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Abstract—Edge computing is becoming an increasingly popu-
lar paradigm, with modern Internet services leveraging hundreds
of edge locations to serve their users. However, existing data
replication solutions are not designed to operate in this environ-
ment, which restricts the edge components of Internet services to
operate as read-only caches and entry points for accessing data
centers, severely limiting the benefits extracted from the edge.

This paper presents Arboreal, a novel distributed data
management system for cloud and edge infrastructures that
enables stateful edge applications to be deployed with full (read
and write) local access to application data, overcoming the limita-
tions of existing solutions. Arboreal’s data replication protocol
allows it to automatically and dynamically replicate data across
edge locations according to application needs, while providing
global causal+ consistency. By relying on a hierarchical topology,
Arboreal scales to hundreds of edge locations, while recovering
from failures in a decentralized and localized manner, without
compromising consistency or durability guarantees. Evaluation
shows that the scalability of Arboreal heavily outperforms
state-of-the-art solutions, while the dynamic replication mecha-
nism allows to effectively support a wide variety of edge scenarios
including mobile clients.

Index Terms—edge computing, causal consistency, data repli-
cation, distributed storage

I. INTRODUCTION

The pivotal role of modern Internet services in everyday
life leads to the demand of continuous improvements in the
response times and availability of these services. By bringing
computations closer to clients, edge computing addresses these
demands in online services, such as social media or online
shopping, while enabling novel latency-critical services, such
as AR/VR [1], location-based games, autonomous vehicles [2],
and live video analytics [3].

Modern Internet services already rely on hundreds of edge
nodes to mediate client access to data centers. However,
application logic is usually centralized in data centers, since
the application data required to handle client requests is
traditionally stored in datastores within those same data centers
[4]–[6]. This limits the role of edge nodes to serving static
content in content delivery networks (CDN) [7], [8] or exe-
cuting simple computations without manipulating application
data in serverless computing [9]. For user requests that must
manipulate application data, edge nodes simply operate as
reverse proxies, redirecting requests to data centers [10], [11],
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where they are processed with access to local data storage
service replicas.

Deploying application logic on edge nodes has limited
benefits if requests require fetching or modifying data that only
exists on the cloud. However, extending cloud data storage
solutions to allow online services to reap all potential benefits
of the edge is non-trivial. Edge nodes often have limited
resources, being able to store only a subset of an application’s
data. This, combined with dynamic client access patterns at
each edge node, renders traditional data partitioning techniques
unsuitable. Additionally, the significantly larger number of
edge locations and their higher susceptibility to failures re-
quire a scalable data replication solution capable of handling
entire, and frequent, edge location failures. Addressing these
challenges to enable fully-fledged applications at the edge
requires new data replication solutions tailored specifically for
this environment.

This paper presents Arboreal, a novel distributed data
management system with a decentralized data replication pro-
tocol designed specifically to extend cloud-based distributed
data management systems to edge environments. Arboreal
dynamically replicates data across edge locations, adapting
to evolving data access patterns, enabling applications to be
deployed at the edge with complete local data access, similarly
to a native cloud deployment. Simultaneously, it ensures global
causal+ data consistency, preventing data anomalies.
Arboreal features a decentralized architecture, that lever-

ages on a hierarchical topology where edge nodes communi-
cate directly, eliminating the need for cloud coordination. The
benefits of this approach are twofold: (1) enhanced data fresh-
ness and efficient handling of mobile clients, and (2) scalability
to hundreds of edge locations by preventing metadata and
communication costs from growing linearly with the number
of edge nodes. Arboreal relies on cloud data centers solely
for ensuring data persistence, remaining available even if all
edge nodes disconnect from the cloud. To overcome edge node
resource limitations, Arboreal supports dynamic partial
replication, creating and removing replicas of data objects
based on application needs while enforcing global causal+
consistency. This decentralized process enables nearby edge
nodes to replicate data directly, adapting timely to changes in
client access patterns and supporting mobility scenarios where
clients change their connected edge node. Considering fault
tolerance, crucial for the edge due to lower reliability when
compared to data centers, Arboreal employs a fault-tolerant
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replication protocol with live reconfiguration. This allows
clients uninterrupted access to the system in the presence of
failures, ensuring consistency and durability guarantees.

To the best of our knowledge, Arboreal is the first fully
decentralized distributed data management system for the edge
with causal consistency. Its replication protocol provides large-
scale causal+ consistency, being fault tolerant and supporting
dynamic membership, partial replication, and client mobility
across different edge locations without compromising consis-
tency guarantees.

Our extensive experimental evaluation confirms that
Arboreal’s replication protocol scales effectively to hun-
dreds of edge nodes, outperforming state-of-the-art solutions.
It also exhibits quick recovery from failures with minimal im-
pact on client latency, ensuring data consistency and durability
guarantees. The combination of a hierarchical topology and
dynamic replication allows Arboreal to adapt efficiently to
various edge scenarios, surpassing traditional static replication
schemes or centralized solutions. This adaptability accommo-
dates mobile clients and swiftly adjusts to changes on their
access patterns.

In summary, this paper makes the following contributions:
• It introduces a system model for stateful edge computing,

enabling applications to be deployed at the edge with
complete local and consistent data access (Section II).

• It presents the design and implementation of Arboreal,
a fully decentralized data management system for the
edge, ensuring global causal+ consistency and scalability
to hundreds of edge locations (Section III).

• An extensive experimental evaluation, demonstrating that
Arboreal offers substantial advantages in various edge
scenarios when compared to alternative solutions, show-
ing both better throughput and visibility times, while effi-
ciently adapting to changing access patterns and mobility
of clients (Section V).

