
Babel: A Framework for Developing Performant
and Dependable Distributed Protocols

Pedro Fouto, Pedro Ákos Costa, Nuno Preguiça, João Leitão
NOVA LINCS & NOVA FCT

{p.fouto,pah.costa}@campus.fct.unl.pt, {nuno.preguiça,jc.leitao}@fct.unl.pt

Abstract—Prototyping and implementing distributed algo-
rithms, particularly those that address challenges related with
fault-tolerance and dependability, is a time consuming task. This
is, in part, due to the need of addressing low level aspects such
as management of communication channels, controlling timeouts
or periodic tasks, and dealing with concurrency issues. This has
a significant impact for researchers that want to build prototypes
for conducting experimental evaluation; practitioners that want
to compare different design alternatives/solutions; and even for
practical teaching activities on distributed algorithms courses.

In this paper we present Babel, a novel framework to develop,
implement, and execute distributed protocols and systems. Babel
promotes an event driven programming and execution model
that simplifies the task of translating typical specifications or
descriptions of algorithms into performant prototypes, while
allowing the programmer to focus on the relevant challenges
of these algorithms by transparently handling time consuming
low level aspects. Furthermore, Babel provides, and allows the
definition of, networking components that can capture different
network capabilities (e.g., P2P, Client/Server, ϕ-accrual Failure
Detector), making the code mostly independent from the under-
lying communication aspects. Babel was built to be generic and
can be used to implement a wide variety of different classes of
distributed protocols. We conduct our experimental work with
two relevant case studies, a Peer-to-Peer application and a State
Machine Replication application, that show the generality and
ease of use of Babel and present competitive performance when
compared with significantly more complex implementations.

Index Terms—Distributed Protocols, Framework, P2P, Con-
sensus

I. INTRODUCTION

Distributed systems are being increasingly used to support

distinct activities in our everyday life. With the transition to

digital platforms, distributed systems continue to grow in scale

and consequently in complexity, with strict fault-tolerance

and dependability requirements. This, in turn, increases the

pressure for developing, validating, and testing different alter-

natives for building dependable abstractions that support the

operation of many of these systems.
The pressure to develop better and more performant dis-

tributed systems often requires comparing different alternatives

found in the literature. This entails creating concrete and cor-

rect implementations of solutions described in research papers

This work was partially supported by Fundação para a Ciência e
Tecnologia (FCT) under the grants PTDC/CCI-INF/32038/2017 (NG-
STORAGE), UIDB/04516/2020 (NOVA LINCS), SFRH/BD/143668/2019 and
SFRH/BD/144023/2019. Experiments presented in this paper were carried out
using the Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities as well as
other organizations (see https://www.grid5000.fr/).

and books [1]–[3] for comparing their performance under

different conditions. This is the case for researchers developing

novel solutions that wish to compare their proposals with the

existing state of the art; for practitioners, that want to make

informed decisions regarding the design and implementation

of systems under development and operation; and even in

classrooms, where students being exposed to dependable algo-

rithms or large-scale systems can significantly benefit from the

opportunity to implement and operate practical solutions [4].

Many (fault-tolerant) distributed algorithms/protocols are

conceptually simple to describe, with relevant examples in-

cluding agreement protocols [5]–[7], common abstractions

such as state-machine replication [8], large-scale peer-to-

peer protocols [9]–[11], among others. Implementing these

protocols tends to be error-prone and time consuming [12],

negatively affecting the activities of researchers, practition-

ers, and professors in the fault-tolerant and dependability

community. This is not so much due to the complexity of

the algorithms themselves, but due to the fact that such

implementations require handling several low level aspects

such as the use of communication primitives, scheduling and

handling timed/periodic actions, or even deal with non-trivial

concurrency issues that naturally arise when implementing

complex systems. Additionally, stand-alone implementations

require a large effort in lines of code, leading to the logic

of protocols, usually described in pseudo-code in research

papers and text books [4], to be lost within the implementation

details.

An alternative to practical implementation is to take advan-

tage of simulators, such as Peersim [13] or NS2/NS3 [14],

[15]. However, there are several arguments that can be made

against these approaches: i) such implementations can lead to

implementations that incorrectly capture a realistic execution

environment (e.g., in Peersim it is extremely easy for a node to

access the internal state of another node in the system without

requiring any communication step); ii) simulators make it hard

to access the performance of competing alternatives which is

many times essential for researchers and practitioners alike;

iii) some simulators might require an amount of implementa-

tion effort that is close to a real implementation (e.g., NS2 was

famous for requiring very complex protocol implementations);

and iv) simulators required implementing the same protocol

twice (the simulator code and the real code), without any

guarantees that the real code matches the specification of the

simulator code.

146

2022 41st International Symposium on Reliable Distributed Systems (SRDS)

2575-8462/22/$31.00 ©2022 IEEE
DOI 10.1109/SRDS55811.2022.00022

Actor-based frameworks, such as Akka [16] or Erlang-OTP

[17], offer distributed programming abstractions that allow ex-

perienced system engineers to implement distributed protocols

quickly and efficiently. However, these high level abstractions

sometimes make it difficult to have the necessary fine-grained

control over the execution, which is fundamental for high

performant implementations. The adoption of a functional pro-

gramming model also requires additional effort in translating

the specifications, usually presented in an imperative way in

the literature.

In this paper we propose Babel, a novel Java framework that

provides a programming environment for implementing dis-

tributed protocols and systems. Babel provides an event driven

programming and execution model that simplifies the task

of translating typical specifications and descriptions of algo-

rithms in practical prototypes with no significant performance

bottlenecks. As we discuss further ahead, the abstractions

provided by Babel are sufficiently generic to enable its usage

for implementing a wide variety of distributed protocols and

abstractions. Furthermore, Babel allows protocols to be imple-

mented independently of the networking abstractions used to

support the communication between different processes, and

shields the programmer from dealing with potentially complex

concurrency aspects within, and across, distributed protocols.

