
Generalizing Wireless Ad Hoc Routing for Future Edge Applications ∗

André Rosa Pedro Ákos Costa João Leitão
NOVA LINCS & DI/Nova School of Science and Technology, UNL,

Portugal
{af.rosa,pah.costa}@campus.fct.unl, jc.leitao@fct.unl.pt

Abstract

Wireless ad hoc networks are becoming increasingly relevant due to their suitability for Internet-of-Things (IoT)
applications. These networks are comprised of devices that communicate directly with each other through the wireless
medium. In applications deployed over a large area, each device is unable to directly contact all others, and thus
they must cooperate to achieve multi-hop communication. The essential service for this is Routing, which is crucial
for most applications and services in multi-hop ad hoc networks. Although many wireless routing protocols have
been proposed, no single protocol is deemed the most suitable for all scenarios. Therefore, it is crucial to identify
the key differences and similarities between protocols to better compare, combine, or dynamically elect which one to
use in different settings and conditions. However, identifying such key similarities and distinctions is challenging
due to highly heterogeneous specifications and assumptions. In this paper, we propose a conceptual framework for
specifying routing protocols for wireless ad hoc networks, which abstracts their common elements and that can be
parameterized to capture the behavior of particular instances of existing protocols. Furthermore, since many wireless
ad hoc routing protocols lack systematic experimental evaluation on real networks, we leverage an implementation
of our framework to conduct an experimental evaluation of several representative protocols using commodity devices.

1 Introduction

In recent times, we have been witnessing the emergence of the Internet-of-Things (IoT): ubiquitous networks
of interconnected everyday objects (e.g., vehicles, buildings, household appliances) capable of performing compu-
tations and exchanging data with other devices [1, 31]. A vast amount of IoT applications depends on Cloud
services, and their deployments rely on infrastructure-based wireless networks [41]. This architecture, however, is
becoming unsuitable for several IoT scenarios due to its inherent limitations. On the one hand, the ever-increasing
amounts of data produced and consumed by IoT devices are rendering the Cloud unable to collect, process, and
reply promptly as well as increasing the operational costs [11]. On the other hand, while infrastructure-based
wireless networks provide fairly reliable, high-speed, and high-bandwidth links, they also inhibit the flexibility of
applications since they constrain the mobility of devices and require attention to their deployment, configuration,
and relocation.

The demand to offload computations from the Cloud motivates a paradigm shift towards Edge Computing [25],
which exploits the computational capabilities of peripheral network devices that are located near end-users. In this
sense, wireless ad hoc networks, i.e., decentralized set of devices that communicate directly through the wireless
medium without relying on any pre-existent infrastructure, emerge as a more flexible and robust platform than
infrastructure-based wireless networks for materializing Edge Computing in the context of IoT. These networks
are suitable for situations with inadequate, inexistent, unavailable, or debilitated network infrastructures [1, 31],
such as: rescue/support on natural disasters; environmental monitoring; autonomous vehicles; and smart cities or
homes. As such, IoT has been inducing the contemporary reemergence of wireless ad hoc networks.

∗This work was partially supported by NOVA LINCS (FC&T grant UIDB/04516/2020) and NG-STORAGE (FC&T grant PTDC/CCI-INF/32038/2017). Fractions
of this report has been published in EAI Mobiquitous’21.

1

On these networks, the devices, also called nodes, are typically scattered through a wide area, being unable to
communicate directly with all the others, forming a multi-hop network. Consequently, they must cooperate, by
retransmitting messages on behalf of other nodes, so that communication can be achieved among all devices. This
essential service is named Routing, enabling point-to-point communication by message forwarding among nodes. A
plethora of routing protocols for wireless ad hoc networks have been already proposed over the years, exploring and
combining different techniques. Nonetheless, due to these networks’ highly dynamic and heterogeneous nature, no
single protocol is deemed the most suitable for all scenarios. Therefore, it is crucial to identify how the different
protocols relate to each other to better compare, combine, or dynamically select them. However, uncovering the
relations among them is rather challenging due to heterogeneous specifications and assumptions. This observation
motivated us to devise a framework for specifying routing protocols for these networks, which abstracts their
common elements while offering parameters to materialize particular instances.