II. TOWARDS STATEFUL EDGE APPLICATIONS

The prevailing deployment model for Internet services
involves running main application components in cloud in-
frastructures, accessing data managed by (potentially geo-
replicated) storage systems [7], [11]. In this model, edge
locations, encompassing cloud operator points-of-presence,
ISP infrastructures, and small regional data centers, handle
simple tasks like accessing static content or cached data.
To fully leverage the potential benefits of edge computing,
providing low latency and reducing centralized component
loads, a shift is needed. Adopting a model where edge nodes
can fully process all client requests efficiently requires the
application logic on edge nodes to have read and write access
to local replicas of application data. To support this stateful
edge application model, distributed data management systems
must extend from data centers to edge locations, addressing the
following challenges, distinct from those faced by traditional
cloud storage systems [4]–[6]:

Partial and dynamic replication. Applications with large
user bases are expected to leverage on a considerable number

of edge locations, largely exceeding the typical count of data
centers employed nowadays. These edge locations, character-
ized by less powerful and reliable computational resources
compared to core data centers, pose unique challenges, as it
is imperative for application components to have unrestricted
data access while maintaining consistent guarantees, regardless
of executing in the cloud or at the edge. Achieving this
requires a data storage solution supporting fine-grained partial
and dynamic replication. This means that the set of data
objects replicated at each edge location evolve over time to
reflect the access patterns of clients accessing the applications
in that location. This poses a challenge as the replication
protocol must dynamically adapt to ensure timely propagation
of data updates to the correct locations, preventing components
and clients from encountering stale data, and ensuring their
operations become visible across the rest of the system.

Scalable consistency. Enforcing some form of consistency
across all edge locations is crucial to ensure correctness of
applications. While strong consistency simplifies application
logic by avoiding data anomalies, it proves impractical for
edge settings due to latency and availability issues arising from
coordinating numerous replicas. In edge environments, it is
more suitable to rely on a weak consistency model, which re-
laxes consistency for improved availability and response times.
To mitigate anomalies in eventual consistency models, many
solutions adopt causal+ consistency [12], [13] which provides
the strongest consistency guarantees while allowing the system
to remain available when some replicas are unreachable [14].

Causal+ consistency implicitly captures the happens-before
[13] relationship, which encodes potential causal relationships
between operations. This model ensures that a client never ob-
serves the effects of an operation without observing the effects
of all operations that causally precede (i.e., that happened-
before) it. The key challenge lies in tracking these causal
relationships. Common approaches use vector clocks [15],
[16], but scalability is limited as they grow linearly with the
number of replicas and data partitions [15], [17], leading to
significant metadata overhead. Other approaches, like tree-
based topologies [18], [19], avoid growing metadata costs
but are sensitive to changes in the replica set, having weak
fault tolerance. Some solutions [20], [21] rely on centralized
components, simplifying causality tracking but limiting the
benefits of using multiple edge locations. Supporting stateful
edge applications requires a scalable solution for tracking
causal dependencies across write operations that can scale
to hundreds of locations, in a context involving dynamically
replicated data objects, and in a way that can deal with
frequent replica set changes and be fault-tolerant.

Client mobility. Applications benefiting most from the
envisioned stateful edge applications often involve numerous
users dispersed across different locations, accessing data based
on their location. Examples include collaborative applica-
tions (e.g. Google Docs), autonomous vehicles, smart-city
applications, multiplayer mobile games, or stateful serverless
computing [22]. In these applications, where low response
times are crucial, users may change locations while using the
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application. When doing so, users should be able to migrate
from interacting with an application component on one edge
location to a closer one seamlessly, without encountering
data consistency anomalies. This emphasizes the need for a
distributed data storage solution capable of handling mobile
clients without compromising consistency guarantees.

In the next section, we present the design of Arboreal
which, to the best of our knowledge, is the first distributed
storage system providing causal+ consistency while sup-
porting fine-grained partial and dynamic replication. It can
scale to hundreds of different locations, is fault-tolerant, and
effectively supports mobile clients. This unique combination
of features makes Arboreal especially well-suited for de-
ployment in edge environments.

III. ARBOREAL DESIGN

Arboreal is a distributed data management system de-
signed for the edge, featuring a novel scalable replication
protocol that ensures causal+ consistency. Scalable to hundreds
of edge locations, Arboreal seamlessly adapts to mem-
bership changes and effectively manages faults and network
partitions. Arboreal is designed to support extending cloud
applications to edge environments, employing dynamic partial
replication. This enables edge nodes to automatically adjust the
set of locally replicated data objects in response to changes
in client access patterns while allowing clients to move across
edge locations without compromising consistency guarantees.
All of this is achieved in a fully decentralized manner.

System Model: Our solution assumes a set of cloud data
centers spread across different geographic regions, in which
a distributed (geo-replicated) NoSQL database is deployed.
Deployment specifics of this database (e.g., replication pro-
tocol, partitioning scheme) are orthogonal to this work. We
consider a set of edge locations equipped with computational
resources. Arboreal extends the database from the cloud
data centers to edge locations within each individual region.
For this, an instance of Arboreal is deployed both in each
data center and each edge location. We assume that an edge
location may consist of one or multiple edge nodes, however,
it is always treated as a single node, with a single instance of
Arboreal being deployed in each edge location. No assump-
tions are made about replication and data partitioning schemes
within each edge location, focusing instead on data replication
across edge locations. To accommodate diverse scenarios and
applications, we assume that, at any time, Arboreal can
be dynamically deployed, along with application components,
in new edge locations and that edge locations may fail, or
Arboreal may be decommissioned from them. Applications
deployed on edge nodes rely on Arboreal for consistent
local data access to support the processing of client operations
that can both access and modify application data. Clients,
potentially mobile, can migrate between edge locations at any
time, and have dynamic workloads, with the set of accessed
data objects possibly changing over time.

Data Model: Arboreal offers a key-value store interface,
akin to other highly available distributed databases [4], [5],
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Fig. 1: Design of Arboreal, with 3 geographic regions

where each data object is identified by a unique key. Clients
issue read or write operations on data objects without con-
straints, and Arboreal ensures that: (1) data objects are
replicated transparently to the edge locations where they are
accessed; (2) write operations are propagated to all locations
currently replicating the modified data object; and (3) clients
always observe a state respecting a causal order of operations.
Arboreal makes no assumptions on how data is stored in
each node. For convergence, a last-writer-wins policy is used,
relying on operation timestamps (explained in III-A2).

A. Replication Model

As discussed earlier, a key challenge of this work is over-
coming limitations in replication protocols providing causal+
consistency, in a way that is suitable for a large-scale edge
environment. To address this challenge, it is crucial to enable
edge locations to synchronize (propagate write operations
and data objects) directly with each other while simultane-
ously ensuring that metadata, essential for enforcing causality
and supporting (object-grained) dynamic replication, does not
grow linearly with the number of edge locations.

