walks to provide balanced network overlays. By declaring some nodes as

dedicated to the network (Gnutella [80]) or by creating e�cient broadcast trees (ADCMCST [89]

or PlumTree [87]) network tra�c can be greatly reduced by eliminating redundancy.

We now give a brief overview of some peer-to-peer overlay networks that in�uenced our

work:

Chord [82] was designed as an e�cient distributed lookup protocol, enabling peer-to-peer sys-

tems to e�ciently locate nodes that store a particular data item. It only o�ers one primitive:

given a key, return the nodes responsible for that key. Keys are distributed over the nodes

using consistent hashing and replicated over succeeding nodes. Nodes typically store their

successor nodes, forming an ordered ring (considering node’s identi�ers), making it easy

to reason about the overlay structure. For fault-tolerance a list of successor nodes is kept

and for e�cient lookups a �nger table, shortcuts to nodes over the graph, is used to jump

over nodes in the graph.

Gnutella [80] is a decentralized peer-to-peer �le sharing protocol. When a node is joining the

network, it tries to connect to the nodes it was shipped with, as well as nodes it receives

from other clients.

Queries are issued and �ooded from the client to all connected nodes, and then forwarded

to any nodes these know about. Forwarding ends if the request can be answered or the re-

quest’s Time-To-Live expires. The protocol in theory doesn’t scale well, as queries increase

network tra�c exponentially at each hop. Additionally, the system can be unreliable as
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queries are routed through nodes that run on regular computer user’s devices, which may

connect or disconnect at arbitrary intervals.

A revised version of the gnutella protocol is a network made of leaf nodes and ultra peers.

Each leaf node is connected to a small number of ultra peers, while ultra peers connect to

many leaf nodes and ultra peers. Leaf nodes send a table containing hashed keywords to

their ultra peers, which merge all received tables. These tables are distributed among ultra

peer neighbours and used for query routing, by hashing the query keywords and matching

table contents.

Cyclon [84] is a membership management framework for large peer-to-peer networks. The

membership protocol maintains a �xed length partial view managed through a cyclic strat-

egy (updated every T time units). This partial view is updated by each node through an

operation called shu�e. When shu�ing, a node selects the oldest node in its partial view

and exchanges some elements of its local partial view with it. When nodes initially join

the overlay a random walk is used, ensuring that the number of connections of all nodes

remains balanced. This work achieves an overlay topology with some very important traits:

low diameter and low clustering coe�cient with highly symmetric node degrees and high

resilience to node failures.

Scamp [85] is a membership management framework for large peer-to-peer overlays. The Scamp

protocol maintains two views, an out view to send gossip messages and an in view from

which nodes receive messages. The out view is not of �xed length and it grows to a size

logarithmic in scale to the number of nodes in the network, without any node being aware

of the precise number of actual nodes in the network. In contrast to Cyclon, the protocol

uses a reactive strategy, in the sense that the partial views are updated when nodes join

or leave the system. Periodically nodes send heartbeat messages as to detect and recover

from isolation due to failures. Not receiving any heartbeats allows the node to assume that

it is isolated, triggering the join mechanism to e�ectively rejoin the overlay.

HyParView [86], Hybrid Partial View, is a reliable gossip-based broadcast protocol that builds

on Cyclon and Scamp and maintains a small symmetric active view (managed through

a reactive strategy) for broadcasts and a larger passive view (managed through a cyclic

strategy) to recover timely from faults. TCP is used as a reliable transport and to detect

failures. This work shows the importance of each reactive and cyclic strategies to maintain

views of the network, and that the use of a reliable transport mechanism, like TCP, can

greatly improve results by timely discovering network failures.

PlumTree [87] builds on HyParView’s resilience a tree-based network to propagate messages to

reduce redundancy of network �ooding. Messages are sent over the tree overlay while the

remaining links of the gossip overlay are used to enable fast recovery, i.e., tree healing.

27



CHAPTER 2. FUNDAMENTAL CONCEPTS AND RESEARCH CONTEXT

2.5 Final remarks

Applications are created with a client-server communication model in mind, or have as goal being

fully decentralized. In contrast, we claim that applications can bene�t from replicating data at

the client devices, especially if those client-side replicas may synchronize among themselves –

while still leveraging a client-server model to support those clients (namely in �nding each other,

providing durability, and enforcing security).

Our approach leads to a di�erent set of tradeo�s from the discussed systems. In the next

chapters we discuss how leveraging the server together with a peer-to-peer network among

clients can support applications (Chapter 3), how consistency can be provided in such a system

model (Chapter 4), as well as security (Chapter 5), and present �ndings in allowing for partial

replication at the client-side (Chapter 6).
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Chapter 3

Peer-to-peer and applications: Legion

In this chapter we present Legion, a framework to enrich web applications with client-side replicas

and peer-to-peer synchronization, materializing the cloud-edge hybrid model envisioned in our

work.

Unlike systems that cache objects at the client and still only let clients communicate with a

server [38, 65, 66, 70], Legion clients can synchronize directly among each other as well, using a

peer-to-peer interaction model. To support these interactions, (subsets of) clients form overlay

networks to propagate objects and updates among them. This ensures low latency for propagating

updates and objects between nearby clients.

We designed Legion to support web applications where groups of up to a few hundred of users

can collaborate by manipulating a set of data objects – each client maintains a local data store

with a subset of the shared application objects. Legion adopts an eventual consistency model

where each client can modify its local replica without coordination and updates are propagated

asynchronously to other replicas. To guarantee that all replicas converge to the same state despite

concurrent updates, Legion relies on Con�ict-free Replicated Data Types (CRDTs) [58, 59]. CRDTs

and Legion’s consistency model are explored in Chapter 4.

Unlike uniform overlay networks [84, 85], Legion adopts a non-uniform design where a few

selected (active) nodes act as bridges between the client network and the servers that store data

persistently. These active nodes upload updates executed by clients in the network and download

new updates executed by clients that have not joined the overlay (including both legacy clients,

those that do not use the Legion framework, and clients unable to establish direct connections

with other clients). This design reduces the load on the centralized component, which no longer

needs to broadcast every update to all clients (nor track these clients).

While leveraging direct client interactions brings signi�cant advantages, it also creates se-

curity challenges. We address these challenges by making it impossible for an unauthorized

client to access objects or interfere with operations issued by authorized clients. Our design

uses lightweight cryptography and builds on the access control mechanism of the central in-

frastructure to securely distribute keys among clients. We focus on security, in particular the

misbehaviour of authenticated clients, in Chapter 5.

Client-side modules, adapters, allow Legion to, instead of using its own standalone servers,
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leverage existing web infrastructures for storing data and assist in several functions of the frame-

work, including peer discovery, overlay management, and security management. As a showcase,

we describe our adapters for Google Drive Realtime (GDriveRT), a service provided by Google

for supporting collaborative web applications similar to Google Docs [38].

The GDriveRT adapters allow Legion to: (i) store data in GDriveRT, while exposing an API

and data model compatible with GDriveRT; (ii) support the interaction between Legion-enriched

clients accessing local object replicas and legacy clients accessing the same objects through

GDriveRT; (iii) resort to GDriveRT to assist in establishing initial peer-to-peer connections among

clients.

Our evaluation shows that porting existing GDriveRT applications requires changing only

a few lines of code (2 lines in the common case), allowing these applications to bene�t from

direct interactions among clients. We also show that the latency to propagate updates is much

lower in Legion when compared with the use of a traditional centralized infrastructure, as in

GDriveRT. Additionally, clients can continue to interact when the server becomes (temporarily)

unreachable. Updates are stored locally and can be made durable by any active client when the

server becomes available, either in the context of the same session or a future session. Since

we avoid continuous access to the centralized infrastructure by all clients, the network tra�c

induced on the centralized component is lower, improving the scalability of the system. We also

show that our security mechanisms have minimal overhead.

In summary, we present the design of Legion, a novel framework to enrich web applications

through client-side replication and (transparent) direct peer-to-peer interactions. To achieve this,

and besides introducing the design of the Legion architecture, we make the following contribu-

tions:

• a topology-aware overlay-network core that uses WebRTC and promotes low-latency links

between clients (Section 3.1.1);

• a data storage service for web clients, providing causal consistency and using CRDTs (Sec-

tion 3.1.2);

• a lightweight security mechanism that protects privacy and integrity of data shared among

clients (Section 3.1.3);

• a set of client adapters (Section 3.1.4) that integrate Legion with existing cloud-services to

support the system. In particular we show the GDriveRT adapters, enabling data storage

in the GDriveRT service for durability, providing a seamless API and support for inter-

operation with legacy clients (Section 3.1.4.1);

• the implementation (Section 3.2) and evaluation (Section 3.3) of a prototype that demon-

strates the bene�ts of our approach in terms of latency for clients and reduced load on

servers.
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Figure 3.1: The Legion framework architecture.

3.1 System design

Legion is a framework for data sharing and communication among web clients. It allows pro-

grammers to design web applications where clients access a set of shared objects replicated at

the client’s devices. Clients can synchronize local replicas directly with each other. For ensuring

durability of the application data as well as to assist in other relevant aspects of the systems

operation (discussed further ahead), Legion resorts to a set of centralized services. We designed

Legion so that di�erent Internet services (or a combination of Internet services and Legion’s own

support servers) can be employed. These services are accessed uniformly by Legion through a

set of adapters with well de�ned interfaces.

By replicating objects in clients and synchronizing in a peer-to-peer fashion, Legion reduces

dependency and load on the centralized component (as the centralized component is no longer

responsible to propagate updates to all clients), and minimizes latency to propagate updates (as

they are distributed directly among clients). Furthermore, it allows already connected clients to

continue interacting when connectivity to servers is lost.

Figure 3.1 illustrates the client-side architecture of Legion with the main components and

their dependencies/interactions:

Legion API - This layer exposes the API through which applications interact with our framework.

Communication Module - The communication module exposes two secure communication

primitives: point-to-point and point-to-multipoint. Although these primitives are available

to the application, we expect applications to interact using shared objects stored in the

object store.

Object Store - This module maintains replicas of objects shared among clients, which are grouped

in containers of related objects. These objects are encoded as CRDTs from a pre-de�ned

(and extensible) library including lists, maps, strings, among others. Clients use the com-

munication module to propagate and receive updates to keep replicas up-to-date.
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Overlay Network Logic - This module establishes a logical network among clients that replicate

a shared container. This network de�nes a topology that restricts interactions among

clients, meaning that only overlay neighbours maintain WebRTC connections among them

and exchange information directly.

Connection Manager - This module manages connections established by a client. To support

direct interactions, clients maintain a set of WebRTC connections among them. Some

clients must also maintain connections to the central component, as discussed below.

Legion additionaly requires centralized infrastructure, which, at the client-side, can be ac-

cessed through adapters for:

• access control to the network and network eviction when access is revoked;

• durability of application state and support for interaction with legacy clients (storage);

• assisting clients to initially join the system (signaling);

• a service API adapter exposing an API similar to the server API, simplifying porting existing

applications to our system.

Our prototype includes adapters for GDriveRT and a Node.js [90] implementation for the

server-side.

In the remainder of this section we discuss in more detail the design of each of the modules

that compose the Legion framework.

3.1.1 Networking and communications

3.1.1.1 Communication module

The communication module exposes an interface with point-to-point and multicast primitives,

allowing a client to send a message to another client or to a group of clients. In Legion, each

container has an associated multicast group that clients join when they start replicating an object

from the container. Updates to objects in some container are propagated to all clients replicating

the container.

Messages are propagated through the overlay network(s) provided by the Overlay Network

Logic module. The multicast primitive is implemented using a push-gossip protocol – new or

received messages are sent to all overlay neighbours (excluding the sender).

Messages exchanged among clients are protected using a symmetric cryptographic algorithm,

using a key (associated with each container) that is shared among all clients and obtained through

the centralized component. Clients need to authenticate towards the centralized component to

obtain this key, ensuring that only authorized (and authenticated) clients are able to observe and

manipulate the objects of a container. We provide additional details about this mechanism further

ahead.
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3.1.1.2 Overlay network logic

Legion maintains an independent overlay for each container, de�ning the communication patterns

among clients (i.e., which clients communicate directly). The overlay is used to support the

multicast group associated with that container.

Our overlay design is based on a randomized topology composed by symmetric links (similar

to Scamp [85], Cyclon [84], and HyParView [86]). Each client maintains a set of K neighbours

(where K is a system parameter with values typically below 10 for the scale that we target with

this work). Overlay links change in reaction to external events (clients joining and leaving the

network, or failing).

In contrast to the referenced works, we have designed our overlay to promote low latency

links. Each client connects to K peers, with K = Kn + Kd, where Kn denotes the number of

nearby neighbours and Kd denotes the number of distant neighbours.

Each client must maintain a small number of distant neighbours when biasing a random

overlay topology to ensure that the global overlay maintains connectivity and to yield better

(lower)dissemination latency, while retaining the robustness of gossip-based broadcast mecha-

nisms [88].

This requires clients to classify potential neighbours as being either nearby or distant. A

common mechanism to determine whether a potential neighbour is nearby or distant is to measure

the round-trip-time (RTT) to that node. However, in Legion, since clients are typically running in

browsers, it is impossible to e�ectively measure round trip times among them before establishing

a WebRTC connection for this purpose. Since executing the signaling protocol has non-negligible

overhead we have to estimate distance by some other metric.

We rely on the following strategy that avoids clients to perform active measurements of RTT

to other nodes. When a client starts, it measures its RTT to a set of W well-known web servers

through the use of an HTTP HEAD request (the web servers employed in this context are given

as a con�guration parameter of the deployment, see Section 3.2.1). The obtained values are then

encoded in array of size W which is included into messages related to network management.

These values are then used as coordinates in a virtual cartesian space of W dimensions. This

enables each client to compute a distance function between itself and any other client.

3.1.1.3 Connection manager

This module manages all communication channels used by each Legion client, namely server

connections to the centralized infrastructure, and peer connections to other clients. We now

discuss how these connections are managed.

A server connection o�ers a way for Legion clients to interact with the centralized infras-

tructure. We have de�ned an abstract connection that must be instantiated by the adapters that

provide access to the centralized services. The connection for the Legion Node.js server uses

websockets. For the GDriveRT adapter, connections are established and authenticated for each

container (a document in GDriveRT). Independently of the employed centralized component,

server connections are only kept open by active clients (Section 3.2.2).
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A peer connection implements a WebRTC connection between two clients. To create these

connections, clients have to execute the signaling protocol, an exchange of information necessary

to circumvent �rewalls or NAT boxes using STUN/TURN servers.1 This requires using some

method to propagate messages before connections are established among two (future) peers.

Legion uses the centralized infrastructure for supporting the signaling protocol between a

client joining the system and its initial overlay neighbours (that have to be active clients – those

with active server connections). After a client establishes its initial peer connections, it starts

to use its overlay neighbours to �nd new peers. In this case, the signaling protocol required to

establish these new peer connections is executed through the overlay network directly among

client devices. If a client becomes isolated and needs to rejoin the overlay, it relies again on

the help of the centralized infrastructure. This greatly simpli�es fault handling at the overlay

management level.

The signaling adapter for GDriveRT stores information on a hidden document associated

with the main (data) document. Alternatively, clients can use the Legion native Node.js signaling

server while using GDriveRT documents only for durability.

3.1.2 Object store

The object store maintains local replicas of shared objects, with related objects grouped in con-

tainers. Client applications interact by modifying these shared objects. Legion o�ers an API that

enables an application to create and access objects.

3.1.2.1 CRDT library

Legion provides an extensible library of data types, which are internally encoded as CRDTs.

Objects are exposed to the application through object handlers that hide the internal CRDT

representation.

The CRDT library supports the following data types: Counters, Registers, Strings, Lists, Sets,

and Maps. Our library by default uses ∆-based CRDTs [2], which are very �exible, allowing

replicas to synchronize by using Deltas (∆) with the e�ects of one or more operations, or the full

state. These were specially designed to allow e�cient synchronization in epidemic settings, by

avoiding, most of the times, a full state synchronization when two replicas connect for the �rst

time. Each data type includes type-speci�c methods for querying and modifying its internal state,

and generic methods to compute and integrate Deltas (i.e., updates received from the network).

The design and usage of ∆-CRDTs in Legion is detailed in the following chapter, in Section 4.3,

where we evaluate their usage compared to the traditional operation and state based CRDTs.

3.1.3 Security mechanisms

Allowing clients to replicate and synchronize among them a subset of the application state o�ers

the possibility to improve latency and lower the load on central components. However, it also

1

Our experiments have shown that WebRTC connections can be established even among mobile devices using

3G/4G connectivity.
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leads to concerns from the perspective of security, in particular regarding data privacy and

integrity.

Privacy might be compromised by allowing unauthorized users to circumvent the central sys-

tem component to obtain copies of data objects from other clients. Integrity can be compromised

by having unauthorized users manipulate application state by propagating their operations to

authorized clients.

We assume that an access control list is associated with each data container, and that clients

either have full access to a container (being allowed to read and modify all data objects in the

container) or no access at all. While more �ne-grained access-control policies could easily be

established, we �nd that this discussion is orthogonal to the main contributions of this work. We

also assume that the centralized infrastructure is trusted and provides a secure authentication

mechanism to authenticate authorized clients. Finally, Legion does not address situations where

authorized clients perform malicious actions.

Considering these assumptions, and to deal with the security aspects discussed above, Legion

resorts to a simple but e�ective mechanism that operates as follows. The centralized infrastructure

generates and maintains, for each container C , a symmetric key KC for that container. Due to

the authentication mechanism with the centralized infrastructure, only clients with access to a

container C can obtain KC . Every Legion client has to access the infrastructure upon bootstrap,

which is required to exchange control information required to establish direct connections to

other clients. During this process, clients also obtain the key KC for the to be accessed container

C .

KC is used by all Legion clients to encrypt the contents of all messages exchanged directly

among clients for containerC . This ensures that only clients that have access to the corresponding

container can observe the contents and operations issued over that container (as they must have

previosuly authenticated themselves towards the centralized component), addressing data privacy

related challenges.

Whenever the access control list of a container is modi�ed to remove some user, the associated

symmetric key is invalidated, and a new key for that container is generated by the centralized

infrastructure. Each container has an associated increasing version number for each key. This

version number is attached to every message, so that clients, on reception, can verify which key

was used to encrypt the message.

If a client receives a message encrypted with a di�erent key from the one it knows, either

the client or its peer have an old key. When the client has an old key – a key with assiciated

version number smaller than the version number of the key used to encrypt the message – the

client contacts the centralized infrastructure to obtain the new key. Otherwise, the issuer of the

message has an old key: the receving client discards the received message and noti�es the peer

that it is using an old key. This will lead the sender of the message to connect to the central

infrastructure (going again through authentication), update its local key, and re-transmit any

messages that were invalidated.

To enable clients to detect when the key is updated in a timely fashion, the centralized

component periodically generates a cryptographically signed message containing the current
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version of the key, and a nonce (the signature is created using the asymmetric keys associated

with the certi�cate of the server, used to support the bootstrap SSL connections). This message is

sent by the server to active peers, that disseminate the message throughout the overlay network.

Note that clients that have lost their rights to access a container are unable to obtain the

new key and hence, unable to modify the state of the application directly on the centralized

component, send valid updates to their peers, or decrypt new updates.

While there might be a small increase in communication with the centralized infrastructure

when a user’s access is revoked (as a new key has to be generated and distributed), we believe that

removing user permissions in collaborative web applications is not a frequent task. Furthermore,

several access revocations can be compressed into a single update of the access control list as it

would require only generating and distributing a single key.

Altough these mechanisms ensure access control and privacy for this setting, there are many

actions malicious users can attempt. For example, active clients (those that connect to the server)

can omit the key-update message from being propagated to other clients, ensuring they are not

removed from the network. In Chapter 5 we addess the situations where authorized clients

can perform malicious actions and explore how malicious users can attempt to circumvent the

restrictions imposed by causal consistency.

3.1.4 Adapters

Adapters can be used to integrate Legion with existing systems. The parts that Legion clients

use to interact with the base Legion centralized service can easily be replaced by an adapter

implementing the required API. This lets applications to leverage existing web infrastructure for

storing data and to assist in several functions of the framework, including peer discovery, overlay

management, and authentication.

To simplify our prototyping, we have implemented the adapters each as its own stand-alone

component. This enables programmers to con�gure which adapters should be enabled (when an

adapter is disabled, the functionality is by default provided by the Legion Node.js server). Next we

discuss the most relevant aspects related with the design and implementation of these adapters

which cover the speci�c challenges that a programmer faces when integrating Legion with an

existing service.

3.1.4.1 GDriveRT

We describe our e�ort to create adapters for Google Drive Realtime (GDriveRT), a service pro-

vided by Google for supporting collaborative web applications similar to Google Docs [38].2 To

integrate Legion with GDriveRT (see Figure 3.1), we have implemented 4 distinct adapters with

the following purposes:

2

The GDriveRT API was shutdown in September 2019 but the general outcome remains the same. Porting our

adapters to work on the new Firebase Realtime Database is trivial. In Section 3.5.1 we list additional adapters created

for Legion, namely overlay alternatives and for integrating with additional storage backends.
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• a storage adapter enables Legion to outsource storage of application state and to support

GDriveRT legacy clients (those clients accessing GDriveRT directly instead of using Le-

gion);

• a signaling adapter enables the use of GDriveRT to support signaling for establishing We-

bRTC connections;

• an authentication and key management adapter enables Legion to outsource to GDriveRT

both user authentication and key management and distribution;

• a service API adapter that exposes to client applications an interface similar to the GDriveRT

API.

Data model Our GDriveRT storage adapter supports the same data model as GDriveRT, in

which collaboration among users is performed at the level of documents. A document contains a

set of data objects and is mapped to a Legion container. Each object inside a document is mapped

to an object of a similar type in Legion. The adapter transparently performs this mapping.

The associated service API adapter provides applications with an API similar to the GDriveRT

API. The main functions of this API include a method to load a document, which in our case,

initializes the Legion framework. This method gives access to a handler for the document, which

can be used by the application to read and modify the data objects included in the document

state.

By exposing the same API of GDriveRT, this adapter enables any web application written in

JavaScript that uses the GDriveRT API to be (easily) ported to Legion through the manipulation

of a few lines of JavaScript code. A developer has only to:

• add an include statement to the script �le with the code of Legion (line 5 and 6 of Listing 3.1,

the former to include Legion and the latter to include the GDriveRT adapter);

• replace the function call to load a document by the equivalent function of the Legion

GDriveRT service API adapter (replace line 2 with line 4 of Listing 3.2).

Listing 3.2 details how both variants (Legion and GDriveRT) can be used. To initialize and use

each respective framework (obtain the handler, doc or model, for a document) for an application

made for the GDriveRT API, the following is required:

• initialize the framework (lines 2 or 4, respectively for GDriveRT and Legion);

• a call to createRealtimeFile (line 7) to create the �le (if the �le did not exist), which calls

onFileCreate on success (line 10);

• a call to load (line 8) to locally load the �le, which calls onFileLoaded (line 18) if the

document was previously setup or onFileInitialize (line 14) on the �rst client which is

responsible to ensure all objects are correctly initialized;
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1 // GDriveRT
2 <script src="apis.google.com/js/api.js"></script >
3 <script src="www.gstatic.com/realtime/client -utils.js"></script >
4 // Legion
5 <script src="legion.js"></script >
6 <script src="legion -adapter -GDriveRT.js"></script >

Listing 3.1: GDriveRT and Legion adapter import.

1 // GDriveRT init
2 const realtimeUtils = new utils.RealtimeUtils ({ clientId: CLIENT_ID });
3 // Legion init
4 const realtimeUtils = new LegionRealtimeUtils ({ clientId: CLIENT_ID });
5

6 // API for usage of (either) realtimeUtils:
7 realtimeUtils.createRealtimeFile("filename", onFileCreate);
8 realtimeUtils.load("id", onFileLoaded , onFileInitialize);
9

10 function onFileCreate(documentID) {
11 // call realtimeUtils.load
12 }
13

14 function onFileInitialize(model) {
15 // create lists , maps , strings using <model >
16 }
17

18 function onFileLoaded(doc) {
19 // Applications may use objects (lists , maps , strings) existing in doc ,
20 // i.e., modify directly and attach handlers for remote updates.
21 }

Listing 3.2: Simpli�ed GDriveRT and Legion adapter APIs for initialization and usage.

• implement onFileInitialize(model) (line 14) – use model to initialize objects, for ex-

ample map = model.createMap(data) to create a Map object and model.set(someID,

map) to attach it to the document;

• implement onFileLoaded(doc) (line 18) – use doc to access objects for use in the applica-

tion, for example map = doc.get(someID).

With the handler for the document model (model) to setup objects initially and the loaded

document (doc), the application can use exactly the same function calls using either GDriveRT

as in the original application or when using the realtimeUtils generated by Legion.

Legion functionality Our Legion storage adapter can, in addition to providing a similar API,

leverage the GDriveRT infrastructure to:

• serve as a gateway between partitioned overlays that replicate the same GDriveRT docu-

ment (in our case, seperate groups of clients which are unable to create WebRTC connec-

tions);

• reliably store application state (i.e., durability of documents and associated objects).
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For serving as a gateway between partitioned overlays, for each document, the adapter main-

tains in GDriveRT the list of deltas of the CRDTs of the document. As discussed before, in each

overlay, a set of active clients is responsible to upload modi�cations executed by clients in the

overlay and to download and disseminate new changes throughout the overlay. If more than one

client executes this process in each overlay, this does not a�ect correctness, as changes received in

a client are discarded if it is already re�ected in the state of the replica (due to the commutativity

of CRDT operations).

Support for legacy applications While Legion allows web applications to explore peer-to-peer

interactions using the Legion framework, it is also possible to allow legacy client applications to

continue accessing data using the original GDriveRT interface. This is done by enabling a special

�ag when initializing our storage adapter. Note that this support, as we show in the evaluation

(speci�cally, in Section 3.3.2.4), incurs an overhead due the di�erences between both systems in

encoding of state and metadata required.

When supporting legacy clients, for each data object, Legion keeps two versions: the version

manipulated by all Legion replicas and the version manipulated by legacy applications. The key

challenge is to keep both versions synchronized, a process executed by a Legion replica (a client).

Applying operations executed in Legion clients to the GDriveRT object is a straightforward

process that requires converting the list of executed changes to the corresponding GDriveRT

operations and executing them.

Applying operations executed in a GDriveRT object to the Legion object is slightly more

complex because it is necessary to infer the newly executed operations. To this end, the client

executing the synchronization process records the version number of the GDriveRT document in

which the process is executed. In the next synchronization, the client infers the updates produced

by legacy clients by comparing the state of the current version of the document against the state

of the version of the last synchronization (using a di� algorithm). The updates are converted into

changes that Legion’s CRDTs accept, and added to the log of executed changes, which guarantees

that these are applied to the Legion objects.

Both synchronization steps need to be executed by a single client to guarantee an exactly-

once transfer of updates from one version to the other. We implement an election mechanism for

selecting the client relying on a GDriveRT list. When no client is executing this process, a client

willing to do it checks the version number of the document and the current size of the list, and

then writes in the list the tuple < id, n, t >, with id being the client identi�er, n the observed

size of the list, and t the time until when the client will be executing the process (for periods in

the order of seconds or minutes). The client then reads the following version of the document,

which guarantees that its write has been propagated to GDriveRT servers. If the tuple the client

has written is in position n + 1, the client is elected to execute the process. This is correct, as

when two clients concurrently try to be elected, the tuple of only one will be in position n+ 1 of

the list in the new version of the document.
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Security in GDriveRT When using GDriveRT, we can leverage on the existing authentication

mechanism of GDriveRT to perform access control, which de�nes which user can access which

document. The security mechanism presented previously (shared key among peers) had to be

slightly adapted as to ensure compatibility with the authentication and key management adapter

due to the fact that GDriveRT only provides storage. GDriveRT exposes no computational ca-

pabilities, being therefore unable to generate symmetric keys, nor generate signed messages

periodically to speed up the noti�cation of clients of key changes.

To address these challenges we made the following modi�cations. First, when a new container

C is created, the symmetric key KC associated with that container is created by the �rst Legion

client that accesses the container. As clients can only access the container after being granted

access by GDriveRT, the key is generated by a client with access.

Additionally, when a client removes some user’s access to a container, it also generates a new

key for that container. Using the GDriveRT authentication and key management adapter, clients

monitor any changes to the key (to verify that the known key is still valid).

This step can be performed infrequently because, as soon as a single client becomes aware

of a new key, the knowledge that a new key exists is epidemically propagated throughout the

overlay network using the previous protocol – new messages will be encrypted with the new

key, leading the receiving clients to fetch the new key from the centralized infrastructure. As

only clients that still have access to the document are able to obtain the new key, only clients

with access will be able to maintain membership in the network.

3.2 Implementation details

We now provide a few implementation details of our prototype.3

We have used Count Lines of Code [91] and veri�ed that the code for our GDriveRT adapters

has 1.768 JavaScript lines of code, while the whole implementation of Legion (including the server

for the centralized component) has 4.639 JavaScript lines of code.

3.2.1 Overlay networks

To achieve the threshold of K neighbours we do the following. Upon joining the system, a client

resorts to the centralized component (either the Legion server or another web service accessed

through a specialized adapter) to obtain the identi�ers of nodes that currently have an open

connection to the centralized infrastructure. Using this information, the client establishes con-

nections to nearby neighbours and (few) distant neighbours. For these connections the centralized

infrastructure is leveraged to perform the WebRTC signaling protocol. For further connections

the existing overlay is used – we apply random walks through neighbours to �nd other nearby

or distant neighbours, to �ll the required parameters of Kn and Kd.