In addition, the vast majority of routing protocols have only been evaluated through simulations [3,9,10], since
they provide an accessible, inexpensive, and controlled evaluation environment. Nonetheless, even the most detailed
simulations are unable to capture the particular characteristics of real wireless ad hoc environments [2,5], usually
employing inaccurate models, not considering hardware limitations of wireless interfaces, or ignoring external
sources of interference in the wireless medium. Although real testbeds have been employed in the past to evaluate
some protocols [20, 22], they generally resort to grid topologies with equidistant nodes and without external
interference, which is highly unrealistic; or consist of few nodes (less than 10), which are not enough to derive
significant conclusions. Therefore, leveraging an implementation of our routing framework, we conducted an
experimental evaluation of five representative routing protocols on a real wireless ad hoc network formed by
commodity devices.

The remainder of this paper is structured as follows: Section 2 analyzes routing in wireless ad hoc networks;
Section 3 delves into our framework; Section 4 presents the details of our experimental evaluation; Section 5 briefly
discusses the related work; and Section 6 concludes the paper with some final remarks.

2 Routing in Wireless Ad Hoc

A plethora of routing protocols has been proposed throughout the years, exploring different techniques to
increase the robustness and efficiency of network-wide communications. These protocols are categorized mainly
by their route provision strategy as proactive [6,7,27], reactive [18,29,40], or hybrid [16,28,30]. However, in this
paper, we make an effort to better characterize these protocols down to their fundamental operation, going beyond
the employed route provision strategy. In this sense, the operation of routing protocols can be divided into two
complementary parts, the route computation and the message forwarding.

2.1 Route Computation

Computing routes is the main concern of routing protocols and hence encompass a variety of essential com-
ponents, which include discover a node’s neighbors (i.e., nodes with whom the local node can directly exchange
messages), identify the cost of direct communication, apply distributed strategies to actually compute routes, and
disseminate information to inform other nodes of existing routes.

At the basis of any routing protocol is neighbor discovery, essential for computing routes as it provides each
node with information about the other nodes which can be directly reachable by itself. However, routing protocols
must ensure some Quality of Service (QoS), thus neighbor discovery must obtain properties of the wireless links
between neighboring nodes. One of such properties is the bidirectionality of communication [6,7], i.e., both nodes
can send and receive messages from each other, as it is often crucial to ensure two-way communication.

In addition, routing protocols require cost metrics to select the best routes, as in general there might be multiple
available routes from each node to each destination. The cost of a route is a function of its constituent link’s costs,
usually the sum [6]. However, other functions can be employed [27, 40]. These metrics can be in their simplest
form the number of hops towards the destination, or incorporate properties of the links, such as the link’s expected
number of transmissions to deliver a message (ETX) [19, 23], the link’s expected transmission time (ETT) [12],
the link’s stability [13, 27, 40], the congestion of the nodes [24], or the energy spent using the link [37]. In this
sense, routing protocols resort to a cost function that evaluates the local links and is used to qualify each route.

2

The process of actually computing routes requires the distributed cooperation of nodes and leverages each
node’s local neighborhood information. In this sense, there are three main computation strategies to distributively
construct routes: i) distance-vector [6, 17, 18, 29], where each node announces the cost of its best route towards
a given destination, allowing the other nodes to assign as next-hop the neighbor which provides the best route;
ii) link-state [7, 15, 39], where nodes gather, through collaborative dissemination, the complete, or a connected
sub-set, of the network topology, and locally compute the best routes to all reachable destinations; and iii) link-
reversal [14, 28, 30], where the nodes distributively construct a directed acyclic graph (DAG) over the network
topology for each destination, with each directed path in the DAG correspondig to a route to the destination. Note
that these high-level strategies can be further specialized to better fit specific routing protocols, which we discuss
in more detail in the next section. Since routes are computed in a distributed way, each node does not have to be
aware of the complete routes, only their next-hops. This information is typically encoded by the routing strategies
in a conceptual data structure, local to each node, called the routing table [7, 17]. In some protocols, these tables
may contain additional information [18] or even not be used at all [21].

Finally, routing protocols need to propagate control messages throughout the network to enable the computation
of routes through the use of some computation strategy. Across the literature, routing protocols employ several
dissemination strategies, even within the same protocol, which can be grouped into specific communication patterns
according to the nature and intended destinations of such messages into: network-wide [7, 27, 29] or limited-hop
broadcast [6, 16], to inform all or a sub-set of the nodes; bordercast [16], to inform a specific sub-set of the nodes;
or (network-wide) unicast [18, 29] to inform a single node.