1) Hierarchical Approach: Arboreal employs a hierar-
chical design, with each edge location hosting an instance
of Arboreal. These edge locations form a tree structure
rooted at their regional data center, establishing the region’s
control tree. Fig. 1 shows a geo-distributed example of an
Arboreal deployment with 3 data centers, each having its
control tree composed of the edge locations of that region. The
management of the control trees is fully decentralized, with
nodes communicating solely with their parent and children.
Nodes only retain detailed information about their children
and minimal information about their ancestors (i.e., nodes in
the path between itself and the root of the control tree). This
decentralized structure allows for latency-sensitive tasks, such
as creating replicas of data objects (III-A3), failure recovery
(III-B2), and mobile client handling (III-C) to be performed
in a localized fashion, involving as few nodes as possible.

To establish the control tree, when an instance of
Arboreal is deployed on an edge location, it uses a heuristic
to connect to the most suitable existing instance in the control
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tree of its region. Note that the goal of Arboreal is to
replicate data to applications running on edge locations, and
is not an orchestrator that decides where and when to deploy
the application. To accommodate diverse edge scenarios, both
the heuristic defining the control tree and the information used
by the heuristic are configurable by the application developer.

Given the significance of geographic locality in edge com-
puting, our Arboreal implementation employs geographic
distance between edge locations as the primary metric for
forming the control tree. However, depending on the appli-
cation, various metrics can be used, such as latency between
edge nodes, client locations, or even predicting future demand
for the application. Sec. IV provides an insight into how the
control tree is formed in our implementation.

2) Enforcing causality: The main challenge in providing
causal+ consistency in a large-scale edge environment is
tracking and enforcing causal dependencies without incurring
in prohibitive metadata or communication costs. For this, the
key is to leverage the hierarchical topology both to disseminate
operations and to aggregate metadata.

Causal Dissemination: We start by leveraging the hierar-
chical topology of Arboreal, which allows achieving causal
consistency without requiring any metadata [18], [23]. For
this, nodes form the control tree by establishing FIFO links
to their parent and children. When a node receives a write
operation from a link (i.e., from a parent or child), it atomically
executes the operation locally and puts it on the outgoing
queue of every other link. Additionally, local operations from
clients are atomically added to the outgoing queues of all
links. This ensures operations are always propagated (and thus,
executed) after all their causal dependencies. While ensuring
causal consistency, this approach assumes clients always issue
operations to the same node and a static control tree, which
are unrealistic assumptions for the edge.

Timestamping: To overcome these limitations, Arboreal
additionally relies on Hybrid Logical Clocks (HLCs) [24]
to enforce causal consistency. HLCs combine physical time
for monotonic advancement in each node with logical clocks
for capturing causal relationships between operations despite
physical clock anomalies. When a client’s write operation is
received by a node, it is tagged with a timestamp from the
local HLC. This timestamp is propagated with the operation
through the tree and is stored with the object data in each
node. Additionally, Arboreal employs the notion of Branch
Stable Time (BST ). A BST is computed individually by each
node as the minimum between its current HLC time and the
BST of each child. The BST captures that no operation with
a lower timestamp will be generated by any node in its branch
(a branch consists in the node itself and all of its descendants
in the control tree). Nodes periodically propagate their BST
to parents and children, including the BST of all ancestors
when propagating to children. This ensures each node tracks
the BST of its children and all ancestors. Combined with
the causal dissemination technique, BST s allow Arboreal
to provide causal consistency in every scenario, including
failure recovery (discussed in Sec. III-B) and mobile clients

(discussed in Sec. III-C).
We note that both the causal dissemination and the times-

tamping mechanisms require the hierarchical tree topology to
function correctly. For the causal dissemination, the acyclic
nature of the tree is key to ensure operations are always propa-
gated after their causal dependencies, as using other topologies
would require additional metadata (e.g., vector clocks). For
the timestamping mechanism, the BST is directly tied to the
tree structure, as it represents a lower bound on the future
timestamps that can be generated in an entire branch of the
tree. Using alternative topologies, such as unstructured peer-
to-peer networks, would incur in significant communication
and metadata overhead to ensure causal consistency [23].

3) Dynamic and Partial Data Replication: An essential
aspect of edge computing is that edge locations can not be
expected to have resources to replicate the entire dataset of
an application. As such, partial replication is a key aspect of
Arboreal. Moreover, to support a wide range of applica-
tions, Arboreal must adapt not only to changes in client
access patterns but also to mobile clients that can change the
edge location to which they are connected at any time. Unlike
cloud-based data management systems that typically use static
data partitions, Arboreal needs to allow edge nodes to
dynamically change the set of replicated data objects at any
time with fine granularity. However, keeping track of which
nodes replicate which data objects across a large-scale system
can be costly and require substantial metadata propagation,
especially with dynamic sets of nodes and data objects. To
address this challenge, we rely on the hierarchical topology.

In Arboreal, each data object is individually replicated
to a subset of edge nodes. This is done in a way that ensures
any node always contains the data objects its children replicate,
resulting in each data object being replicated across a subtree
of the control tree, which we refer to as the replication tree
of an object. Fig. 2 illustrates the evolution of a Arboreal
deployment with two objects, α and β, replicated on different
sets of edge nodes that change over time.

While this restriction in data object replication may seem
limiting, forcing edge nodes to replicate data objects that
their current clients may not be interested in, it is actually a
beneficial design decision for three reasons: (1) as a subtree of
the control tree, an object’s replication tree inherits causal dis-
semination guarantees, providing causal+ consistency globally
across all objects; (2) when the control tree is repaired after
node failures (detailed in III-B), the replication trees involving
the faulty nodes are also repaired, enabling the system to
quickly recover from failures with minimal client impact; and
(3) when mobile clients move between edge nodes, even if
their new node does not replicate the required data objects,
there is a high chance that one of its nearby ancestors does,
allowing the client to quickly resume its operation (detailed
in III-C). This design ensures replication trees form in a
decentralized manner based on client needs. Each node only
needs to track the objects it replicates and the objects each of
its children replicates. This mechanism assumes that storage
and computation capacity increases moving up the control
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Fig. 2: Dynamic partial replication in Arboreal

tree, closer to cloud data centers, which we believe to be a
reasonable assumption for an edge environment [25].