This does not mean that Babel is only useful for prototyping,

or that it is non-performant. On the contrary, as we show in

our evaluation, Babel was implemented with performance in

mind, allowing developers to implement efficient, production-

ready protocols. The source code for Babel is available at

https://github.com/pfouto/babel-core.

The remainder of this paper is organized as follows: we

discuss relevant related work in Section II. In Section III, we

discuss the features and APIs of Babel. Section IV presents our

experimental work with two relevant case studies: a Peer-to-

Peer application and a State Machine Replication application

using MultiPaxos [18]. Finally, we conclude the paper in

Section V by providing some pointers for future work.

II. RELATED WORK

We highlight some works that share the goals of Babel of

providing quick development and reuse of practical distributed

protocols and systems.

Appia [19] is a toolkit that takes advantage of the Java

inheritance model to allow developers to create their own

protocols by extending base elements of Appia that control

the execution, which our own work also leverages. Appia in-

troduces the concepts of channels and sessions, which provide

developers with more control over the binding of protocols to

create different types of services within a single application

however, at the cost of requiring developers to stack protocols,

which limits interactions among these different protocols.

Furthermore, Appia has a single execution thread for executing

all protocols that compose the distributed system, which incurs

in non-negligible performance bottlenecks.

Cactus [20] is a C++ framework aiming at extracting more

performance from a system and being more expressive. To

this end, Cactus provides meta-protocols that can be stacked

together and that can be composed of various smaller protocols

which can be executed asynchronously. Unfortunately, Cactus

does not offer any type of concurrency management, putting

that burden on the developer.

Yggdrasil [21] is a C framework that aims to be lightweight

and efficient. It was designed to allow the execution of

distributed applications in wireless ad-hoc scenarios, and has

extensions for traditional wired IP networks. Yggdrasil pro-

vides a clean development interface focused on the processing

of four types of events: i) network messages; ii) timed

events; iii) protocol indirect interactions; and iv) protocol

direct interactions. The last two events are used to implement

message passing, allowing for the concurrent execution of

protocols while shielding the developer from complex concur-

rency issues. However, Yggdrasil only supports a single active

network abstraction, meaning that it can only execute either

protocols that expect wireless ad hoc or wired IP networking

in each single Yggdrasil instance. Furthermore, being tailored

for C development, it requires the developer to be technically

disciplined as to not incur in frequent invalid memory accesses,

which can lead to time consuming development.

It is also important to note that some works have proposed

Java frameworks tailored for distributed systems, but focus

on the understanding of distributed protocols. This line of

work includes ViSiDia [22] and the work proposed in [23].

Other works have focused on the experimental evaluation

and performance assessment of distributed systems in realistic

settings including SPLAY [4] and Kollaps [24]. These works

are complementary to our own. Whereas we focus in providing

adequate tooling for the quick, correct, and performant imple-

mentation of distributed protocols and systems, these works

simplify the task of conducting performance assessment of

such implementations.

Simulators, such as Peersim [13] or NS2/NS3 [14], [15],

are an alternative for quickly developing and testing distributed

systems. However, simulators often fail to completely model a

realistic execution environment and may even allow incorrect

implementations (e.g, implementations where nodes access

the internal state of other nodes). More realistic simulators

tend to require an implementation effort that is close to

a real implementation (e.g., NS2 was famous for requiring

very complex protocol implementations). In contrast, Babel

is not a simulator, but rather a framework that simplifies the

implementation of distributed systems that can be tested and

deployed on real hardware.

III. BABEL

Babel is a framework that aims to simplify the development

of distributed protocols within a process that executes in real

hardware. A process can execute any number of (different)

protocols that communicate with each other or/and protocols

in different processes. Babel simplifies the development by

enabling the developer to focus on the logic of the protocol,

without having to deal with low level complexities associated

147

Fig. 1: Architecture of Babel

with typical distributed systems implementations. These com-

plexities include interactions among (local) protocols, handling

message passing and communication aspects, handling timers,

and concurrency-control aspects within, and across, proto-

cols (while enabling different protocols within a process to

progress independently). Notably, Babel hides communication

complexities behind abstractions called channels that can

be extended/modified by the developer, with Babel already

offering several alternatives that capture different capabilities

(e.g., P2P, Client/Server, ϕ-accrual Failure Detector). Babel is

implemented in Java, taking advantage of its inheritance mech-

anisms, such that developers extend abstract classes provided

by the framework to develop their own protocols and solutions.

The strong typing provided by Java allows the framework

to easily enforce expected behavior, while at the same time

offering enough flexibility for the developer to implement any

type of distributed protocol or system.

Figure 1 presents the architecture of Babel. In the example,

there are two processes executing Babel, each process being

composed by three protocols and two network channels for

inter-process communication. Naturally, any distributed system

operating in the real world will be composed by more than two

processes. The Babel framework in composed by three main

components, which we now detail:

1) Protocols: Protocols are implemented by developers

(i.e., the users of the Babel framework), and encode all the

behavior of the distributed system being designed. Each pro-

tocol is modeled as a state machine whose state evolved by the

reception and processing of (external) events. For this purpose,

each protocol contains an event queue from which events are

retrieved. These events can be Timers, Channel Notifications
from the network layer, Network Messages originated from

another process, or Intra-process events used by protocols to

interact among each other within the same process.