3

The code is available at: https://github.com/albertlinde/Legion.
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To classify peers as being either nearby or distant we resort to the previously described

protocol (HTTP HEAD ping – see Section 3.1.1.2). In our experiments we used 4 distinct sites

through endpoints of Amazon EC2 Web API (scattered over 4 di�erent AWS regions).

While di�erent distance functions can be employed over the virtual coordinates associated

with each client, in our prototype we use a function that categorizes a client to be distant if the

di�erence between at least two coordinates in the 4D virtual space are equal or above 70ms, and

nearby otherwise (we have experimentally asserted that this strategy yields adequate results).

3.2.2 Selection of active clients

In our design, we use a small subset of clients (active clients) to upload and download updates

over objects to and from the centralized infrastructure and to monitor the cryptographic key

associated with each container.

To select these clients, we use a bully algorithm [92] where initially all clients act as an

active client, and periodically, every T ms, sends to its nearby overlay neighbours a message

containing its unique identi�er – in our experiments we set T = 7000. Whenever a client receives

a noti�cation from a neighbour whose identi�er is lower than its own, it switches its own state

to become a passive client, and stops disseminating periodic announcements (e�ectively being

bullied). To address the departure or failure of active clients, if a passive client does not receive

an announcement for more than 3× T, it switches its own state back to become an active client

(the factor of 3 is used to avoid triggering this process unnecessarily).

The result of executing this algorithm is that only a subset of non-neighbouring clients remain

active clients. Passive clients disable their connection to the centralized infrastructure, leading to

a reduction in server connections. As detailed in Section 3.3.2.4, a reduction in overall server load

can be obtained using this method as less often the same operations have to be sent to clients –

these share them directly.

3.2.3 Security

For the symmetric cryptography algorithm, we used AES operating in block cipher mode, using

a key of 128 bits. We use RSA, con�gured with a key of 2048 bits, for generating and verifying

the signature of the messages issued by our Node.js server. Our implementation resorts to the

Forge [93] JavaScript library to implement all cryptographic operations.

If Legion is used as a standalone system (without any adapters such as GDriveRT), access

control at the centralized server has to be implemented by the application provider as there is

no service to depend on. We provide callback handlers to enable integration with any existing

backend or database.

3.2.4 Networking

To circumvent �rewalls and NAT boxes when establishing connections among clients a set of

STUN and TURN servers need to be available (or some clients might not be able to communicate
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directly).

This is a con�gurable aspect in our prototype, and can easily be modi�ed to use privately

owned and managed servers if an application operator desires. By default our prototype relies

on Google’s publicly available STUN servers and does not make use of TURN – we already rely

on the centralized server to mediate interactions between not connected clients.

3.3 Evaluation

This section presents an evaluation of Legion. We showcase the operation of Legion when using

the adapters to inter-operate with the GDriveRT infrastructure (except if speci�cally stated in

our experiments, we ran Legion with the GDriveRT adapters enabled and with support for legacy

clients disabled).

The evaluation mainly focusses on two aspects. We start with an analysis of our experience in

adapting existing GDriveRT applications to leverage Legion. Then, we present an experimental

evaluation of our prototype, comparing it to the centralized infrastructure of GDriveRT regarding

the following practical aspects:

• What is the impact on update propagation latency?

• What is the impact on application performance?

• How does the system behave when the central server becomes (temporarily) unavailable?

• What is the impact of using Legion in terms of load imposed on the central component and

on individual clients?

• What is the overhead for supporting seamless integration with legacy clients?

3.3.1 Designing applications

In this section, we describe a set of web applications that we have ported to Legion using the

GDriveRT adapters.

Google Drive Realtime Playground The Google Drive Realtime Playground [94] is a web appli-

cation showcasing all data-types supported by GDriveRT. We ported this application to

Legion by changing only 2 lines in the source code (see § 3.1.4.1).

Multi-user Pacman We adapted a JavaScript version of the popular arcade game Pacman [95]

to operate under the GDriveRT API with a multiplayer mode. We also added support for

multiple passive observers that can watch a game in real time. In our adaptation up to

5 players can play at the same time, one player controlling Pacman (the hero) and the

remaining controlling each of the four Ghosts (enemies).

The Pacman client is responsible for computing, and updating the adequate data structures,

with the o�cial position of each entity. Clients that control Ghosts only manipulate the
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information regarding the direction in which they are moving. If no player controls a Ghost,

its direction is determined by the original game’s AI, running in the client controlling

Pacman.

In this game, we employed the following data types provided by the GDriveRT API:

• a map with 5 entries, one for Pacman and the remaining for each Ghost, where each

entry contains the identi�er (ID) of the player controlling the character (each user

generates its own random ID);

• a list of events, that is used as a log for relevant game events, which primarily includes

players joining/leaving the game, a Ghost being eaten, and Pacman being captured.

• a list representing the game map, used to maintain a synchronized view of the map

between all players. This list is modi�ed, for instance, whenever a pill is eaten by

Pacman;

• a map with 2 entries, one representing the width and the other the height of the map.

This information is used to interpret the list that is used to encode the map;

• a map with 2 entries, one used to represent the state of the game (paused, playing,

�nished) and the other used to store the previous state (used to �nd out which state

to restore to when taking the game out of pause);

• 5 maps, one for each playable character, with the information about each of these

entities, for maintaining a synchronized view of their positions (this is only altered

when the corresponding entity changes direction, not at every step), directions, and

if a ghost is in a vulnerable state.

Along with extending and porting this application to use the GDriveRT API, we also im-

plemented the same game (with all functionality) using Node.js as a centralized server for

the game through which the clients connect using web-sockets (this implementation does

not leverage Legion). This enables us to investigate the e�ort in implementing such an

interactive application using both alternatives. The Node.js implementation of the game is

approximately 2.200 LOC for the client code, and 100 LOC for the server. In contrast, the

implementation leveraging the GDriveRT API has approximately 1.620 LOC for the client

code, and 40 lines of code for the server-side (used to run multiple games in parallel). This

shows that an API such as the one provided by GDriveRT and Legion simpli�es the task

of designing such interactive web applications.

Creating the Legion version (using the GDriveRT adapters) required to change only two

lines of code of the GDriveRT version (as described before). From a user perspective, the

Legion version runs much smoother, which is also shown by our evaluation presented

further ahead.
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Spreadsheet We have also explored an additional application: a collaborative spreadsheet editor.

Each spreadsheet represents a grid of uniquely identi�able rows and columns, whose in-

tersection is represented by an editable cell. Each cell can hold numbers, text, or formulas

that can be edited by di�erent users.

A prototype of the spreadsheet web application was built using AngularJS and support-

ing online collaboration through GDriveRT. The spreadsheet cells were modeled using a

GDriveRT map. Each cell was stored in the map using its unique identi�er (row-column)

as key. Porting this application to the Legion API only required the change of 2 lines of

code (as discussed previously).

Our experience with porting these applications to leverage Legion shows that doing so is

simple, as the programmer can easily use our GDriveRT adapters. Furthermore, this shows that

carefully designing our framework to expose (through adapters) APIs that are similar to existing

Web infrastructures is paramount to promote easy adoption of our solutions.

3.3.2 Experimental evaluation

In our experimental evaluation, we compare Legion, with and without the use of adapters, against

GDriveRT, as a representative system that uses a traditional centralized infrastructure.

In our experiments, we have deployed clients in two Amazon EC2 datacenters, located at

North Virginia (us-east-1) and Oregon (us-west-2). In each DC, we run clients in 8 m3.xlarge

virtual machines with 4 vCPUs of computational power and 15GB of RAM. Unless stated otherwise,

clients are equally distributed over both DCs. The average round-trip time measured between

two machines in the same DC is 0.3 ms and 83 ms across DCs.

3.3.2.1 Latency

To measure the latency experienced by clients for observing updates, we conduct the following

experiment. Each client inserts in a shared map a key-value pair consisting of his identi�er and

a timestamp. When a client observes an update on this map, it adds to a second map, as a reply,

another pair concatenating the originating identi�er and the replier’s identi�er as the key, and

as value an additional timestamp. When a client observes a reply to his message, it computes the

round-trip time for that reply, with latency being estimated as half of that time. All clients start

by writing to the �rst map at approximately the same time and reply to all identi�ers added by

other clients. Thus, this simulates a system where the load grows quadratically with the number

of clients.

The results are presented in Figure 3.2 and Figure 3.3 (as empirical Cumulative Distribution

Functions). Both �gures present the latency observed by all clients for both Legion and GDriveRT

varying the number of clients from 4 to 64.

Figure 3.2 presents the results of running all clients within the same datacenter. The results

show that client-to-client latency using Legion is much lower than using GDriveRT with very
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Figure 3.2: Latency for the propagation of updates: all clients within the same datacenter.
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Figure 3.3: Latency for the propagation of updates: clients distributed over 2 datacenters.

close clients. The main reason for this is that the propagation of updates does not have to incur

a round-trip to the central infrastructure in Legion.

Figure 3.3 presents results when running clients across 2 datacenters. Note the very visible

in�exion point in lower amounts of clients – the points is close to the 50% of updates as this is

the amount of nearby clients. For 64 clients, the 95
th

percentile for GDriveRT is almost an order

of magnitude greater than Legion, suggesting that Legion’s peer-to-peer architecture is better

suited to handle higher loads than the centralized architecture of GDriveRT.

3.3.2.2 Multiplayer Pacman performance

We now show the impact of Legion on the performance of applications in the context of the

multiplayer Pacman game.

To that end we conducted an experiment with volunteers, where we had �ve users playing

the same game (one player controlling Pacman, and four players for each of the ghosts). This

experiment was conducted using �ve machines, in a local area network. Machines were running

Ubuntu and clients executed in Firefox.

We focus our experiments in measuring the displacement of entities in relation to their o�cial

position. As explained before, each client updates an object with the direction of its movement.

The Pacman client computes and updates the o�cial position of each entity periodically. Each

client independently updates its interface based on the known direction of movement and the

latest o�cial positions (extrapolation). Displacement captures the di�erence between the po-

sition computed (extrapolated) by a client and the received o�cial position upon receiving an
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(a) Pacman displacement to eaten pills.
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Figure 3.4: Muti-User Pacman performance.

update. When displacement is high, users see entities jumping on the game map as these must

be repositioned to their correct locations.

Figure 3.4 reports the obtained results where the displacement is measured in tiles (the square

unit that forms the interface). The board size of Pacman was 19×22 tiles featuring approximately,

59 turning points. The Pacman and all Ghosts move at approximately 3.33 tiles per second. In

particular we measure, at all clients controlling Ghosts:

• the displacement of Pacman in relation to an eaten pill when an update reporting a pill

being eaten is delivered. Figure 3.4a shows that when using Legion, Pacman is visible by

other players much closer to the eaten pill than when using the GDriveRT version of the

game, meaning that the interface is much more closely updated to the real state of the

system (i.e., less stale data);

• the displacement of Pacman and Ghosts when a client controlling a ghost receives an update

for a position. Figure 3.4b shows that when using Legion the displacement of entities in

the game interface is signi�cantly lower when compared with the game version that only

uses GDriveRT, which is unable to send updates to all clients at an adequate rate.

These results are the practical e�ect on application usage (in this case, game playability)

of staleness observed when computing extrapolated game state. Lower propagation latency of

Legion (Section 3.3.2.1) results in lower staleness and leads to a better user experience.

3.3.2.3 E�ect of disconnection

We study the e�ect of disconnection by measuring the fraction of updates received by a client over

time. In the presented results, clients share a map object, and each client executes one update per

second to the map (the same results were observed with other supported objects). We simulate

a disconnection from the GDriveRT servers, by blocking all tra�c to all Google domains using

iptables, 80 seconds after the experiment starts. The disconnection lasts for 100 seconds, after

which rules in iptables are removed so that connections can again be re-established.
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Figure 3.5: E�ect of server disconnection on update propagation.

Figure 3.5 shows, at each moment, the average fraction of updates observed by clients since

the start of the experiment – the average number of updates received divided by the total number

of updates executed (including those of network partitioned clients). As expected, the results

show that during the disconnection period, GDriveRT clients no longer receive new updates,

as the fraction of updates received decreases over time. When connectivity is re-established

(as iptables rules are removed), GDriveRT is able to recover as clients can again synchronize

with the servers. With Legion, as updates are propagated in a peer-to-peer fashion, the fraction

of updates received is always close to 100% as client-server-client is no longer the only path

operations can take.

We note that while servers remain inaccessible, new clients cannot join the network. However,

when leveraging Legion, clients that are active when the server becomes unavailable can continue

operating as normal without noticing the server unavailability – nevertheless the application is

noti�ed of this disconnection and, depending on the application, can opt to inform the user of

such events.

3.3.2.4 Network load

We now study the network load induced by our approach. To this end, we run experiments

where 16 clients share a map object and where each client executes one update per second. The

workload is as follows: 20% of updates insert a new key-value pair and 80% replace the value

of an existing key selected randomly. The keys and values are strings of respectively 8 and 16

characters. We measure the network tra�c by using iptraf, an IP network monitor. In these

experiments, we used the following con�gurations to obtain the results presented in Figure 3.6:

• Legion w/ Node.js: uses our own Legion server as backend for both signaling and durability,

also leveraging peer-to-peer connections;

• Legion w/ GDriveRT: uses GDriveRT documents as backend for durability and signaling

through the adapters instead of running our own servers, while also leveraging the peer-

to-peer connections provided by Legion;
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Figure 3.6: Server network load comparing Legion to GDriveRT.

• GDriveRT: uses the unmodi�ed GDriveRT API and original documents as backend.

Figure 3.6a shows the total aggregated network load of the setup process, which entails making

the necessary connections to the infrastructure and peer-to-peer connections. The incurred load

using our own backend server is due to clients requiring to use this component to connect to

each other initially (the overhead from WebRTC signaling – note that all tra�c, including that to

STUN servers, is captured). Legion using GDriveRT as a backend has a slightly higher cost due

to the overhead of performing signaling through the GDriveRT infrastructure (encoded within

documents), which is less e�cient than performing this through our server implementation. In

both cases using Legion, only few clients obtain the initial object which is then propagated to

other clients using the established peer-to-peer connections. Finally, in GDriveRT each client

downloads the shared data directly from the infrastructure but as signaling is not executed (as

no peer-to-peer connections exist), the overall bandwidth usage is lower.

Figure 3.6b shows the continuous network load on the server without considering the initial

setup load (computed by adding the tra�c of all clients to and from the centralized infrastructure)

for all competing alternatives. The results show that the load imposed over the centralized

component is much lower when using Legion with GDriveRT as backend than when using only

the non-modi�ed GDriveRT. This is expected, as only a few clients (active clients) interact with

the GDriveRT infrastructure, being most udaptes propagated among clients using the established

client-to-client connections. Interestingly, the use of our server leads to an even lower load on

the centralized component, this happens because the signaling mechanism used to establish new

WebRTC connections among clients and the process for replica synchronization with the server

is much more e�cient.

For Figure 3.6b we run an additional con�guration (Legion w/ GDriveRT w/ Legacy) that not

only uses GDriveRT documents as backend but also synchronizes with the original document

to support legacy clients – those working with the original document without using Legion.

Supporting legacy clients incurs a non negligible overhead because the mechanism used requires

a large number of accesses to the centralized infrastructure as to infer which operations should be

carried from legacy clients to the Legion clients and vice versa. We execute this process every 5

seconds – there is a tradeo� when using smaller intervals to reduce update propagation latency as
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Figure 3.7: Client-to-client bandwidth usage (average).

it has a direct impact on used bandwidth. However, even with support for legacy clients enabled,

Legion induces lower load on the centralized component when compared with GDriveRT.

Figure 3.7 reports the average peer-to-peer communication tra�c for each client during the

setup of WebRTC connections (Setup) and while clients issue and propagate operations (Oper-

ations). The results show that the tra�c at each client is larger than the tra�c at each client

interacting with only GDriveRT (which can be approximated by dividing the server load – in

Figure 3.6 – by the number of clients). This happens not only because clients use one another for

signaling – which becomes negligible during Operations phase as the network is mostly stable

– but because our dissemination strategy has inherent redundancy due to multiple propagation

paths. In GDriveRT there are no redundant transmissions between each client and the centralized

infrastructure. We note that an average of under 14KBps does not represent a signi�cant fraction

of available bandwidth nowadays for any kind of client device (even mobile devices can easily

deal with multiple MBps, even when using mobile data instead of Wi-Fi).

We additionally measured the di�erence in network bandwidth usage between distant or

nearby peers. The use of our location aware overlay leads to a network usage pattern where the

amount of data sent to distant nodes is signi�cantly lower that that sent to nearby nodes. This

allows us to obtain a signi�cant reduction in used bandwidth among clients while not having a

major impact on latency. The reason for this is due to local area network latency being under

one ms which allows for very fast propagation, where additional redundant propagation to far

away replicas would not have a great e�ect on overall latency – shaving of a couple of ms from

a 83 ms average (the average measured using ping during our experiments) is not signi�cant

considering the cost (additional network load due to redundancy).

3.4 Related work

This work has been in�uenced by prior research in multiple areas:

Internet services Internet services often run in cloud infrastructures composed by multiple

data centers, and rely on a geo-replicated storage system to store application data [46, 60, 67, 96].

Storage systems often adopt strong consistency models, such as parallel snapshot isolation [45]

and linearizability [46], where concurrent (con�icting) updates are not allowed without some
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form of coordination. In our context the algorithms used to coordinate access to data storage

for executing each update are prohibitively expensive for high throughput and large numbers of

clients (manipulating the same set of data objects).

In contrast, some storage systems provide weaker consistency models allowing for high-

availability under network partitions, such as eventual consistency [48] and causal consistency [62,

96–98] – this allows for clients to apply updates on di�erent replicas concurrently and without

coordination. In our case, to provide causal consistency, we must adapt to a setting where we can

have a very large number of replicas writing on the data (replicas at each client and propagating

changes in a peer-to-peer manner) – in this setting replica failures and reconnections are very

common, which the referenced works do not address e�ciently.

Collaborative applications Several specialized applications support collaboration across the

Internet by maintaining replicas of shared data in client machines, such as Etherpad [24] which

allows clients to collaboratively edit text-documents. Google Drive Realtime [38] and ShareJS [37]

are generic frameworks that manage data sharing among multiple clients – these allow to create

applications for realtime collaboration on shared objects. Similar to these systems, Legion keeps

replicas locally but allows both for continued operation even when disconnected and for client-

side replicas to synchronize directly.

The referenced works [24, 37, 38] rely on centralized infrastructure to mediate interactions

among clients and internally use operational transformation [52, 53] for guaranteeing eventual

convergence of replicas. In contrast, our work relies on CRDTs [59] for guaranteeing data con-

vergence while allowing clients to synchronize directly among them. Collab [99] is an example

allowing for peer-to-peer but relies on browser plugins installed by the user to allow clients to

synchronize among each other, while being limited to connections on the same local network.

Our work uses standardized and widely supported techniques for supporting collaboration over

the Internet, requiring no installation by the end user, and allowing interaction with existing

Internet services.4

Replication at clients While many web applications are stateless, fetching data from servers

whenever necessary, a number of applications cache data on the client for providing fast re-

sponse times and support for disconnected operation. For example, Facebook supports o�ine

feed access [68] and Google Maps may be used o�ine as long as maps are locally cached – such

applications cache state from the server and do not allow the user to update state. In contrast, the

previosuly discussed collaborative systems mostly allow for local replicas which may be edited.

Several systems that replicate data in client machines have been proposed in the past. In the

context of mobile computing [69], systems such as Coda [51] and Rover [71] support disconnected

operation relying on weak consistency models. Parse [70], SwiftCloud [65] and Simba [66] are

recent systems that allow applications to access and modify data during periods of disconnection.

While Parse provides only an eventual consistency model, SwiftCloud additionally supports

4

From http://iswebrtcreadyyet.com, all major browsers support Legion’s requirements when this was written.
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highly available transactions [72] and enforces causal consistency. Simba allows applications to

select the level of observed consistency: eventual, causal, or serializability. In contrast to these

systems, our works allows clients to synchronize directly with each other, thus reducing latency

of update propagation and allowing collaboration when disconnected from servers.

Bayou [64] and Cimbiosys [73] are systems where clients hold data replicas and that exploit

decentralized synchronization strategies (either among servers [64] or clients [73]). Although

our work shares some of the goals and design decisions with these systems, we additionally

focus on the integration with existing Internet services. This poses new challenges regarding the

techniques that can be used to manage replicated data and the interaction with legacy clients,

namely because most of these services can only act as storage layers (i.e., they do not support

performing arbitrary computations).

Peer-to-Peer systems and Fog Computing Extensive research on decentralized unstructured

overlay networks [84–86] and gossip-based multicast protocols [81, 86] have been produced in the

past (as detailed in Section 2.4). Although our design for supporting peer-to-peer communication

among clients builds on previous designs, so far it mostly di�ers in the way we promote low

latency links among clients and leverage the centralized infrastructure to e�ectively handle faults.

Additionally, our system e�ectively uses the peer-to-peer network to increase server capacity

(Section 3.2.2).

Fog Computing [100, 101], a variant of cloud computing where the cloud is divided into smaller

cloud infrastructures located in the user vicinity, is a close topic to our research. Most research

on Fog Computing approaches Internet of Things as their use case (i.e., networks of sensors and

actuators, often wireless) – the aspects not explored in our work, such as device heterogeneity

and battery management, can easily be adapted. Nevertheless, many of these aspects go hand-

in-hand with our work and can be applied together to acomplish the same goals we aim for –

for example, bringing ‘cloudlets’ closer to end users can drastically reduce latency for security

related aspects, as we will discuss in Chapter 5.

3.5 Final remarks

In this chapter we presented the design of Legion, a framework that materializes the proposed

cloud-edge hybrid model, allowing the development of web applications with seamless support

for replication at the client’s device leveraging peer-to-peer interactions to propagate operations

among clients.

Furthermore, we presented the design of adapters that enable Legion to leverage existing inter-

net services. We showcase an implementation of adapters for Google Drive Realtime (GDriveRT),

namely to provide: a) a storage backend; b) WebRTC signaling; c) authentication and key manage-

ment; d) exposing an API akin to that of GDriveRT; e) a mechanism to support the co-existence

of legacy clients.

The evaluation of our prototype shows that latency for update propagation is much lower

using Legion when compared with the use of GDriveRT. We show the impact this can have on
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an application usability, using a multiplayer Pacman game. Furthermore, load to the centralized

infrastructure can be greatly reduced by leveraging peer-to-peer interactions. Finally, we show

that clients are able to interact while servers are temporarily unavailable.

3.5.1 Derivative works

As detailed in Section 3.1.4, Legion supports adapters which allow for the usage of previously

existing infrastructure or for modi�cations to the internal behaviour of Legion. Additionally,

Legion’s CRDT library can trivially be expanded with additional implementations. This modular

approach of Legion allowed for the following works.

Networking Adapters to change the default networking of Legion, either by implementing

di�erent overlay networks (1, 2, and 3) or by modifying client-server connection frequency (4).

1. Rafael Seara (2015/2016) – Research program for bachelor students – Structured peer-to-

peer overlays (Chord) on Legion;

2. Francisco Magalhães (2015/2016) – Research program for bachelor students – Unstructured

peer-to-peer overlays (HyParView) on Legion;

3. Frederico Aleixo (2019/2020) – Research program for bachelor students – Location aware

peer-to-peer networks and an initial approach to partial replication on Legion;

4. Filipe Luis (2017/2018) – MCs Thesis – Coordination of clients to lessen server load (e.g.,

�ash-crowds) using Legion’s peer-to-peer networks.

Integrating with other backend systems Adapters to replace or work in addition to Legion

and GDriveRT’s storage adapaters.

1. André Rijo (2015/2016) – Research program for bachelor students – Integrating Legion with

Redis;

2. Pedro Durães (2016/2017) – MCs Thesis – Integrating Legion with AntidoteDB;

3. João Martins (2019/2020) – Research program for bachelor students – Integrating Legion

with PotionDB.

Other Implementation of Legion subsystems in Java for usage in mobile, including also compos-

able CRDTs (1). Adapters for both storage and networking to allow for storage and dissemination

of static objects (2). CRDT implementations with access control, including changes to the data

propagation adapters to apply additional security checks (3).

1. Sara Simões (2018/2019) – Research program for bachelor students – WebRTC between

mobile and browsers and designing composable CRDTs in java, integrating with Legion’s

JavaScript versions;
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2. Francisco Fernandes (2017/2018) – MCs Thesis – Caching built on client-side peer-to-peer

replication (Legion);

3. Tiago Costa (2016/2017) – MCs Thesis – Secure eventual consistency between Legion client

replicas.
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Chapter 4

Client-side replication

Client-to-client connections allow for disconnected operation from the server and increase system

scalabilty as clients can coordinate directly reducing server load. In Chapter 3 we put this idea

in practice and obtained experimental results (the Legion system).

In particular, client-side replicas allow for 0-latency local operations and low latency for

interacting with other nearby replicas, as we allow for peer-to-peer replica synchronization

among client devices. This chapter explores highly-available client-side replication.

One important aspect of such a system is managing consistency of the data. Consider appli-

cations which use cloud infrastructure backends. These may use geo-replication for providing

high availability and low latency to clients and, to be able to continue operating during network

partitions, these systems must adopt weakly consistent data replication protocols [43]. Such

protocols allow replicas to be modi�ed concurrently, requiring some reconciliation mechanism

to merge concurrent updates.

Our system model, based on client-side replicas, must also somehow deal with the CAP

theorem. We expect network partitions to be frequent, possibly over extended periods of time,

and highly irregular in terms of which (groups of) replicas are a�ected. Additionally, a major

aspect is that the client-side replicas must be able to act on their own, without coordination

with other replicas being necessary to apply changes to data. In this chapter we explore causal

consistency, which can allow for high availability under the presence of network partitions.

Causal consistency can be described, at a high level, as enforcing clients to always observe

a state that respects happens before relationships among operations [49]. Causal consistency

is an important consistency model as it was proved that it provides the basis for the strongest

semantics that do not compromise both availability and convergence [102, 103].

We start the chapter by discussing causal consistency (Section 4.1) with a focus on how it is

typically implemented (Section 4.1.1) and its associated costs (Section 4.1.2).

We then explore con�ict-free replicated data types (CRDTs) (Section 4.2) and detail how we de-

signed (Section 4.3) and evaluated (Section 4.3.1) ∆-CRDTs to be used with Legion (Section 4.3.2).

Note that this chapter has no speci�c focus on partial replication, which is explored in Chap-

ter 6. Additionally, managing user (mis) behaviour under weak consistency is explored in Chap-

ter 5.
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4.1 Causal consistency

Causal consistency is a consistency model that can be described, at a high level, as enforcing

all replicas to always observe a state that respects the happens before relationships among op-

erations [49]. Considering any two operations o1 and o2 such that o1 ≺ o2, where ≺ is the

partial order that encodes the happens before relationship, causal consistency forbids any replica

to observe the e�ects of o2 without having already observed the e�ects of o1. We say that an

operation o1 happened before operation o2, o1 ≺ o2, i� o2 was generated in some replica r while

o1 had already been executed in r. Furthermore, we say that o1 ≺ o3 if there exists an operation

o2 such that o1 ≺ o2 and o2 ≺ o3.

Many algorithms have been proposed to enforce causal consistency (or implement causal

dissemination) [43, 44, 49, 50, 58, 62, 64, 66, 96, 97, 102–130].

Causal+ [96, 102] consistency is an extension to causal consistency. A system providing

causal+ consistency not only respects the causal dependencies between operations, but also

determines that a con�ict handling component must be present to ensure that replicas converge.

Con�icting updates to a data item are dealt with in such a manner that clients see a causally-

correct, con�ict free, and always progressing data state.

As we see later, Legion provides Causal+ consistency (Section 4.3.2).

4.1.1 On version vectors and direct dependencies

To be able to characterise dependencies among operations, the overall metadata size depends

on the number and connectivity of the replicas in the system [114] – we refer the reader to [131]

for a general discussion on the costs and bene�ts of di�erent methods to track causality. As

characterising causality is often required, two of the most popular techniques to implement

causal consistency consist in using version vectors [50, 104, 105, 108] and direct dependency

graphs [109, 117].

When using version vectors, the dependencies of each operation are summarized in a vector

that states which operations have happened before the operation was generated – each position

in the vector is assigned to a replica which allows it to encode which operation has been included

from that replica. Using direct dependencies, each operation instead includes only the information

(such as identi�ers) on the concurrent operations that have been executed before their generation.

As dependencies are transitive, it is possible to build the complete dependency graph of operations

using only direct dependencies.

Figure 4.1 depicts how both version vectors and direct dependencies can be assigned to op-

erations. Mattern [108] presents a detailed exploration of the happens before relation, realtime,

and vector-time (version vectors) and Baquero and Preguiça [132] has a more recent discussion

on compressing causal histories.

Notice that the choice of technique used has a direct impact in the metadata size of an oper-

ation. For example, if the number of replicas is very high then using version vectors becomes

impractical, where direct dependencies would allow for less metadata usage. Direct dependencies
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Figure 4.1: Common techniques to implement causal consistency using version vectors [50, 104,

105, 108] and direct dependency graphs [109, 117]. oRN
B

A

means operation number N from replica

R would be created with either version vector A or direct dependencies B. For example, the

operation oC2 may be executed at a replica when the replica’s local clock is greater or equal to

[2,2,1], meaning it executed at least two operations from both replicas A and B, and one operation

of replica C. When using direct dependencies, oC2 may execute as soon as both oB2 and oC1 were

executed. The condition for execution is e�ectively the same, only represented di�erently.

are also easier to reason about when considering dynamic membership changes – as the asso-

ciated metadata has no speci�c structure. As a counter-point, a version vector does summarize

all of the dependencies, where with direct dependencies the causal graph has to be traversed to

obtain the same information.