2.2 Message Forwarding

Besides route computation, routing protocols are also responsible for leveraging the computed routes to forward
applicational messages. To this end, routing protocols employ different forwarding strategies that provide different
trade-offs across reliability and communication overhead.

The simplest strategy is to forward to the next-hop contained in the routing table. However, other strategies can
be found in the literature. For instance, multipath protocols [26] leverage several routes to the same destination
to increase the chances of delivering messages. Alternatively, opportunistic protocols [4, 35] employ coordination
mechanisms to dynamically elect, from a set of candidate next-hops, the one which will proceed with the forwarding
of each message. As another option, geographic protocols [21,32] use the nodes’ coordinates to base their forwarding
decisions. Furthermore, source routing protocols [18] do not require each route’s intermediary nodes to maintain
information regarding the route. Instead, the nodes which originate messages maintain the complete routes, which
are then carried within the messages to allow the intermediary nodes to retrive their next-hop to whom they will
forward it. Finally, some protocols [6, 29, 40] rely on the explicit or implicit acknowledgment and retransmission
of messages to increase the reliability of their forwarding strategies.

3 Routing Framework for Wireless Ad Hoc Networks

In this section, we present our conceptual routing framework, which captures a broad spectrum of existing
routing protocols for wireless ad hoc networks. The framework’s design follows directly from the observations
made in Section 2. In the following, we present an overview of the workflow of events in a generic routing protocol,
which lies at the core of our framework. In addition, we also present the notation used to specify routing protocols
using our framework and illustrate this using a representative set of existing routing protocols.

3.1 Overview

Figure 1 illustrates the execution flow captured by our framework, which is divided into two parts: the con-
trol plane, responsible for computing routes, and the forwarding plane, responsible for forwarding applicational
messages.

3.1.1 Control Plane

The control plane is responsible for processing internal events to manage the routing strategy. There are three
main entry points in this plane: a neighborhood update, that is processed by the cost function; the set off of

3

Receive(p,o,d,mid,ttl,m)

new ?

yes

no Discard

I’m
d ?

yes Deliver

no

Forwarding
Strategy

f

f ?
yes

no

Receive(p,mid,mx,m)

Dissemination
Strategy

Cost
Function

Announce
Period

Routing
Table

Neighbors
Table

query

End

update

m’

Neighborhood
Update

Announce
Timer

query

Forwarding Plane Control Plane

Send(p,d,ttl,m)

Compute mid

ttl
> 0 ?

yes

no End

dec ttl

route not found

Routing
Strategy

Figure 1: Routing Framework Execution Flow.

an announce timer, that is processed by the announce period; and the reception of a control message, that is
directly processed by the routing strategy.

Neighborhood updates are assumed to be provided by an external discovery protocol that is outside the scope of
this paper. However, a neighborhood update must encode either the discovery, suspicion of failure, or an update to
the state of a communication link with a neighboring node. This update is processed by the cost function, which
assigns a cost metric to that neighbor. Next, the framework updates its internal neighborhood table containing
essential information for each neighbor, such as the link cost and bidirectionality and the neighbor’s address, which
is leveraged by the routing strategy to compute routes.

The announce timer is a periodic timer that informs the routing strategy to disseminate a new control message,
and is employed by protocols following a proactive or hybrid routing strategy. When the announce timer is triggered,
it is first processed by the announce period which is responsible to reset it. This enables the usage of dynamic
periods for announcements [33].

The reception of a control message is immediately processed by the routing strategy. A control message is
composed of four parts: (p, mid, mx, m), respectively, the identifier of the node that generated the control message,
the message’s unique identifier, metadata obtained from the message’s propagation and which is associated with a
specific dissemination strategy, and the message payload that encodes data specific to the routing strategy.

These three events flow into the main component of the control plane: the routing strategy. The routing
strategy evaluates these events, which may lead into an update on the routing table and/or the dissemination of a
new control message. On either case, the routing strategy may query the framework’s internal neighborhood table
to obtain cost metrics and bidirectionality information to compute or update a new or existing route. Finally, in
the case a new control message is to be disseminated, the framework delivers the message to the dissemination
strategy that is responsible to send it to all intended destinations.