Each protocol is exclusively assigned a dedicated thread,

which handles received events in a serial fashion by exe-

cuting their respective callbacks. In a single Babel process,

any number of protocols may be executing simultaneously,

allowing multiple protocols to cooperate (i.e., multi-threaded

execution), while shielding developers from concurrency is-

sues, as all communication between protocols is done via

message passing.

From the developer’s point-of-view, a protocol is responsi-

ble for defining the callbacks used to process the different

types of events in its queue. The developer registers the

callback for each type of event and implements its logic,

while Babel handles the events by invoking their appropriate

callbacks. While relatively simple, the event-oriented model

provided by Babel allows the implementation of complex

distributed protocols by allowing the developer to focus almost

exclusively on the actual logic of the protocol, with minimal

effort on setting up all the additional operational aspects.

2) Core: The Babel core is the central component which

coordinates the execution of all protocols within the scope of

a process.

As illustrated in Figure 1, every interaction in Babel is

148

mediated by the core component, as it is this component’s

responsibility to deliver events to each protocol’s event queue.

Whenever a protocol needs to communicate with another

protocol, it is the core that processes and delivers events

exchanged between them. When a message is directed to a

protocol in another process, the core component delivers it to

the network channel used by the protocol, which then sends

the message to the target network address. That message is

then handled by the core on the receiving process that ensures

its delivery to the correct protocol.

Besides mediating interaction between protocols (both inter

and intra process), the core also keeps track of timers setup

by protocols, and delivers an event to a protocol whenever a

timer setup by the protocol is triggered.

3) Network: Babel employs an abstraction for networking

which we name channels. Channels abstract all the complexity

of dealing with networking, and each one provides differ-

ent behaviors and guarantees. Protocols interact with chan-

nels using simple primitives (openConnection, sendMessage,

closeConnection), and receive events from channels when-

ever something relevant happens. These events are channel-

specific and are handled by protocols just like any other type of

event (i.e., by registering a callback for each relevant channel

event).

For instance, the framework provides a simple TCPChannel

which allows protocols to establish and accept TCP connec-

tions to/from other processes. This channel generates events

whenever an outgoing connection is established, fails to be

established, or is disconnected, and also whenever an incoming

connection is established or disconnected. Other examples of

provided channels include a channel with explicit and auto-

matic acknowledgement messages, a channel that creates one

connection for each protocol running in different processes,

and a ServerChannel that does not establish connections,

only accepts them, and its corresponding counter-part, the

ClientChannel. We also provide a TCP-based channel that

implements the ϕ-accrual failure detector [25], which notifies

protocols that registered a callback whenever another process

is suspected.

The framework also allows developers to design their own

channels if they need to enforce some specific behavior or

guarantee at the network level for a protocol to function

correctly. Network channels are implemented using Netty [26],

which is a popular Java networking framework. However, the

typical developer of Babel does not have to interact with Netty

directly.

A protocol can use any number of channels, and a channel

can be shared by more than one protocol. In the example of

Figure 1, two channels were instantiated by Babel. Channels

within a Babel process are instantiated on demand by the

Babel core when protocols are instantiated. Upon protocol

instantiation, protocols define the channels they will be using,

instructing the Babel core to prepare and instantiate the

necessary network channels.

A. API

Babel is provided as a Java library. Protocols in Babel are

developed by extending an abstract class - GenericProtocol.

This class contains all the required methods to generate events

and register the callbacks to process received events. Each

protocol is identified by a unique identifier, used to allow other

protocols to interact with it. There is also a special init event

that protocols must implement, which is usually employed to

define a starting point for the operation of the protocol (e.g.,

communicate with some contact node already in the system

or setup a timer event).

The API can be divided in three categories: timers, inter-

protocol communication (within the same process), and net-

working. Tables I and II list, respectively, the API for active

operations (i.e. operations that generate events) and reactive

operations (i.e. operations that define how to handle events).

1) Timers: Timers are essential to capture common be-

haviors of distributed protocols. They allow the execution of

periodic actions (e.g., periodically exchange information with

a peer), or to conduct some action a single time in the future

(e.g., define a timeout).

In Babel, using timers can be achieved as follows. First,

the developer needs to create a Java class that represents

a timer, with a unique type identifier and extending the

generic ProtoTimer class. Additionally, a timer might have

any number of fields or logic as the developer needs. Listing 1

shows an example of the usage of timers in a protocol,

with a timer that contains a counter that can be decremented

(lines 1-11). To use the timer in a protocol, a callback method

must be defined to be executed once the timer expires. This

method must receive as parameters the timer object and its

instance id, which is generated upon setting up the timer

(lines 21-23). This callback is registered by calling the method

registerTimerHandler, which takes as arguments the unique

type identifier of the timer, and the callback itself (line 18).
After registering the handler, any number of single-time or

periodic timers can be setup using the methods setupTimer

or setupPeriodicTimer, respectively. These methods take as

parameters an instance of the timer object, and the delay to

trigger the timer (in milliseconds). The periodic timer also

receives a third parameter: the periodicity after the first timeout

(line 19). Cancelling timers is also possible – for this, we

simply call the method cancelTimer with the identifier of a

previously setup timer as parameter. This identifier is obtained

from the return value of the methods used to setup the timer

or from the second parameter of the callback (line 22).

Listing 1: Timer Example

1 public class CounterTimer extends ProtoTimer {

2 public static final short TIMER_ID = 101;

3 int counter;

4 public CounterTimer(int initialValue) {

5 super(TIMER_ID);

6 counter = initialValue;

7 }

8 public int decCounter () {

9 return --counter;

10 }

11 }

12 public class CountdownProtocol extends GenericProtocol {

149

TABLE I: Babel Protocol Active API

API Description

Timers
setupTimer Prepares a Timer event to be triggered after the defined time.
setupPeriodicTimer Prepares a Timer event to be triggered periodically with a defined interval.
cancelTimer Cancels a Timer event.