4.1.2 On characterising versus providing causal consistency

In 1991, Charron-Bost [114] proved that to provide the ability to check for concurrency in causal

consistency (i.e., characterising causality or verifying causal independence of operations), the

necessary metadata attached to any operation is on the order of the amount of replicas which

can apply writes to the system state, assuming all replicas can synchronize pairwise. An intuitive

example is that in a system with N replicas, N is the maximum amount of concurrently created

operations, without dependencies among each other, that have to be tracked at any given time.

This result may lead to the impression that causal consistency is intrinsically costly and non

scalable. – the algorithms proposed to enforce causal consistency typically associate with each

operation metadata, which is used to guarantee that an operation is not executed if its execution

would break causality.

Interestingly, if the system simply aims to provide causal consistency, being able to charac-

terise causality is not at all important, as long as operations are delivered respecting their causal

order. Enforcing causal consistency is equivalent to enforcing that operations are delivered (and

executed) and that delivery (or execution) respects the causal order across all replicas.

In a system that aims to provide causal consistency, a property that typically also needs to

be enforced is reliability: guaranteeing that every operation submitted is eventually executed in

every replica. To enforce reliability, algorithms also need to use some metadata.

4.1.2.1 Centralized networks

A simple way to enforce causal consistency is to use a central or specialized replica for propagating

operations – this approach is used, for example, in CVS [133] and subversion [134]. A simple
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algorithm follows.

Every replica has a FIFO channel with the central replica and every operation generated at

each replica is propagated to the central replica using the FIFO communication channel. The

central replica receives the operations from each channel in order, and adds it to the outgoing

queue of every other replica atomically. Operations are propagated to replicas asynchronously

using their respective FIFO channels.

This algorithm enforces causal consistency because: (i) any two operations generated at a

replica execute in the same order across all replicas, as they are propagated through FIFO channels

and processed in the order in which they are received; and (ii) when an operation is generated

at a replica, all operations which are locally known (the happens before operations) are already

in the outgoing queues to the other replicas, thus guaranteeing that they will be executed before

the operation that is currently being generated.

Note that, in a run without faults, no metadata is necessary at all to enforce causal consistency.

Considering that replicas and channels can fail, we would need some metadata to guarantee

causal consistency. Independently of the failure recovery algorithm, it seems clear that the

recovery process would need to determine if a given operation had already been propagated

or not, for which it would need that each operation can be identi�ed with some unique identi�er.

Lamport clocks [49] can be used to create unique identi�ers – for example, composed of the pair

(replica:timestamp) – which would allow to enforce reliability. Recovering from faults can

then be performed as follows.

For faults in communication channels, when creating a replacement channel, replicas start

by exchanging the identi�er of the last message they have received from the remote replica. Each

replica resumes sending messages in the queue for the remote replica starting with the message

following the one that the remote replica sends initially. Note that some care has to be given to

remove messages from the queue – messages may be removed when they are acknowledged by

the remote replica.

For faults in replicas, in a crash-recovery model, when a replica recovers with its previous

state, it only needs to resume the propagation of channels by executing the previous channel

recovery process for every channel it has. For recovering from a de�nite fault of the central

replica, each replica can replay its log – when receiving an operation, all replicas (including the

central replica) discard operations they have already received (duplicate checking is trivial with

uniquely identi�ed operations).

These mechanisms allow for causal consistency to be enforced without any additional meta-

data over that already required to enforce reliability.

When reasoning why using a central replica is su�cient to enforce causal consistency, we can

conclude that it is due to the fact that when an operation goes through the central replica, all of

its dependencies had already been propagated by that central replica to all other communication

channels (or added to the respective queues). We can extend this idea and, instead of using a

central replica connected to every other replica for propagating operations, use a dissemination
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tree connected by FIFO channels.1

Similarly as the previous algorithm, each replica receives operations from each of its channels

in order. When a replica receives an operation, it atomically both delivers the operation locally

and puts it in the outgoing queues of every other channel. Additionally, the creation of a new

local operation leads to it being atomically added to the outgoing queue of every channel which

that replica has.

This guarantees that when an operation is added to a channel’s queue, all of its dependencies

have already been propagated through the channel (in one or the other direction) or are queued

ahead of that operation in the channel. This approach is used by Saturn [62] to enforce causal

consistency in partially replicated databases, by propagating operations through all channels that

will reach replicas interested in the operations.2

In this algorithm, again, there is no need for any metadata to enforce causal consistency in a

run without faults – the way messages are propagated guarantees that they will be received in

causal order. Recovering from faults would be more complex than in the central replica scenario,

but the same techniques as before can be adapted, while relying on Lamport clocks for uniquely

identifying operations.

Given this, we can conclude that no additional metadata overhead is necessarily imposed to

provide causal consistency when already enforcing reliability – we only require messages to be

sent and received in a speci�c order.

The next step is reasoning on system models without specialized replicas or �xed network

topologies. Ideally, causal consistency is provided in any graph the network forms among replicas.

4.1.2.2 Decentralized networks

We now consider the more general case where any pair of replicas can communicate with each

other to propagate operations. Two classical approaches are used to enforce causal consistency

in this setting.

In the �rst, proposed by Lamport [49], operations are tagged using a Lamport clock and an

operation can only be executed after it is known that there is no operation to be received with a

smaller Lamport clock. This knowledge is called stability – an operation is deemed stable once

is it globally safe to be executed and no causality violations would occur.

The approach based on every replica communicating with every other replica [49, 115] is as

follows. If every replica communicates with every other replica directly, and replicas propagate

local operations in order, when a replica r1 receives an operation o with clock t from r2, it knows

that it has already received all operations which could be causal predecessors with clocks smaller

than t from r2. A replica r1 can execute operation with clock t from replica r2 after it has an

operation with clock larger or equal to t from all other replicas (with operations executed in clock

order). This approach does not need any speci�c information to enforce causal consistency, but it

requires every replica to communicate with every other replica to execute the stability process –

1

The overhead of maintaining a tree, possibly per partition, is orthogonal to the metadata cost of reliability.

2

Saturn actually only propagates unique identi�ers of the operations through the specialized channels, and

propagates operations directly among replicas, separating operation data and metadata.
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this is not only costly and time-consuming, but impractical in large or unreliable networks where

not every replica can communicate directly with every other replica.

To not require all replicas to communicate to all other replicas, one approach is to use vector

clocks, where every operation includes a vector clock that records the exact operations an opera-

tion depends on [50, 105–110, 112–114]. When receiving an operation, a replica can locally verify

if all dependencies are satis�ed and, if not, it knows exactly which operations are missing. When

compared with the previous approach, this trades having speci�c metadata to enforce causal

consistency for being faster in determining when it is safe to execute an operation.

Direct dependencies [96, 109, 117] can be used as a compressed history instead of using version

vectors which can become large when multiple replicas are able to create operations. Each

operation is tagged with its direct dependencies – the last operations to have been locally applied

which are concurrent among each other. Attaching direct dependencies to operations allows

for the same guarantees, but requires replicas to keep the causal graph in memory for e�cient

recovery.

Operations list We now show that it is possible to avoid both executing a complex stability

processes or having additional metadata to enforce causal consistency. The only metadata cost,

or overhead from the algorithm, is the one already required to provide reliable delivery.

We start by presenting a non-optimized version of an algorithm similar to the CBCAST

protocol (proposed by Birman and Joseph [106]) and then discuss possible ways to optimize it.

In our algorithm, every replica keeps an ordered list of operations it has previously executed.

The key idea is that the list of operations maintained in each replica respects causality, i.e., all

dependencies of an operation o appear before o in the list.

When an operation is created at a replica, the operation is appended to the list. This maintains

the list causally ordered with respect to locally created operations.

One replica communicates with any other replica by sending it the full ordered list of opera-

tions. When receiving a list of operations from a remote replica, the replica iterates through the

list in order and for each operation, if it is not in the local list, it appends the operation to the

local list. The local list thus remains causally ordered as, when an operation is added to the local

list, all operations which appear before in the received list are already in the local list. Thus, all

dependencies of newly applied operations are always satis�ed.

For executing this algorithm, it is only necessary to be able to check if an operation is already

in a list. As before, we only need to assign an unique identi�er to each operation – which would

be also necessary to enforce reliable delivery of operations.

This algorithm trivially tolerates network faults (albeit very ine�ciently) and also allows

replicas to recover from failures if operation lists are kept in durable storage.

Thus, causal consistency is adding a grand total of zero additional metadata over that required

for reliability. This algorithm has another interesting property: it is possible to remove or add

new replicas to the network, at any moment and in a decentralized way, which is not at all the

case for algorithms that need to execute a stability process.
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Minimizing the list Although from the theoretical point of view the previous algorithm has

interesting properties, propagating every single operation in every communication step is not

acceptable in practice. It is clear that when a replica propagates its full list of operations to a

remote replica, it actually only needs to propagate the operations that are still not known by

the remote replica (as already known operations are ignored when they are received). Several

techniques can be used to minimize the operations to be sent.

First, when a replica sends operations to a remote replica, and the reception is acknowledged,

it can locally record that information – for each remote replica, it would su�ce to maintain the

last position of the local list that was acknowledged remotely. Thus, each replica will send each

operation only once to a remote replica (in the absence of failures). Second, when a replica

receives an operation from a remote replica, if it already knows the operation, it can also record

that the remote replica already has that operation.

Previous works with similar mechanisms [106, 110] require every replica to store information

about every other replica. Global knowledge about every replica is impractical and a solution

which permits any pair of replicas to e�ciently communicate is preferred. Our algorithm only

keeps such information for every currently connected replica, but still needs to e�ciently handle

new connections (or recover from failures).

Alternatively, when two replicas synchronize, they can start by propagating a summary of

locally known operations – e.g., propagating checksums of the ordered list as in anti-entropy

epidemic communication [135]. This last optimization is typically more interesting when syn-

chronising with a replica for the �rst time (or after a long period without direct communication).

Note that large amounts of operations, if uniquely iden�tied with a (replica, counter)

pair, with counter starting at 1 and incrementing with each generated operation, can e�ciently

be summarized into version vectors. Version vectors can then trivially be used to verify from

which position in the list the operations have to be propagated, while possibly skipping those

operations already present in the vector.3

As we discuss further ahead, Legion uses version vectors to synchronize when stablishing

new connections. Detailed in Section 4.3.2, these vectorts are used to ensure replicas synchronize

objects e�ciently among them and afterwards, using the established connection, propagate

individual operations without metadata overhead.

In systems with a large number of replicas, it is also possible to use mechanisms to minimize

the size of vectors transmitted [112, 116, 136], reducing the overhead of initially sending the vector.

We note that if we want to enforce reliability in the same setting, similar techniques must be

used.

Thus, when aiming to enforce reliability, and by only carefully deciding the order in which

operations are propagated, we can enforce causal consistency without any additional metadata

overhead. This is a very important result as, when reasoning on client-side replication, any

associated costs that scale up with the order of replicas in the system has a major impact – the

3

Some care has to be taken into which data-structures are used to ensure computational complexity remains low,

but that discussion is orthogonal to the point we wish to make.
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amount of client-side replicas is multiple orders of magnitude higher than that of server-side

replicas.

4.2 Con�ict-free replicated data types (CRDTs)

When reasoning about causal consistency, one aspect that has a major impact on applications is

how concurrent and con�icting operations are dealt with. One simple example is a shared map,

where two replicas concurrently write a di�erent value to the same key. When aiming to provide

causal+ consistency, the system must guarantee that replicas converge in the presence of such

concurrent and con�icting writes.

There are many ways to handle con�icting writes emitted concurrently at remote replicas.

Some con�ict resolution techniques require replicas to be instrumented with merge procedures

(Bayou [64] and Coda [51]), or alternatively, require replicas to expose diverging states to the client

application which then reconciles and writes a new value (Dynamo [48] and SwiftCloud [65]).

The programmer must decide what to do when con�icts arise, for example, in an e-commerce

application, concurrent updates to a shopping cart can be merged into a single uni�ed shopping

cart.

Con�ict-free replicated data types (CRDTs) have been proposed as an approach for providing

general purpose replicated data types that guarantee eventual convergence leveraging commuta-

tivity [31, 58, 59]. For example, a counter CRDT converges because the increment and decrement

operations commute. No coordination is required to ensure convergence and thus updates al-

ways execute locally and immediately, un-a�ected by network latency, faults, or disconnections.

CRDTs can typically be divided in two classes: state-based and operation-based, where both

guarantee to eventually converge (when all updates are received by all participating replicas).

CvRDTs, state-based Convergent Replicated Data Types, are CRDTs where replicas synchronize

by exchanging their state. This approach requires only eventual communication between

pairs of replicas. The successive states of an object should form a monotonic semi-lattice

and replicas merge state by computing the least upper bound.4 Replicas exchange their full

local state (including metadata) when synchronizing with any replica. This is ine�cient

when the size of these data objects grow signi�cantly (for instance, in a large Set, the full

Set needs to be propagated whenever a single element is added).

CmRDTs, operation-based Commutative Replicated Data Types, are CRDTs where replicas syn-

chronize by exchanging operations. This approach requires a reliable broadcast communi-

cation mechanism to provide causal delivery for commutative operations. Operations are

commutative resulting in a single uni�ed state when all operations are executed at every

replica, independent of execution order. Instead of exchanging the full state, replicas only

propagate among them the operations that mutate their state. As operations have to be

propagated respecting the causality of operations, which not only introduces additional

4

A monotonic semi-lattice is graph or partially ordered set of states which are monotonically increasing.
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overhead (to keep track of causality) this also �ts poorly in scenarios where there are large

number of replicas, especially if communication patterns among these replicas are highly

dynamic, for instance, due to poor connectivity among these replicas.

Both classes (state and operation based) have large associated costs that, again, scale up with

the order of replicas in the system.

An alternative, named δ-CRDTs [137], has been proposed as a middle ground between the

two approaches to try to mitigate the overhead introduced by the tracking of causality. δ-CRDTs

assume that communication is mostly pairwise, with each replica maintaining a communication

bu�er for each of its peers where it stores all operations that have not been propagated to (and

acknowledged by) the remote peer. These bu�ers are used to compress multiple operations

into a single delta (δ), enforcing FIFO communication semantics between each pair of replicas.

Whenever a new synchronization path is established between two replicas, the whole state of

both replicas has to be synchronized by resorting to a mechanism similar to that employed in

state-based CRDTs. Thus, this approach works well, although only in settings with continuous

and static synchronization patterns among replicas.

When communication patterns are highly dynamic the existing designs of CRDTs incur in

excessive communication overhead. This is because originally neither of CvRDTs, CmRDTs, nor

δ-CRDTs were designed to cope with our system model: client-side replicas with possibly high

network churn, leading to ine�cient CRDT usage.

This is clearly an issue that comes from the system model – client-side replicas come in large

numbers and their communication patterns are highly dynamic. Thus, the existing classes of

CRDTs provide the required guarantees (causal+ consistency), but are not suitable (e�cient) for

our system model.

4.3 ∆-CRDTs

We proposed a new design for CRDTs which we call ∆-CRDT, and experimentally show that

under dynamic communication patterns this design achieves better network utilization than the

existing alternatives.

∆-CRDTs were speci�cally designed to support dynamic communication patterns among

a potentially large number of replicas, and removes the assumption that pairs of replicas are

continuously communicating to synchronize their state. Additionally, ∆-CRDTs do not resort

to specialized pairwise communication bu�ers, minimizing the space overhead imposed over

each individual replica. Instead, we use the internal CRDT metadata to compute a minimal Delta

that needs to be propagated to a remote replica, based on a causal context (usually, a vector

clock) that replicas exchange.5 Due to this, ∆-CRDTs are well suited to be used in decentralized

dissemination protocols, such as gossip protocols.

Practical use of CRDTs shows that they can become ine�cient over time. For example, many

CRDT designs that aim to provide collections, such as Lists or Maps, accumulate tombstones

5

Riak support for big sets uses a similar idea for e�ciently identifying removed elements [138].
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leading to internal data structures becoming unbalanced [59]. To mitigate this issue garbage

collection can be performed using a weak form of synchronization, outside of the critical path of

client-level operations.

∆-CRDTs also maintain additional metadata – the tombstones of removed elements of col-

lections (e.g., Lists, Maps, and Sets). Contrary to the alternatives, in ∆-CRDTs, this metadata

can be garbage collected locally at any time – and thus the local storage overhead imposed on

replicas can be cleared without any coordination – at the price of being unable to synchronize by

sending only a Delta when the garbage-collected information is needed for computing the Delta.

If this happens, the full state needs to be exchanged (as is always the case when starting a new

connection in δ-CRDTs).

∆-CRDTs are replicated by propagating a Delta (∆) of the current state that is missing the

peer replica. To compute the ∆, a getDelta function is called with the causal context of the

replica which initiated the communication (which might be missing updates). This causal context

can be sent by a requesting replica (pull model) or, when local operations are performed, sent to

other replicas (push model).

Figure 4.2 shows how ∆-CRDTs can be used to create a synchronization protocol. A replica

r1 receives a causal context (typically a version vector) from replica r2 and computes a ∆ that

is to be shipped back. A replica r1 can receive a version vector from replica r2 where there is

no is newer than relationship between the received and its own context (i.e., the relationship is

bidirectional). This means that both replicas r1 and r2 have (concurrent) operations that the other

has not yet seen, and thus both a ∆ and a causal context have to be shipped (as to ensure replica

r2 also computes and sends a ∆ back to replica r1). In the case that one replica is strictly newer

than another an empty ∆ is computed and instead only a causal context has to be shipped (in

order to fetch missing operations).

To create a ∆-CRDT, the following methods have to be implemented:

• a delta function must be implemented to be able to compute a ∆ from a given point in

time (from a causal history, typically in the form of a version vector);

• an applyDelta function must be implemented which applies a given delta to the current

state.

For some data types, implementing these functions might require to store signi�cant amounts

of metadata. Hence these functions should be carefully crafted to avoid such pitfalls.

In the case of container like data types, such as Sets and Maps, CRDTs typically associate

a unique timestamp to each data item. To avoid concurrent add-remove anomalies, these data-

types can use a remove-set of unique timestamps, which are called tombstones. In our ∆-CRDTs

we use as unique timestamp pairs of replicaID and operationNumber. This ensures that each

existing data item and tombstone can be compared (through the identi�ers) to any given version

vector (as to be before or after that point).

Causality is maintained by the same principle associated with shipping the whole state when

using state-based CRDTs. getDelta always returns a complete ∆ and thus all missing operations
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1: upon onVersionVector(vv, replica) do
2: ∆←− self.state.getDelta(vv)

3: if ∆.size() > 0

4: replica.send(∆)

5: optionally do (push model)
6: if vv after self.versionVector

7: replica.send(self.versionVector)

8: upon delta(∆) do (atomically)

9: self.state.applyDelta(∆)

10: self.versionVector.update(∆)

11: periodically do (pull model)
12: r ←− randomReplica()

13: r.send(self.versionVector)

14: on local operation do (push model)
15: r ←− randomReplica()

16: r.send(self.versionVector)

Figure 4.2: ∆-CRDT replication mechanisms. Here, and in our implementation for the evaluation,

version vectors are used for simplicity. Other forms to encode causal histories [132] could be used

to the same e�ect.

on the other replica are sent in a single message. A ∆ is always added to the local state in a single

execution step (during which no other methods are able to access the internal data-structures),

and thus causality is maintained. Note that when two replicas are synchronized, or when a replica

receives a causal context that is in its future, the generated ∆ will be empty.

To be able to compute the Delta from a given causal context, ∆-CRDTs need to maintain

metadata about deleted elements (note that δ-CRDTs maintains such information in the pairwise

communication bu�ers). As the internal state of a CRDT grows due to application operations,

the amount of accumulated tombstones typically rises continuously, using storage space but not

contributing to useful application data. In order to keep the amount of wasted space small we

remove old metadata periodically (we provide a mechanism to garbage collect old tombstones).

A garbageCollection function is required to be implemented by CRDTs which should re-

move old metadata associated with all operations that happened before a given point in time (the

causal history is the only argument – a version vector in the common case).

When garbage collection occurs, the previously described applyDelta function has to be able

to infer if some portion of the current local state is outdated (i.e., removed data items whose’s

tombstones have been garbage collected). Using a ∆, the included version vector of the ∆,

and the garbage collection point of the other replica (which is also included within the ∆), the

applyDelta functions are able to correctly infer which data items locally exist, but were removed

on the other replica.

The getDelta function is also adapted and must be able to handle the (typically rare) case

where the local replica’s garbage collection point is further ahead in time than the sender’s causal
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context. In this case, a ∆-CRDT falls back to a state-based CRDT merge procedure, where the

whole state, including the causal context of the last garbage collection step, has to be shipped

and integrated by the remote replica. Note that this returns a regular (albeit bigger) Delta and

can be applied normally at the receiving replica.

The main drawback of using ∆-CRDTs as de�ned in Listing 4.2 is expected to be an increase

in latency for replicas to receive operations. Typically state-based CRDTs and operations-based

CRDTs use a push model to propagate local changes to a replica. Though these data-types are

able to immediately send the changes, ∆-CRDTs need an additional communication step between

replicas. A causal history is sent �rst – typically a version vector – and then a ∆ is sent back

which can be locally applied. A version vector can also be piggy-backed along with the delta, as

to ensure the initiating replica also ships any locally applied changes that the remote replica has

not yet received. Note that when ∆-CRDTs are used with stable communication patterns, the

additional communication step can be paid only when establishing the connection and then a

model similar to operation or δ based propagation su�ces.

When used in a scenario with dynamic communication patterns and compared to δ-CRDTs,

∆-CRDTs have the following advantages: (i) ∆-CRDTs do not require each replica to maintain

a bu�er for each of its connections; (ii) by using the information initially exchanged, a replica

will only send the minimal Delta needed by the remote replica, instead of sending all the infor-

mation stored in the CRDT (that might have arrived to the remote replica through a di�erent

communication path).

In summary, our reasoning on fully using ∆-CRDTs in Legion is the expectation of better

network usage and lower metadata overhead. We adapted ∆-CRDTs for usage in Legion, and the

results presented in Chapter 3 bene�t directly from the modi�cations on how replicas synchronize

(detailed further ahead in Section 4.3.2).

4.3.1 ∆-CRDTs evaluation

We have evaluated the use of ∆-CRDTs in comparison to state-based or operation-based CRDTs

in Legion.

For these results we implemented an Observe-Remove Set (Speci�cation 15: ORSet of [59]) in

each form: ∆-CRDT, state-based CRDT, and operation-based CRDT.

We run multiple Legion clients (each client owns a replica of a replicated Set). The interactions

between peers is dynamic, i.e., replicas communicate with a random subset of all existing replicas

at each synchronization step. This means connections are not stable as the expected usage in

Legion – we address how to leverage continued use of the same connection in Section 4.3.2.

4.3.1.1 Implementation

Communication between replicas happens every T seconds. In a synchronization step, a random

subset of the currently connected neighbours are selected by a peer. At this point, using ∆-

CRDTs, the causal context of the initiating replica is sent to those peers. In contrast, when using

state-based CRDTs the whole state is shipped to the randomly selected peers.
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When using operation-based CRDTs the timestamp (a version vector) is also �rst sent instead

of the operations themselves. This was required for this experimental setting as there is no

continuous �ow of messages between pairs of replicas (i.e., the communication patterns change at

each synchronization step). The alternative would require each replica in the system to maintain

information about all operations which have previously been sent and acknowledged. The remote

replica will use this vector clock to send back missing operations (and its own version vector).

This means, for these results, we employ a push model when propagating state based CRDTs

and a pull model for operation and ∆ based CRDTs.

4.3.1.2 Experimental setup

We run 8 clients where each client continuously issues operations over a single replicated CRDT

Observe-Remove Set. Each client runs in its own Google Chrome instance, on a local machine

(MacBook Pro Retina 2013, 2.6 GHz Quad-Core Intel Core i7, 16GB RAM). All reported results

are the mean result of three independent runs.

The Set is updated, by each peer, twice per second. Each peer, per update, has a 30% chance to

remove an existing data item and 70% chance to add a new data item (a string with 14 characters,

with 2 bytes per char resulting in 28 bytes per data item). Each peer contacts 2 randomly selected

peers, every 5 seconds, as to begin state reconciliation between them (as discussed previously).

4.3.1.3 Results

We compare the sizes of messages sent between clients when using ∆, state, and operation-based

CRDTs. Figure 4.3a reports the obtained results showing the aggregate bandwidth used, in bytes,

of all messages exchanged between replicas, with a sampling interval of one second.

We only include object related messages, including state, operations, ∆s, and version vectors

when applicable (i.e., networking, overlay management, and other messages are ignored).

As expected, state-based CRDTs have an always growing load on the network. This is due to

when more operations are executed, more state has to be exchanged between replicas. The cur-

rently implemented operation-based CRDTs are not optimized for the employed communication

model and thus incur an initial load penalty. Nevertheless, as only the required operations are

sent over the network (along with an initial version vector in each step), eventually the network

usage becomes lower than state propagation. ∆-CRDTs propagate less data over the network as,

when the total amount of applied operations increases, what is shipped between clients is always

a ∆ where this ∆ is much smaller than the whole state of the object, and smaller than individual

operations.

Figure 4.3b shows the ratio of useful state to total state. This is computed by dividing useful

application state without any metadata by the whole CRDT, including application data and

internal metadata. As our implementation of state-based CRDTs and operation-based CRDTs do

not garbage collect, the fraction of tombstones increases over time. Our ∆-CRDTs with garbage

collection enabled ensures that the fraction of useful state increases over time compared to the

alternatives.
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Figure 4.3: Comparison of state, operation, and ∆ based CRDTs. Results for 8 replicas sharing an

Observe-Remove Set. Each replica issues an operation every 500ms. The workload is composed

of 70% inserts and 30% removes.

4.3.2 Legion’s CRDT usage and causal propagation

The results that we have reported in the previous section show that, in a scenario with dynamic

communication patterns, ∆-CRDTs outperform, from the standpoint of network usage, the com-

peting alternatives.

∆-CRDTs were initially implemented in Legion (Chapter 3), but required various changes to

utilize them e�ciently, as we detail next. The need for these changes comes from to the cost of

establishing new connections due to WebRTC’s signaling protocol – ideally when a connection

is established it should be kept for as long as it is useful, and not closed/reopened when peers

aim to propagate individual operations. Additionally, the presented mechanisms for ∆-CRDT

synchronization adds latency – to propagate a single update over an established connection, �rst

a metadata exchange is required.

Here we aim to e�ciently use ∆-CRDTs when synchronizing a new pair of replicas, while

also being able to use the established connection to continuously propagate operations without

the initial metadata exchange being repeated for every operation. The remainder of this section

explores how we accomplished this detailing how a CRDT can be implemented.

Legion’s object store was built for the interaction among pairs of replicas. To explain how the

system works we show how a Last-Writer-Wins register can be implemented. The original state-

based version is taken from [59] (Speci�cation 8: LWW register). Other CRDTs from [59, 139, 140]

can be adapted similarly.

Listing 4.1 shows a minimal implementation (note we omitted code not relevant for this discus-

sion such as error checking). The base idea of a LWW register is to keep a single value associated

with the last write. A register accepts a set method to update the value and a query method

to obtain the current value. Sequential sets trivially preserve user intent whereas concurrent

updates are overwritten.

We associate with each newly set value a timestamp which must be unique, totally orderable,
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1 function LWWCRDT (replicaID) {
2 this.value = null // start with empty state
3 this.ts = [null , Date.now()]
4 this.set = function (value) {
5 this.value = value
6 this.ts = after(this.ts)
7 }
8 this.get = function () {
9 return this.value

10 }
11 function after(ts){
12 return [replicaID , ts[1] + 1]
13 }
14 }
15 Legion.objectStore.defineCRDT(LWWCRDT);

Listing 4.1: State for LWW register ∆-CRDT.

and consistent with causality. For this we use as timestamp the pair (replicaID, timestamp).

The replicaID is used to disambiguate among concurrently set operations with equal timestamps.

Replica identi�ers are uniquely atributed to replicas when they initially connect to the server

to be able to connect to the peer-to-peer network – the server uniquely assigns identi�ers to

replicas (Section 3.1.1.3).

To be able to synchronize with other replicas, the following methods are required for each

CRDT object:

getContext() obtains, in the common case, a version vector. Some CRDTs might require less

metadata, such as an LWW register that only needs to send the last timestamp (assuming

it is uniquely atributed and consistent with causal order [49, 59]);

getDelta(context) obtains a Delta to be propagated to the remote replica, computed from the

given context. In the case of an LWW register, the value and its timestamp;

applyDelta(Delta) applies the Delta to the object.

Listing 4.2 shows how these methods can be implemented for the LWW register. Notice

that getContext is typically very simple: in this case it is just the timestamp, which su�ces

to compute if it is necessary to return the value or not, and in the common case the associated

version vector.

As we aim to allow for individual operations to be propagated after replicas have called

applyDelta, we require the application to notify the supporting system of such operations. To

this e�ect, implemented CRDTs must take into account the following:

callChangeHandler(change) must be called every time a replica makes a change directly to

the object, so these can be propagated to every connected replica;

applyChange(change) will be called for each locally created operation and also with further

changes received from other clients (after having already called applyDelta).
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1 this.getContext = function () {
2 return this.ts
3 }
4 this.getDelta = function (context) {
5 if(context <a this.ts) // compare timestamps and disambiguate on replicaID
6 return {v:this.value , ts:this.ts}
7 else
8 return null
9 }

10 this.applyDelta = function (Delta) {
11 if(Delta.ts > this.ts)
12 this.value = Delta.value
13 this.ts = Delta.ts
14 return Delta
15 else
16 return null
17 }

Listing 4.2: ∆-CRDT behaviour for LWW register.

a
Note that the code for < and > were simpli�ed for clarity.