Replica creation: When a client requests a data object not
replicated in its connected edge node, that node sends a request
to its parent node, asking to be added to the object’s replication
tree. If the parent node is part of it, it sends the current object
version to the child node and keeps track that this child node
is now replicating the object. If the parent node is not part of
the replication tree, it forwards the request to its own parent,
and so on, until the request reaches a node replicating the
object (or the cloud data center, replicating all objects). This
node then sends the object to its child node, and the process
repeats until the object reaches the node that initially requested
it. This process is illustrated in Fig. 2, where node A (and
consequently, node E) is added to the replication tree of α.

Garbage Collection: Due to the possible large number
of data objects and limited storage capacity in edge nodes,
Arboreal employs a garbage collection process. Each node
tracks the last time each data object was accessed and periodi-
cally removes objects not accessed for a configurable duration.
When removing a data object, a node informs its parent that it
no longer replicates that object. Nodes can only garbage collect
objects not replicated to any children to prevent breaking the
replication tree. Fig. 2 shows an example of this, where object
α is no longer being accessed by clients in nodes D and G,
and so it is garbage collected, with those nodes no longer
being connected to the replication tree of object α at the end
of the process.

The decentralized design of Arboreal’s replication pro-
tocol allows it to scale to a large number of edge nodes while
supporting fine-grained replication of data objects. This allows
each node to only track metadata proportional to the number
of objects it replicates, avoiding linear growth with the total
number of edge nodes and data partitions/objects.

B. Fault Tolerance

Unlike cloud environments, where individual nodes can fail
but it is unlikely that an entire data center does, in edge
environments, we need to assume that entire edge locations can
fail or become partitioned at any time. Therefore, Arboreal
must not only be capable of recovering from failures but also
provide data persistence guarantees when they occur.

1) Data Persistence: Arboreal provides a mechanism
allowing applications using it to specify the persistence level of
write operations. Effectively, this allows applications to specify

how many nodes upstream in the replication tree a write
operation must reach before it is considered to be persisted and
hence having a reply being returned to the application. This
mechanism is especially beneficial for applications requiring
data persistence guarantees in more volatile edge locations. Its
design prevents scalability issues by avoiding extra commu-
nication steps between nodes and the need for nodes to track
the origin of each operation.

Persistence ID: Before forwarding a local write operation
to its parent, a node assigns a persistence ID to the operation.
Upon receiving a write operation from a child, a node assigns
its own persistence ID to the operation, mapping it to the
child’s persistence ID, and then propagates the operation to
its parent. The persistence ID is essentially a local counter
for each node, incremented whenever a node assigns it to an
operation. The left side of Fig. 3 illustrates this mechanism
in action. A client issued three write operations in node A,
with the first two reaching the data center, and the last one
only reaching node E. Additionally, an operation in node F
reached the data center. The figure depicts the mappings by
each intermediate node. For example, the data center operation
with persistence ID H3 originated in node A with persistence
ID A2. Importantly, nodes lack information about the origin
of each operation, enabling Arboreal to scale by avoiding
storing metadata concerning a large number of nodes.

Persistence level notifications: Periodically, each node
communicates to its children the persistence level of their oper-
ations through a list of pairs (persistence ID, persistenceLevel).
Each pair signifies that all child operations up to persistence ID
have been persisted in persistenceLevel nodes. Upon receiving
this list from its parent, a node maps the persistence ID
of each pair to the persistence ID of the child, increments
the persistenceLevel of each pair by one, and, if operations
from the child are missing, adds an entry with the highest
of those operations and a persistenceLevel of 1. The persis-
tenceLevel of operations reaching the data center is conveyed
as ∞. This mechanism is depicted in Fig. 3, where node A
receives acknowledgment that its operations up to A2 have
been persisted in the data center and A3 in one level above
it. This persistence level information is periodically sent to
children piggybacked on the BST messages. Upon receiving
confirmation that an operation has been persisted in the data
center, nodes can forget all persistence information related to
that operation. Regardless of the requested persistence level,
this mechanism is always active for all operations to ensure
no loss of operations during fault recovery.

2) Fault Handling and Recovery: Due to the nature of
edge environments, decentralized fault handling and recovery
are essential for Arboreal. The main challenges involve:
(1) rebuilding the control tree after node failures; (2) ensuring
consistency during the rebuilding process; and (3) maintaining
data persistence through failures and reconfiguration.

To address the first challenge, each node, being aware of
all its ancestors, can independently rebuild the control tree
after failures. Nodes attempt to connect to their grandparents
if they suspect their parents have fail, falling back to the great-
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Fig. 3: Data persistence in Arboreal

grandparent and so on, until reaching the data center. Since
every ancestor of a node replicates a superset of its data (as
seen in Fig. 2), this simple approach automatically repairs not
only the control tree, but also any disconnected replication
trees. We note that, as we assume an asynchronous system,
suspecting a node does not necessarily mean that the node
has failed, but rather that there is a chance it might have, as it
can just be temporarily slow. However, since a single failed (or
just slow) node can block operations from being propagated
through the replication trees, this mechanism minimizes the
impact of such nodes, as when their children change parents,
they become leaf nodes that cannot negatively affect other
nodes. Simultaneously, this same mechanism can be used to
avoid nodes in higher levels (i.e., closer to the root) of the
control tree from being becoming a bottleneck if they become
overloaded due to a large number of children, as in such cases,
(some) children can disconnect and reconnect to an ancestor.

For the second challenge, when connecting to a new parent,
Arboreal employs a 3-step protocol to synchronize with its
new parent, ensuring no violations of consistency guarantees:
(1) The (to-be) child node sends a Sync Request to the (to-be)
parent node, including its current BST and a list of replicated
objects with associated timestamps;
(2) The parent node registers the child as a new child, checks
if it has any outdated objects, and replies with a Sync Response
containing the child’s new ancestor list, BST s, and a list of
updates for the child’s outdated objects;
(3) The child updates its ancestor list and BST s and installs
the outdated objects. It sends the parent requests for any
pending replica creation requests and client write operations.
Finally, the child propagates a Reconfiguration Message to its
children, containing their new ancestor list and BST s, which
is propagated to its entire branch.

To address the third challenge, after the synchronization,
both the child and every node in its branch re-propagate local
write operations with pending persistence requests, as the per-
sistence mechanism may break down during reconfiguration.