Inter-protocol
sendRequest Sends a Request event to a specified protocol.
sendReply Sends a Reply event to a specified protocol.
triggerNotification Triggers a Notification event.

Network

createChannel Creates a network channel.
openConnection Opens a connection on a network channel to the given destination.
closeConnection Closes a connection on a network channel to the given destination.
sendMessage Send a Message event on a network channel to the given destination.

TABLE II: Babel protocol reactive API

API Description

Timers registerTimerHandler Registers the callback to use when a specific Timer event is triggered.

Inter-protocol

registerRequestHandler Registers the callback to handle a given Request event.
registerReplyHandle Registers the callback to handle a given Reply event.
subscribeNotification Subscribes to a given Notification event and registers the callback to handle it.
unsubscribeNotification Cancels a Notification subscription.

Network
registerMessageHandler Registers the callback to handle receiving a given Message event.
registerMessageSerializer Defines the serializer to use when encoding and decoding a given Message event.
registerChannelEventHandler Registers the callback to use when a receiving a given channel-specific event.

13 public CountdownProtocol () {

14 super("CountdownProtocol", 100);

15 }

16 @Override

17 public void init(Properties props) throws HandlerRegistrationException {

18 registerTimerHandler(CounterTimer.TIMER_ID , this:: handleCounterTimer);

19 setupPeriodicTimer(new CounterTimer (10), 1000, 300);

20 }

21 private void handleCounterTimer(CounterTimer timer , long timerId) {

22 if(timer.decCounter () == 0) cancelTimer(timerId);

23 }

24 }

2) Inter-protocol communication: Our framework supports

multiple protocols executing concurrently in the same process.

As such, we offer mechanisms for these protocols to interact

with each other, allowing them to cooperate or delegate

responsibilities. For instance, we could create a solution where

a message dissemination protocol takes advantage of a peer-

sampling protocol to obtain samples of the system’s filiation

[9], [11], [27]. Listing 2 depicts such an example.

To support this, Babel provides two types of communication

primitives: one-to-one requests/replies and one-to-many notifi-

cations. Similarly to timers, requests, replies, and notifications

need to extend a generic class (ProtoReply, ProtoRequest,

and ProtoNotification respectively) and have unique type

identifiers. They can also have any extra arbitrary state and/or

logic. Again, similarly to timers, we need to register a callback

for each type of communication primitive (as seen in lines 7, 8,
and 25). The callbacks all have the same parameters: the object

that was sent and the identifier of the protocol who sent it. In

order to send requests and replies, the methods sendRequest

and sendReply are used. These methods take as parameters

the Request or Reply to be sent and the destination protocol

(as seen in lines 9 and 28 where, in the latter, the protocol

replies to the sender of the request). For notifications however,

the method triggerNotification (line 31) does not require

a destination, instead, every protocol that subscribed to that

type of notification receives it (as exemplified in line 7).

Listing 2: Inter-protocol Communication Example
1 public class DisseminationProtocol extends GenericProtocol {

2 public DisseminationProtocol () {

3 super("DisseminationProto", 200);

4 }

5 @Override

6 public void init(Properties props) throws HandlerRegistrationException {

7 subscribeNotification(MembershipChangeNot.ID, this:: onMembershipChange);

8 registerReplyHandler(MembershipReply.ID, this:: onMembershipReply);

9 sendRequest(new MembershipRequest (), MembershipProtocol.PROTOCOL_ID);

10 }

11 private void onMembershipChange(MembershipChangeNot not , short emitter) {

12 updateMembership(not.getChanges ());

13 }

14 private void onMembershipReply(MembershipReply reply , short from) {

15 setMembership(reply.getNodes ());

16 }

17 }

18 public class MembershipProto extends GenericProtocol {

19 public static final short PROTOCOL_ID = 300

20 public MembershipProto () {

21 super("MembershipProto", PROTOCOL_ID);

22 }

23 @Override

24 public void init(Properties props) throws HandlerRegistrationException {

25 registerRequestHandler(MembershipRequest.ID, this:: onMembershipRequest);

26 }

27 private void onMembershipRequest(MembershipRequest request , short from) {

28 sendReply(new MembershipReply(currentMembership), sourceProto);

29 }

30 private void onConnectionEstablished(Peer peer){

31 triggerNotification(new MembershipChangeNot(peer));

32 }

33 }

3) Networking: Naturally, as a framework for distributed

protocols, Babel also provides abstractions to deal with net-

working (including management of connections). For this, we

provide different network channels with different capabilities.

The interaction of protocols with channels is (mostly) similar

across different channels. Listing 3 presents an example of a

protocol that sends a ping message to a random peer, waits

150

to receive a pong response message, and then chooses a new

random peer to repeat the same behavior endlessly.
To use a channel, we start by setting up the properties

for that channel. In the case of the TCPChannel, shown in

the example, the required properties are the binding address

and port for the listen socket (lines 9 to 11); other channels

can consider different properties (e.g., a server channel that

takes as property the maximum number of simultaneous client

connections). Next, we create the channel by calling the

method createChannel, passing the name of the channel

and the properties object (line 12), and receiving an identifier

representing the created channel. This identifier is useful if a

protocol uses multiple channels simultaneously, to be able to

select which channel to use to send a specific message, and

to register different callbacks for different channels. Similarly

to timers and requests/replies, we also need to create a class

for each network message to be sent through a channel.

Besides extending a generic class, and having a unique type

identifier, the developer must also define a serializer for each

message to enable the message to be encoded and decoded

into network buffers. In lines 49-59 we show an example of

a serializer for a message that only contains a single field.