1 this.set = function (value) {
2 callChangeHandler ({
3 value: value ,
4 ts: after(this.ts)
5 })
6 }
7 this.applyChange = function (change) {
8 if(change.ts > this.ts)
9 this.value = Delta.value

10 this.ts = change.ts
11 return change
12 else
13 return null
14 }

Listing 4.3: Change propagation for LWW register ∆-CRDT.

The new implementation of set is presented in Listing 4.3. We no longer change data directly,

the change handler is instead responsible to apply the change to the local replica. It is important

that a set only executes after the previous set has completed. Our implementation ensures that

callChangeHandler applies the change locally before returning (by calling applyChange).

Notice that both applyDelta and applyChange have a return value. This is important as

the system needs to know if the changes were already applied previously or if they are new and

need to be propagated to other neighbours. In the case of LWW register, we can simply return

the full change. When the change has no e�ect we return null so that is it not propagated to

other replicas (as it would have no e�ect). Other CRTDs, such as collections, can propagate a

subset of the changes if some were already observed. These should be removed in applyDelta

or applyChange as propagating them would be redundant.

To maintain causal delivery of operations, we require the Legion system to enforce an order

on message delivery. For this we use a similar approach as the algorithm from Section 4.1.2.2
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(including optimizations to minimize the cost of the initial synchronization).

To send individual operations after the initial synchronization Legion maintains, for each

connection, a queue. For the object store to send a change to every peer, it enqueues the change

to all queues. We ensure all connections between clients are FIFO, i.e., messages are received in

the same order they have been sent.

In the actual implementation the propagation queue is shared among all connections – this

allows for some optimizations:

• a single list of changes / deltas;

• peers still in the initial synchronization phase store no individual changes as these would

be redundant to any to be computed ∆;

• subsequent operations on the same object can be merged. Using the LWW register counter

example, multiple set operations can be merged into a single operation, where only the

last operation (the one with the highest timestamp) is kept;6

• operations can be grouped and sent with higher compression ratios than indivual messages

for each operation (simple data compression).

This has some overhead on tracking which replica must receive which ∆ or individual oper-

ation (change), but overall the bene�ts far outweigh the costs.

To ensure every replica eventually observes every operation one additional aspect is required:

every replica must be connected (directly or indirectly) to every other replica, as to allow infor-

mation to �ow among them. For this, as described in Section 3.1.1, Legion maintains a single

connected overlay for a container – a set of objects – ensuring that every replica eventually

observes every operation for each container it joins.

Our use of ∆-CRDTs along with the previous delivery mechanism ensures casual+ consistency

for objects within a single container.

First, causal delivery is ensured due the per-replica synchronization mechanism and following

propagation of individual changes (see Section 4.1.2.2). On network failures, synchronization is re-

executed. As the (Legion) system ensures all replicas form a connected graph, all operations are

eventually delivered to every replica. The CRDT speci�cations allow for convergent behaviour,

thus providing causal+ consistency.

Some of the implemented CRDTs include:

• LWW register;

• Increment counter [59];

• Counter [59];

6

To maintain causality the system does not reorder or merge operations which would invalidate causality. For

example, subsequent increments and decrements may be merged if on the same object, but when another operation

is in between them, the overall order may not be altered.
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• MV-LWW register using version vectors [59];

• ORSet (add-wins), using version vectors [59];

• ORMap (add-wins), expands on Set (similar internals but an additional indirection);

• List (Treedoc [139]), using version vectors.

We use programatic merge for cases where the CRDT is unable to decide a value. For example,

in the Map CRDT, concurrent writes do not overwrite concurrently added values to a single key.

Instead, we allow for methods such as get(key) in collections to return a list of values. The

application can decide to automatically overwrite with a new value or let the user decide which

to keep.

Most of our implementations use version vectors for e�cient computation of which changes

(the Delta) to return. Note that this means careful thought has to be given into what data structures

to use to implement more complex data-types, such as collections.

As a �nal note, ∆-CRDTs can be used to implement both operation and state based CRDTs.

For state based, propagating the whole state can trivially be accomplished with the getDelta and

applyDelta methods. For operation based, each CRDT can maintain a causally ordered list of

operations which is fully propagated in the getDelta method and, afterwards, can individually

be sent with the individual changes methods. This allows for implementing CRDTs following

existing speci�cations and later including optimizations where needed.

4.4 Final remarks

In this chapter we explored client-side replication focussing on providing causal consistency.

We provided a discussion on causal consistency, detailing typical implementations (Sec-

tion 4.1.1) and include a discussion on the intrinsic cost of causal consistency (Section 4.1.2).

In Section 4.2 we detailed CRDTs, followed by our proposal of ∆-CRDTs in Section 4.3. ∆-

CRDTs, which improve networking and storage overheads over state and operation based CRDTs,

provide causal+ consistency using well de�ned data types and synchronization mechanisms.

Related work is detailed in the previous chapters (Section 2.3 and Section 3.4).
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Securing causal consistency

In this chapter we focus on dealing with client-side replicas attempting to misbehave by circum-

venting the data-layer’s properties.

The Legion middleware o�ers a peer-to-peer communication mechanism providing causal

delivery (Chapter 3). Legion gives clear bene�ts when the application is used by small groups of

cooperating clients (Section 3.3.2.1). We also used Legion to create peer-to-peer realtime games,

leading to much faster interaction among users.

The Legion framework supports these applications, using secure channels and providing

access control, but is unable to handle cases where malicious users actively try to defeat the

system after joining. There is no way to specify the expected system and user behaviour and no

way to verify or guarantee correct execution. While running a game with real users (computer

science students), many cheat attempts were successful:

• players[player_id].score+=10 – increasing own score (or decreasing opponents’) with-

out any direct cause (a causal dependency, such as capturing an item);

• game.constants.shoot_interval*=0.5 – leading to the player being able to shoot twice

as fast – altough to shoot there is no strict cause-e�ect order, there is a violation in execution

speed. Editing such constants also allows for faster movement, among others;

• players[player_id].kill() – leading to the immediate death of a player – this function

should only be called when an overlap with a previously shot bullet is found. Curiously,

this cheat was followed up with spawning bullets directly on top of enemy players. Both

tricks lack clear cause-e�ect events.

Moving application state to clients and allowing peer-to-peer synchronization poses multiple

security challenges.

First, it is necessary to guarantee that unauthorized accesses do not compromise con�dential-

ity and integrity of the system. This problem has been addressed resorting to standard security

techniques [141, 142], where previous proposals on client-side replication (e.g., SwiftCloud [65]

and Diamond [67]) resort to server-side security checks.
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Figure 5.1: Chat application with clients A, B, and C using causal delivery of messages. As message

C.1 is concurrent to the history of A and B, any result (show on the right) is causally correct.

Second, it is necessary to address client misbehaviour, which can be characterized by the

Byzantine [143] and BAR [144] models. Several algorithms for providing functionality under

these models have been proposed, such as reliable dissemination [144–146] and BFT state machine

replication [147–149]. Decentralized replication algorithms, such as secure causal BFT [150–152]

and blockchain-based replication [153–156], which enforce a total order on all operations, impose

a high latency on writes.

We focus on a di�erent problem: how to address client misbehaviour, that deviates from

correct behaviour in a way that cannot be detected, in systems with client-side replicas and peer-

to-peer synchronization and that adopt weaker consistency models to promote availability and

low latency. This is an important issue as many applications (e.g., games) require high availability

and low latency for a smooth user experience, and users have incentives for misbehaving (to gain

an unfair advantage), but only if it is not possible to prove that they are misbehaving. See Figure 5.1

for an example – not only will incorrect (or un-intuitive) merge policies result in incoherent

behaviour for end-users, malicious replicas may generate operations in such a manner as to

ensure the �nal outcome is to their own bene�t.

We analyze the possible e�ects of misbehaving replicas in causal consistency (Section 5.2).1

From this analysis, we derive secure variants of causal consistency that preclude di�erent types

of misbehaviour (Section 5.3). We propose practical algorithms for implementing these models

in a setting where clients communicate directly (Section 5.4).

Other forms of consistency are required for many use-cases, double spending being a concrete

example for stronger requirements. If users do not coordinate, in a game application with a

restricted amount of resources each could spend all resources concurrently, leading to erroneous

behaviour on the application after they communicate their operations with each other and attempt

to merge application state.

To address this we also propose a secure version of eventual linearizability [64, 118, 157], as a

way to provide stronger guarantees when required (Section 5.3.3.2).

1

Causal consistency itself is introduced in Chapter 4.
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We have designed and evaluated a system that provides the proposed secure consistency

models. Our evaluation (Section 5.5) shows that adopting the secure consistency models imposes

low overhead when compared with their insecure counterparts, while providing low user-to-

user latency and server load compared to traditional client-server architectures. The latency

gains are more expressive for interactions among nearby clients, which maps the expected use

in many applications, such as augmented reality games. We show that providing multiple secure

consistency models can be important, as it allows developers to select a di�erent point in the

trade-o� space between application guarantees, latency, and communication overhead.

The secure consistency models can be used to enrich server-based architectures with fast and

secure peer-to-peer interactions. In summary, in the work presented in this chapter, we make

the following contributions:

• a systematic study on how client misbehaviour impacts the guarantees of causal consistency

(Section 5.2);

• the de�nition of secure consistency models, variants of causal consistency and also eventual

linearizability, preventing multiple types of misbehaviour (Section 5.3);

• algorithms for the secure consistency models (Section 5.4); and

• an experimental evaluation (Section 5.5) of our prototype.

5.1 Attacker model

In a tradiational client-server communication model the server can verify any action each client

attempts to apply to the state which is kept at the server. In our model, as clients manage local

replicas and, instead of communicating only with the server also synchronize directly, this is no

longer true.

As in Legion, we consider multi-user applications where users interact using their own devices.

Clients execute operations on their local replicas and synchronize directly among themselves by

propagating operations. A subset of these clients synchronize with the server to ensure durability

and to allow clients that cannot communicate directly with other clients to participate.

The attack surface is increased compared to a client-server model as each client manages a

local replica and generates and propagates changes to the shared state not only to the server but

also to other clients.

We depart from the assumption that works for Legion and reason on applications which

operate with untrusted clients. We consider an attacker model focused on clients (i.e., servers

and other infrastructure nodes are trusted).

Our attacker model is based on a trusted centralized server and trusted infrastructure nodes,

where clients follow the BAR model [144]. Malicious clients can behave in a fully byzantine mode

(arbitrarily deviating from their prescribed behaviour) or be rational, meaning they will deviate

from the prescribed protocol (to attempt to gain some advantage) only if the misbehaviour cannot
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be detected by correct clients or servers. Malicious replicas can a�ect only their local state, we

assume that malicious clients cannot prevent correct clients from establishing secure channels

with a server or among each other.

Correct clients will always follow the prescribed protocols (Altruistic in BAR).

Byzantine clients, by not focusing on hiding misbehaviour, provide to their peers either a demon-

stration or a proof of their malicious actions. For example, sending unsigned messages is a

demonstration of misbehaviour but doesn’t lead to a proof, while a correctly signed message

that contains a falsehood is a proof-of-misbehaviour.

Rational clients pose the most risk in our model. These clients may attempt to manipulate

the generation and propagation of operations in a way that bene�ts them. This problem

is important, for example, for the gaming industry, where peer-to-peer approaches are

attractive in terms of latency and availability if cheating can be avoided. In this case,

clients (players) have interest in being rational (to gain an advantage) if they cannot be

discovered as being rational (to avoid being banned due to cheating).

5.2 Attacks on causal consistency

A malicious replica, if left unchecked, can easily disrupt the properties of a replication algo-

rithm for causal consistency. In this section we systematically identify possible attacks by both

byzantine and rational replicas.

5.2.1 Generating operations under causal consistency

Causal consistency is described in detail in Chapter 4. In summary, for a replicated system, we

say that operation o1 happened before operation o2, o1 ≺ o2, if o2 was generated in some replica

where o1 had already been executed. For a set of operations O, this generates the partial order

(O,≺). An algorithm that enforces all replicas to apply operations respecting this causal order,

enforces causal consistency.

For any operation o, generated at replica r, we can consider three disjoint sets of operations,

as shown in Figure 5.2:

• P (o) is the set of past operations that happened before o – this is also known as the causal

history of o, H(o);

• C(o) is the set of operations that are concurrent with o, i.e., ∀oc ∈ C(o),¬(oc ≺ o)∧¬(o ≺
oc);

• F (o) is the set of future operations that happened after o, i.e., ∀of ∈ F (o), o ≺ of .

The way each operation has its dependencies encoded depends if a system uses either version

vectors or direct dependency graphs. In the former, the dependencies of each operation are
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Figure 5.2: Operation dependencies in causal consistency.

summarized in a vector that states which operations generated at each site happened before a

given operation. In the example of Figure 5.2, the dependencies of the new operation o would

be [2,4,4], stating the dependency on operations up to 2 from replica A, and up to 4 from both

replicas B and C. Using direct dependencies, each operation includes only information on the

concurrent operations that have been executed before its generation. In the example, operation

o would depend on {B:4, C:4}. Since each operation includes its dependencies, it is possible to

build the whole dependency graph.

5.2.2 Tampering with other replica’s operations

This class of attacks comprises actions that a malicious replica can perform regarding operations

created by other replicas – this includes tampering with the integrity of messages in transit (such

as modifying causal dependencies of operations), generating operations in the name of other

replicas, and creating malformed operations.

A simple example is altering the overall order of events by creating new operations and set

other (already existing) operations to depend on them. In a game where players shoot each other,

one can make a shot depend on a later created moving operation, making the shot miss instead

of hit the malicious player. In general, such attacks can be addressed by having replicas sign the

operations they generate, as discussed in Section 5.4.1. Attacks on message propagation (e.g., not

propagating a subset of operations) are discussed in Section 5.4.7.

5.2.3 Attacks on operation generation

This class of attacks consists in manipulating the creation of new operations by attaching incorrect

dependencies. In contrast to Figure 5.2 which illustrates the correct dependencies of a new

operation o, Figure 5.3 shows possible attacks, discussed next.

5.2.3.1 Omitting dependencies

A malicious replica may create an operation that contains only a subset of the actual dependencies.

Given the set of operations executed in replica r, Pr , this attack consists in setting the causal

history of a new operation to the set Pr
rem

, such that Pr
rem ( Pr (i.e., Pr

rem ⊂ Pr ∧ ∃o ∈ Pr :

o /∈ Prrem).
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Figure 5.3: Attacks on operation generation under causal consistency.

By including only a subset of the known operations in the dependencies, a malicious replica

can forge an operation that is concurrent to operations that it already knows, creating an operation

that occurred in its logical past. In Figure 5.3 this is shown as Omit, with the omission of known

operations from replica B in the dependencies of the new operation.

Just as the previous attack of manipulating dependencies of existing operations, this attack can

also be used for moving away from another user’s shot. The di�erence is that the resulting state

will depend on the application’s con�ict resolution policy, as the shot and movement operations

will be concurrent.

We note that the possible attacks to causal consistency are similar when using version vectors

or direct dependencies. Consider the example of Figure 5.3. When generating o, operations 1-2

from replica A and 1-4 from replicas B and C were received, leading to a version vector [2,4,4]

or to the direct dependencies {B:4; C:4}. When using version vectors, a malicious replica can

selectively remove a su�x of operations from any replica – e.g., vector [0,4,4] would remove

the dependencies from replica A. However this has no impact when enforcing causal consistency,

as only the direct dependencies are important – executing operation 3 (and 4) from B requires

that operation 2 from A has been executed already.

5.2.3.2 Depending on unseen operations

A malicious replica may create an operation that depends on an operation that has not been

executed locally and possibly does not even exist yet. Given the set of operations executed in

replica r, Pr , this attack consists in setting the causal history of a new operation to the set Pr
add

,

such that Pr ( Pr
add

(i.e., Pr ⊂ Pradd ∧ ∃o ∈ Pradd : o /∈ Pr). In Figure 5.3, this is represented

as Add or Future (for depending respectively on an operation not yet received or on a future

operation). Such an attack allows a malicious replica to create operations that do not respect

the real time order, potentially counter-acting the actions of other replicas even before they take

place.

Consider a multiplayer game where players �ght some monster, which drops a speci�c item

when defeated. The item is available as soon as it is dropped, but only the �rst player to react

will pick it up. A malicious player can create a pick-up operation that depends on a future

drop operation. This ensures an unfair advantage over other players, as the pick-up will execute

immediately (and only) after the drop operation is created and the dependency is met.

Depending on the application, such an attack may be detectable – the dependency may never
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be executed (e.g., if the creature is never defeated) or might reach the replica that will create the

dependency before its execution.

5.2.3.3 Combining omit and add

A malicious replica can create an operation that combines the previous two attacks, altering

dependencies to both omit and include unseen operations. Given the set of operations executed

in replica r, Pr , the attack consists in setting the causal history of a new operation to the set

Pr
add+rem

, such that (∃o1 ∈ Pradd+rem : o1 /∈ Pr) ∧ (∃o2 ∈ Pr : o2 /∈ Pradd+rem).

5.2.3.4 Sibling generation

In any replicated system, an operation typically includes an identi�er. A malicious replica may

generate two di�erent operations with the same identi�er (which we call sibling operations).

In a system that is not prepared to deal with malicious replicas, di�erent replicas may execute

di�erent versions of the operation, leading to a permanent state divergence.

A simple example is a replica creating, within a chat application, two di�erent messages with

the same identi�er, leading to di�erent users seeing a di�erent chat history. Sending a praise to

some users and an insult to others can lead to comical results, while the system assumes that

both messages, having the same identi�er, are the same message.

5.3 Secure consistency models

In this section we propose consistency models that deal with the presence of malicious replicas,

by addressing the attacks discussed in the previous section.

5.3.1 Secure causal consistency

We start by deriving a secure form of causal consistency by de�ning a set of properties that must

be enforced. Our �rst property precludes tampering with the causal history of an operation, after

it is generated:

Secure Causal Property 1. (Immutable History) IfHo is the causal history of operation o at gener-

ation, o is delivered with Ho at every correct replica.

We now de�ne properties concerning the dependencies on unseen operations. To disallow

Future from Figure 5.3, the No Future Dependencies property precludes having dependencies on

operations that have not been executed yet in any replica.

Secure Causal Property 2. (No Future Dependencies) Given Pall, the set of all operations generated
in any replica of the system when operation onew is created, onew can only depend on such operations,

i.e., @o /∈ Pall : o ≺ onew.
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Note that this disallows not only Future – depending on operations which will depend on the

newly created operation, creating circular dependencies – but also a subset of Add: the operations

that are concurrent but which have not yet been created.

As for creating operations that depend on existing operations which were generated in some

other replica but that have not been executed locally (Add in Figure 5.3), we note that verifying

this seems counter-intuitive – the situation is equivalent to synchronizing the local replica before

issuing the operation. Instead we de�ne a property that enforces all correct replicas to execute

operations respecting their de�ned dependencies:

Secure Causal Property 3. (Causal Execution) All correct replicas execute an operation respecting

the dependencies de�ned in the operation. Given the causal history of an operation o, H(o), the

causal serialization Or = (Ops,<) in every correct replica r is such that ∀oi ∈ H(o), oi < o.

We now address the problem of having a malicious replica issuing two operations with the

same identi�er, which can lead correct replicas to execute di�erent versions of the operation

(Siblings in Figure 5.3). This could be avoided by executing a consensus step to certify the op-

eration associated with each identi�er [150–152]. However, such an approach goes against our

objective on availability – our goal is allowing replicas to both generate operations and imme-

diately execute received operations. Instead, we require this situation to be eventually detected

and reported to correct replicas, by locally executing a fault(o) operation:

Secure Causal Property 4. (Eventual Sibling Detection) Given two operations o1 and o2 with the

same identi�er, for any replica r that has executed the set of operationsOpsr , the following conditions

will apply: (i) if o1 ∈ Opsr , then eventually fault(o1) ∈ Opsr , with o1 < fault(o1); and (ii) if

o2 ∈ Opsr , then eventually fault(o2) ∈ Opsr , with o2 < fault(o2).

5.3.1.1 Omitting dependencies

We now consider the attack where a malicious replica generates an operation that omits some of

the locally executed operations from the set of dependencies (Omit in Figure 5.3). It is impossible

for a correct replica rc, receiving an operation o from a malicious replica rm, to verify if o includes

all dependencies it should or not. Even if rc has previously sent to rm some operation oo, the

fact that oo is not included in the dependencies of o can be due to o being generated before oo

was received and executed. The correct behaviour due to delays is indistinguishable from an

incorrect behaviour where oo is purposely omitted from the dependencies.

Let Oreal = (Ops,≺real) be the happens before partial order as registered by an external

observer, which perceives all dependencies within the system. When generating a new operation

o, a malicious replica may omit some of its real dependencies, leading to the partial orderOomit =

(Ops,≺omit), that omits some of the dependencies de�ned inOreal, including direct dependencies

of o and indirect dependencies among other operations established through o.

A malicious replica cannot omit dependencies in an arbitrary way without being detected.

This can be exempli�ed in Figure 5.3 where, if operation A2 is omitted from the dependencies,

then all operations that depend on it – A3, A4, B3, and B4 – must also be omitted. When using
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version vectors, as discussed before, setting the dependencies as [0,4,4] has no actual e�ect, as

B3 has itself A2 as its dependency and so will only execute after A2 has executed. Moreover, it

allows the detection of the misbehaviour by analyzing the graph of dependencies. When using

direct dependencies, it is also only possible to omit (a su�x of) immediate dependencies.

In general, to avoid detection, a malicious replica cannot omit from the dependencies of an

operation o it generates any operation op that happened before an operation om included in the

dependencies of o:

Secure Causal Property 5. (Limited Omission) Given Pr , the set of operations executed in replica

r, a malicious replica can only omit dependencies for a new operation without being detectable,

by setting the causal history of the new operation to be Prrem, such that Prrem ( Pr ∧ @op ∈
Pr \ Prrem, o ∈ Prrem : op ≺ o.

We now formally de�ne secure causal consistency:

De�nition 5.1. Secure causal consistency is a model which ensures that any correct replica r

executes operations according to a serialization order Or = (Ops,<), such that:

a) no operation with tampered dependencies is executed (Property 1: Immutable History);

b) no operation that depends on a future operation is executed (Property 2: No Future Dependen-

cies);

c) Or is a valid serialization of (Ops,≺omit), i.e., given the set of dependencies of operation o,

H(o), ∀op ∈ H(o), op < o (Property 3: Causal Execution, Property 5: Limited Omission);

d) if two di�erent operations with the same identi�er are generated, any correct replica that

executes any of such an operation o will also eventually execute fault(o), with o < fault(o)

(Property 4: Eventual Sibling Detection).

5.3.2 Secure strict causal consistency

Ideally, a replica should be forced to set the real dependencies to the operations it generates:

Secure Causal Property 6. (Real Dependencies) The dependencies of an operation o, H(o), are the

real dependencies i� ∀op, op ≺real o⇒ op ∈ H(o).

This leads all operations to be created with the dependencies according to≺real – we discuss

practical implementations of such a property in Section 5.4.3, which requires trusted software or

hardware. From this property we can derive:

De�nition 5.2. Secure Strict Causal Consistency is a consistency model that ensures that any

correct replica r executes operations according to a serialization order Or = (Ops,<), such that

Or is a valid serialization of (Ops,≺real), i.e., given the dependency set for an operation o, H(o),

∀op ∈ H(o), op < o (Causal Execution). Note that a), b), and d) from Secure Causal Consistency

are enforced by this model.
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5.3.3 Tolerating collusion

Even if replicas are unable to generate operations with incorrect dependencies, two colluding

replicas are able to communicate through a side-channel, circumventing any existing mechanisms

to enforce secure strict causal consistency.2

A possible solution to tackle this challenge is to use a consistency model based on recency,

requiring new operations to depend on all existing operations at all replicas (e.g., Natural [102] or

External [127] causal consistency). Implementing such an approach requires a form of synchro-

nization among all replicas for generating new operations which, again, goes against our goal of

remaining available in the presence of network partitions.

We adopt a di�erent approach: operations are generated and executed without coordination,

and a replica is eventually noti�ed if an operation o2, that might externally depend on operation

o1, was executed before o1.

We de�ne a total order, <ext, that guarantees that if an operation o2 might depend on opera-

tion o1, then o1 <
ext o2. The ordering of <ext must respect the following properties:

Extended Causal Property 1. (Total Order) Given the set of operations Ops, O<ext = (Ops,<ext)

is a total order (i.e., ∀o1, o2 ∈ Ops : o1 <
ext o2 ∨ o2 <ext o1).

Extended Causal Property 2. (External Causal Visibility) Given two operations o1 and o2, if some

replica has observed (in realtime) o1 before the generation of o2 in any replica, then o1 <ext o2. i.e.,

∀r1, r2,∀o1, o2 : observedr1(o1) <
obs generater2(o2)⇒ o1 <

ext o2, with<obs the total order of

events as observed by an external omniscient observer).

We now de�ne two consistency models that use this total order (<ext).

5.3.3.1 Secure extended causal consistency

Secure Extended Causal Consistency is a model which extends Secure Causal Consistency by

notifying applications of out of order (according to <ext) executions:

De�nition 5.3. Secure Extended Causal Consistency is a consistency model that ensures that

any correct replica r executes operations according to a serialization order Or = (Ops,<), such

that:

a-d) equal to Secure Causal Consistency (De�nition 5.1);

e) if an operation is executed in an order that violates <ext, the application is noti�ed when

executing the operation that should have been executed earlier using signal, i.e., if ∃o2 :

o1 <
ext o2∧o2 < o1 then the execution of o1 is replaced by the execution of signal(o1, Os),

with Os the set of operations that should have been executed after o1 according to <ext (i.e.,

Os = {o : o < o1 ∧ o1 <ext o}).
2

Side channels might not be discoverable, they can range from locally installed software which automatically

propagates data and applies operations directly into the application on the other device, to video-calling or users

simply sitting next to each other.
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Note that signaled operations are not necessarily a causality violation due to collusion, and

should be handled by the application in an application-dependent way.

A chat application is a good example as messages can be trivially ordered by <ext. When a

message is received out of order, and signal is called, the user interface can explicitly annotate

such messages (with read/unread labels), leading to an intuitive user experience. In Section 5.4.5

we further detail how this model can be used in practice.

5.3.3.2 Secure eventual linearizability

We de�ne Secure Eventual Linearizability as to enforce the execution of received operations

according to <ext:

De�nition 5.4. Secure Eventual Linearizability is a consistency model that ensures that any

correct replica r executes the operations it has received, Ops, according to the serialization order

Or = (Ops,<ext).

Note that this de�nition allows to execute operations immediately after they are received –

only the serialization order must be respected while delivery of operations may be delayed.

Eventual linearizability is an interesting model as it can provide strong guarantees while

remaining highly available [64, 118, 157]. In short, the serialization of operations at each replica

gravitates, over time, towards a total order shared among all replicas, depending (in our case) on

which operations were delivered.

Just as in previous works [64, 118, 157], to enforce the order <ext, when a new operation is

received it might be necessary to undo/redo operations. In contrast to these works our de�nition

of the order <ext is �nal when an operation is generated and may not be altered later (even if

at each replica not all operations are yet known). Additionally, we do not reason on operations

which the referenced works name strict or forced – these disallow an undo/redo execution model

and would require a coordination step among all replicas which we wish to avoid.

The undo/redo behaviour can be summarized as rolling back operations (undo phase) when

a previously unknown operation arrives which should precede the already executed ones. After

the newly received operation is executed a redo phase happens: the rolled-back operations can

be re-executed (in order). See Figure 5.4 for a detailed example.

5.4 Algorithms and implementation

This section discusses possible implementations of the secure consistency models, which we used

in our prototype. Figure 5.5 presents excerpts of the proposed algorithms.

We assume that each replica authenticates with the centralized service when joining the

system (i.e., when a user is starting its session), receiving a certi�cate signed by the server that

can be used to prove the replica’s identity. All replicas trust the server, being able to locally

validate certi�cates of other replicas. Replicas use the associated private key to sign informa-

tion. We assume that the cryptographic primitives such as digital signatures and hash functions
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(a) Out of order reception of operations – the appli-

cation’s con�ict resolution mechanism must ensure

the �nal state provides an outcome which is both

consistent and intuitive for the user.
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(b) An undo/redo execution model ensures opera-

tions can be executed as soon as they are received,

rewinding time (application state) and re-executing

operations when needed. See Section 5.4.6 for im-

plementation details.

Figure 5.4: Execution model of Secure Eventual Linearizability. Replica B receives two operations

from replica A, followed by an operation from replica C which was created, in realtime, in between

A’s operations but has its propagation delayed.

cannot be undermined. We further assume that replicas communicate through secure channels,

authenticating each other by leveraging the certi�cates obtained when joining the system.

5.4.1 Authenticity, non-repudiation, and integrity

An application can issue a new operation by calling the NewOperation procedure (line 5). This

function creates an operation record that includes the operation with its identi�er (the pair

(cr, idr)) and metadata speci�c for each consistency model. The record has a signature of this

information (record.signature). The operation record (or simply operation where no confusion

can arise) is sent to the replica’s neighbours.