4

3.1.2 Forwarding Plane

The forwarding plane is responsible for handling the flow of applicational messages and applying a forwarding
strategy, which can be triggered by two events: a request to send a message to an arbitrary destination, or the
reception of a forwarded message from a neighboring node.

To request the forwarding of a message, the application must provide the following parameters: (p, d, ttl,
m), respectively, the local node’s identifier, the identifier of the destination node, a time-to-live, and the message
payload. Upon receiving such request, the framework first generates a message identifier (mid) to uniquely identify
the message in the network. Then, the message enters the flow of received messages in the forwarding plane.

Upon the reception of a message, the framework verifies if the message was already processed, discarding it if
so. Next, if the destination of the message is the local node, it is delivered to the application, continuing otherwise
to the next processing stage, where the ttl is decremented and verified. If the ttl has expired, the forwarding of
the message ends, otherwise the message is delegated to the forwarding strategy which will obtain the next-hop,
potentially consulting the framework’s routing table, and send the message to it. If no next-hop was found or the
message could not be successfully forwarded, the routing strategy in the control plane is notified, possibly requesting
the dissemination of a new control message, such as a route request in reactive protocols [18, 29]. Otherwise, the
workflow for that message ends.

3.2 Framework Parameters

Our framework represents a generic (or meta) routing protocol that can be parameterized to express a multitude
of different protocols with different properties and strategies. To specify a routing protocol in our framework, one
only has to define five parameters: (FS, AP, CF, RS, DS), where FS is the forwarding strategy, AP is the
announce period, CF the cost function, RS the routing strategy, and DS is the dissemination strategy. In the
following we discuss some alternatives of possible values for these parameters, being that they can also assume a
value of ⊥ to encode not employing a specific parameter.

Forwarding Stategies are responsible for selecting the next-hop, and forwarding to it, any applicational
message. These strategies can be Simple, where it simply retrieves the first next-hop contained in the routing table;
Multipath, where instead multiple next-hops are retrieved from the routing table and one is selected according to
some criteria; Source, where the complete route is retrieved and piggybacked in the message, allowing intermediary
nodes to become aware of their next-hops; Acked(s), that extends a strategy s with explicit acknowledgments
and retransmissions of forwarded messages; Opportunistic, where the next-hop is dynamically selected; and
Geographic where the next-hop is chosen as the neighbor geographically closer to the destination.

Announce Period is a natural number t that represents the interval between periodic announcements of control
messages. This value can be the result of a function when the protocol employs dynamic periods.

Cost Functions assign cost metrics to links to qualify the routes, and include: HOPS, which is always 1 so
that the routes’ cost is their number of hops; ETX, which estimates the expected number of retransmissions for a
successful forwarding; ETT, which estimates the expected time for a successful forwarding; AGE, where the time
elapsed since the neighbor was detected is used to estimate the cost, with older neighbors representing better links
(i.e., more stable); DIST, which uses the geographic distance between the local node and the neighbor, with higher
costs representing better links (i.e., closer to the destination); and MCX, where the number of control messages
received from different sources and neighbors is considered, with higher counts representing better links.

Routing Strategies are responsible for computing routes, and include: LinkState, that periodically dissem-
inates a small sub-set of the known topology, allowing all nodes to gather the global topology which is used to
locally compute routes to all reachable destinations. MultiDistVec, which disseminates a portion of the local
routing table containing all known destinations and associated costs, allowing each node to select the best routes to
each destination. SingleDistVec(m), which disseminates the local node’s identify across the network, with the
m parameter controling if this dissemination is proactive (pro) or reactive (re), and uses information regarding the
path taken by the control messages to calculate routes to the origin node. LinkReversal(m), that distributively
constructs a DAG directed to the local node, with the m parameter encoding if the DAG’s construction is triggered
proactively (pro) or reactively (re). And Zone(i, o, r), where a proactive routing strategy i is employed within
routing zones with a limited scope of r hops, and a reactive strategy o is employed to compute routes towards
nodes outside of these zones.