The serializer could be any function that converts Java objects

to/from byte arrays, so one could use a JSON library or

Java’s own serializer (that however, would incur in additional

overhead). We register the serializer for each message in

a channel (since we could use different serializers for the

same message across different channels) by using the method

registerMessageSerializer (lines 13-14). We also need

to register the callback for when a message is received, by

using the method registerMessageHandler (lines 15-16).
Note that different callbacks for the same message across

different channels are supported. The callbacks to handle

received messages take as arguments the message itself, the

sender’s IP address and port, the sender’s protocol identifier,

and the channel from which the message was received (as

shown in lines 22 and 25).

Listing 3: Networking Example
1 public class PingPongProto extends GenericProtocol {

2 List <Host > peers;

3 public PingPongProto () {

4 super("PingPong", 400);

5 }

6 @Override

7 public void init(Properties props) throws HandlerRegistrationException {

8 peers = readPeersFromProperties(props);

9 Properties channProps = new Properties ();

10 channProps.setProperty(TCPChannel.ADDRESS_KEY , props.getProperty("addr"));

11 channProps.setProperty(TCPChannel.PORT_KEY , props.getProperty("port"));

12 int cId = createChannel(TCPChannel.NAME , channProps);

13 registerMessageSerializer(cId , PingMsg.ID , PingMsg.serializer);

14 registerMessageSerializer(cId , PongMsg.ID , PongMsg.serializer);

15 registerMessageHandler(cId , PingMsg.ID, this:: uponPing);

16 registerMessageHandler(cId , PongMsg.ID, this:: uponPong);

17 registerChannelEventHandler(cId , OutConnectionDown.EVENT_ID ,

this:: uponOutConnnDown);

18 registerChannelEventHandler(cId , OutConnectionFailed.EVENT_ID ,

this:: uponOutConnFailed);

19 registerChannelEventHandler(cId , OutConnectionUp.EVENT_ID ,

this:: uponOutConnUp);

20 openConnection(chooseRandomPeer(peers));

21 }

22 private void uponPing(PingMsg msg ,Host from ,short sourceProto ,int cId) {

23 sendMessage(new PongMsg(msg.getValue ()), from , TCPChannel.CONNECTION_IN);

24 }

25 private void uponPong(PongMsg msg ,Host from ,short sourceProto ,int cId) {

26 closeConnection(from);

27 openConnection(chooseRandomPeer(peers));

28 }

29 private void uponOutConnUp(OutConnectionUp ev , int cId) {

30 sendMessage(new PingMsg(System.currentTimeInMillis ()), ev.getPeer ());

31 }

32 private void uponOutConnFailed(OutConnectionFailed <ProtoMessage > ev, int cId) {

33 openConnection(chooseRandomPeer(peers));

34 }

35 private void uponOutConnDown(OutConnectionDown ev , int channelId) {

36 openConnection(chooseRandomPeer(peers));

37 }

38 }

39 public class PingMsg extends ProtoMessage {

40 public final static short MSG_ID = 401;

41 private final long timestamp;

42 public PingMsg(long timestamp) {

43 super(MSG_ID);

44 this.timestamp = timestamp;

45 }

46 public int getTimestamp () {

47 return timestamp;

48 }

49 public static ISerializer <PingMsg > serializer = new ISerializer <>() {

50 @Override

51 public void serialize(PingMsg msg , ByteBuf out) throws IOException {

52 out.writeLong(msg.timestamp);

53 }

54 @Override

55 public PingMsg deserialize(ByteBuf in) throws IOException {

56 long timestamp = in.readLong ();

57 return new PingMsg(timestamp);

58 }

59 };

60 }

A message can be sent using the sendMessage method,

which takes as arguments the message to be sent, the destina-

tion address/port, the channel identifier (if more than one chan-

nel is being used) and optionally, the destination protocol. An

additional parameter representing the connection to use can be

passed. The interpretation of this parameter is however, chan-

nel dependent. Finally, each channel is responsible for generat-

ing notifications for relevant events that occur in it, for which

the protocol can register callbacks. In the given example, the

events generated by the TCPChannel (described before) are

registered using the method registerChannelEventHandler

(as seen in lines 17-19).

IV. EVALUATION

Our evaluation is based on two case studies of popular

distributed applications. Our first case study is a simple peer-

to-peer (P2P) application that disseminates messages to the

network by leveraging two protocols, the HyParView [9]

membership protocol that builds an unstructured overlay and

provides nodes with stable neighboring nodes; and a Flood

Dissemination protocol that disseminates a message to all

neighboring nodes. Our second case study is a simple state

machine replication (SMR) application, that leverages a Mul-

tiPaxos [18] consensus protocol to order the operations of an

in-memory key-value store. The code for both case studies is

available at https://github.com/pedroAkos/babel-case-studies.

Our evaluation is divided in three parts. In Section IV-A

we provide implementation details over the protocols (imple-

mented with Babel) for each case study. In Section IV-B,

we perform a code review of publicly available MultiPaxos

protocols and provide a comparison with our MultiPaxos im-

plementation with Babel. Finally, in Section IV-C we present

a performance evaluation on both case study applications.

151

A. Implementation Details
In this section we provide some implementation details over

the protocols implemented with Babel for each case study.