The signature is used to ensure that operations propagated among replicas are originated in

a valid replica (authenticity), that operations can be associated to its creators (non-repudiation),

and that they are not modi�ed in transit by malicious replicas (integrity).

Upon receiving an operation record (line 22), a replica �rst veri�es that the signature is

correct (verifySignature). If the operation’s signature cannot be validated, the operation is

discarded. If the signature is valid, the metadata is veri�ed (verifyMetadata) and, if valid,

processed according to the chosen secure consistency model.

If the previous veri�cations end successfully, the operation contents can still be invalid, for

instance when a Byzantine replica issues invalid operations according to application logic or

impersonates other replicas [158–160]. In this case, a proof-of-misbehaviour is produced for the

replica that generated the operation and sent to the centralized infrastructure which will dissem-

inate the proof among all clients to expel the Byzantine client from the system (Section 5.4.7).

For misbehaviour that does not allow to produce a proof (e.g., sending unsigned records),

clients will simply disconnect from its sender. Continuous erroneous execution thus leads to
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1: Local State (replica r):
2: idr : identi�er of local replica
3: cr : counter used for identifying operations
4: certr : local replica certi�cate
5: procedure NewOperation(op)

6: cr ← cr + 1
7: record.op←AddMetadatamodel(op, (cr, idr))

8: record.signature←signr(record)

9: send(p, record), ∀p ∈ neighbours
10: function AddMetadataSecureCausal(op, opid) . Section 5.4.2

11: deps← LatestDependencyIds( )

12: hashDependencies← Hash(LatestDependencyRecords( ))
13: return <op, opid, random(), deps, hashDependencies>

14: function AddMetadataStrictSecureCausal(op, opid) . Section 5.4.3

15: deps← LatestDependencyIds( ) . Run both lines in secure module

16: return Encode(<op, opid, random(), deps>)

17: function AddMetadataSecureExtended/EventualLinearizability(op, opid) . Section 5.4.4

18: deps← LatestDependencyIds( )

19: hashDependencies← Hash(LatestDependencyRecords( ))
20: (ts, signatureT iS)← TiS_OpTs(<Hash(op, opid, deps, hashDependencies)>)

21: return <op, opid, ts, deps, signatureT iS>
22: upon receive record by p do:
23: if verifySignature(certp, record) then
24: if verifyMetadatamodel(p, record) then
25: Processmodel(record)

Figure 5.5: Algorithms for secure consistency models.

a malicious replica to be restricted to pure client-server model as correct replicas will deny

connections to it.

5.4.2 Secure causal consistency

To track causal dependencies, the metadata of each operation includes the identi�ers of its direct

causal dependencies (line 11). For a newly generated operation, the direct causal dependencies in-

cludes any locally executed operation o for which there is no operation on : o ≺ on (Section 4.1.1).

When compared with version vectors, this approach has the advantage of not requiring one entry

per replica, being more suitable for handling large and dynamic memberships.

We enforce the properties of secure causal consistency (De�nition 5.1):

Immutable History As replicas sign the operations (line 8), the causal histories of operations

cannot be manipulated by malicious replicas, thus enforcing Secure Causal Property 1.

No Future Dependencies To disallow depending on operations that have not yet been generated,

including those not yet observed, the metadata of an operation includes a cryptographic

summary (hash) of all direct causal dependencies (line 12) and a random number (line 13).
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This makes it impossible for a malicious replica to create a dependency on an operation that

it has not yet observed, as it is unable to compute a valid hash of the dependencies. Replicas

must validate the hash before executing the operation (in the verifyMetadata step).

If an invalid hash is detected, a proof-of-misbehaviour for the replica that generated the

invalid operation is issued which, as previously stated, will lead the replica to be excluded

from the system. This technique allows to enforce Secure Causal Property 2.

Causal Execution Secure Causal Property 3 (causal execution) is achieved by verifying, before

executing an operation, that its dependencies have already been executed.

Our prototype uses the ∆-CRDT synchronization protocol proposed in Section 4.3.2, where

operations are disseminated through a communication overlay and each replica only prop-

agates an operation to a peer after propagating the operation’s dependencies (or knowing

that the peer already received them). This guarantees that, when receiving an operation,

causal dependencies are satis�ed and the operation can execute immediately.

When a replica detects that a remote replica is not following the protocol (when verify-

ing metadata), it produces a proof-of-misbehaviour. This proof can be generated when

discovering an out-of-order propagation as all messages sent between two replicas are

hash-chained: each message (containing operations) sent between two peers is signed by

the sender and includes the hash of the previous message (omitted in the code for simplicity).

Note that the �rst message between two peers is always a certi�cate exchange, followed by

the ∆-CRDT synchronization protocol and subsequent propagation of individual changes

(operations).

Limited omissions As the metadata includes only direct dependencies, it is impossible by de-

sign for a replica to introduce causal gaps in the dependency graph (as it can only omit

dependencies in a su�x of the dependencies), thus guaranteeing Secure Causal Property 5.

Eventual Sibling Detection We use several techniques to detect when multiple operations with

the same identi�er are created, as to be able to guarantee Secure Causal Property 4. First,

a replica that receives two siblings from di�erent paths creates a proof-of-misbehaviour

and informs the server. Second, each operation includes in its metadata the hash of its

dependencies – when receiving an operation, if this hash does not match the hash computed

locally for the same dependencies, the replica signals a potential sibling by informing

the server. Finally, the server periodically sends a summary of its state, containing the

hashes and identi�ers of the last observed operations at the server which replicas can use

to verify if they have received the (exact) same operations. If the veri�cation fails, the

client connects to the server to verify the hashes of each individual operation, leading to a

proof-of-misbehaviour for the replica that generated them.

The server’s state summaries also follow causal propagation (respecting ∆-CRDT propaga-

tion) and is included in each pairwise hash-chain. A replica found to propagate a summary

which includes some operation it has not previously sent, is proven to be malicious.
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While these mechanisms cannot prevent Byzantine replicas from exhibiting arbitrary be-

haviour, they are enough to prevent rational replicas (that want to avoid exclusion from the

system) to perform such attacks. These mechanisms together allow to provide Secure Causal
Consistency.

Intuitively, there seems to be no straightforward mechanism to disallow omitting operations

from causal dependencies or delaying propagation of operations. As any two operations generated

by the same replica always have an implicit dependency from higher to lower identi�er, a replica

is unable to selectively hold back its own operations. Nevertheless, replicas can collude to omit

operations from causal dependencies. The following sections discuss how to provide additional

guarantees by leveraging trusted components, being it within trusted servers or secure hardware

modules.

5.4.3 Secure strict causal consistency

Secure Strict Causal Consistency requires a replica to record the exact causal dependencies. This

can be implemented by delegating the reception and generation of operations to a trusted service.

An instance of the service can use trusted hardware if available at the replica, such as Intel’s

SGX [161, 162]. When the replica has no trusted hardware, the same function can be delegated to

instances of the trusted service running nearby the replica or to trusted infrastructure nodes.

The service is responsible to receive operations before delivering them at the client to track

all received operations (to guarantee that causal dependencies are faithfully assigned). When

new operations are created, the service assigns the correct causal dependencies. When compared

with secure causal consistency, the metadata does not need to include the random number as the

trusted module will never include incorrect dependencies.

To prevent the application from accessing an operation before it being processed by the secure

module, each operation is ciphered (Encode on line 16) by the secure module with a key shared

only among instances of the trusted service. As only instances of the trusted service have access

to the shared key, it is guaranteed that operations are correctly created and can only be accessed

after being deciphered by the secure module (for simplicity, the Decode step is omitted in the

code).

An immediate issue that arises when using an external service is ensuring correct client-

handover and maintaining causal dependencies when such a handover is done. Applying earlier

works [117, 163, 164] is not practical as no thought has been given to replicas attempting to

circumvent causal relations – intuitively, any reconnection by a client from one instance of the

service to another always requires some form of coordination among instances of the service. A

malicious client actively hopping around can introduce a great overhead in such a system. Due

to this costly operation, we do not further explore this direction, leaving it for future work.

5.4.4 Secure timestamps to prevent collusion

Even if a single replica is unable to forge an operation with incorrect dependencies, two replicas,

r1 and r2, can collude create an operation o2 that is concurrent with some known operation o1
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Figure 5.6: Causal dependencies and timestamps associated to operations.

(by having replica r1 sending o1 through an external channel to r2, and having r2 submitting o2).

In Section 5.3.3, we proposed to address this problem by using a total order <ext on operations,

such that if o2 might depend on o1, then o1 <
ext o2 – we synthesized the underlying properties

as Extended Causal Property 1 and 2.

Consider realtime timestamps uniquely attributed to each operation by an omniscient entity.

Such timestamps would allow to order operations in a way that respects the required conditions,

as any externally visible happens before relations are captured by this global realtime order.

Having a single server assigning such timestamps would provide the required total order, but

would introduce a single point of failure – not being able to communicate with this server means

no progress can be made, defeating the goal of remaining available.

5.4.4.1 Practical external visibility

We propose the use of a decentralized timestamping service (TiS) of which all instances have

synchronized clocks with a small divergence of up to δ. Replicas communicate with this service

to obtain timestamps for their operations.

There is a total order on all operations generated at a single instance of the service, as we

restrict it to only emit one timestamp per time unit. With multiple instances, we order operations

with colliding timestamps by sorting on a hash of the whole operation. This provides a total

order among all operations, thus providing Extended Causal Property 1.

For enforcing Extended Causal Property 2, we must guarantee that, if any replica observes

an operation, and after (in realtime), any replica creates a new operation, the latter must appear

after the former in the total order.

Consider Figure 5.6, where replica r2 generates o2 after observing replica r1’s o1. If clocks and

execution were perfect, the smallest possible timestamp for o2 would be: t2 = t1 + (TiS1 →T

r1) + (r1 →T r2) + (r2 →T TiS2).3 As clocks are not perfectly synchronized, we need to take

into consideration clock divergence, leading to: t2 = (t1 + δT iS1) + (TiS1 →T r1) + (r1 →T

r2) + (r2 →T TiS2) + δT iS2 .

As in a distributed systems it is impossible to exactly measure the minimum value for

(TiS1 →T r1),(r1 →T r2), and (r2 →T TiS2), and as we have no control over malicious

replicas using external communication channels, the safe approach is to assume they are 0. This

lets us simplify to t2 = t1 + δT iS1 + δT iS2 .

3A →T B is the minimum time it takes for a message to be sent from A to B, by any means, internal or external

to the system.
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For guaranteeing that t2 > t1 (as to enforce External Causal Visibility), we force all TiS

instances to wait TWait before returning a newly generated timestamp to a client (i.e., the

timestamp generated at ti is returned at ti +TWait ), with TWait > |δT iS1 + δT iS2 |. As δT iS1 is

the clock divergence of TiS1 to a global reference, δT iS1 + δT iS2 is the clock divergence between

TiS1 and TiS2. To guarantee that the condition for <ext holds for timestamps generated in any

pair of TiS instances, we need to wait for more than the maximum clock divergence between any

pair of TiS instances, i.e., max({|δT iSi + δT iSj |+ 1, ∀T iSi,T iSj ∈ T}).

5.4.4.2 Discussion on TiS implementation

The TiS is a lightweight service that executes across multiple and potentially geographically

distributed nodes (e.g., servers at the network infrastructure or cloud-based), allowing a replica

to request a signed timestamp for a given operation. To avoid that a malicious replica requests

multiple timestamps that are then used at its convenience to issue arbitrary operations at points

in the past, these timestamps must be issued linked to a particular operation. To this end, when

a replica requests a timestamp for an operation, it sends to the TiS a cryptographic summary of

the operation, its identi�er, and dependencies (line 20). The TiS will then issue a veri�able and

trusted timestamp in the form of a tuple (ts, signatureT iS), where signatureT iS is the signed

operation summary (hash, including ts) and ts is the timestamp generated by the TiS. These

timestamps can be validated by any replica using the certi�cate of the TiS, which is signed by

the centralized server. In summary, the service can be implemented by leveraging well known

timestamping protocols [165, 166].

The deployment of the timestamping service is an interesting research question on its own.

The lightweight nature of the TiS, in contrast to full application servers, makes it easy to deploy

and scale. We envision the following scenarios: i) collocated with the application’s centralized

service; ii) geo-distributed at multiple cloud points of presence; iii) at edge locations such as

ISPs and 5G towers; or iv) on client devices within Trusted Execution Environments.

A client that cannot contact a TiS instance directly or through other replicas must stop gen-

erating operations (and possibly notify the user). Given the di�erent alternatives to deploy the

TiS, we expect this situation to be rare (and less frequent than unavailability in client-server

architectures).

On synchronizing TiS instances TiS instances should execute a clock synchronization protocol

(e.g., NTP [167] or PTP [168]), whose precision will impact TWait . This work does not focus

on synchronizing the clocks of TiS instances, and we assume that: (i) TiS clock synchroniza-

tion cannot be tampered by clients [169–171]; (ii) under normal conditions and in most common

deployments scenarios, TWait will be in the order of single-digit milliseconds [172–176]. We

note that even if TWait is up to double-digit milliseconds, it still allows for faster progress than

resorting to a client-server model.

In most applications only speci�c subsets of clients interact with each other, for example when

a game divides players in rooms or users are collaborating on separate documents. This has as
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a direct result that TiS instances need not be synchronized globally, and neither has TWait to

be calculated among all globally available instances. For example, a multiplayer game providing

multiple regions (e.g., Europe, Asia, and Americas), can trivially partition the TiS instances

ensuring synchronization is easier and TWait can be lower – not only due to less connected

instances, but as the overall distances are smaller.

5.4.5 Secure extended causal consistency

Applications that use Secure Extended Causal Consistency will be noti�ed when an operation is

delivered in an order that is correct to the system’s observed causality, but that does not respect

the external observer’s order, <ext. The system itself does not reject or re-order any operation –

it is up to the application to use this information to perform suitable actions in accordance with

the application logic. A simple example, discussed in Section 5.3.3.1, is a chat application where

the user-interface can be updated with this information for an intuitive outcome.

As reported in other systems [66, 67], using this information can lead to complex application

code – it typically requires applications to manage metadata and merge and recompute the �nal

state, while guaranteeing that all replicas converge to the same state which itself should provide

an intuitive result for the user. To help programmers, our prototype includes a set of CRDT

data-types that take advantage of this information. We provide semantics that are not typically

available in systems that provide causal consistency, some examples include:

• a list object where concurrent insertions on the same position are ordered by insertion

time – e.g., this can be useful in a chat application;

• a map with a �rst-to-write-wins con�ict resolution policy – e.g., this can be useful for

ordering bids of the same value in an auction.

If using this information is too complex, or stronger guarantees are required (e.g., invariants),

the application programmer should resort to Secure Eventual Linearizability, in which operations

are executed according to the external observer’s order.

5.4.6 Secure eventual linearizability

Secure eventual linearizability is implemented by executing the operations in timestamp order,

thus guaranteeing that each replica executes the received operations according to <ext, as de-

�ned by the timestamps obtained from the TiS. As operations can be received out-of-order, our

implementation uses an undo-redo execution model – when an operation is received, operations

that were executed out-of-order are undone and reapplied in the correct order – see Figure 5.4.

Although this consistency model only uses the timestamps, the metadata of an operation includes

its dependencies (line 18) as this information is often useful for managing the application state

and their hashes (line 19) are used to e�ciently detect sibling operations.

With this approach, the �nal outcome of an operation is only determined after its execution

order becomes stable, i.e., when no operation with a smaller timestamp can arrive – until then,
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the operation’s execution is considered tentative (similar to previous systems providing eventual

linearizability [64, 118]). Our prototype includes an optional mechanism for establishing the sta-

bility of operations, that works as follows. The server periodically de�nes the stability timestamp,

ts (up to some seconds in the past of the current clock at the server), and determines the set of

operations that become stable: the operations it has received with a timestamp t, such that t ≤ ts.
This information is broadcasted to all clients (we note that it is only necessary to propagate the

identi�ers of operations that have no operation that happened after – clients can compute causal

dependencies). The operations with a timestamp t ≤ ts that are not included in the set of stable

operations are undone forever. When a replica �nds out that an operation it has generated is in

this situation, it may resubmit the operation by �rst obtaining a new timestamp from the TiS.

5.4.7 The need for a server: reliability

For implementing the proposed secure consistency models, it is also necessary to guarantee that

all correct replicas will receive all valid operations. In our propagation model some clients are

responsible to propagate operations of other clients, hence we must ensure eventual delivery at

the client-to-client level.

We build on the mechanism to detect sibling operations to achieve this property (Eventual

Sibling Detection in Section 5.4.2). Recall that the centralized service periodically disseminates a

summary of its state, including a hash of the last observed (concurrent) operations. If after some

time, a replica sees that its own operations have not been reported by the centralized service

(either as a recent operation or a dependency of a recent operation), the replica contacts the server

directly to synchronize its state. The replica also contacts the server when it does not receive an

updated server report for some time.

This approach, besides ensuring that network anomalies among replicas do not impact relia-

bility, also prevents Eclipse Attacks, where malicious replicas attempt to create a barrier between

correct replicas. When this happens, correct replicas will communicate resorting to client-server-

client interaction. Several decentralized protocols for providing secure broadcast [144, 177, 178]

and preventing Eclipse attacks [179, 180] have been proposed in literature and could have been

adopted to provide such guarantees without resorting to the centralized service.

Since in our system the server is used to connect to the peer-to-peer network, as well as

to obtain a certi�cate for new replicas, it also acts as a protection against malicious replicas

appearing with multiple identi�ers (Sybil attacks [181–184]) or from reappearing with a new

identi�er after a proof-of-misbehaviour has been generated.

A correct replica that detects any form of Byzantine behaviour immediately disconnects from

the malicious one, never to connect again. If a malicious replica misbehaves with all correct

peers, it is eventually removed from the peer-to-peer network and limited to interact through the

server. If a proof can be obtained, then the correct replica submits the proof to the server which

propagates a revogation on that replicas’ id and certi�cate pair. This is similar to the eviction

protocol in Legion, leading Byzantine replicas to have no e�ect on correct ones.

A malicious replica can follow the protocol but submit invalid operations according to the
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application logic. As each operation includes its dependencies, other replicas and the server

can use this information to verify the validity of the operation. The complexity of this process

depends on the application. When veri�cation is complex (e.g., requiring recomputing the state

of the replica when the operation was issued), this can be done in the background by the server.

This opens the opportunity for attacks, but there is little incentive for a single rational client

to emit an invalid operation, as it will be expelled from the system and it will not be able to

reenter. However, when users compete in teams, if the gain/loss ratio is high enough, there

might be an incentive to sacri�ce some members by issuing an invalid operation that will only

be detected much later – simple solutions such as banning the whole team can be applied but

such decisions depend on the application. This is an open problem that is not speci�c to our

decentralized approach, but is inherent also to geo-replicated (server-side) systems running under

weak consistency.

Our system e�ectively mitigates attacks on the consistency model but it is not able to com-

pletely eliminate all of the attacks that have been discussed. Although eventual delivery is en-

forced, as we show in the evaluation (Section 5.5.6.2), it still requires a 50% ratio of correct replicas

to ensure interactions among correct replicas are not delayed. This is in line with the work on

BAR-tolerant protocols [144].

5.5 Experimental evaluation

The evaluation demonstrates that security guarantees can be provided even when clients replicate

data and communicate directly among each other. The highlights of our results are the following:

• Our secure consistency models provide considerable reduction in user-to-user latency when

compared to client-server, with interactions between nearby clients exhibiting the larger

improvements (Section 5.5.2).

• Our solution scales to a large number of clients with a modest increase in latency (Sec-

tion 5.5.3).

• Low-latency is crucial for e�ective Eventual Linearizability since its execution is a�ected

by staleness (Section 5.5.4).

• Deployment of the timestamping service should consider the geographic distribution of

clients, ideally by exploiting dynamic placement in client vicinity (Section 5.5.5).

• The proposed algorithms disallow discoverable Byzantine misbehaviour, mitigating the

e�ect of such behaviour on correct clients (Section 5.5.6.1). Rational clients (remaining

undiscovered) can impact correct clients most when they are a majority of the replicas

(Section 5.5.6.2). Resorting to the TiS and the centralized component mitigates the actions

of colluding rational replicas (Section 5.5.6.3).
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5.5.1 Experimental setup

5.5.1.1 Prototype

Our prototype allows applications running in browsers to use the proposed secure consistency

models, namely secure causal and secure extended causal consistency, and for applications that

require stronger guarantees, secure eventual linearizability (EvtLin).

Our prototype extends Legion (Chapter 3), a causally consistent system that includes a library

of CRDTs for merging concurrent updates. The secure models were implemented by adapting

Legion’s propagation mechanisms, which were susceptible to the attacks discussed in Section 5.2.

Additionally we extended the CRDT library to implement the CRDT semantics leveraging realtime

timestamps as de�ned in Section 5.4.5. A non-secure Legion version is used in the evaluation as

a comparison, providing unsecured causal consistency (Causal unsecured).

The prototype was written in JavaScript, with test applications running in browsers or as

NodeJS applications. The latter were primarily developed to avoid the overhead of graphical

user interfaces in our experiments. Our prototype has an abstract communication layer that

enforces the required security abstractions and FIFO channels on top of the network layers

in both environments: WebSockets (TLS) in NodeJS and WebRTC (DTLS) in browsers. The

implementation of our algorithms uses SHA-256 and RSA-2048 for hashes and signatures, relying

on the forge library [93].

5.5.1.2 Baseline

User-facing applications typically rely on client-server architectures. To serve as a baseline, we

added support in our prototype for strict-serializability, using client-server interactions with

a single master (Client-Server in the plots). Switching from EvtLin to Client-Server requires

changing a single con�guration variable, ensuring a fair comparison as there are no hidden

language overheads or implementation optimizations that can a�ect results.

When using Client-Server, replicas communicate with the server using standard techniques:

WebSockets over TLS with an initial client authentication (user login). Unlike the secure models,

operations are transmitted over the secure channel without any further cryptographic processing.

The server veri�es if an operation is valid before propagating it to other replicas, by checking if

it can be applied in the current state.

5.5.1.3 Application

For the evaluation, we created a game where players move on a 2D map with obstacles and gather

coins to obtain points. Initially a coin is located at the center of the map, and players are spawned

near the edges. When a player touches the coin, it gains a point and a new coin is spawned at a

random location on the map (computed deterministically from the hash of the catching replica’s

operation). The movement and gathering operations can be veri�ed based on the last movement

from that player (this gives a veri�ed trace as players start in deterministic positions).
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Figure 5.7: Grid5000 clusters map (France).

5.5.1.4 Deployment Setup

Our experiments were run on the Grid’5000 [185] platform (G5k), complemented with AWS

EC2. Clients instances (1792 by default, with 256 at each cluster) are spread over G5k’s clusters

(except Grenoble), shown in Figure 5.7. Each client has one CPU core and 1 GB RAM available.

Unless stated otherwise, the server runs in Ireland (AWS EC2: t2.xlarge, 4vcpu, 16GB) and the

TiS instances are deployed in Ireland, Paris, and Frankfurt (also on AWS EC2).

With this setup, clients and servers are distributed across di�erent geographic locations, with

varying latency among clients and varying latency from clients to the servers.

5.5.2 Latency evaluation

Client-to-client latency measurements (of Figure 5.8) consider the time since the call to create

a new operation (NewOperation) until its reception at each client. All clients generate, apply

locally, and propagate a new operation every 5 seconds. This leads every client to receive, verify,

and apply 1792/5 = 358.4 operations per second. A typical (single room) multiplayer game has

signi�cantly less players and operations being executed.

Client-to-client latency Figure 5.8a reports the latency (as an empirical Cumulative Distribu-

tion Function) observed for the secure variants of our system compared with both the unsecured

and client-server variants. Among the secure variants, Secure Causal provides the lowest latency

between clients as new operations only have to be signed before being propagated (and veri�ed

upon reception). Extended Causal and EvtLin require a client to obtain a timestamp from the TiS

for each operation, leading to an additional delay before propagation. As a consequence, results

are very similar (due to this reason, we omit the results of EvtLin in Figures 5.8b, 5.9, and 5.10).

Client-Server presents the highest latency due to the time required for operations to be sent to

the server and back to other clients. When comparing with the unsecured implementation of

causal consistency, we can observe that the secure variants exhibit additional latency – this is

due to the use of cryptography and, when required, communicating with the TiS.

Impact of server and TiS location Figure 5.8b shows the e�ect of server and TiS location. We

considered three server locations: local to G5k (in Grenoble), in Ireland, and in the US (east). For

servers in AWS locations (Ireland and US), latency of Client-Server increases as the latency to
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Figure 5.8: Client-to-client delivery latency (ms) with clients spread over Grid5000.

the data centers increases, as expected. For the Grenoble server, latency becomes better than

for the Extended Secure model using the TiS at AWS locations, as obtaining the timestamp from

the TiS is more expensive compared to sending the operation to the Grenoble server (located

close to the center of the G5k network). With a TiS server in Grenoble (S. Extended Causal –

Grenoble), the latency of the Extended Secure model became slightly better than that of Client-

Server with a Grenoble server, as it is faster to propagate messages throughout the client-side

overlay network than having the server responsible for sending every message generated at each

client to every other client. The Secure Causal model is the only one that is not impacted by the

latency to the server/service, as operations are propagated through the overlay without requiring

any coordination.

Impact of data-locality Figure 5.9 shows the di�erence of latency for operations received from

nearby clients (running in the same G5k DC) and from remote locations (running in remote DCs).

As expected, the Client-Server solution shows practically no di�erence, as operations always

have to be propagated through the server, even for operations from nearby clients. For secure

consistency models (and Causal Unsecured), there is a noticeable di�erence between operations

from local and remote clients, which results from the underlying latency (distance) among clients.

Secure Causal Consistency (and unsecured) has considerably lower latency for local propagation

compared to the secure variants as these depend on the latency to reach the closest TiS instance

to generate operations.

Discussion The results suggest that the proposed decentralized secure consistency models are

preferable to traditional cloud-based solutions when the latency among clients is lower than the

client-server-client latency. We expect that this is the common case in cloud-based deployments,

where an application is deployed in a small number of data centers.

When servers can be deployed close to clients, leading to client-server latency lower than the

latency between distant clients, the decentralized models still exhibit considerable advantage for
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Figure 5.9: Locality e�ect of secure consistency models.
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Figure 5.10: Latency results when varying the number of client replicas.

interactions among nearby clients. This makes the proposed models attractive for applications

dominated by interactions among nearby clients, such as location-dependent information sharing

and augmented reality games.

If an application is dominated by interactions among distant clients, and needs to use a

consistency model stronger than Secure Causal Consistency, the advantage of the decentralized

models is reduced (and depends on the location of TiS servers). In this case, the additional

complexity of the proposed models might not be worth the bene�t. We note that the cost and

overhead of deploying and maintaining a �eet of full application servers is much higher when

compared with TiS instances, which should also be taken into consideration when deciding which

approach to adopt.

5.5.3 Scalability

Figure 5.10 reports latency between clients as a function of the total number of clients. The results

show that, unlike the Causal Unsecured model, the penalty in latency grows modestly with an

increasing number of clients for all secure consistency models and for the Client-Server solution.

The reason for this lies on the processing overhead in the replicas for the decentralized models

(cryptography) and in the server for Client-Server (message propagation). We have not scaled

beyond 1792 clients due to lack of available hardware.
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Figure 5.11: E�ect of operating on stale views using EvtLin.

5.5.4 On data staleness

Games typically use some form of extrapolation to show expected object positions based on

current object movement, but this can lead to objects jumping on the screen when the extrapolated

value is stale due to actions of other players (which did not arrive before calculating expected

positions). Decisions are thus made (by the players) on stale data. In this experiment we measure

the e�ect of data staleness (due to propagation latency) on both EvtLin and Client-Server.

To increase contention, we used the game application but reduced the play-area and enabled

player collisions. When clients operate over local stale data they possibly grab a coin concurrently

with other players. Using the Client-Server communication model, only the �rst grab operation

to arrive at the server is accepted, with all concurrently created operations being aborted. In

EvtLin, concurrently created operations must be undone and reapplied in the correct order when

operations are delivered. This is because locally at each client the coin may still exist, and the

client can successfully generate and execute a coin grab operation. When these operations are

ordered this leads to all but one to become aborted.

We vary the number of operations per second to tune the amount of con�icts that occur. The

results, presented in Figure 5.11, show that with few operations the contention among players

grabbing the coin is low (few aborts in Client-Server). As contention increases, due to the

increasing number of operations per second, staleness increases which leads to additional aborts.

EvtLin has signi�cantly less aborts as clients operate over fresher data when compared with

Client-Server. This is con�rmed by the even lower number of aborts in EvtLin-Grenoble, which,

as discussed in the previous sections, further reduces the latency to propagate operations.

The take away from these experiments is that enforcing application invariants on client-side

replicas, with a low number of aborting operations, requires avoiding data staleness as much

as possible. This means a scheme has to be chosen which lowers, as much as possible, the

propagation latency of updates among clients.

5.5.5 Impact of TiS deployment

Figure 5.12 shows the e�ect on latency of adding TiS instances closer to clients. Clients are

scattered throughout the G5k clusters and continuously issue operations. Initially there is a
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Figure 5.12: Latency when adding TiS servers (mean value of 1s windows).

single TiS instance in AWS EC2 Frankfurt. At the 90 and 150 second marks we deploy additional

instances in AWS EC2 Paris and in G5k Grenoble, respectively. We also report the average latency

for Client-Server (with the server in AWS EC2 Ireland) and Extended Causal with a TiS instance

deployed at each G5k cluster (Ext Causal – local).