Though the synchronization protocol may seem complex, it
allows each node to reconnect itself to the control tree without
centralized coordination. This decentralized approach enables
Arboreal to recover from multiple failures in parallel. We
study the benefits of this mechanism in Sec. V-C.

Regarding clients, failures can affect them in two ways:
(1) If a client’s connected node remains operational, but one
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Fig. 4: Client Mobility in Arboreal

of its ancestors fails, the client can continue normal operation.
The only noticeable effect is that persistence confirmations
may be delayed as they will only arrive once the current node
reconnects to the control tree;
(2) If the node to which the client is connected fails, the
client must reconnect to a new node (detailed in Sec. III-C).
Operations with persistence confirmation are guaranteed to be
visible in the new node, but those without may have been lost,
affecting the causal session of the client1. The client can then
re-execute lost operations or perform read operations to verify
the persistence of those operations.

C. Client Mobility

In edge application scenarios with mobile clients, such as
users with smartphones, Arboreal must seamlessly support
clients moving from an edge node to a closer one while
maintaining consistency guarantees (e.g., to support mobile
AR applications [1]). This is a non-trivial task as the new node
may not have any information about the client’s previous node
(which may even have failed). Therefore, we assume that the
nodes involved in this procedure are unable to communicate,
with the client storing all required information.

Client state: Clients of Arboreal track two pieces of
metadata: (1) the list of ancestors of its current node; (2) a
timestamp with the its current causal dependencies. This times-
tamp is updated upon receiving responses to operations, and
always contains the highest timestamp seen. Read operations
return the timestamp of the object read, while write operations
return the timestamp assigned to them by the client’s node.
Fig. 4 shows the BST of nodes and the timestamp and list of
ancestors of a client in an example deployment.

Mobility procedure: The combination of the client-side
timestamp and list of ancestors with the node-side BST
enables Arboreal to support quick client migrations without
compromising causality. When a client connects to a new
node, it sends a migration request to the new node, containing
its current timestamp and list of ancestors. The new node
then compares the received list with its own list of ancestors,
leading to one of the following cases:

1We note that this case is not unique to Arboreal, as in any system with
causal consistency, the failure of the node to which a client is connected to
will possibly result in the client losing its causal session.
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(1) If the new node was not in the client’s list of ancestors,
signifying a horizontal migration to a new branch of the
control tree, the new node identifies its closest ancestor that
is also in the client’s list of ancestors. It responds to the client
only after receiving a BST from that ancestor greater than the
client’s timestamp. This ensures that the new node responds
to the client only when it is certain that it has observed all
operations the client depends on. Using Fig. 4 as an illutrative
example, if the client wishes to migrate from node A to node
F , then it will need to wait until the BST of node H (the
closest common ancestor) reaches a value of at least 10 (the
client’s timestamp) and that BST is propagated to node F .
(2) If the new node was in the client’s list of ancestors,
indicating a vertical migration, the new node identifies which
of its children is an ancestor of the client’s old node (or
the node itself). It responds to the client once it receives a
BST from that child that is equal or greater than the client’s
timestamp. In Fig. 4, if the client migrates to E, it waits until
E receives a BST from A with at least 10 (which should be
quick, as the BST of A is already 10). In cases where the
client migrates to the parent of a failed node, the new node
immediately accepts the migration as there is nothing to wait.

After this process, the client receives an updated list of
ancestors. The metadata stored in the client only needs to be
readable by Arboreal and may be opaque (e.g., encrypted)
to the client itself, preventing information leakage about the
internal organization of the system.

The duration of the migration process increases as the client
moves farther from its old node, requiring the new node to
wait for a BST from a more distant node in the control tree.
However, in typical scenarios, we expect clients to mostly
migrate to close-by nodes, resulting in swift migrations. We
evaluate this in V-E.

This mechanism might be overly cautious. For instance,
in Fig. 4, if the client aims to migrate to F , it depends
on the BST of H , which, in turn, relies on the BST of
B. However, node B might not have participated in any
operation observed by the client, causing potential delays
in migration completion. While we recognize this cautious
approach may introduce unnecessary delays, alternatives that
accelerate migrations typically involve additional metadata
or explicit migration messages sent through the tree. Such
approaches could compromise Arboreal’s scalability and
fault tolerance.

IV. IMPLEMENTATION

Our Arboreal prototype, supporting all features outlined
in Sec. III, is implemented in around 4000 LOC of Kotlin,
leveraging on Netty [26] for network communication. It is
open-source and extensible, comprising four modules: (1)
the main Arboreal module manages the control tree and
replication trees, handling message propagation and all other
aspects detailed in III; (2) the storage module allows the
use of different storage backends. For our evaluation, we
implemented an in-memory key-value store; (3) the client
module allows clients to interact with the system; and (4) the

management module allows nodes to collect information about
each other, determining the initial control tree topology. Mod-
ules communicate asynchronously through message passing.

The management module, while somewhat beyond the
scope of this paper, is crucial for our experimental eval-
uation, as it controls the lifecycle of edge nodes. In line
with decentralization, nodes establish an overlay network
using HyParView [27], with the datacenter node as a contact
point. Upon entry, nodes utilize the overlay to propagate their
information, including geographic location, while simultane-
ously collecting information about others. Using this data, the
management module of each node employs a configurable
heuristic to select an optimal parent, shaping the control tree.

In our implementation, we employ two heuristics to shape
the control tree layout, both using the following equation:
cost = dist(self, candidate) + w × dist(candidate, dc)
which assigns a cost to each possible parent node candidate,
based on its geographical distance dist() to the node self and
the data center dc. This equation prioritizes parent proximity
while also considering their distance to the data center, with
a weight w. We used the value w = 0.75 in our experiments,
as it resulted in the most balanced trees.

The first heuristic simply selects the node with the lowest
cost as the parent, favoring nearby nodes which are in the
general direction of the data center. This results in control trees
with deep branches and a small number of children per node.
The second heuristic limits the depth of the tree by assigning
a level to nodes based on their distance to the data center. It
only considers nodes with a level closer to the data center as
potential parents, leading to wider layouts with a larger number
of children per node. The impact of these tree layouts, referred
to as deep and wide, is evaluated in the following section.