Each case study was implemented by a single PhD student

familiarized with the protocols, and took about a work day to

implement, analyze, and perform simple experiments to verify

their operation and functionality.
a) P2P Application: The P2P application leverages two

protocols (HyParView and a Flood Dissemination) that interact

with each other through the inter-protocol communication

mechanisms of Babel. In more detail, the Flood protocol reg-

isters interest in neighbor up and neighbor down notifications

that are produced by the HyParView protocol whenever it

connects to a new neighboring node, or disconnects from a

neighboring node, respectively.
The HyParView protocol is implemented with 359 lines of

Java code. This includes 15 event handlers, of which, 8 are

network message handlers, one for each message processed by

the protocol; 2 are timer handlers, one for a periodic action,

and another for a timeout action; and 5 are channel event

handlers, to the TCPChannel events. The events that support

the operation of the protocol are implement with 361 lines

of code, of which the majority (306) is dedicated to message

events. Furthermore, a data structure implemented with 108
lines of code maintains the state of the protocol. In total, our

implementation has 828 lines of code.
The Flood dissemination protocol is implemented with 74

lines of code. This includes 5 event handlers, of which 1 is a

message handler that processes the broadcasted messages; 1 is

a request handler that processes the request of the application

to broadcast a message; and 2 are notification handlers that

process the notifications triggered by HyParView. The protocol

has 3 events that support its operation (a BroadcastMessage,

a BroadcastRequest, and a DeliveryReply) that are imple-

mented with 91 lines of code. We have also implemented a

utility class that produces numeric hashes of the contents of the

broadcasted messages to serve as unique message identifiers.
b) SMR Application: The SMR application is an in-

memory key-value store that submits (client issued) operations

to a consensus protocol for ordering. The consensus protocol

exposes a notification that notifies the application of the

execution order of operations. We have implemented two

variants of MultiPaxos: a classic MultiPaxos variant where the

acceptors inform all learners of their accepted values, and; a

distinguished learner MultiPaxos variant, where the acceptors

inform the leader (i.e., current proposer) of the accepted value,

who then informs all learners.
The classic MultiPaxos is implemented with 235 lines of

code, this includes the implementation of the proposer, accep-

tor, and learner components of the protocol. The protocol has

13 event handlers, where 4 are network message handlers, one

for each protocol message; 3 are timer handlers for handling

different timeout operations of the protocol (e.g., suspect the

leader is dead, try to reconnect to a peer, enforce leadership);

1 is a request handler that handles the interface with the

application(s); and finally, 5 are channel event handlers for

TABLE III: MultiPaxos Implementations Lines of Code

Implementation Component Java Lines of Code

Babel-MultiPaxos-Classic

Total 735
Main Protocol Logic 235
Events 250
Utils 250

Babel-MultiPaxos-DistLearner

Total 787
Main Protocol Logic 247
Events 290
Utils 250

MyPaxos

Total 1814
Main Protocol Logic 683
Messaging 306
Utils 487
Other 338

WPaxos

Total 22909
Main Protocol Logic 2283
Messaging 862 (+78 Protobuf)
Networking 1376
Support 536
Utils 497
Other 17891

handling the TCPChannel events. The events of the protocol

are implemented with 250 lines of code, where 163 lines of

code are for messages. Furthermore, we have implemented

some utility classes that help maintain the state of each

consensus instance and operation, which were implemented

with 250 lines of code. In total, our implementation has 735
lines of code.

The distinguished learner MultiPaxos is implemented with

247 lines of code. This implementation is very similar to the

previous, with one additional network message handler for the

message used to inform the learners of the accepted value.

B. Code Review

In this section we provide a code review of publicly avail-

able MultiPaxos Java implementations, along with a compar-

ison with our Babel MultiPaxos implementations. We chose

the two MultiPaxos Java implementations on GitHub with

the highest number of stars to perform this evaluation. The

implementations are MyPaxos [28] and WPaxos [29], which

had 131 and 130 stars at the time, respectively. In fact, these

two implementations provide an interesting comparison as

they, while implementing very similar MultiPaxos variants,

have key differences that highlight some of the benefits of

Babel. MyPaxos presents a very simple but naive implemen-

tation, while WPaxos presents a more complex and performant

implementation. Despite this, they share the following design

choices: i) the roles of proposer, acceptor, and learner are

logically split across different Java classes; ii) instances are

not executed concurrently (i.e., an instance only starts after

the previous one is decided); and iii) every node that receives

client operations competes to be the leader, meaning the

application needs to redirect all operations to a single node

to avoid poor performance and/or failed operations.

The only considerable design difference between the two

implementations is that MyPaxos uses the classic message flow

of MultiPaxos, while WPaxos uses the distinguished learner

variant. In the following, we detail implementation aspects

152

(a) Reliability of P2P application.

(b) Throughput of Multipaxos implementations.

Fig. 2: Performance evaluation results

that were found while reviewing the code of each solution.

Furthermore, Table III summarizes the number of lines of

code for each implementation, where it is noticeable that our

implementations have significant less lines of code.

a) MyPaxos: This implementation sacrifices perfor-

mance and optimizations in favor of a small, simple-to-

understand, and clear code structure. In short, in this imple-

mentation each node has three main threads, each correspond-

ing to one of the Paxos roles. These communicate by sending

messages (both to other nodes and to other roles within the

same process). The implementation uses a simple networking

library and relies on Java’s native object serialization to encode

messages before sending them.

One thing we noted in this implementation, is that learners

would periodically request learned values from other learners,

to know when an instance had been decided. However, this

heavily limited the rate at which operations were executed. As

such, we made a small modification to the protocol, making

learners eagerly broadcast their values as soon as they were

accepted. This modification was done with about 10 lines of

code without changing the implemented logic by the original

authors.

Additionally, we observed that this implementation was not

very robust when tested under heavy load. The first issue we

faced was a concurrency issue resulting in multiple threads

accessing the same data structure, in this case a HashMap,

which we solved by changing the data structure to the thread-

safe ConcurrentHashMap. The second issue, resulted from a

simplification made in the implementation that would spawn

a new thread for each Paxos instance that would monitor a

timeout. However, when executing the protocol under heavy

load for a long period of time, the JVM crashed due to being

unable to allocate memory for new threads. Babel aims at

shielding the developer from issues such as these. In fact, Ba-

bel avoids concurrency issues by having sequential execution

of events within a protocol, and its timer management allows

protocols to register timers without the overhead of creating

and managing extra threads.