5

Label Ref FS AP CF RS DS
OLSR [7] Simple 5 ETX LinkState Bcast(∞)
FSR [15] Simple 5 ETX LinkState Bcast(1)
BABEL [6] Simple 5 ETX MultiDistVec Bcast(1)∪Bcast(∞)
BATMAN [27] Simple 5 MCX SingleDistVec(pro) Bcast(∞)
JOKER [35] Opportunistic 5 MCX SingleDistVec(pro) Bcast(∞)
AODV [29] Simple ⊥ ETX SingleDistVec(re) Bcast(∞)∪Ucast
DSR [18] Source ⊥ ETX SingleDistVec(re) Bcast(∞)∪Ucast
ABR [40] Simple ⊥ AGE SingleDistVec(re) Bcast(∞)∪Ucast
ZRP [16] Simple 5 ETX Zone(i, o, r) Bcast(r)∪Bordercast∪Ucast
TORA [28] Simple ⊥ ⊥ LinkReversal(m) Bcast(∞)∪Bcast(1)
GPSR [21] Geographic ⊥ DIST ⊥ ⊥

Table 1: Specification of Routing Protocols.

Dissemination Strategies are responsible for disseminating control messages to their intended destinations.
These can be: Bcast(h), where control messages are broadcast throughout the entire network if h is ∞, or up to
limited number of hops h, otherwise. Bordercast, where messages are disseminated to the nodes at the border
of routing zones. And Ucast, where messages are sent to a single destination, leveraging previously discovered
routes.

With these parameters, we can define a large number of protocols found in the literature. Table 1 contains an
illustrative set of examples. The values of the AP column are in seconds. In the next section, we present our
experimental evaluation resorting to some of these protocols.

4 Experimental Evaluation

In this section, we present our evaluation work resorting to an experimental assessment of representative routing
protocols found in the literature, and implemented using a prototype of our proposed framework, that follows the
execution flow previously presented in Figure 1. In the following we detail our experimental setting, followed by
the presentation of the experimental results.

4.1 Experimental Setting

The framework, all its modules, and the companion discovery and broadcast protocols were implemented in the C
programming language resorting to the Yggdrasil framework [8]. Our framework operates over WiFi (802.11b/g/n
standard at 2.4 GHz), without any MAC or PHY changes. We selected the five most well-known representative
routing protocols to evaluate: OLSR, BABEL, BATMAN, AODV, and DSR, which were configured as indicated
in Table 1. The first three protocols are proactive, employing different routing strategies, and the other two are
reactive, employing distinct forwarding strategies. Due to lack of space, we omit further descriptions of these
protocols. The interval of the periodic announcements of the companion discovery protocol were configured with
a value of 5 seconds, to minimize the contention and collisions in the wireless medium.

The experimental evaluation was conducted in a wireless ad hoc network composed of 17 Raspberry Pi 3 - model
B, that were dispersed through the rooms and hallways (with approximately 30 meters) of our department building
across two floors, as schematically illustrated in Figure 2.

Each node executed one of the routing protocols, a companion discovery protocol, a companion broadcast
protocol, and a simple ping application for a period of 10 minutes, including grace periods of 2 minutes at the
beginning and end. The ping application, at every second, requests to the routing protocol to send a message to a
randomly selected destination (other than the local node), which upon the reception replies with the same message
to the source node. This behavior allows to evaluate the selected routes in both directions.

For each routing protocol, we measured its reliability, as the ratio of messages that were successfully received
back; its latency, as the average round-trip-time (RTT) of each message; and its communication overhead, as the

6

1st floor 2nd floor
1

2

5

6

7 8

10 11

3

12
13

4

16

15
14

9

4

17

Figure 2: Network Deployment.

total number of transmissions incurred by the dissemination of control messages by the routing protocol and all
companion protocols.

We evaluated each protocol in four scenarios: one without node faults and three with deterministic node faults
of the first two nodes, five nodes, and nine nodes from the sequence 3, 12, 7, 9, 11, 2, 5, 10, 14. In the experiments
with faults, these were introduced simultaneously at the middle point of the experiment (5 minutes). Furthermore,
the nodes configured to fail were never selected to be the destination of messages as to not affect reliability
measurements. Each experiment was executed three times, in a random order, and the results show the average
of all runs. Next, we present and discuss the experimental results.