Along with the fully working prototype, we implemented a
client driver in Java. Extending the codebase of YCSB [28],
it allows evaluating Arboreal in a variety of scenarios,
allowing clients to move between edge nodes due to node
failures or to capture client mobility, select diverse persistence
levels, and dynamically modify their workload, adapting to
varying data access patterns.

V. EVALUATION

In this section, we evaluate the benefits of Arboreal
using an edge environment setup (Sec. V-A). We start by
analyzing system performance, focusing on throughput and
operation visibility times (Sec. V-B). We follow by testing
Arboreal’s resilience to failures, highlighting the role of
its persistence mechanism (Sec. V-C). We then explore more
complex edge scenarios, examining the dynamic replication
mechanism under dynamic client access patterns (Sec. V-D),
and when supporting mobile clients which move across dif-
ferent locations and, consequently, nodes (Sec. V-E).

We compare Arboreal with other solutions that provide
causal+ consistency on the edge, namely a decentralized
solution using vector clocks (Engage [19]) and solutions using
a centralized topology to enforce causality (Gesto [21] and
Colony [20]). For the former we use the provided code, while
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(a) 20 nodes (b) 200 nodes

Fig. 5: Example node distributions in a geographic region

for the latter, as the code is not available, we mimic their cen-
tralized topology by implementing a version of Arboreal,
named centralized, where all edge locations connect directly to
the data center. We also compare Arboreal against Cassan-
dra [5], a cloud database that due to its configurable partial
replication and peer-to-peer synchronization can be used in
edge settings, having served as a baseline in contributions
designed for both edge [29] and IoT [30].

A. Experimental Setup

We conducted experiments in a cluster of 10 machines,
each having 2 AMD EPYC 7343 processors with 64 threads
and 128 GB of memory, connected by a 20 Gbps network.
We deployed a docker swarm across all machines, with an
overlay network connecting all containers. A container with no
resource restrictions on one machine models the data center,
while up to 200 containers distributed across the others rep-
resent edge nodes. To better represent and edge environment,
the computational resources of edge nodes were restricted to
2 virtual cores and 4 GB of memory. Each container executes
an instance of Arboreal, as presented in Sec. IV.

To emulate a geographic region, we randomly distributed the
200 nodes across a virtual 2-dimensional space, representing
edge locations, with the data center at the center. We used
Linux tc to emulate latency between nodes based on their
Euclidean distance, with a maximum latency of 150ms from
an edge node to the data center. Experiments were conducted
3 times on 3 such distributions using either 20 or all 200
nodes. Fig. 5 shows an example distribution with the formed
control tree, using the deep layout. Additionally, we deployed
200 client containers, distributing them across the same virtual
space and setting the latency between each client and edge
node using the same method, with a minimum latency of 10ms.

B. Performance

In our performance benchmarks, we evaluate the perfor-
mance of Arboreal in terms of operation throughput and
visibility times, comparing it against other causal+ solutions,
Cassandra, and using different control tree layouts.

In these experiments, clients connect to their closest edge
node and perform operations on data objects based on their lo-
cation. The geographic region is divided into 8 equal segments,
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Fig. 6: Throughput of Arboreal versus causal+ solutions

with each being assigned a data partition. Clients perform
operations on data objects in their segment and the 2 adjacent
segments. This setup assesses the performance of Arboreal
with data locality, where clients are more likely to access
nearby data objects. As the replication of data in Arboreal
is dynamic and based on client access patterns, this results
in each edge node replicating data objects from at least 3
partitions, with the data center replicating data objects from
all 8 partitions. More complex scenarios with dynamic access
patterns and client mobility are explored in Sec. V-D and V-E.

For Cassandra, as partial replication is based on a static
placement, we configured each edge node as an independent
cluster (datacenter in Cassandra terminology) and created
partitions (keyspaces in Cassandra terminology) so that each
edge node replicates all data objects from the 3 partitions
accessed by clients, while the data center replicates all 8. A
similar approach was used to distribute partitions in Engage.

1) Throughput: Fig. 6 shows the throughput of Arboreal
compared to Engage and a centralized topology solution,
varying the number of nodes and the number of distinct data
partitions. We show the throughput of write operations only,
as read operations execute locally in all solutions. Due to
weak consistency allowing nodes to respond to clients without
coordination with other nodes, measuring throughput on the
clients is unreliable, as operations may be processed in their
local nodes at a higher rate than they are replicated to other
nodes. As such, the values displayed represent the maximum
throughput measured in the data center node for each solution.

Two main conclusions can be drawn from these results:
(1) Unlike existing causal+ solutions, Arboreal scales to
hundreds of nodes without performance degradation. This is a
result of avoiding both vector clocks (used in Engage) and
centralized topologies (as the ones used in [21] and [20])
for causality enforcing, opting for a decentralized hierarchical
topology. While it could be expected that a data center with
high computing power could handle a centralized solution with
a large number of edge nodes, this is not the case, as causality
enforcement requires some form of (partial) serialization of
operations, limiting parallelism; (2) Increasing the number of
data partitions (reducing the number of data objects accessed
by each client) and nodes (increasing the number of replicas
for each data object) increases the throughput of Arboreal.
This happens since each added node removes load from
existing ones, allowing more operations to be processed in
parallel. This is a key advantage of Arboreal’s dynamic
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Fig. 7: Throughput of Arboreal versus Cassandra

replication mechanism over state-of-the-art solutions.
Fig. 7 shows the throughput achieved by Arboreal and

Cassandra as observed by clients, varying the read/write ratio
and number of nodes. Note the Y axis is in log scale. For more
reliable measurements, we use ∞ persistence in Arboreal
and quorum consistency in Cassandra, ensuring that writes
are only acknowledged to clients after being replicated to
the data center and a majority of edge nodes, respectively,
preventing artificial throughput inflation. Quorum consistency
in Cassandra also ensures clients observe the latest value of
data objects, providing some consistency guarantees (although
different from Arboreal, as it can violate causality across
objects), making the comparison with Arboreal more fair.