In comparison with our Babel implementations, MyPaxos

while being relatively simple, still requires more lines of code

to implement than any of our Babel MultiPaxos implemen-

tations. This is mainly due to MyPaxos having to deal with

the execution support code (e.g., threading, messaging, timers)

that is handled by Babel.

b) WPaxos: This implementation is much more robust

and performant than MyPaxos. It uses a custom communica-

tion layer, leveraging on the Netty [26] network framework,

using TCP connections for large messages and UDP packets

for small messages. Moreover, it serializes messages using

Protocol Buffers [30]. While it also splits the Paxos roles

in different Java classes, it handles the interactions between

roles within the same process more efficiently than MyPaxos,

by using direct method invocation instead of sending network

messages. We were able to deploy and test this implementation

without requiring any modification.

In comparison with our Babel implementations, it is clear

that the use of Babel can greatly reduce the effort of pro-

grammers in creating working prototypes of distributed ap-

plications. While a considerable number of lines deal with

features not implemented in our prototypes (mostly the 16275
lines of Other reported in Table III) such as persistency, there

is still a substantial difference in the number of lines for the

main protocol logic. This difference comes mostly from the

logic dedicated to creating and handling timers, multiplexing

received messages and triggered timers, as well as making

sure received messages are handled sequentially. We note that

using Babel all of these aspects do not have to be handled by

the developer.

C. Performance Evaluation

In this section we describe our performance evaluation using

the two case study applications. Our goal was, on the one hand

to verify the correctness of our implementations and how they

behave under faults (P2P application), and on the other hand

to provide insights about the relative performance of these

implementations when compared with standalone ones (SMR

153

application). In the following we describe the experimental

setup and discuss the performance results for each case study.

a) P2P Application: Our experiments with the P2P ap-

plication showcase a typical P2P evaluation with a network

with a considerable number of nodes. In our experiments we

measure the average reliability of message delivery in four

different scenarios: i) a fault-free scenario; and fault scenarios

where different fractions of nodes fail simultaneously ii) 10%
faults; iii) 25% faults; and iv) 50% faults.

To execute our experiments we execute 100 docker contain-

ers distributed evenly across 4 identical servers with an AMD

EPYC 7281 CPU and 128GiB of memory. Each container

executes an instance of the application. We have applied

latency among the containers with the Linux tc tool, based on

a network generated with inet [31], having a mean latency of

293.39 milliseconds, to have a more realistic scenario. Each

experiment runs for 12 minutes. Nodes start disseminating

messages with a ratio of one message per second after two

minutes since the start of the experiment until they have

broadcasted a total of 500 messages. Faults are introduced at

the middle of the experiment. Each experiment was executed

three times. Results show the average of all runs for each

experiment.

Figure 2a presents the results of all scenarios, with a

vertical red line indicating the point of the experiments where

faults were introduced. The x axis represents the time of the

experiment when messages were being disseminated. The y

axis represents the average reliability of message delivery.

After the introduction of faults in the experiment, the average

reliability drops marginally (up to 1%), this is because the

overlay maintained by HyParView is very stable and maintains

(high) connectivity. Nevertheless, there are a very few nodes

that become temporarily disconnected and may not receive

messages until they reconnect. The highest reliability drop in

our experiment is when we fail 50% of the nodes in the net-

work. This is to be expected as a lot of connections disappear.

However, the HyParView protocol is resilient (reliability does

not fall bellow 98%) to these faults as described by the authors.

b) SMR Application: Our experiments with the SMR

application present an experimental comparison of different

MultiPaxos implementations. In more detail, we compare our

MultiPaxos implementations with the public ones described

previously. To make comparisons fair, we adapted our key-

value store application to work with MyPaxos and WPaxos.

Furthermore, we disabled batching from all solutions, disabled

the persistency in MyPaxos and configured WPaxos to perform

the persistency asynchronously.

These experiments are executed in 4 identical servers with

an Intel Xeon Gold 5220 CPU and 96GiB of memory, hosted

in the Grid5000 [32] platform. Three servers execute the

replicas of our application, while the last one executes the

client. The client executes the YSCB [33] benchmarking tool,

issuing operations in a closed loop to the key-value store

application (which then orders them using the one of the

studied MultiPaxos implementations) with a 50% read/write

ratio. We vary the number of client threads from 1 to 10,

with increments of 1. Each experiment executes 5 times for a

period of 90 seconds. We only consider data points from the

30 second mark to the 80 second mark to eliminate possible

instabilities at the start or the end of an experiment. Results

show the averages of each run for each implementation.

Figure 2b presents the average throughput (in the x axis)

against the average latency (in the y axis) of operations

for each implementation. We note that MyPaxos is the im-

plementation with the least throughput. This is most likely

due to the serialization used by the implementation which is

known to have non-negligible overhead. In contrast, Babel

MultiPaxos implementations show comparable performance

results with the significantly more complex WPaxos imple-

mentation, which is able to achieve higher throughput due

to the optimizations performed in the code albeit, at a much

higher development overhead. We note that we validated the

correctness of the solutions by inspecting the state of the

replicated in-memory key-value store for each solution.

D. Discussion

Our evaluation validates three key aspects of Babel.

• The first is Babel’s generality as a tool to provide

adequate support for implementating different classes of

distributed protocols (either individually or in the form

of a stack of protocols that interact with each others).