The results show that adding new TiS instances can have a signi�cant positive e�ect in

the latency experienced by clients. This e�ect is more noticeable when the TiS is closer to

clients. This process can be done in an autonomic fashion by, for instance, leveraging work on

database management on auto-tuning and commissioning replicas [186, 187]. As TiS instances

are lightweight, it is practical to deploy them in the edge of the network, placing them very close

to the clients.

5.5.6 Impact of rational and arbitrary behaviour

We now discuss how client misbehaviour a�ects latency.

5.5.6.1 Discoverable (Malicious) behaviour

Figure 5.13 reports the latency observed by correct and incorrect clients in a scenario with mul-

tiple malicious clients, for which a proof-of-misbehaviour can be produced. In this experiment,

incorrect clients (one third of all clients) follow the protocol up to the 27s mark, at which point

they start propagating incorrect messages (trash, incorrectly signed, and tampered contents).

This behaviour makes correct clients disconnect from such misbehaving clients. The latency

perceived by incorrect clients grows beyond the round-trip-time to the server (Server RTT), as

incorrect clients need to communicate through the server. Correct clients continue experiencing

low latency, as they restrict peer-to-peer interactions among them. Our experiments in varying

the amount of malicious clients (5% to 95%) and secure consistency models (causal, extended

causal, and eventual linearizability) all presented similar results.

5.5.6.2 Undiscoverable (Rational) behaviour

Rational clients can selectively delay operation propagation to other clients or the server, while

being fast to disseminate to other rational clients (i.e., a form of collusion). We focus on delaying
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Figure 5.13: E�ect of discoverable incorrect behaviour on latency.
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Figure 5.14: E�ect of rational replicas on latency by selectively delaying propagation.

propagation, as other attacks either have the same or smaller e�ect, or lead to the discovery

of such actions. Figure 5.14 reports the latency with an increasing fraction of rational clients

colluding to delay messages sent to correct clients. The results show that rational clients always

observe operations of correct clients fast (Inc-Corr) and correct replicas observe operations from

rational clients with a high delay (Corr-Inc).

Interestingly, correct clients start to perceive a noticeable e�ect among operations generated

by themselves (Corr-Corr) when the amount of colluding rational clients grows over 50%. Simi-

larly, at that point, the latency perceived by rational clients for operations issued by other rational

clients (Inc-Inc) signi�cantly drops. This is related with the probability of a correct (respectively

rational) client having another correct (respectively rational) client as a direct neighbour, which

depends on the fraction of rational clients, as neighbours are mostly selected at random. This

implies that in our system, correct clients will bene�t the most as long as they are the majority

of participants (this was observed already in [144]).

5.5.6.3 Attacking the speculative execution of eventual linearizability

As discussed previously, EvtLin is signi�cantly impacted by local data staleness when creating

new operations (Figure 5.11) – delayed operations can lead to increased data staleness and force

frequent undo/redos. We designed an experiment to measure the capacity of rational clients
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Figure 5.15: E�ect on EvtLin undo/redo sizes as rational clients hold back operations.

to disrupt a system using EvtLin by delaying operation propagation. In our experiment clients

manipulate a bounded counter concurrently.

The counter bounds and increment/decrement values were selected to force contention on

client operations – we limited the counter’s the value to be between 0 and 10, and all clients

continually generate operations to decrease the counter by 1. If a client observes the counter with

a value of 0 it issues an operation to increment the counter by 4. As clients apply their operations

locally when generating the operations, these might be set to be aborted later if, when re-ordered,

they would violate the invariant on the counter value.

Figure 5.15 shows the moment at and the number of operations undone/reapplied at each

client. As baseline, we show the results when no client delays propagation (NoCheat) – in this

case, contention over the counter already leads to some undo/redos. For disrupting the system,

a rational client obtains from the TiS timestamps for 5 operations (identi�ed by Create at the x

axis) propagating these operations much later (at the following Release). This leads to a high

number of undo/redos (Cheat), as a large number of operations with greater timestamps have to

be undone/reapplied by each client.

One way to address this issue would be to use the servers’ stability mechanism (Section 5.4.6).

For greater e�ect, stability should be chosen as close as possible to the server’s actual time. Not

only does this lead to clients which have high latency to have their operations being rejected

more often, it e�ectively returns to client-server communication model as rational replicas can

trivially delay correct replica’s operations just enough as not to be included in time, leading them

to communicate with the server directly to have their operations included.

We instead investigated if the problem could be addressed by having TiS instances storing

timestamped operations. In this case, clients poll the TiS for operations that they might be missing

– we show the results for a polling time of 10s, 1s, or 0.25s (Figure 5.15). The late release of an

operation does not lead to a large number of undo/redos, as clients obtain the (on purpose) delayed

operations directly from the TiS service, showing that keeping operations at the TiS mitigates

this attack. Naturally, enabling clients to poll the TiS more frequently increases the mitigation

e�ect at the expense of additional resource consumption.
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5.5.6.4 Discussion

It is clear that rational replicas cannot be removed altogether – users can always communicate

with means external to the system to gain a latency bene�t. This is also true in the client-server

model, as nothing disallows such replicas from running additional software. Our approach in

reducing inter-replica latency mitigates this by letting correct clients observe operations from

other correct clients with low latency.

5.5.7 Discussion on network performance

When running the experiments we also measured the network usage and concluded that, when

using our system, the server makes a lower use of the network (about one third) when compared

with the classic Client-Server model.

This is in line with previous results of Legion (Section 3.3.2.4) as just as in Legion, our system

elects a fraction of clients to maintain communication with the server, having the remaining

clients only interacting with other clients. This not only enables the server to support a larger

number of clients but also reduces server bandwidth usage.

Comparing secure and non-secure consistency variants, there is an overhead when a client

bootstraps since cryptographic keys must be generated and exchanged with the server to obtain

a leased certi�cate – this is a one-time cost for each replica (for the duration of the lease). The

overhead on the network due to secure mechanisms among clients depends on the application’s

message sizes. Experiments using small messages among clients incur an increase of bandwidth

usage of up to ×2.5, due to the additional signatures and timestamps, which can have a consid-

erable size for small data sizes (e.g., 256 bytes for signatures with key sizes of 2048 bytes). This

additional cost tends to ×1 (minimal overhead) when the size of application messages increases.

5.6 Related work

In this section we explore related work with respect to the security aspects of the system. A

general overview of the research context can be found in Chapter 2.

5.6.1 Storage systems

Byzantine fault tolerance (BFT) is designed to cope with malicious replicas that can perform

arbitrary actions [147, 188]. In the context of replicated systems, existing solutions typically focus

on strong-consistency models among a limited numbers of replicas [145–147]. Works on secure

causal BFT de�ne secure causal in addition to SMR, and require a total order among replicas with

a causal order for interacting with the system [150–152]. Our work addresses a di�erent problem,

requiring no total order, leading to the possibility of using weaker consistency models. This leads

to di�erent requirements and properties for the proposed models and algorithms that were used.

Approaches based on blockchain also enforce a �nal uni�ed total order on all operations but

additionally impose high latency on writes due to the use of majority voting algorithms [153–156].
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Such systems are also sensitive to a majority of replicas acting against the rest, which is often the

case in a game setting. For example, in games where the current leaderboard is clearly divided

into a few winning users and the remaining clients (which are losing) a co-operating majority

is easy to accomplish. Our work practically mitigates the e�ects of a majority overtaking the

peer-to-peer network by use of a trusted fallback – the central server.

A very important aspect that we accomplished, which the referenced works do not address

at all, is to allow for islands of replicas to evolve concurrently.

Bayou [64] uses a form of eventual linearizability by relying on primary replicas to assign

global orders among all operations. An operation is tentatively executed in each replica until

its global order is de�ned. Note that this permits major reordering of operations – an operation

o1 created before operation o2 (in realtime), may later be ordered as o2 < o1. Our implementa-

tion of eventual linearizability orders operations based on the timestamps assigned by the TiS

service, e�ectively mitigating this issue. Furthermore, our algorithm provides protection against

malicious replicas.

5.6.2 Peer-to-peer middlewares

Most peer-to-peer message propagation and content delivery schemes [189–191] only allow clients

to share static content and do not cope with simple man-in-the-middle attacks to provide mali-

cious or fake content.

Several decentralized protocols for providing secure broadcast [144, 177, 178] and preventing

Eclipse attacks [179, 180] have been proposed in literature and could have been adopted to provide

some of the guarantees we provide resorting to the centralized service. Since in our system the

server must be used to connect to the peer-to-peer network, it also acts as a protection against

malicious replicas appearing with multiple identi�ers or from reappearing (Sybil attacks [181–

184]).

These protocols led to the creation of many peer-to-peer systems which were designed with

some thought to malicious behaviour in replicas, for example:

The Atum [192] middleware o�ers resilient group communication for large and dynamic net-

works. Although using cryptography (signatures and MACs) to authenticate messages,

there is no consideration for replicas actively attempting to subvert the system itself.

BAR Gossip [144] proposes an algorithm for reliable message dissemination in the BAR model by

adopting a peer-to-peer gossip protocol. The BAR model introduced explores the notions

of Byzantine, Altruistic, and Rational replicas.

S-Fire�ies [193] is a system for data dissemination robust to Byzantine faults. In contrast to our

system, it relies on global knowledge of all replicas at all times.

FlightPath [194] is a reliable peer-to-peer data streaming application that tolerates up to 10%

of replicas behaving maliciously and the remaining peers acting rationally. The focus
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is on having a single designated source replica while others are solely used for reliable

dissemination.

Our work is complementary to these works and could rely the proposed solutions to achieve

reliable dissemination.

5.6.3 Secure hardware

Trusted Execution Environments can be used locally at the client to provide additional security

guarantees for user-executed code [161, 195–197]. Using trusted hardware at each client possibly

provides a secure execution environment for a given application or web-page [198] or even disal-

low unauthorized users from accessing sensitive information [199]. TrustJS [198] is comparable

to our use-cases as it allows for JavaScript to run, in a secure-fashion, at the client-side.

These works focus on protecting the integrity and con�dentiality of code and data of, for

example, a single player game (i.e., DRM), whereas we focus on direct user-to-user interaction

(i.e., multiplayer games where players themselves interact in a peer-to-peer fashion).

Although our proposed models could leverage such hardware to be implemented, the modules

are not widely available and recent works [200–205] show possible attacks to these modules.

These solutions also do not su�ce to counter delaying propagating (to progagate messages

they have to be exported from the trusted hardware for propagation) or colluding to circumvent

the guarantees of causal consistency (as the data itself has to be shown to the user for it to be

used, and the user can run additional software or hardware). We address these issues with the

use of a lightweight and highly-available trusted service, controlled by the application provider.

In our work we also do not want to restrict an application to require the existence of a TEE, but

to only use it when needed and if available at the client-side. In cases where a trusted component

is indeed necessary, we want to be able to choose from various options depending on what is

available and acceptable: i) use the locally existing TEE; ii) use an available TEE existing at a

neighbouring peer; iii) use an available TEE or trusted node at the network infrastructure (e.g.,

5G [206]); iv) use trusted instances running at multiple cloud points of presence (the lightweight

nature of TiS instances allow for much wider deployments – see Section 5.4.4.2); v) use the

(trusted) server if all else fails or when it is simply the only acceptable choice latency wise.

5.7 Final remarks

This chapter addresses the impact of replica misbehaviour on the guarantees of available consis-

tency models, namely causal consistency and eventual linearizability.

We analyzed possible replica misbehaviour based on causal consistency as, depending on the

application, a client may gain an unfair advantage by executing a di�erent type of misbehaviour.

We derived secure consistency models that prevent di�erent types of misbehaviour and, by select-

ing the secure consistency model that prevents such misbehaviour, an application may prevent

such attacks. We proposed techniques for implementing these models and implemented them in
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our prototype, a middleware providing a peer-to-peer data-service with secure variants of causal

consistency and eventual linearizability.

Our evaluation shows that the proposed algorithms to enforce the secure consistency mod-

els impose a modest overhead when compared with unsecured variants, while keeping much

lower user-to-user latency and a reduced server load when compared to solutions relying on

client-server architectures. Additionally, our algorithms e�ectively mitigate the e�ects of mali-

cious clients (even when colluding). Reducing latency among correct clients has an additional

advantage: it reduces the bene�t that colluding replicas could have by using fast (peer-to-peer)

connections external to the system – this is an unsolvable problem in pure client-server commu-

nication models.

The fact that applications have di�erent requirements, and preventing di�erent types of

misbehaviour leads to di�erent overheads, justi�es the interest of providing di�erent consistency

models.
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Chapter 6

Client-side partial replication

6.1 Introduction

In the previous chapters, Chapter 4 and Chapter 5, the de�nitions on causal consistency and

supporting algorithms consider causality as de�ned in a system where each individual replica

locally maintains a copy of all objects – full replication.

In this chapter we explore partial replication. We start by de�ning consistency models with

respect to individual objects, with the overall goal to provide partial replication. We explore a

system model with client-side replicas supporting weak consistency models, in particular, we

focus on causal consistency.

6.2 Preliminaries

6.2.1 System model

Objects The system is composed by a set of objects Obs.

Replicas We consider a system comprised of R replicas. Each replica r ∈ R has an associated

unique identi�er, r.id. Each replica also has an associated clock, rc, which starts at 0 and

is incremented with each operation generated by that replica.

Operations An operation o encodes a set of e�ects on an object. Each operation has an associated

unique identi�er, composed of the identi�er of the originating replica and its operation

count (clock), i.e., if r generated o, ID(o) = (r, C) where C = rc + 1 at the time of

generation (note that rc is updated).

Each operation o is generated respective to an object ob = Object(o), i.e., with O as the

set of all operations, ∀o ∈ O,Object(o) ∈ Obs.

Metadata Objects and operations can have associated metadata, ob.metadata and o.metadata.

Thus, an operation is de�ned as o = (oid, data,metadata), with oid de�ned as oid =

ID(o), data as any data releveant for the execution of the operation (such as operation

104



6.2 . PRELIMINARIES

name and parameters), and metadata any information required by the system’s mecha-

nisms to ensure correct behaviour.

Failures We consider two types of failures:

Temporary or recoverable failures These failures consiste of networking and replica fail-

ures which are recoverable. Eventually, the replica recovers without losing any data.

Permanent failures In a permanent failure a replica fails permanently without recovering.

This is a common occurence when considering client-side replicas, as users may

uninstall applications, refresh their browsers, or somehow destroy their devices.

For this work we assume that replicas do not behave arbitrarily – all replicas follow system

speci�cation without any deviation.

6.2.2 Consistency models

We start by de�ning a generic model for consistency that can be instantiated with di�erent

relations among operations.

De�nition 6.1 (Model). A modelM/ is the set of relations among distinct operations following a

speci�c set of rules as de�ned by /, i.e., o1 / o2 ⇒ (o1, o2) ∈M/.

A model is transitive ([(o1, o2) ∈M∧(o2, o3) ∈M]⇒ (o1, o3) ∈M) and acyclic ((o1, o2) ∈
M ⇒ (o2, o1) /∈M).

Altough similar to happens before of Lamport [49], this generalizes to other models that

have relations among operations, such as explicit dependencies (Section 6.5.5.1) and total order

(Section 6.6).

6.2.3 Serialization

Each replica r applies the set of operations it has received, Or , in its local state. As each replica

may not have received all operations, we can assume the following relation: Or ⊆ O.

We de�ne the local state of a replica r as the execution of a serialization, Sr , of all operations

in Or to an initial state. A serialization is de�ned as follows:

De�nition 6.2 (Serialization). We say that for a set of operations R, S is a serialization (R,<) of

all operations in R if it is a total order of R.

To be able to de�ne consistency models, a stricter de�nition is required:

De�nition 6.3 (Correct serialization by model). We say that for a set of operations R, S ∵M/ is

a correct serialization (R,</) of all operations in R according toM/, i� ∀o1, o2 ∈ R, [(o1, o2) ∈
M/ ⇒ (o1 </ o2)].

In other words, S ∵M means the serialization S conforms to any restrictions imposed by

M.1

1∵ is read as by or because.
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6.2.4 Distributed execution

A distributed execution D is the set of all serializations at every replica, i.e., D = {Sr : r ∈ R}.
A distributed execution is valid towardsM i� every replica is able to execute all operations

by followingM:

De�nition 6.4 (Valid distributed execution). A distributed executionD is valid towardsM i�, for

every replica r, Or is executed as Sr ∵M, i.e., ∀Sr, Sr ∵M⇒ DM .

6.2.5 Possible serializations

At any point each replica may have received a set R of operations, such that R ⊆ O. As each

replica may receive a di�erent R, and the operations in R can be received in di�erent order (and

possibly serialized in a di�erent order), we can de�ne the valid set of serializations (or executions)

of O underM, S(O,M), as such: S(O,M) = {(R,<) : R ∈ P(O) ∧ (R,<) = S ∵M}, i.e.,

the set of all possible serializations of any subset of O which are valid underM.

6.3 Partial replication

6.3.1 Interest set

To introduce partial replication we assume each replica has a set of objects it is interested in.

Each replica replicates all objects in its interest set.

De�nition 6.5 (Interest set). The interest set Ir of a replica r is the set of objects the replica replicates,
such that Ir ⊆ Obs.

De�nition 6.6 (Full replica). A replica r is a full replica i� Ir = Obs.

De�nition 6.7 (Partial replica). A replica r is a partial replica i� Ir ( Obs.

A partial replica r includes in its serialization Sr only operations that are respective to objects

in its interest set Ir . As an example, we have two operations, o1 and o2 such that (o1, o2) ∈M
and Object(o1) = 4 and Object(o2) = �. If replica r1 has interest set Ir1 = {�}, it ony stores

inOr1 the operation o2 asObject(o1) /∈ Ir1 . In contrast, replica r2 with interest set Ir2 = {�,4}
stores both operations, and Sr2 = (o1, o2).

To ensure we can reason on serializations impacted by partial replication we explicitly show

the non-serialization of operations at a given replica with ¬o. In the previous example, the

serialization of Or1 (Or1 = {o2}) becomes Sr1 ∵ M = (¬o1, o2). Altough ¬o1 is shown

explicitly, only o2 has an e�ect of the replica’s state.

The goal of partial replication is not only to ensure replicas do not store information they

have no interest in, but also on reducing network overhead – not every replica should receive

every operation. This leads to the following de�nition:
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De�nition 6.8 (Genuine partial replica.). A system supports genuine partial replicas i� any replica

r only receives o and any metadata related to o i� Object(o) ∈ Ir . Additionally, a genuine partial
replica only receives metadata related to object ob i� ob ∈ Ir .

Intuitively, genuine partial replicas with intersecting but not equal interest sets may not be

able to synchronize correctly due to missing information – we present the impossibility to provide

for such replicas later in the chapter (Section 6.7).

The impossibility depends on the chosen consistency model – it works for any model that has

relations among pairs of operations in di�erent objects. For example the happens before relation

(De�nition 6.15) for causal consistency in many cases requires storing some metadata to be able

to enforce the chosen model.

To ensure such relations may be kept, we de�ne replicas which may receive, propagate, and

store some part of any control information (metadata).

De�nition 6.9 (Genuine partial replica with full control.). A replica r is a genuine partial replica

with full control i� r only receives o if Object(o) ∈ Ir . Additionally, r receives metadata for every

o ∈ O.

The previous de�nition enables two replicas to exchange metadata to ensure relations among

pairs of operations are captured and stored, even if the bulk of the data (the operation contents

themselves and additional metadata required to apply these operations) is not. The following

restricts the shared metadata to only include that which is strictly necessary to ensure information

on relations is tracked.

De�nition 6.10 (Genuine partial replica with genuine control.). A replica r is a genuine partial

replica with genuine control if r only receives o if Object(o) ∈ Ir . Additionally, r may only receive

metadata associated to operation oi if Object(oi) ∈ Ir or if there exists an operation oj such that

(oi, oj) ∈M and Object(oj) ∈ Ir .

6.4 Progress

Progress is loosely de�ned as the possibility of two replicas being able to synchronize their local

states with each other, in a �nite number of steps and without coordinating with other replicas.

We build on the notion commonly refered as partition recovery in the CAP theorem [44],

i.e., at the end of the (network) partition recovery step, “the state on both sides must become

consistent” and “there must be compensation for the mistakes made during partition mode”. The

�rst part can be seen as simply ensuring operations are shared among replicas, but the second

part is what gives guarantees on the expected outcome for users.

To explain progress in our model we depict a distributed execution in Figure 6.1. There are

three replicas, A, B, and C. The interest sets are IA = IC = {4,�} and IB = {�}. There are

three points in time depicted by τ0, τ1, and τ2.
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A4,�

B�

C4,�
τ0

oA1 :4 oA2 :�

τ1

m

τ2

Figure 6.1: Diagram of a distributed execution.

A

B

m ≡ ⇑1 ⇓1 ⇑2 ⇓2 . . . ⇑k ⇓k

τ1 τ2τ1 τ2

Figure 6.2: Diagram of a pairwise synchronization.

Somewhere between τ0 and τ1 two operations, oA1 and oA2 2, were generated at replica A, with

Object(oA1 ) = 4 andObject(oA2 ) = �. Between τ1 and τ2 replicas A and B synchronize (m), i.e.,

at τ2, B is consistent with A and B compensated for any changes A made in its local state, and

vice-versa.

A synchronization (m) is detailed in Figure 6.2. It contains two points in time, τ1 and τ2 in

which a �nite number of messages are exchanged by two replicas. At the end of the exchange

both replicas have serialized the same set of operations, with respect to their interest sets. In the

example of Figure 6.1, at τ1, SA = (oA1 , o
A
2 ) and SB = ( ). At τ2 (after m between replicas A and

B), SA = (oA1 , o
A
2 ) and SB = (oA2 ). SB will not contain oA1 as (Object(oA1 ) = 4) ∧ (4 /∈ IB).

Depending on the mechanisms to ensure progress for the used model, replicas may need to

exchange additional information to ensure the model’s guarantees (as we will show later).

From here on we use the abbreviated notions AmB or Amτ2τ1B. Formally, using Figure 6.2, m
can be de�ned between two replicas A and B as:

De�nition 6.11 (Synchronization). Two replicas, A and B, synchronize between the moments τ1 and

τ2, Amτ2τ1B, i� ∀o ∈ Sτ1A , Object(o) ∈ IB ⇒ o ∈ Sτ2B , and ∀o ∈ Sτ1B , Object(o) ∈ IA ⇒ o ∈ Sτ2A .

An algorithm which aims to provide synchronization among replicas makes sense if it can

provide progress when restricted to a consistency model – i.e., an algorithm should not only

ensure a valid distributed execution, but also allow for any pair of replicas to communicate.

Ideally, two replicas should be able to synchronize (correctly) in a �nite number of steps. Less

formally this means that, at any point in time two replicas may attempt to synchronize, and such

synchronization eventually completes.

2

We write orn as the nth operation generated at replica r.
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De�nition 6.12 (Algorithm). An algorithmA is a set of steps which ensures synchronization for any

pair of replicas for a given model. Formally, for any pair of replicas A and B, ∀τ1∃τ2 : Amτ2τ1B∧S
τ2
A ∵

M∧ Sτ2B ∵M.

Note that this does not disallow for eventual progress or using a third party. As there are no

bounds set on τ1 and τ2, τ2 might, in theory, be years into the future. In that direction we also

de�ne progress:

De�nition 6.13 (Progress). An algorithm A provides progress i�, in the case both replicas A and B

do not fail and their shared communication channel does not fail, between τ1 and τ2, replicas A and

B can synchronize without exchanging information with any other replica.

Informally, an algorithm ensures any pair of replicas can at any point in time attempt to

synchronize and eventually the state will be correctly merged among them. Additionally, an

algorithm provides progress if this is possible without the synchronizing replicas requiring any

outside help – synchronization �nishes in a �nite number of steps without any external inter-

vention being required.

6.5 Causal consistency

6.5.1 Reliability

Now that we can de�ne how operations are executed at any replica (and in which order), we need

to ensure operations are delivered at every replica.

De�nition 6.14 (Reliability). A system provides reliability, or eventual delivery, i� for every operation

o executed in any replica, every other (interested) replica eventually executes o, i.e., ∀o, o ∈ Sτ1r1 ⇒
[∀r2, Object(o) ∈ Ir2 ⇒ ∃τ2 , o ∈ Sτ2r2 ∧ τ2 <∞].

τ <∞ means that τ is within �nite time but with no strict bound. Informally, the previous

de�nition states that if any replica executed o, eventually every other replica also executes o

(respecting interest sets).

A system which only provides reliability has no restrictions on serialization order. Thus, in

a system which provides reliability, no information on ordering is required. Typically keeping

some ordering among operations is important, for example to ensure preservaton of user intent.

6.5.2 Happens before

In 1978 Lamport de�ned happens before as an irre�exive partial ordering on the set of all events

in the system [49]. In contrast, we do not consider events not related to objects, such as mes-

sages being sent/received. In relation to objects we consider only writes – we assume reads are

immediate, atomic, and local at each replica, and need not be propagated to any other replica.

This allows for the following de�nition:
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A4,�

B�

oA1 :4 oA2 :�

oB1 :� oB2 :�
m

Figure 6.3: Diagram sholding happens before relations among operations.

De�nition 6.15 (Happens before). We say operation o1 happens before operation o2, o1 ≺ o2, i�

when operation o2 was generated at some replica r, r has already executed o1.

In other words, happens before can be thought of as running a read(ALL_LOCAL_STATE)

function before generating an operation, and the new operation will depend on everything in

the local state.

In Figure 6.3 we show 2 replicas that each generate two operations, executing a synchroniza-

tion in between. In this case, the following dependencies are established:

• oA1 ≺ oA2 ,

• oA2 ≺ oB2 , (due to the synchronization step),

• oB1 ≺ oB2 .

Some dependencies are derived by transitivity: a ≺ b∧ b ≺ c⇒ a ≺ c. In this case, we have:

• oA1 ≺ oB2 .

Based on the modelM≺ and De�nition 6.3, we can de�ne a causal serialization:

De�nition 6.16 (Causal serialization). A causal serialization of a set of operations R is the serial-

ization S ∵M≺ of all operations in R with respect toM≺.

Note thatM≺ enables multiple distinct serializations for a set of operations, which in practice

typically depend on the order in which operations are delivered.

Let us consider again Figure 6.3. WithO = {oA1 , oA2 , oB1 , oB2 } andM≺ = {(oA1 , oA2 ), (oA1 , o
B
2 ),

(oA2 , o
B
2 ), (oB1 , o

B
2 )}, all possible serializations of these operations are S(O,M≺) = {( ), (oA1 ),

(oA1 , o
A
2 ), (oB1 ), (oA1 , o

B
1 ), (oB1 , o

A
1 ), (oA1 , o

A
2 , o

B
1 ), (oA1 , o

B
1 , o

A
2 ), (oB1 , o

A
1 , o

A
2 ), (oA1 , o

A
2 , o

B
1 , o

B
2 ),

(oA1 , o
B
1 , o

A
2 , o

B
2 ), (oB1 , o

A
1 , o

A
2 , o

B
2 )}.

S(O,M≺) is similar to the notion of consistent cuts de�ned by Friedmann Mattern in

1988 [108]. If operation b depends on operation a and b is included in a consistent cut, a must

also be included in that cut – see Figure 6.4. In our notation, Oc is a consistent cut of O i�

Oc ⊂ O ∧ (∀(a, b) ∈ M≺, (b ∈ Oc ⇒ a ∈ Oc)). The set of all possible consistent cuts of a set

of operations O with respect toM≺ equals to S(O,M≺).

In the absense of partial replication, the notion of consistent cut maps directly to our de�nition

of synchronization: a synchronization between two replicas is the same as joining two consistent

cuts. Using Figure 6.4, sup is de�ned as the union of the two cuts C1 and C2 – this is similar as

having two replicas, A (C1) and B (C2), synchronizing to a single uni�ed state (sup).
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inf = C1 ∩ C2

sup = C1 ∪ C2

C1 C2 C3

Figure 6.4: Consistent cut (diagram and quote from [108]): “A lattice is a partially ordered set any

two of whose elements have a greatest lower bound inf and a least upper bound sup. Obviously,

inf = C1 ∩ C2 and sup = C1 ∪ C2 for any two cuts C1, C2”.

6.5.3 Objects and causal consistency

Causal consistency is typically de�ned with respect to relations (happens before) among op-

erations, messages, or events in the system [43, 44, 49, 50, 58, 62, 64, 66, 96, 97, 102–127]. In

these works, the de�nition of causal consistency depends on how happens before is de�ned, and

typically does not include reliability.

Considering our previous de�nitions of reliability (De�nition 6.14) and causal serialization

(De�nition 6.16), we de�ne live causal consistency as follows:

De�nition 6.17 (Live causal consistency). A system enforces live causal consistency i� it is reliable

and, for every replica r, r executes all operations according to a causal serialization.

This de�nition, similar to previous works, has no explicit consideration for partial replication

and individual objects. We de�ne inter-object live causal consistency next, which is equal to live

causal consistency but simpli�es the distinction with what follows.

De�nition 6.18 (Inter-object live causal consistency). A system enforces inter-object live causal

consistency i� live causal consistency is provided among all operations, independent of which objects

these belong to.

For a system with full replicas the second de�nition is redundant. For partial replicas this

is not true, as operations for non-replicated objects will not be included in the happens before

relation, which includes only previously executed operations (i.e., from objects contained in its

interest set).

Note that transitive dependencies still remain. For example, if replica A generates o1 and o2

and replica B generates o3, such that o1 ≺ o2 ∧ o2 ≺ o3, then o1 ≺ o3 independent of the target

objects of those operations and interest sets of the replicas.