In write-only scenarios (0% reads), Arboreal achieves
higher throughput by leveraging its hierarchical topology and
persistence mechanism. Nodes in Cassandra must send each
write operation to all other nodes replicating the data object,
then await acknowledgement from a quorum. In contrast,
Arboreal sends write operations only to the parent (and any
children replicating the object), and waits for the persistence
acknowledgement. This greatly reduces message complexity,
allowing higher throughput. With increased read operations, by
processing reads locally, Arboreal outperforms Cassandra,
which requires coordinating with a quorum before respond-
ing. While Cassandra can avoid coordination, sacrificing data
consistency guarantees, to increase its throughput, Arboreal
can process reads locally while providing causal+ consistency.
Regardless Fig. 7 demonstrates that the hierarchical topology
of Arboreal is more suitable for edge environments than
traditional solutions designed for cloud environments.

2) Visibility Times and Tree Layouts: In this section,
we explore the impact of different control tree layouts in
Arboreal’s hierarchical topology on the visibility times of
operations and compare them with a centralized topology.

Utilizing the same setup as in the previous experiment,
with 200 nodes and only write operations, Fig. 8 presents the
results in the form of a boxplot, where each box shows the
distribution of the visibility times of operations in the different
topologies. Arboreal deep and Arboreal wide represent the
layouts presented in Sec. IV, with the wide layout limited
to a depth of 4. The figure depicts visibility times for the
closest remote node (1), the 5th closest, and all nodes. The
values for 1 and 5 are crucial in an edge environment as clients
in geographical proximity, connected to different but close-by
edge nodes, are likely to access the same data objects.
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Results indicate that utilizing a hierarchical topology with
the deep layout is optimal for achieving low visibility times,
enabling rapid operation propagation to nearby nodes. How-
ever, reaching all nodes requires traversing a significant num-
ber of hops, resulting in higher global visibility times. In
contrast, the centralized topology always requires propagating
operations directly to the data center, resulting in much higher
visibility times. The hierarchical wide layout serves as a
balanced compromise, enabling slighty slower propagation
to nearby nodes while matching the speed the centralized
topology in reaching all nodes. Overall, these results show that
a hierarchical topology is better suited for edge environments
than a centralized one. In Secs. V-D and V-E, we further
explore the benefits of Arboreal’s hierarchical topology.

C. Fault Tolerance

In these experiments, we examine the resilience of
Arboreal to the failure of edge locations, exploring different
persistence levels, failure rates, and failure patterns. As reads
are processed locally, all clients execute only write operations.
The deep layout is used for the control tree in all experiments,
allowing a wider range of persistence levels to be evaluated.

1) Operation Persistence: We start by evaluating the la-
tency penalty of different persistence levels in Arboreal.
Fig. 9 shows the latency of write operations when varying node
numbers and persistence levels. In this experiment, persistence
messages are propagated from nodes to their children every
20ms. The configurations with 1 node and those with a
persistence level of 1 are used as baselines for comparison,
representing the latency of operations if clients were communi-
cating directly with the data center and without the persistence
mechanism, respectively. As expected, as the persistence level
increases, so does the latency of operations, requiring more
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Fig. 11: Simultaneous node failures with ∞ persistence

nodes to execute and acknowledge the operation before it
is completed. In the 20 nodes experiments, as most nodes
are within 3 hops from the data center, only persistence
levels up to 2 provide latency benefits, with levels of 3 or
above having similar latency to ∞. With 200 nodes, however,
latency benefits are observed for persistence levels up to 5.
This means that, even in very unstable edge environments
where data persistence is crucial, using Arboreal can be
beneficial when compared with directly contacting the data
center, particularly in a real-world scenario where only a small
fraction of data objects might need high levels of persistence.

2) Effects of failures: Fig. 10 shows the average latency
over time as perceived by clients when 50% of all edge nodes
fail within a 10-second period (30-40s in the figure), with
persistence levels of 1 and ∞ and with both 20 and 200
nodes. The shaded area above each line represents the 99th
percentile of latency (P99). In the results with persistence level
of 1, the average latency barely increases during the failure
event, as clients that are connected to non-failing nodes remain
unaffected even if their node is temporarily disconnected from
the control tree. However, after each node failure, some clients
must reconnect to a new node. As outlined in Sec. III-C, the
locality aspect of the control tree makes this process quick,
with even the P99 not being significantly impacted. With a
persistence level of ∞, the latency increase is more noticeable.
This occurs because clients connected to nodes that did not
fail, but whose ancestors did, will stop receiving replies to their
operations until their branch of the control tree is repaired.
As this process is fast and happens concurrently, the latency
increase is minimal and does not accumulate over time.

Fig. 11 shows the effects of a large percentage of edge
locations (25% and 50%) failing simultaneously, with clients
using ∞ persistence level. The results highlight the crucial role
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of a decentralized solution for efficient failure recovery. In both
experiments, average latency increases significantly during the
failure events with larger failure rates causing higher latency
penalties, as more clients are affected. However, the control
tree recovery time remains mostly consistent, regardless of
the initial number of nodes and the percentage of failures.
Again, this happens since disconnected nodes can reconnect to
the control tree in parallel and without coordination, enabling
Arboreal to swiftly recover from failure events in highly
unstable edge environments with numerous edge locations.

D. Dynamic Replication

While data locality is a primary assumption for edge com-
puting (i.e., data is generated and consumed in the same
geographical region), this does not mean that data is never
accessed by far away clients. As an example, consider a
social network application where users from a region might
suddenly become interested in something that happened in
another region. We explore how Arboreal adapts to such
situations, analyzing the impact of different topologies on
latency and object replicas, and comparing with solutions
featuring static replication. Using the same data distribution
as in Sec. V-B, where data partitions align with geographical
segments, we modify client behavior to simulate the social
network scenario. Clients predominantly access local data with
a workload comprising 99% reads, occasionally expressing
interest in non-local partitions. Fig. 12 reports the results
of this experiment, using 200 nodes and a persistence level
of 1, showing client-perceived latency over time (bottom
plots) and the average number of replicated objects in all
edge nodes. Two scenarios are considered: one where all
clients synchronously change their interests to a new partition
and later return to their original interests (12a), and another
where clients randomly change their interests (12b). Similar
to Sec. V-B2, we compare different layouts of Arboreal’s
hierarchical topology against a centralized topology, all using
dynamic replication, and against a traditional static replication
solution (Cassandra).