4.2 Experimental Results

Figure 3 presents in each plot the results for the reliability, represented in the y axis, discriminated by node and
on average (the last set of columns) represented in the x axis. Overall, all protocols achieved a reliability above
85% in all scenarios, with the proactive protocols (OLSR, BABEL, and BATMAN) achieving higher reliability
than the reactive ones. This is explained by the nodes dropping requested messages while route computation is
being performed and routes being constantly broken and re-computed due to unstable neighbors, whose impact is
mitigated in proactive solutions since routes are continuously updated. BABEL was the protocol that achieved
higher reliability on average, in all scenarios. The reason for this behavior is that, among the proactive protocols,
BABEL was the one with the lowest overhead (discussed further ahead) and, as such, this lead to less interferences
in the wireless medium causing less message losses.

Among the reactive protocols, DSR achieved a slightly higher reliability than AODV in all scenarios. We
suspect this behavior was caused by unstable neighborhood relations that induced the routes to break, leading the
intermediary nodes in AODV to remove the routes from their routing tables. This instability impacted DSR less
since the full routes are carried within the messages.

We note that, as the number of failures increases so does the reliability of the protocols. This is due to the
fact that the resulting network after the faults had more stable paths, had less unstable redundant paths, and less
interference between the nodes. Furthermore, in the scenario with two faults (Figure 3b), we note that BATMAN
had significantly lower reliability when compared to the other scenarios. This was caused by the emergence of
a high number of short-lived routing loops. These loops emerge since BATMAN’s routing strategy has no loop
prevention mechanism and the combination of BATMAN’s cost function and dissemination strategy, allied with
unstable neighborhoods, cause the nodes to frequently change their selected next-hops.

Figure 4 presents in each plot the average latency in milliseconds (ms) in the y axis, across all nodes and on
average (the last set of columns), represented in the x axis. Overall, all protocols achieved a latency below 35
ms in all scenarios, with approximately the same average latency per scenario. The reason behind these results is
that all the protocols converged to the same routes being selected (with approximately 2.1 hops on average) since
almost all protocols used the same cost metric and the diversity of available routes to compute in our network
deployment was small. The exception was BATMAN, consistently being the protocol with the highest latency,

7

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avgR
e
l
i
a
b
i
l
i
t
y

(
%
)

Sender Node
OLSR BABEL BATMAN AODV DSR

(a) No Faults

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avgR
e
l
i
a
b
i
l
i
t
y

(
%
)

Sender Node
OLSR BABEL BATMAN AODV DSR

(b) Two Faults

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avgR
e
l
i
a
b
i
l
i
t
y

(
%
)

Sender Node
OLSR BABEL BATMAN AODV DSR

(c) Five Faults

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avgR
e
l
i
a
b
i
l
i
t
y

(
%
)

Sender Node
OLSR BABEL BATMAN AODV DSR

(d) Nine Faults

Figure 3: Reliability of Routing Protocols.

due to the formation of short-lived routing loops that were observed during the experiment across all scenarios.
Figure 5 presents in each plot the results of the total communication overhead, represented in the y axis, for

each protocol, represented in the x axis. The overhead is discriminated into three types: the discovery overhead,
as the number of transmissions incurred by the discovery protocol, the broadcast overhead, as the number of
transmissions incurred by the broadcast protocol, and the routing overhead, as the number of transmissions incurred
to disseminate control messages with unicast. We begin to note that, as the number of failures increases, the
overhead decreases as fewer nodes disseminate control messages. Overall, OLSR presented the highest overhead
since its routing strategy triggered the dissemination of unscheduled control messages whenever the selected sub-set
of the topology to disseminate (with broadcast) changed, which frequently happened due to unstable neighborhood
relations.

The reactive routing protocols, AODV and DSR, presented the lowest overhead across all scenarios. This is the
result of caching eavesdropped routes destined to other nodes which allows less route requests to be disseminated.

The BATMAN protocol has the second highest overhead, which is fundamentally caused by the constant
periodic broadcasting of a node’s identity. In addition, BATMAN’s neighbor discovery process is merged with the
dissemination of such control messages, allowing to have no additional discovery overhead.

5 Related Work

In this section, we discuss the related work on systematizing routing protocols for wireless ad hoc networks.
Throughout the literature, not many authors have attempted to performe such task. Nonetheless, a few exceptions
can be found.