We now de�ne live causal consistency with respect a subset of objects.

De�nition 6.19 (Per-object live causal consistency). A system provides per-object live causal con-

sistency if it is reliable and all operations are executed according to a causal serialization, where ≺
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is limited to operations from the same object, i.e., a happens before (De�nition 6.15) relation o1 ≺ o2
can only be true i� Object(o1) = Object(o2).

This de�nition considers objects at a per-object basis, but can be easily extended to sets of

objects. Per-object causal consistency with �xed replica-sets, such as some container or consistent-

hashing based replication, reduces to per-object causal consistency by considering the object to

be the container. Replicas may keep multiple groups of objects but do not consider dependencies

among operations from di�erent groups of objects.

6.5.4 Strong convergence

As there is no restriction on �nal state after applying operations, with causal consistency replicas

can diverge in state. A simple example is two replicas writing some value to the same key

concurrently, such that neither write dependends on the other. As both operations may be

executed in any order, these two replicas will diverge just by applying the remote replica’s

operation.

In [58, 59], strong convergence is de�ned to address this issue, which we adapted:

De�nition 6.20 (Strong convergence). A system provides strong convergence if the same set of

operations results in the same state, independent of execution order (serialization), i.e., ∀S1,S2 ∈
S(O,M), ops(S1) = ops(S2)⇒ State(S1) = State(S2).3

Intuitively, for every possible (valid) serialization of the same set of operations, the resulting

state is the same. Eventual convergence – not for every set of operations, but for when no

new write operations are generated – and reliability, are the base for eventual consistency [207].

Combining strong convergence with causal consistency (reliability and happens before) leads to

causal+ consistency [96, 126]:

De�nition 6.21 (Causal+ consistency). A system provides causal+ consistency i� it provides causal

consistency with strong convergence.

The previous example of Figure 6.3 now reduces from 12 to 7 possible �nal states. This is be-

cause (oA1 , o
B
1 ) and (oB1 , o

A
1 ) must both result in the same state. The same applies to (oA1 , o

A
2 , o

B
1 ),

(oA1 , o
B
1 , o

A
2 ), and (oB1 , o

A
1 , o

A
2 ) and to (oA1 , o

A
2 , o

B
1 , o

B
2 ), (oA1 , o

B
1 , o

A
2 , o

B
2 ), and (oB1 , o

A
1 , o

A
2 , o

B
2 ).

Note that convergence has no e�ect on the size of S(O,M≺), it only has an e�ect on the amount

of possible (intermediate) states.

6.5.5 Comparing models

We now compare di�erent consistency models by the amount of valid serializations each model

supports for a set of operations.

3

With ops(S) a function that returns a set of operations for a given serialization, and State(S) a function that

returns the deterministic state of executing S in order.
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Note that many speci�c settings can be devised where all models lead to the same execution.

For example, a setting where a single replica generates one operation trivially equals all models

as there is only one possible serialization, independently of the chosen model. We are not strict in

the usage of( versus⊂ for cases such as single writer replica or single operation, but focus on the

general case of many writing replicas, multiple writes per replica, and multiple and randomized

synchronization steps between replicas. Thus, given the models:

Mr : reliability (De�nition 6.14);

Mlcc: live causal consistency (De�nition 6.17);

M≺: causal consistency, di�ering from live causal consistency by not including reliability, see

causal serialization (De�nition 6.16);

Mio−lcc: inter-object live causal consistency (De�nition 6.18);

Mpo−lcc: per-object live causal consistency (De�nition 6.19);

Mc+c: causal + consistency (De�nition 6.21).

The following is true for the general case:

• S(O,Mlcc) ( S(O,Mr) – as live causal consistency builds on reliability and has addi-

tional restrictions (causal consistency);

• S(O,Mlcc) = S(O,M≺) – as live causal consistency builds on causal consistency and

the additional restriction (reliability) has no impact on valid serializations;

• S(O,Mlcc) = S(O,Mc+c) – as convergence is a property on resulting state, and has no

impact on serialization of operations;

• S(O,Mio−lcc) ( S(O,Mpo−lcc) – as per-object is much more permissive than inter-

object because many dependencies are not included, i.e.,Mpo−lcc (Mio−lcc.

6.5.5.1 Explicit dependencies

Instead of assuming that when an operation is generated we execute a read(ALL_LOCAL_STATE),

dependencies among operations can be set explicitly. Allowing for dependencies among only

a speci�ed set of objects, or even individual operations, allows for greater concurrency when

executing operations [96, 111, 120, 122].

There are many ways for dependencies to be set explicitly (and many pitfalls to avoid when

letting developers deal with low level consistency semantics [66]). Examples range from let-

ting the programmer provide operations to be dependend on when generating new operations,

which forces reasoning about consistency for all possible operations, to con�guring application

semantics such that sets of objects are related (and hence only operations on these objects create

dependencies among each other).
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For example, consider that SA = (oA1 , o
A
2 ), and replica A executes another operation, oA3 .

Under causal consistency (M≺), we have oA2 ≺ oA3 (and oA1 ≺ oA3 by transitivity).

The model of explicit dependencies,M→, allows for such relations to only exist if explicitly

set. For example, even if there is no relation between oA1 and oA2 , the relation oA1 → oA3 can be

set explicitly when oA3 is generated. oA2 will still be independent from both other operations.

Because→ can only be set for operations that are visible when generating new operations,

we know that (o1, o2) ∈ M→ ⇒ (o1, o2) ∈ M≺ (i.e.,M→ can generate only a subset ofM≺).

This leads toM→ (M≺ and directly the following result:

• S(O,M≺) ( S(O,M→).

Altough we focus on the size of the set of possible serializations, this agrees with related

work [96, 111, 120, 122] in the sense that more e�cient algorithms can be used (for example, by

omitting dependencies greater concurrency can be achieved) while still giving a correct outcome

in light of the applications’ semantics. In our notation, a larger the size of S(O, /) results in more

possible executions and thus allows for higher concurrency.

The rest of this document focusses on causal consistency (i.e., the global state read happens)

but also applies to any consistency modelMC where C speci�es an order among operations,

such as explicit dependencies (M→) or total orders as de�ned in the next section.

6.6 Total orders

Interestingly, causal+ consistency is often used to create causally consistent systems based on

the claim that causal consistency is the strongest consistency model which remains available

under network partitions [96, 102, 103, 120, 122, 123]. In practice the result is that, in our system

model, causal+ consistency should be the strongest model we are able to support. The works that

formalize this result rely on the following statements:

it may not be true that “the data store is pretending” that o1 ≺ o2 even if o1 ⊀ o2, of

observable causal consistency (OCC) [103];

a)

“Time does not travel backward” of natural causal consistency (NCC) [102].b)

The �rst statement, a), can be translated to the system not being allowed to create some de-

pendency among two concurrent operations to guarantee consistency. The second statement, b),

loosely states that the system should not rollback operations, or reorder them.

In this section we show how we can create stronger models than causal+ consistency (re-

liability, happens before, and convergence), by not relying on those statements. We challenge

statement a) by introducing dependencies not observed by causal consistency, and statement b)

by allowing an execution model that explicitly uses rollbacks and re-executions to ensure a con-

sistent outcome.

Considering Lamport’s work [49] on creating a total order which respects the happens be-

fore relation among operations, we can create a consistency model stronger than just causal+

114



6.6 . TOTAL ORDERS

consistency but the data store will be pretending some order among operations exists. Lamport’s

approach to provide a total order is to ensure all operations can be sorted in an order that both

respects causal ordering while also providing a single total order shared among all replicas. This

approach requires the participation of all replicas, where every replica must communicate with

every other replica, and where any failures impact liveness.

Alternatively, one can allow time to travel backward. Bayou [64] rolls back the database and

replays the set of operations in a deterministic order to ensures all replicas reach the same state.

Concurrent versioning systems use a similar approach when merging diverging state – start from

a consistent state and merge updates creating a total order, resolving con�icting updates as they

are applied.

6.6.1 Eventual linearizability

Eventual linearizability [118, 157] is typically de�ned as providing a partial order on operations

that converges to a total order over time. An alternative de�nition is as providing a total order

on all operations, but which may not include knowledge of all operations at all times.

This is in contrast to linearizability [208] where the total order is de�ned instantaneously

(with knowledge of all related operations). This leads to the impression that all operations are

executed at a centralized component in sequential order, consistent with the real time ordering

of operations.

Eventual linearizability allows for reordering the sequence of operations, as long as all pre-

vious operations are always included (monotonic), and in two replicas with the same set of

operations, the order is the same (converging).

The referenced works allow for replicas to operate on their local state without the necessity

of coordinating with other replicas. In Chapter 5 we use a technique based on a total order <ext

to obtain similar results. M<ext guarantees that if an operation o2 might depend on operation

o1, then o1 <
ext o2. Might depend is formally de�ned in Extended Causal Property 2 – if some

replica observes o1 before o2 is generated at any other replica, then (o1, o2) ∈M<ext .

Such a model can by implemented with realtime timetamps, by introducing a small delay

before returning a timestamped operation to ensure any future operations capture the newly

created one (de�ned as TWait in Section 5.4.4).

This model was de�ned with the intent to deal with misbehaving users. If, alternatively, the

system expects correct behaviour from replicas and synchronized clocks, the wait primitive is not

necessary and timestamps can, instead of being generated at trusted servers or hardware, be gen-

erated locally. Additionally, the algorithms de�ned in Figure 5.5 can be simpli�ed. This is because

it is no longer necessary for eventual linearizability to include dependency identi�ers and hashes

for optimizations in discovering incorrect behaviour (namely Sibling detection, Section 5.4.2).

If the setting is trusted, then the additional metadata is not required, and a much more e�cient

implementation is possible. For details on how operations are serialized refer to Figure 5.4.
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6.6.2 Extended causal consistency

If the happens before relations (dependencies) are included with operations, we can provide an

extension to causal consistency which leverages realtime timestamps to make more informed

decisions when operations are concurrent.

As de�ned in Section 5.3.3.1 for insecure settings, extended causal consistency can be de�ned

as an extension to causal consistency which ensures that, if an operation is executed in an order

that violates <ext, the application is simply noti�ed and may or not act on that information,

i.e., if (∃o2 : o1 <
ext o2 ∧ o2 ∈ Sr ∧ o1 /∈ Sr), then, eventually, when o1 arrives at replica r,

the serialization of o1 is replaced with signal(o1,Ext(o1, Sr)), with Ext(o, S) the set of opera-

tions present in S, where o /∈ S, that should have been executed after o according to <ext (i.e.,

Ext(o, S) = {o2 : o2 ∈ S ∧ o <ext o2}).
Note that no out of order operation is reordered as in eventual linearizability – the application

developer must decide how to use the information provided to provide the user with an intuitive

outcome.

For example, a chat application using eventual linearizability will reorder messages as they

are received. Using extended causal consistency the application can chose how to show newly

received messages by, for example, appending them to the current list of messages (which respects

causality) and explicitly annotate such messages with read/unread labels, leading to an intuitive

user experience.

These models were implemented for the secure consistency models de�ned in Chapter 5.

Details can be found in Section 5.4.5 (Extended Causal Consistency) and Section 5.4.6 (Eventual

Linearizability).

6.7 Genuine partial replication and causal consistency

In this section we prove that with genuine partial replication (De�nition 6.8) it is not possible to

provide causal consistency if replicas may fail permanently. This generalizes to any model which

attempts to enforce relations among operations belonging to di�erent objects, without further

restricting which operations may relate to one another.

Intuitively, allowing replicas to store information on the objects not in their interest sets

(De�nition 6.9 and De�nition 6.10), should allow for partial replication while encorcing causal

consistency.

Unfortunately this is not true when replicas may fail permanently – we prove that no sys-

tem is able to provide reliability under these conditions. This is trivial because when replicas

storing the data fail permanently, and non-failing replicas store dependencies on that data, those

dependencies can never be met.

This last statement provides an interesting outcome: if replicas may fail, and a system aims

to provide partial replication, no consistency model can be used which, besides reliability, aims

to provide some relation among operations (such as happens before for causal consistency).
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Figure 6.5: Diagram to detail the proof for Theorem 6.1.

6.7.1 On genuine partial replication

We begin with causal consistency, where the happens before relations among operations is the

basic building block. Note that happens before relations (or dependencies) are tracked in metadata,

and, to enforce genuine partial replication (De�nition 6.8), replicas may not store nor receive

dependencies for operations they do not hold.

This leads to the following theorem:

Theorem 6.1. A system with arbitrary genuine partial replicas is unable to provide both causal

consistency and progress.

Providing only progress is simple as, if no guarantees are required at all, nothing is really

necessary for progress to be possible. Providing only causal consistency is possible by arbitrarily

enquiring other replicas about any missing operations, but this invalidates progress. The proof

that providing both is impossible is based on the contradiction which arises between enforcing

the happens before order on serialization (De�nition 6.16, a requirement for causal consistency)

and progress (ensuring a pair of replicas can synchronize: De�nition 6.11):

Proof. Consider, the example of Figure 6.5, with three replicas: A, B, and C, and two objects,4
(a triangle) and � (a square).

Replicas A and C are partial replicas with both objects, while replica B contains only one

object, i.e., IA = IC = {4,�} and IB = {�}.
Consider the following set of steps (in order):

Replica A generates two operations, oA1 and oA2 such that: Object(oA1 ) = 4,Object(oA2 ) =

�, and oA1 ≺ oA2 ;

a)

Replicas A and B synchronize;b)

Replicas B and C synchronize.c)

After step a), at time τ1, replica A has applied both operations while replicas B and C have

not, i.e., SA = (oA1 , o
A
2 ) and SB = SC = ( ).

Note that as O = {oA1 , oA2 } andM≺ = {(oA1 , oA2 )}, all possible correct serializations of these

operations, are S(O,M≺) = {( ), (oA1 ), (¬oA1 , oA2 ), (oA1 , o
A
2 )}. Note that (¬oA1 , oA2 ) is included
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as a correct serialization – replicas may serialize only oA2 if they do not have Object(oA1 ) in their

interest sets.

At step b), replica B synchronizes its state with replica A. Per genuine partial replication,

replica B may not receive any information about oA1 , including the dependency oA1 ≺ oA2 . At the

end of this step, at time τ2, SA = (oA1 , o
A
2 ), SB = (¬oA1 , oA2 ), and SC = ( ).

This is still correct, as SA ∈ S(O,M≺) and SB ∈ S(O,M≺). Note that ¬oA1 being included

in SB does not invalidate partial replication – replica B has no information on oA1 .

At step c), B synchronizes with C. Note that at time τ2, SB ∈ S(O,M≺) and SC ∈
S(O,M≺). As we assume progress, B and C must synchronize, to a SB and SC where SC = {o :

o ∈ (SB ∪ SC) ∧ object(o) ∈ IC} (see sup in Figure 6.4 for a visual aid, but note the restriction

to the interest set).

As we have SB = (¬oA1 , oA2 ) (thus, not including oA1 ), this results in SC = (oA2 ). As SC /∈
S(O,M≺), we conclude the proof.

Interestingly, this proof trivially generalizes for anyMC where there can be a relation of C

among pairs of operations.

Generalization 6.1. There exists no consistency model which enforces an order among operations

which allows for both arbitrary genuine partial replication and progress.

The proof, for any other model, can be constructed just as we did for causal consistency,

replacing ≺ by C where needed.

Note that both the theorem and generalization only hold if the relation can be among oper-

ations which were made on di�erent objects, and if replicas may replicate only the right-hand

side of the objects in such a relation. From this we can derive a set of restrictions to enforce any

modelMC as such:

• (o1, o2) ∈MC ⇒ [Object(o2) ∈ Ir ⇒ Object(o1) ∈ Ir] – if a dependency among a pair

of operations exists, then any replica that serializes the second element of the pair must

also serialize the �rst element of the pair;

• [Object(o1) /∈ Ir ∧Object(o2) ∈ Ir]⇒ o1 C o2 /∈MC – there may not be a dependency

among a pair of operations, where in any replica the �rst element of the pair is not serialized

and the second element is serialized.

These two restrictions are logically equivalent, and simpli�es to:

• (o1, o2) /∈ MC ∨ Object(o1) ∈ Ir ∨ Object(o2) /∈ Ir – either the dependency among a

pair of operations does not exist, the �rst element of the pair is always serialized, or the

second element is not serialized.

We can leverage this restriction to explore directions to take when attempting to create

algorithms for partial replication. To simplify the following we introduce origin and destination
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objects – if we have the pair of operations, or relation, (a, b), then Object(a) is the origin object

and Object(b) is the destination object.

To provide an algorithm which enforcesMC for any C, in a setting with genuine partial

replicas (De�nition 6.8), we must ensure that at least one of the following is true:

(a, b) /∈MC – relations may not exist;a)

(a, b) ∈MC ⇒ ∀r : Object(a) ∈ Ir – every replica must keep all origin objects;b1)

∀r ∈ R, Ir = Obs – every replica must keep all objects;b2)

(a, b) ∈ MC ⇒ [∀r : Object(a) ∈ Ir ∨Object(b) /∈ Ir] – to keep a destination object a

replica must also keep all related origin objects;

c1)

(a, b) ∈MC ⇒ ∀r : Object(b) /∈ Ir – replicas may not keep destination objects.c2)

Note that a) is already true with an algorithm that only provides reliability.

A causally consistent system with full replicas ensures b1) and b2) as every object is included

in every interest set. Attempting to ensure only b1) would be interesting but we do not explore

this direction further.

Note that c1) is how Legion is implemented (detailed later in Section 6.8.3.1), as Legion provides

partial replication with full replicas of �xed subsets of objects – it uses the concept of (exclusive)

containers. Each container C ∈ C contains a set of objects, such that:

⋃
C∈C

C = Obs∧
⋂
C∈C

C = ∅.

Additionally, there may be no dependencies among objects in di�erent containers, i.e., (a, b) ∈
MC ⇒ [Container(Object(a)) = Container(Object(b)).

If each replica keeps a single container this trivially allows for c1). In Legion replicas may keep

multiple containers but we disallow for dependencies among objects from di�erent containers,

as to ensure c1).

The restriction of c2) is not useful in practice. If a replica must keep Object(b) to be able to

create (a, b), then this forcesMC = ∅ as no such relation can be created. If a replica may create

(a, b) without holding Object(b), the replica can not be genuine by de�nition. Alternatively,

keeping Object(b) is a contradiction by itself.

6.7.1.1 Permanent replica failures

So far we did not discuss permanent failures of replicas. Intuitively, we know that even if progress

may not be made in some cases, causal consistency can still be provided as long as operations

are stored somewhere and may be fetched if needed (e.g., by leveraging some central repository

that stores all operations that can be fetched on demand, only having replicas wait untill the

repository responds to be able to apply operations). This leads to the de�nition of durability:

De�nition 6.22 (Durability). A system provides durability if it guarantees that operations when

marked as durable by some mechanism are possible to be fetched (assynchronously), by every replica,

independently of failures.
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Altough both durability (the previous De�nition 6.22) and progress (De�nition 6.13) are both

welcome guarantees, they provide very di�erent semantics. Durability ensures that an opera-

tion marked as durable may never be lost – for example, in a setting with client-side replicas a

centralized storage service could be used which, assynchronously, provides durability. This is in

contrast with progress as operations may e�ectively be removed from the system – for example,

with the (permanent) failure of a large group of replicas from the system, some operations can

be lost forever while all remaining replicas can still progress among each other.

Durability is not trivial to provide if replicas may fail and never return, which is a common

occurence in client-side replicas: replicas may close their web-page, clean application caches, or

even destroy their devices. Another impediment to durability in this setting is the cost of global

coordination – intuitively, with only client-side replicas, an operation may only be marked as

durable once every replica knows that every other replica has stored the operation. This leads to

the following:

Theorem 6.2. It is impossible to provide live causal consistency in a system where all of the following

are true:

arbitrary genuine partial replicas,a)

operations may always be locally generated without coordination among replicas,b)

replicas can fail permanently, andc)

communication is assynchronous.d)

Note that a) with live causal consistency is the end goal, and each other aspect is a side e�ect

of our system model: b) is a necessity for immediate local reads and writes; and c) and d) originate

from the system model with client-side replicas.

The impossibility follows directly from the example provided in the proof of Theorem 6.1

(Figure 6.5). If replica A fails permanently after step b) (i.e., at τ2), then, B and C would no longer

be able to progress in step c). Altough this does not invalidate live causal consistency by itself,

the system will never be able to serialize operation oA2 at replica C, nor any other future operation

generated by replicas A and B (which would depend on that lost operation). This invalidates

reliability (De�nition 6.14) as required by live causal consistency (De�nition 6.17).

Just as Theorem 6.1, this also generalizes for any model as such:

Generalization 6.2. It is impossible to simultaneously provide reliability and any modelMC which

forces an order C on pairs of operations, in a system where all of the following are true:

arbitrary genuine partial replicas,a)

operations may always be locally generated without coordination among replicas,b)

replicas can fail permanently, andc)

communication is assynchronous.d)
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At this point we can derive what has most impact on creating algorithms to implemente a

consistency model:

Corollary 6.1. For any consistency model which besides reliability forces an order C on pairs of

operations, an algorithm must either provide progress or durability.

Note that the corollary doesn’t explicitly mention full replicas or which objects partial replicas

must, or not, keep – this stems from progress being trivially possible with full (or containerized)

replicas.

In the previous proof we build on operations being serialized and violating the happens before

relations. In contrast, here we do not violate the (happens before) relation as the relations may

be known, but, as they restrict which operations may be serialized, reliability cannot be provided.

For this proof we �rst detail why the corollary holds with either progress or durability, while

with neither it does not.

Proof. Let us assume an algorithm A forMC (De�nition 6.12).

If A provides progress then, by de�nition, we are always able to serialize the received opera-

tions when a pair of replicas communicate – given enough time and communication steps among

pairs of replicas, eventually replicas serialize all operations they are interested in.

Similarly, ifA provides durability then any synchronization between any pair of replicas can

(eventually) complete as any required operations for the synchronization to �nish can (assyn-

chronously) be obtained.

To obtain reliability then a synchronization step between a pair of replicas must complete.

This can be done either without coordinating with other replicas (i.e., providing progress) or

by leveraging some process to eventually obtain dependencies (i.e., providing durability). If

synchronization has no guarantee of completion then reliability is not provided, concluding the

proof.

6.8 Algorithms

An algorithm ensures that a pair of replicas can synchronize, in a manner that both their states

evolve to a least upper bound on both their states (De�nition 6.12).

Before discussing algorithms themselves, we must consider how replicas are selected to

synchronize, and when such synchronization should start.

6.8.1 On the need for a server

A server (or some specialized replica) is needed to provide durability if other replicas may fail

permanently or in a way that has them lose their state. In this work we aim to provide for a system

with client-side replicas and possibly centralized servers which are used only when necessary.

Namely, per Corollary 6.1, an algorithm must either provide progress or durability – in our setting

if unable to provide progress, the server component can be leveraged to provide durability.
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We assume a server is reachable for each client replica and that we can leverage it to address

durability, bootstrapping client-side replicas to the network, and to act as a bridge among clients

that are unable to establish direct network connections.

We interchange the use of the singlar term server with set of servers, as client replicas see

a set of servers as a black-box of a single entity. We assume that each server can communicate

with all other servers (possibly indirectly using other servers) and that each client replica can

communicate with, at least, one server. This allows the server (or a path among servers) to also act

as a communication bridge among client-side replicas. Altough servers and the communication

channels among servers may fail, durability is provided. We assume that server failures are

such that the server eventually becomes available and never loses any state, i.e., the server or

centralized component provides durability.

6.8.1.1 When and where to synchronize

So far we assumed that replicas somehow are able and actually do communicate with one an-

other. The important notion is that, somehow, communication should be done among all replicas

after new operations are generated to ensure the knowledge of those operations is propagated

throughout all replicas in the network. Again client-side replicas brings a challenge here – when,

which, and how to connect (and synchronize) replicas.

The easy approach is to ensure every replica communicates to every other replica. This is

non-scalable, does not consider that some connections cannot be established, and ignores that

synchronization is transitive.

Instead, we propose that if an operation is generated with respect to some object, that opera-

tion must be propagated (by subsequent synchronizations) to every other replica that has that

operation’s object in its interest set.

De�nition 6.23 (Propagation by transitive synchronization). If there exists an operation o cre-

ated by replica r0 at time τ1 and there exists a replica r which has interest in the object of o,

then eventually an intermediate replica ri synchronizes with r at τ2 and o ∈ Sτ2ri , i.e., ∀o ∈
Sr0 , [∀r∈R\r0 , object(o) ∈ Ir ⇒ (∃ri∈R∃τ2,τ3 : τ1 ≤ τ2 ≤ τ3 ∧ o ∈ Sτ2ri ∧ rim

τ3
τ2r)].

Note that ri may also include the server. A simple algorithm can be devised which trivially

ensures propagation: every client replica, at randomized intervals, synchronizes with the server.

Alternatively, spanning trees can be used. For every object the server may compute a mini-

mum tree, and many algorithms can be used for achieving this [209]. Computing optimal trees,

such as done in [62] can be very costly – high replica churn makes such an approach impractical.

Another alternative is to construct a tree that minimizes operation delivery latency [87, 89].

These works could be leveraged instead of using our following approach which leverages the

server as a specialized replica.

To ensure that clients with overlapping interest sets are able to �nd each other, to guarantee

synchronization happens among them, for the remaining algorithms we assume the following
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algorithm (adapted from Legion’s bullying algorithm, detailed in Section 3.2.2).4

At every interval ∆t, the server emits for every connected replica r the message< IDS,C >,

with IDS = {id(ob) : ob ∈ Ir} and C the value of a counter starting at 1 and incremented every

∆t. This means every replica connected to the server receives, every interval ∆t, a message

containing the identi�ers of all objects it is interested in.

Every replica r1 receiving a message propagates to every other replica r2 it is connected to

IDS2
where IDS2 = IDS ∩ Ir2 (replicas exchange interest sets on establishing a connection).

This allows for the construction of a latency-based spanning tree per object: as the same set of

objects and C can arrive through multiple paths, the �rst time C arrives for some object de�nes

that path (the replica that sent it) as the closest, lower latency, path to the server for that object.

Client replicas which receive from other client replicas messages with all identi�ers in its

interest set, may disconnect from the server as this means an (indirect) connection exists to the

server. This allows for a protocol similar to [62] which uses the tree to propagate metadata, but,

in contrast, we use the tree to propagate the data itself (including metadata) while the remaining

connections are used to propagate only metadata. These inactive connections, when required

to be used again for data, must �rst ensure a new synchronization is executed to ensure causal

delivery of the data itself.

To ensure all replicas are connected we de�ne a veri�cation interval ∆tv . If for any object

in its interest set a replica does not receive a message that includes that object’s identi�er, for a

∆tv , it should attempt to re-connect to the server directly. The parameters for the propagation

interval ∆t and the veri�cation interval, ∆tv , should be carefully set as to allow operations to

be propagated through the network, considering the delays these may incur.

This method also allows to discard connections to promote low-latency links (Section 3.1.1.2)

and disrupt malicious replicas purposely delaying propagation (Section 5.5.6.2).

6.8.1.2 On the loss of operations

A replica that generates an operation and immediately fails, permanently, may invalidate previ-

ously discussed aspects. Reliability should thus only consider those operations that are known

by non-failing replicas (as is common in distributed systems research). We consider a non-failing

replica knowing of some operation if it does not fail and it either stores the operation directly or

stores any operation that (possibly indirectly) depends on it.

For example, if all replicas that contain an operation o1 and any dependency on o1 fail, we

assume o1 does not exist – i.e., this is true if ∀r∈R, o1 /∈ Sr ∧ [6 ∃o2 : (o1, o2) ∈M ∧ o2 ∈ Sr].
Note that this has no impact on the previous theorems – for example the proof of Theorem 6.1

holds as the dependency still exists: even if all replicas storing o1 may have failed, there are still

replicas that store an o2 such that (o1, o2) ∈M. Additionally, it has no impact on propagation by

transitive synchronization (De�nition 6.23) as the left-most hand of the formula would be false:

∀r, o /∈ Sr .

4

The protocol is also similar to the protocols detailed in Section 5.4.7, which additionally includes information to

ensure correctness and timely delivery (i.e., timestamps and signatures).
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The notion of permanent loss of operations may have a major impact on application usage

by users that continue to interact with the system even when failures happen (for example, with

a simple page reload). Applications should inform the user of operations (or state) that might be

lost when such errors happen. This leads to a new question: how to transit operations from this

preliminary state to being durable?

With no specialized replicas the only way for an operation to become durable is to be serialized

in every single replica – we refer to this as stability (detailed later in Section 6.8.4.1).

In our system model we can use a durability mechanism based on the server – and keep

the user informed of those operations which the server has acknowledged to be durable. Also

common in distributed systems research is the assumption that at most F replicas will fail or

being F -resilient [210–212]. We could assume at most F replicas fail, and state that an operation

o is durable i� F + 1 replicas store o.

Our system model considers client-side replicas. As estimating a realistic and useful value

for F is intrinsically very hard with such replicas, we do not further explore this direction.

Note that we leverage the server instead, where server is a set of replicas S, we assume

|S| > F , where at mostF server replicas may fail, i.e., if the replicas inS are seen as a single server

replica from the point of view of a client replica, that single server replica never fails. The works on

geo-distributing the server-side into a fault-tolerant and highly available system are orthogonal

to this work. The central server replicas can use multiple geo-replication mechanisms [62, 96,

111, 122, 123, 125], but here we simplify the notion of geo-replicated servers to a single centralized

server for brevity and clarity. The server-side is seen as a black box and can be reasoned as a

single entity, and every replica is able to connect to the server.