In the coordinated scenario (Fig. 12a), shaded gray areas
represent periods when clients access data from remote parti-
tions. While latency always increases in these periods, in static

218

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on August 26,2024 at 17:51:24 UTC from IEEE Xplore.  Restrictions apply. 



replication solutions this increase is more pronounced and
remains high until clients return to their original interests (i.e.,
access patterns). On the other hand, the dynamic replication
mechanism of Arboreal results in smaller latency increase
that quickly return to regular values. Considering different tree
layouts, there is a trade-off between the number of replicas of
data object and latency. While the deep layout results in lower
latency, wide seems to provide the best trade-off, having a
number of replicas close to the centralized and latency close
to the deep layout.

In the random scenario (Fig. 12b), clients start accessing
data from remote partitions at the 30 seconds mark. In
Arboreal, the resulting latency increase is minimal, as the
dynamic replication mechanism is reactively creating local
replicas of data objects (as suggested by the increase in the
P99). Using static replication, the average latency remains
high as there are always clients accessing data from remote
partitions. The wide layout again demonstrates an effective
trade-off between latency and the number of object replicas.

These findings show that Arboreal is able to efficiently
handle dynamic client access patterns, proving suitable for
edge applications even when data locality is not guaranteed. Its
hierarchical topology enables more efficient adaptation to such
scenarios compared to solutions with centralized topologies.

E. Client Mobility

A key challenge for Arboreal is supporting mobile clients
that change their connected edge location over time as they
move. While crucial for applications such as location-based
games (e.g., Pokémon Go) or autonomous vehicles, this is
also relevant for any Internet service (e.g., social networks), as
clients may move in their day-to-day lives. In this section, we
evaluate how Arboreal’s dynamic replication mechanism
adapts to various client mobility patterns, comparing different
layouts of its hierarchical topology with a centralized topology.

For this, we modeled clients that move around the geograph-
ical space, changing their connected edge node whenever a
closer one is available, but never changing the data objects
they are interested in. This forces Arboreal to continually
create new replicas of the objects that clients are interested
in and garbage-collect non-useful replicas. Fig. 13 reports
the results of this experiment, showing the client-perceived
latency across different mobility scenarios, using 200 nodes
with a persistence level of 1, and a workload composed of 99%
reads. Replicas of objects are garbage-collected after 5 seconds
without being accessed. We modeled three mobility patterns:
(1) a random pattern (Fig. 13a), where clients move randomly
for 40 seconds, stop for 30 seconds, and repeat the process 2
more times; (2) a commute pattern (Fig. 13b), where clients
move towards one of 5 fixed hot-spots (from second 30 to 60),
and then return to their original position (from second 80 to
110); and (3) a mobile application pattern (Fig. 13c), where
every 30 seconds, clients move together to a new hotspot in the
geographical space, emulating location-based AR applications.

The results show that the dynamic replication mechanism of
Arboreal is quick to adapt to new client positions, creating

new replicas of data objects while garbage-collecting unneeded
replicas. Due to the location-based topology of the control
tree, when a client moves to a new edge node, both nodes
likely share a close ancestor replicating the data objects of
interest. This allows the new node to quickly create local
replicas without being required to contact the cloud data
center, avoiding high latency spikes, especially in the random
and commute patterns. In the mobile application pattern, as all
clients move together to the same small subset of edge nodes,
the hierarchical topology advantages are less relevant, with the
centralized topology showing slight lower latency values.

Whenever clients stop moving, latency quickly drops, show-
ing that their accessed data objects have been replicated to
their current edge location. This shows that Arboreal can
adapt and converge in any mobility pattern, and its dynamic
replication mechanism can efficiently handle mobile clients.

VI. RELATED WORK

Causal+ Consistency: Various solutions for data replication
with causal+ consistency have been proposed, with a majority
of them focusing on data center deployments, limiting the
number of replicas and lacking support for partial replication.
Examples include COPS [12] and Eiger [31], which use
explicit dependencies, or Orbe [17] and Cure [15], which
rely on vector clocks that grow with the number of replicas
or, in ChainReaction [32], with the number of data centers.
Besides the lack of partial replication, the metadata overhead
of these solutions is prohibitive for large-scale edge scenarios
(as shown in V-B). Other solutions, like Saturn [18] and
GentleRain [33], employ fixed-size metadata, limiting its over-
head. However, they lack essential features to cope with edge
deployments, such as reconfiguring after failures or partial
replication, making them weak candidates for such scenarios.

Data Replication in the Edge: Various data management
solutions with varying levels of data consistency have been
proposed for the edge. Examples like DataFog [29] and Cloud-
Path [34] lack any consistency guarantees, resulting in clients
observing data anomalies. On the other hand, due to the highly
geo-distributed nature of the edge, solutions providing strong
consistency, such as FogStore [35], Colony [20], and DAST
[36], only enforce their consistency guarantees within small,
well-connected node groups, and not globally, as Arboreal
does with causal+ consistency. Additionally, these solutions
(like all strong consistency solutions) suffer from lack of
availability during failures and lower fault-tolerance.

Regarding causal+ consistency on the edge, few solutions
exist, with all having limitations to their applicability in the
edge. Both Gesto [21] and Colony [20] rely on the datacenter
to enforce causality guarantees, preventing direct cooperation
between edge nodes. As shown in our evaluation, this impacts
both performance and crucial edge aspects like client mobility.
Engage [19] provides decentralized global causality in the
edge, but relies on vector clocks which greatly limits its
scalability. To the best of our knowledge, Arboreal is the
first causal+ consistency solution able to efficiently handle
deployments with hundreds of edge locations.
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Fig. 13: Mobile clients with different mobility patterns

VII. CONCLUSION

This paper proposed Arboreal, a novel distributed data
management system for enabling stateful edge applications.
Arboreal addresses the key challenges for supporting this
model, being the first solution to provide global causal+
consistency at scale while efficiently supporting client mo-
bility due to its novel dynamic partial replication mechanism
that adapts to their access patterns. This unique combination
of features positions Arboreal as a suitable choice for
diverse edge computing scenarios. Unlike existing causal+
solutions, Arboreal takes full advantage of the edge com-
puting paradigm, by operating fully decentralized, eliminating
the need for cloud mediation. Experimental results show
Arboreal’s superior performance in various scenarios, han-
dling mobile clients with ease, efficiently dealing with abrupt
changes on client access patterns, and swiftly reconfiguring
after failures with minimal impact on clients.
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