• The second key aspect relates to the correct/expected

behavior of implemented protocols, which is validated

by the first case-study, that displays results aligned with

those published in the original paper.

• Finally, the third key aspect is the performance of imple-

mented protocols. The performance of our Paxos imple-

mentation (second case-study), which was implemented

with relatively low effort with Babel and has close perfor-

mance to that of a highly optimized implementation of the

protocol, show that there are no obvious and significant

overhead sources from using the Babel framework.

V. CONCLUSION

In this paper we propose Babel, a Java framework to support

the quick prototyping of distributed algorithms, particularly

those that focus on fault-tolerance and dependability aspects

of distributed systems. This tool can be used by researchers,

practitioners, and teachers of distributed systems courses.

Babel provides a set of abstractions that allows the developer

to focus their efforts on implementing the algorithm logic,

following an API that is close to the typical presentations

either by descriptions or pseudo-code of such algorithms. Fur-

thermore, Babel shields the developer from dealing with low-

level networking aspects, as well as concurrency issues that

arise when implementing protocols in a naive way, as shown

in our comparison with public implementations of Paxos. We

illustrated the benefits of Babel through two different case

studies, and conducted a small experimental validation that

shows that implementations that benefit from Babel present

competitive performance when considering significantly more

complex stand-alone implementations.

154

As future work, we plan to continue enriching Babel with

novel network channels that can provide debugging tools that

inspect the state of executing protocols and systems. We also

plan on continuing to work on simpler and more powerful

abstractions and interfaces to simplify the development of Ba-

bel protocols, along with integrated logging tools to facilitate

debugging.

REFERENCES

[1] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996.

[2] M. Raynal, Fault-tolerant message-passing distributed systems: an al-
gorithmic approach. Springer, 2018.

[3] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable
and Secure Distributed Programming, 2nd ed. Springer Publishing
Company, Incorporated, 2011.

[4] E. Rivière, “Simplifying hands-on teaching of distributed algorithms
with splay,” in 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum, 2012, pp. 1311–1316.

[5] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, p. 133–169, May 1998. [Online]. Available:
https://doi.org/10.1145/279227.279229

[6] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[7] R. Van Renesse and D. Altinbuken, “Paxos made moderately complex,”
ACM Comput. Surv., vol. 47, no. 3, Feb. 2015. [Online]. Available:
https://doi.org/10.1145/2673577

[8] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE, 2014,
pp. 355–362.

[9] J. Leitão, J. Pereira, and L. Rodrigues, “Hyparview: A membership
protocol for reliable gossip-based broadcast,” in Proc. of DSN’07. IEEE,
2007.

[10] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” Journal of
Network and systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[11] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen, “Gossip-based peer sampling,” ACM Trans. Comput.
Syst., vol. 25, no. 3, p. 8–es, Aug. 2007. [Online]. Available:
https://doi.org/10.1145/1275517.1275520

[12] Y. Kermarrec and L. Pautet, “Ada reusable software components for
teaching distributed systems,” in Software Engineering Education, J. L.
Díaz-Herrera, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 77–96.

[13] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Computing.
IEEE, 2009, pp. 99–100.

[14] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
1st ed. Springer Publishing Company, Incorporated, 2010.

[15] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and Tools for Network Simulation. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 15–34.

[16] M. Gupta, Akka essentials. Packt Publishing Ltd, 2012.

[17] J. Armstrong, “erlang,” Communications of the ACM, vol. 53, no. 9, pp.
68–75, 2010.

[18] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[19] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol
kernel supporting multiple coordinated channels,” in Proc.of ICDCS’01,
4 2001, pp. 707–710.

[20] S. Mena, X. Cuvellier, C. Gregoire, and A. Schiper, “Appia vs. cactus:
comparing protocol composition frameworks,” in Proc. of SRDS’03, Oct
2003, pp. 189–198.

[21] P. Á. Costa, A. Rosa, and J. Leitão, “Enabling wireless ad
hoc edge systems with yggdrasil,” in Proceedings of the 35th
ACM/SIGAPP Symposium on Applied Computing (to appear), ser.
SAC ’20. New York, NY, USA: ACM, 2020. [Online]. Available:
https://doi.org/10.1145/3341105.3373908

[22] W. Abdou, N. O. Abdallah, and M. Mosbah, “Visidia: A java framework
for designing, simulating, and visualizing distributed algorithms,” in
2014 IEEE/ACM 18th International Symposium on Distributed Simu-
lation and Real Time Applications, 2014, pp. 43–46.

[23] W. Schreiner, “A java toolkit for teaching distributed algorithms,”
in Proceedings of the 7th Annual Conference on Innovation and
Technology in Computer Science Education, ser. ITiCSE ’02. New
York, NY, USA: Association for Computing Machinery, 2002, p.
111–115. [Online]. Available: https://doi.org/10.1145/544414.544449

[24] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni,
and M. Matos, “Kollaps: Decentralized and dynamic topology
emulation,” in Proceedings of the Fifteenth European Conference
on Computer Systems, ser. EuroSys ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387540

[25] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The /spl phi/
accrual failure detector,” in Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems, 2004., 2004, pp. 66–78.

[26] “Netty framework,” https://netty.io/.
[27] J. Leitão, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in

Proc. of SRDS’07. IEEE, 2007.
[28] “Mypaxos,” https://github.com/luohaha/MyPaxos.
[29] “Wpaxos,” https://github.com/wuba/WPaxos.
[30] “Protocol buffers,” https://developers.google.com/protocol-buffers.
[31] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,” Techni-

cal Report CSE-TR-456-02, University of Michigan, Tech. Rep., 2002.
[32] “Wpaxos,” https://www.grid5000.fr/.
[33] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

155