6.8.2 Full ordered list replication

The ordered list algorithm speci�ed in Section 4.1.2.2 allows for causal delivery of operations

without paying any additional metadata cost over providing only reliability.

In summary, each replica locally keeps a list of operations. When new operations are gen-

erated, these are appended to the end of the list. When synchronizing with a new replica, the

whole list is sent in order and every operation received which is not in the local list, is appended

to the end of the list. The only requirement for this algorithm is that operations can uniquely be

identi�ed. Unique identi�ers are composed of a (replicaID, opID) pair, with opID a counter

starting at 1 and incremented with every generated operation at the generating replica. This

algorithm can have many optimizations.

Instead of propagating the whole list when synchronizing, keeping active connections allows

for a full synchronization initially where afterwards only individual operations have to be propa-

gated, using FIFO channels. Additionally, the initial state synchronization can also be done more

e�ciently:

• by keeping knowledge of which operations were previously sent to the remote peer, recov-

ered connections do not incur into a full state transfer;

124



6.8 . ALGORITHMS

• using a protocol similar to that of ∆-CRDTs (Section 4.3.2) allows for major savings at the

cost of sending metadata as a �rst step with size in the order of number of replicas;

• by globally ordering [49] operations (in a separate data-structure to the original list) and

using Merkle trees [213], one can instead implement a mechanism that instead allow for

logarithmic sized metadata overhead on the order of number of operations.

6.8.2.1 Reducing the list size

The proposed algorithm provides progress, as every replica keeps the full list of operations (i.e.,

full replication). To reduce the size of the operations list, by removing operations that have been

applied in every replica, we require some mechanism which either provides durability or does

not remove the progress property.

Using global stability would not impact progress, but would be very costly if all replicas are

part of the mechanism. Existing algorithms [106, 110] based on Lamport’s notion of stability [49]

can be applied to garbage collect operations which are no longer required to ensure eventual

synchronization. These algorithms give a notion of what is stable – which operations are known

to be already propagated throughout the whole set of replicas – and thus clearly de�ne which

operations are no longer needed. Constructing a dependency-collection algorithm follows as

the next step, but this comes at the cost of running a stability protocol. Such a stability protocol

both becomes increasingly expensive as additional replicas join the system, as well as typically

requires a �xed and globally known membership (which is impractical in our model).

An alternative is to ensure stability via some specialized replica. This goes well with our

system model, where clients communicate peer-to-peer but also with a server to bootstrap the

peer-to-peer network.

Thus in our case we leverage the central component, where the server periodically prop-

agates a summary of all operations that can safely be removed. As we wish to only keep the

(replicaID, opID) metadata, we store, at each replica, the execution history containing pairs

of (replicaID, lastOpID), where lastOpID is the iden�tier of the last operation executed

originating at replicaID. Altough this does not require all client replicas to communicate with

each other, this is still similar to the discussed notion of stability – it comes at the cost of metadata

whose size, in the worst case, is in the order of the amount of replicas in the system [114].

The server propagates such history every ∆HS seconds. Client replicas may safely delete

from their list any operation that is contained within the server’s propagated history.

For operations to be included into the server’s history, the server needs the knowledge that

such an operation has been executed in every single replica. This can be done by having every

client replica, every ∆HC seconds, send their local history to the server. The server, keeping

track of the minimum of all such histories can trivially create a history that is globally safe to be

removed.

E�ciency is important here – the previously described mechanism to ensure global connectiv-

ity (Section 6.8.1.1) can be used to create not only a tree path to communicate client histories, but to

compress such messages. For example, at every propagation step, clients can merge their histories,
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(replicaA, historyA) and (replicaB, historyB), into a summarized history, (replicaA,

replicaB, min(historyA,historyB)), where min(h1, h2) returns the minimum number for

all pairs in both histories and omits any operation present in only one history.

Discussion The proposed algorithm, even if academically interesting, is not suitable for our

goal of partial replication – replicas receive operations on objects they are not interested in, and

are forced to keep them to provide causality among objects until safe to delete.

Additionally, clients which are not able to communicate with the server for extended periods

of time have an impact on this algorithm – the server cannot distinguish between failed (not-

returning) or slow/disconnected replicas – and therefore would never advance its history. One

way to address this is to let the server assume, if it doesn’t receive a client replicas’s history in say,

5×∆HC , that the replica has (permanently) failed. Note that, when again reachable, the client

may require operations that have been removed by all other replicas. Therefore if a client replica

is assumed as to have failed, the replica must reset its state and obtain a new replica identi�er,

e�ectively making it a new replica. Albeit this approach may be harsh for the user, the system

can keep both new and old state and allow the application to merge into the newly obtained state

any missing changes (possibly requiring the user’s input on changes the user wishes to save).

There are, however, some important properties which make the proposed algorithm interest-

ing:

• not every replica is required to communicate with (or even know about) every other replica;

• any replica is able to correctly synchronize with any other replica (providing progress);

• ∆HS and ∆HC can be dynamically adjusted for the speci�c needs of the application at

hand;

• an interruption on the durability protocol has no impact on safety or liveness – it only

requires keeping operations until the mechanism restarts (assuming large ∆HS and ∆HC ).

6.8.3 Full state replication

In contrast to the previous algorithm, which keeps operations, one can always compile changes

directly into state and, instead of propagating operations, propagate only state [31, 58]. For a

system based on CRDTs, it is possible to use state or ∆ based CRDTs (in contrast of being able

to directly use operation based CRDTs in the previous algorithm).

Assuming full replicas, where replicas keep every object, and apply all changes while re-

specting causality, it is not required to keep specialized replicas to ensure neither durability nor

progress (assuming replicas are able to connect among each other). In our case, without global

network knowledge, we would have to rely on the server only to ensure global connectivity to

provide reliability.
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Figure 6.6: Diagram for the keeping dependencies family of algorithms.

6.8.3.1 Containerized state replication

In Legion (Chapter 3) all replicas are full replicas with respect to the containers they connect to.

This means that a replica, when joining a container, will replicate every object of the container, i.e.,

if Cont is the set objects belonging to the container replicated by r, then Ir = {o : o ∈ Cont}.
Altough replicas do replicate objects from multiple containers, Legion only provides causal

consistency among objects of the same container. To this end, Legion leverages the work on

∆-CRDTs (Section 4.3). In summary, Legion replicas form a connected network leveraging the

server (an overlay network per container, using a protocol similar as the one described earlier

in Section 6.8.1.1). When new connections are established replicas synchronize using ∆-CRDTs

synchronization for each container, and then keep using the same (FIFO) connections to send

individual changes on data in causal order. For details on both Legion’s causal propagation and

∆-CRDTs implementation refer to Section 4.3.2.

6.8.4 Partial replicas by keeping dependencies

It is clear from the previous sections that a compromise must be made in order to approach

partial replicas without resulting, in the end, in requiring full replicas. For this we revisit the

situation we used previously for the proof that besides the impossiblity of genuine partial replicas

an algorithm must provide either progress or durability – Figure 6.6 will be used to discuss the

initial approach and further optimizations.

The original problem originates in step a) when replicas B and C synchronize, and their

interest sets overlap but are not equal. In the example, replica B, which must be able to synchronize

to other replicas, intuitively has to ensure that every predecessor of any operation op it applies is

available to any other replica (replica C) when op is propagated (to C), i.e., replica B has to keep

every dependency for op even if such dependencies are not in its interest set.

For this we de�ne the set Kr of all operations whose object does not belong to the replica’s

interest set, but which have a successor operation whose object does belong to the replica’s

interest set, and will thus be serialized into Sr . Formally, Kr = {op : Object(op) /∈ Ir ∧ ∃op2 :

op ≺ op2 ∧ op2 ∈ Sr}.
The set Kr includes all operations that any locally serialized operation might depend on. To

ensure replicas are able to synchronize, besides the operations on objects in Ir , replicas keep the

setKr . This leads to some operations being kept forever, as depicted in Figure 6.6 where, without
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any further mechanisms, operation oA1 is kept by replica B forever. In practice, as time goes

on and operations are created beloning to all objects in the system, any operation (except very

recent ones) will have predecessors from objects not stored at replicas. Given enough time Kr
tends to Kr = {op : Object(op) /∈ Ir ∧ ∃op2 : op ≺ op2 ∧ Object(op2) ∈ Ir} , and eventually,

Sr ∪Kr u Ops – the union of both serialized and stored operations in Kr equals the total set of

operations and we are back at (almost) full replication.

Besides countering the primary objective, partial replication, it is impractical to store all

operations forever – there needs to be a mechanism to minimize the size of Kr .

6.8.4.1 Stability to clear Kr

The alternative to storing operations forever is using stability. This can be done with a protocol

similar to the one detailed in Section 6.6.

For this, any operation o stored at a replica r where Object(o) /∈ Ir can safely be deleted as

soon as Stable(o) becomes true. This is depicted in Figure 6.6 where, after the stability process

ends,KB would be empty as oA1 would be stable – every replica has observed oA1 at the beginning

of the stability mechanism.

Such a mechanism is inherently not scalable – it requires every replica having to communicate

with every other replica. There is not really a scalable solution to stability, especially in arbitrary

dynamic networking models.

Nevertheless, any such algorithm is very promising, especially if interest sets among replicas

mostly overlap or if networks are small. In such cases the overhead of stability might be worth

the costs, as the given guarantees and properties show:

• it provides live causal consistency as both reliability (assuming a connected network graph)

and happens before consistency are provided;

• it allows for progress – any replica is trivially able to synchronize with any other replica

at any time;

• replicas are partial except for operations not yet collected by the stability mechanism;

• the stability protocol itself has no impact in overall execution, as it is not required for

linevess or correctness. The only impact of any pause in the stability protocol is that some

operations have to be kept for longer before being garbage collected.

Note that a stability algorithm is highly dependent on membership. If membership is highly

dynamic, or if global membership knowledge is unfeasible, then the following approach might

be preferred.

6.8.4.2 Durability to clear Kr

In contrast to the previous solution, which aims to always provide progress, here we sacri�ce

progress in order to allow for partial replication leveraging some form of durability of operations.

We discuss two approaches:
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• assume up to F replicas fail, so that any operation which is serialized at F + 1 replicas can

be assumed to be durable;

• assume there exists a specialized set of replicas which, when failures happen, do not lose

any previously serialized operations.

The �rst approach assumes a failure model such that up to F replicas fail. As previously

discussed, estimating or controlling a useful value forF when reasoning on client-side replication

is very hard. In reality any replica may fail at any time, and thus the safe (or simple) approach

is to assume F equals the number of replicas in the system. Altough the application can use a

smaller value for F and explicitly present to the end user the current status of operations, we

believe a better approach, as discussed next, is to leverage some form of specialized replica.

Leveraging the server In the goal to provide for partial replicas we will leverage durability

provided by the server replica. We assume that when the server replica serializes some operation,

that operation is not lost – recall we use the simpli�ed notion of server replica assuming a geo-

replicated service.

The goal is that the server replica is not necessary to be always available – we aim to minimize

the overhead of storing Kr without compromising the ability of replicas to synchronize. As the

server replica stores all objects, and thus all operations, then any client replica can fetch any

missing dependencies from the server replica.

When a replica has knowledge of which operations have been serialized by the server replica,

then garbage collection of these operations can be safely executed. This is because, when any

dependencies are found to be missing when two client replicas attempt to synchronize, there is

the possibility to fetch those dependencies from the server. Note that this approach does not

provide progress (De�nition 6.13).

In summary, the algorithm is as follows:

• all operations, which include dependencies in their metadata, are sent to all connected

replicas, not taking into account any knowledge of the interest sets of the other replicas;

• operations on objects which the replica has no interest in but depends on (Kr) are stored

until marked as durable, after which they are removed;

• when two replicas attempt to synchronize and dependencies are missing, the server replica

is reached to obtain those operations – client replicas may have to wait for the server to

be reachable.

Similar to the algorithm to reduce the size of stored operations lists (in Section 6.8.2.1), to allow

for garbage collection the server propagates, every ∆HS , its history (a compressed summary) of

its serialized operations.

The history of the server replica, HS , is comprised of pairs of (replicaID, opID), and

formally de�ned asHS = {(id(r), c) : ∃o ∈ SS , id(o) = (id(r), c)∧c = max(xi : [(id(r), xi) ∈
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{id(o1) : o1 ∈ SS}])}. Intuitively HS contains, for every replica that created some operation,

the highest (last) operation id that was serialized at the server. This is most often referred to as a

version vector.

Simply stated, for every pair (replicaID, opID) included inHS , every operation generated

by replica with iden�tier replicaID with an identi�er less or equal to opID is durable.

When receiving HS , a client replica may exclude the operations present in HS from its Kr .
At this point this leads a replica to keep Sr ∪Kr u Sr . This is because, along with an increasing

Sr , Kr will approach the empty set and have a negligible size when compared to Sr .

Note that, when the server is unreachable or if due to some other reasonHS is not propagated

to some client replicas, the size of Kr may increase. This by itself has no impact on correctness

or liveness, it only increases the time some operations have to be stored in Kr to ensure that

dependencies can be provided when replicas synchronize.

There is a drawback in that client replicas may not be able to synchronize when the server is

unreachable, as progress is not guaranteed (note that replicas with equal interest sets can always

�nish synchronization successfully). To mitigate this, client replicas may keep in Kr operations

that are included in HS but which are expected to be required in future synchronizations. Alter-

natively this can be done at the server level, not including recently received operations in HS .

Very recent operations, those that are probably not propagated to all clients, are good candidates

for this behaviour.

In summary, this approach sacri�ces progress and leverages the server replica’s durability

guarantees to provide causal consistency as any dependency can be obtained. Using this approach

allows to create an algorithm where:

• replicas are partial, except for operations not yet collected with the durability mechanism;

• delays in the durability mechanism have no impact in algorithm correctness;

• progress can be provided among replicas that keep an extendedKr such that operations that

are expected to be required in the near future are not collected (i.e., very recent operations);

• there is no need to reason about how often and how many replicas fail, how dynamic the

network is, and which replicas belong to the network (no need for global membership

knowledge).

6.8.5 On dynamic interest set changes

None of the previous algorithms considers that the interest set of a replica Ir can be dynamic.

Consider that Ir is determined when replica r joins the system. To allow for later, dynamic,

changes to Ir , there are many aspects that have to be considered:

• if any newly replicated object must be causally consistent with the local state then the

replica may not execute or generate any operation while that object is not brought up to

the same version as all other locally replicated objects;
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• any optimization leveraging e�cient propagation trees generated based on the interest sets

are invalidated and may break causal consistency in continued use;

• if objects may be removed then algorithms leveraging membership (e.g., relying on stability)

may be incorrect.

Therefore, any change in Ir possibly incurs a major overhead if causal consistency is to be

maintained, and many edge-cases have to be considered.

We opt for a di�erent approach: interest sets are �xed when replicas are created and, more

importantly, replicas may not change their interest sets. To allow for dynamic changes in repli-

cated objects at a client’s device, we instead allow for multiple replicas to exist at the device –

any required change in replicated objects is treated as the creation of a new replica.

Thus if replica r with interest set Ir aims to include (or exclude) object4, it creates and runs

a replica r1 alongside r, with Ir1 = Ir ∪ {4} (or Ir1 = Ir\{4}). This allows for replica r to

remain available untill the state of r1 is up to date with r.

Replica r will attempt to synchronize with replica r1. When this process completes then

replica r1 can e�ectively be merged into r as it is no longer required, i.e., with rmτ2τ1r
1
, at time τ2

replica r executes, in an atomic step, r = merge(r, r1).

When excluding objects this process is immediate as there is no need to wait for remote

operations to arrive – already serialized operations are moved into Kr , the object is removed,

and the merge procedure may complete immediately.

Such a system, being explicit to the application about the state of each local replica, allows

for:

• local replicas to be used alongside each other while being explicit to the user about which

part of the application is behind;

• allows themerge step to resolve any con�icts between replicas (using, for example, CRDTs),

where the application can provide the user with a correct and intuitive outcome;

• allow only changes on the up-to-date replica showing the user that part of the local state is

currently behind and must be updated before being used – the merge step frees the usage

and noti�es the application on any signi�cant changes that must be presented to the user.

6.9 Related work

Partial replication SwiftCloud [65] is a geo-replicated service which supports partial replication

on the client-side (as a read/write cache). This allows clients to apply read and write operations

locally and immediately on objects it has interest in, while being constantly updated on any

changes though a FIFO channel with a server. SwiftCloud does not allow the interaction of

such client-side partial replicas among each other – communication has to be done through

full (server) replicas, e�ectively solving the problem that genuine partial replication imposes
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which only occurs when partial replicas (without complete overlap in interest sets) attempt to

synchronize.

Similar to our work, PRACTI [214] is a replicated system which aims to provide arbitrary

partial replication and topology independence (along with ensuring stronger consistency when

required, whereas we focus on causal consistency). Replicas may dynamically chose the objects

in their interest sets. Operations are generated locally and immediately executed, and are tagged

with the pair of replicaID:clock with clock the replica’s Lamport clock value before propa-

gated. Data and metadata is propagated seperately, allowing some freedom in how data �ows

through the system as data does not need to be causally ordered (the metadata �ow ensures data

is executed in correct order). The metadata �ow is kept at each replica – this ensures causal

consistency can be provided locally and when synchronizing with other replicas.

Genuine partial replication Atomic multicast is genuine if only the sender and receiver pro-

cesses are involved in the protocol to propagate the message [215]. P-Store [216] aims to provide

genuine partial replication but relies on a multicast primitive that is able to deliver a message

to every replica that keeps a given object. Such a genuine atomic multicast for partial replicas

primitive must restrict ‘the destinations of multicasts to sets of disjoint process groups, each

group behaving like a logically correct entity’ [215].

Saturn [62] tracks causality metadata and assumes that data is propagated using an existing

bulk-data mechanism in place. Saturn ensures operation identi�ers are propagated through a

global and �xed dissemination tree among datacenters. Datacenters act as leaves of the tree, where

upper levels are servers which, using FIFO channels, enforce causal delivery of the identi�ers

of the operations among all datacenters – the order in which they are delivered is the order in

which they are executed. There is global knowledge of all replicas and their interests in the

system which is used to compute the propagation tree – the tree should be computed such as

to minimize the amount of data sent to non-interested replicas (to ensure as close as possbile to

genuine partial replication). Failures or changes in interest sets would require recomputing the

tree – which additionally is a propagation bottleneck.

Karma [129] supports partial replication by separating replicas into disjoint replica sets using

a consistent-hashing ring (in contrast to having the whole ring in each DC), where a ring is

formed by geographically close DCs. Causality is guaranteed among the DCs of a single ring,

and clients are blocked from reading from a di�erent ring untill the system knows operations

are stable, as update propagation between rings is asynchronous. Karma aims for static partial

replication at the DC level where all objects are, at all times, nearby. In contrast, we aim for

dynamic partial replicas at a much smaller granularity.

Opt-Track [128] provides partial replication for distributed shared memory, guaranteeing

causal consistency. The granularity of partitioning data is at the data-center level, which itself

allows for no partitioning internally. It relies on a multicast primitive [215] and it assumes a static

system (�xed partial replicas) and every replica has complete knowledge of all other replicas and

the objects they replicate.
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PaRiS [130] is a causally consistent system which supports partial replicas, where clients

additionally keep a local cache for faster application response time. Each DC may be partial, and

each server in a DC keeps a �xed partition of the data. Replicas have global knowledge as misses

(client operations on non-replicated objects) are directly forwarded to the correct server. Instead

of blocking reads to ensure all updates have arrived, it presents stale data in the form of snapshots

that consists of data that has been deemed as stable across all DCs.

Discussion Most referenced works impose no speci�c topology but require every replica (or

datacenter) to be able to communicate with any other replica. Limiting the topology can create

interesting algorithms, such as using the tree topology of Saturn (but these algorithms do not

generalize to other network topologies). In contrast, we aim to neither require all-to-all commu-

nication neither to enforce some speci�c network topology among replicas. Most importantly, in

our system model it is unfeasible for every replica (clients) to be aware of the global membership.

In contrast to the referenced works, we also aim to provide for partial replicas which do

not build on a multicast primite which itself requires global knowledge of all of its replicas.

Additionally, our de�nition of genuine partial replica is inherently di�erent – the referenced

works assume knowledge is restricted to the sending and receiving of operations whereas we

aim to restrict also knowledge of other objects (i.e, any metadata associated to objects not in the

interest set).

These goals and restrictions led to the proposed algorithms which are feasible for client-side

replication.

6.10 Final remarks

In this chapter we discussed the impact that partial replication has on providing causal consis-

tency.

In general, the outcome (Section 6.7) is that any algorithm that aims to allow for genuine

partial replicas under a consistency model which ensures some order among operations, such as

causal consistency, must also either provide progress – the ability to correctly synchronize pairs of

replicas without the usage of any third party – or durability – using either a stability mechanism

enforcing that every replica has observed the operation or extending the system model to include

durable replicas (i.e., eventual recovery from crashes where data loss may happen).

Considering partial replicas we discuss algorithms that provide causal consistency, ranging

from a no metadata overhead algorithm (Section 6.8.2) and full state replicas (Section 6.8.3), to

an e�cient algorithm focussed on storing dependencies only when necessary to ensure required

operations for the happens before relations can be delivered (Section 6.8.4).
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Final considerations

In this chapter we conclude the dissertation and summarize the accomplished results. The ex-

tended scope of the work leads to many directions worth exploring in future research.

The research conducted was broadly aimed at providing lower latency to user-centric appli-

cations, by extending the system model with client-side replicas and the communication model

with client-to-client interactions. This work explores how to bring most of the application logic

to the client-side, using the centralized service only for storage, access control, or other aspects

which are strictly necessary.

In summary, we proposed a hybrid of cloud-and-edge which provides lower user-to-user

latency, availability under server disconnections, and improved server scalability – while being

e�cient, reliable, and secure.

A summary of the main contributions of this work are, by chapter:

Chapter 3 introduces the cloud-edge hybrid model. The Legion system establishes the base of the

work, allowing for client-side replicas and direct client-to-client synchronization, enabling

faster application response times, lower client-to-client latency, increased server capacity

as fewer clients need to be connected at the same time, the possibility to work o�ine

or disconnected from the server, and reduced server bandwidth usage. Brie�y touching

replication, consistency, and security, it de�nes the networking model and algorithms

employed to ensure a connected and e�cient network of clients. The implementation was

evaluated comparing an existing cloud-based solution to our design.

Chapter 4 discusses the use of causal consistency in Legion. It introduces the algorithms for

client-side replication and, in particular, details the design and implementation of ∆-CRDTs,

including an evaluation compared to the standard operation and state based CRDTs. We

show how ∆-CRDTs can be used and how Legion leverages ∆-CRDTs for e�cient syn-

chronization among replicas in dynamically changing networks.

Chapter 5 addresses security related aspects – enforcing privacy and integrity while dealing

with client misbehaviour. We study how client misbehaviour can impact the guarantees

of causal consistency and de�ne secure consistency models preventing multiple types of
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misbehaviour. An implementation of the proposed algorithms is also evaluated, considering

user experience, focussing on latency, and the e�ectiveness of the algorithms in dealing

with replica misbehaviour.

Chapter 6 explores supporting partial replication. We prove the impossibility of providing

genuine partial replication in our system model – as we must account for ephemeral replicas

– and discuss practical alternatives which aim to provide causal consistency without forcing

full-replication at all times, or at every client.

7.1 Research directions

The scope of the work allows for many subjects worthy of further investigation.

7.1.1 Cloud-edge model

∆-CRDTs replication model It seems that the synchronize then propagate communication and

replication model can be used to implement almost any kind of replication algorithm. Chapter 6

already provides some algorithms that work, but it would be interesting to further explore this

direction in building an implementation an expandable testing suit to compare di�erent methods

in pratice.

Such a system would also allow to systematically evaluate the secure consistency models by

implementing maliciously behaving replicas.

Bullying functions Altough the bully algorithm employed in Legion (Section 3.2.2) is clear and

does its job, it can be interesting to further explore improvements. It seems trivial to propagate

bully messages multiple hops over the network to ensure a multiple order of magnitude drop in

required client-server connections. Additionally, the employed protocol should take into account

the type of users’ devices (mobile or desktop) and what network it is on (mobile network or �ber

line).

Leveraging network topology for partial replication The chosen implementation of the over-

lay – the network among replicas that is established to synchronize state and propagate operations

– can have a great impact, not only on network usage but also on storage. If the overlay creates

connections to other replicas in a way that promotes a large overlap on the interest set of replicas,

then the amount of stored dependencies on non-replicated objects may be very small. In fact, if

a given workload has clear boundaries on interest sets then a completely separate overlay can

be created for each interest set, separating them at the network level without any change to the

consistency mechanism.

An approach with strict topology rules (such as a causal propagation tree [62]) can be applied

to reduce the size of the necessary metadata to track dependencies. In fact, techniques such as

causal separators [217] – where speci�c topologies are used to create disjoint sets of replicas to

reduce vector sizes – can easily be applied with the help of our centralized component.
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7.1.2 Securing client-side replication

Is Secure Causal Consistency the limit? Secure causal consistency (Chapter 5, Section 5.3.1)

is the only secure consistency model that we provide without the use of some form of trusted

authority. The question is if it is the best that can be provided without a trusted authority (server

or secure hardware).

As discussed in Section 6.6, natural causal consistency (NCC) [102] and observable causal

consistency (OCC) [103] are the limit of what is achievable without considering maliciously

behaving replicas.

It would be interesting to have a proof on being able to provide, or not, either of these

consistency models.

The need for a server As pointed out by anonymous reviewers, in our work on securing the

client-side there is an assumption that the punishment is greater than the reward. In some

contexts this might not be true, such as in large games where the sacri�ce of one for the bene�t

of many can easily be worth the cost.

The question is if this problem limited to our insecure setting (client replicas) or does a

client-server approach using weak consistency su�er from the same problem?

Additionally, it seems that decentralized systems can be manipulated if many (or a majority

of) malicious actors falsely state that an actually correct actor misbehaved. Using a server this

can be trivially mitigated by having that client use the server instead. Is it at all possible to deal

with such behaviour without a server?

Impossible forks One speci�c problem that secure causal consistency (Section 5.3.1) does not

address is creating forks in the causal past that should not have happened due to membership.

For example, when a small group of replicas have created a graph of operations (and their

dependencies), a newly joining replica should not be able to fork the operation’s causal graph at

a point before he joined. A clear example is a chat application, if two people have a conversation

and reach a conclusion, a third person joining later should not be able to create a conclusion

which, in the eyes of the consistency model, is concurrent to their existing operations. In other

words, if the dependency graph a ≺ b exists and is shared between all replicas, no replica should

later be able to create operation c where a ≺ c and c||b.
This seems to lead to an implementation which includes membership and some form of

checkpointing, where new operations after a given checkpoint have to depend on that checkpoint

(and, by transitivity, on all preceding operations).

Securely checkpointing for forcing progress In Chapter 5 we explore the e�ect of latency on

eventual linearizability (Section 5.5.4) and how colluding rational replicas may impact it (Sec-

tion 5.5.6.3).

As we show, resorting to a service or centralized component to store information of which

operations were generated mitigates the problem. There is an un-explored alternative which

136



7 .1 . RESEARCH DIRECTIONS

would be to let the timestamping system be not only poll-able on which operations exists (as

we currently do), but be able to sign client-side version vectors to assign a timestamp. If some

replica expects another to not be propagating operations, it requests from the suspected replica a

service signed version vector – e�ectively requesting it to checkpoint its state towards a trusted

component. The suspected replica must send its current version vector to the service, have it

signed, and propagate to the requesting peer. Intuitively, this disallows withholding operations

from the requesting replica.

This direction seems promising, and a direct follow up to the previous point, but careful

thought has to be given into colluding replicas.

Small key rotation Our models use assymetric keys to both sign operations (Section 5.4.1) and

all messages sent between replicas (Section 5.4.2).

Although to sign operations a large key is a necessity so it cannot be broken (for example,

a 2048 bit key size, in current hardware, cannot be circumvented in useful time [218]), signing

every single message with such a key is a non-negligible overhead – not only due to increasing

message sizes but also in computation.

Ideally, as small as possible keys should be used (for example, 512bit RSA keys). This can be

done by obtaining a large key from the server which is used to, every 10 minutes or so, rotate

(sign) a smaller key that is then instead used to communicate with the connected peers.

This can easily bring a huge bene�t if multiple hop propagation is in place, especially if at

every hop multiple milliseconds can be shaved o�.

On delivery latency and user noti�cation As our evaluation of secure consistency models

shows – speci�cally Section 5.5.6.2 and Section 5.5.6.3 – delivery latency is both susceptible to

attacks and very important for correct application behaviour.

A guarantee that would have a major positive e�ect on applications would be as follows:

De�nition 7.1 (Delay noti�cation). For any operation op, from the moment it is delivered at any

correct replica r1, then, for every other correct replica r2, one of the following is always true: a) op

is delivered at r2 within a bounded interval, or, b) r2 is aware of possible delivery delays.

The proposed algorithms do not su�ce to implement this guarantee. It seems that not only

do we need a server summary to ensure eventual delivery at clients (as we use to disallow some

attacks, Section 5.4.7), but that the inverse is also necessary: a client summary for each client,

propagated to the server which tracks, for every client, any delays. This leads to interesting

guarantees on forced propagation, but needs to be explored – intuitively the imposed overhead

can easily outweigh the bene�t of using the client-side replication model.

“The easiest way to solve a problem is to deny it exists.”

– Isaac Asimov. The Gods Themselves (1972)
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