The Independent Zone Routing (IZR) [34] framework enables the hybridization of proactive and reactive pro-

8

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg
L
a
t
e
n
c
y

(
m
s
)

Sender Node

OLSR BABEL BATMAN AODV DSR

(a) No Faults

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg

L
a
t
e
n
c
y

(
m
s
)

Sender Node

OLSR BABEL BATMAN AODV DSR

(b) Two Faults

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg

L
a
t
e
n
c
y

(
m
s
)

Sender Node

OLSR BABEL BATMAN AODV DSR

(c) Five Faults

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 avg

L
a
t
e
n
c
y

(
m
s
)

Sender Node

OLSR BABEL BATMAN AODV DSR

(d) Nine Faults

Figure 4: Average Latency of Routing Protocols.

tocols while allowing to dynamically adapt the amount of proactive and reactive behavior. However, although IZR
allows combining practically any proactive and reactive solutions, it considers them as “black boxes” and does not
attempt to decompose them into their fundamental constituents to properly analyze each routing solution, as we
do in this paper.

The Relay Node Set (RNS) [38] in contrast, is an analytical framework for comparing the communication
overhead of routing protocols. RNS views each protocol as a handler of sets of nodes that retransmit control
messages, being that each protocol may manage more than one of these sets at a time. In this sense, this framework
dissects each protocol from an evaluation standpoint and not according to their internal operation, as our framework
does.

Finally, the Multi-Mode Routing Protocol (MMRP) [36] framework independently selects the most suitable
protocol for a given region of the network according to its local characteristics, allowing the coexistence of multiple
protocols within the same network (called multi-mode routing). However, MMRP is not flexible enough to specify
the majority of the existing protocols since it heavily relies on a single and specific architectural pattern, only
suitable for a restricted set of solutions, unlike our framework which is much more generic.

6 Final Remarks

In this paper, we presented a conceptual framework to specify routing protocols for wireless ad hoc networks
that abstracts the protocols’ common aspects, a task that is not trivial due to their nature, and exposes parameters

9

0K
5K
10K
15K
20K
25K
30K
35K
40K
45K
50K
55K
60K
65K

OLSR BABEL BATMAN AODV DSR

C
o
m
m
u
n
i
c
a
t
i
o
n

O
v
e
r
h
e
a
d

Discovery Broadcast Routing

(a) No Faults

0K
5K
10K
15K
20K
25K
30K
35K
40K
45K
50K
55K
60K
65K

OLSR BABEL BATMAN AODV DSR

C
o
m
m
u
n
i
c
a
t
i
o
n

O
v
e
r
h
e
a
d

Discovery Broadcast Routing

(b) Two Faults

0K
5K
10K
15K
20K
25K
30K
35K
40K
45K
50K
55K
60K
65K

OLSR BABEL BATMAN AODV DSR

C
o
m
m
u
n
i
c
a
t
i
o
n

O
v
e
r
h
e
a
d

Discovery Broadcast Routing

(c) Five Faults

0K
5K
10K
15K
20K
25K
30K
35K
40K
45K
50K
55K
60K
65K

OLSR BABEL BATMAN AODV DSR

C
o
m
m
u
n
i
c
a
t
i
o
n

O
v
e
r
h
e
a
d

Discovery Broadcast Routing

(d) Nine Faults

Figure 5: Total Communication Overhead per Routing Protocol.

that capture the behavior of particular solutions. Leveraging a prototype of our framework, we implemented a
representative set of existing routing protocols and evaluted their performance in a real wireless ad hoc network
formed by commodity devices. The results showed interesting observations that have not been explored and
discussed before in the context of routing protocols in wireless ad hoc networks. BATMAN, which is considered
in the literature as one of the best protocols, was not only never the best regarding the reliability in any scenario
but also was the worst regarding the latency in all scenarios. Furthermore, reactive protocols presented similar
reliability to proactive ones despite the unstable neighborhoods and node faults, due to the usage of route caching,
while having much lower overhead. However, these results cannot be extrapolated to other topologies, and more
exhaustive evaluations should be carried out.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE communications surveys & tutorials, 17(4):2347–2376, 2015.

[2] T. R. Andel and A. Yasinsac. On the credibility of manet simulations. Computer, 39(7):48–54, 2006.
[3] S. Baraković and J. Baraković. Comparative performance evaluation of mobile ad hoc routing protocols. In The 33rd

International Convention MIPRO, pages 518–523, 2010.
[4] A. Boukerche and A. Darehshoorzadeh. Opportunistic routing in wireless networks: Models, algorithms, and classifi-

cations. ACM Comput. Surv., 47(2), Nov. 2014.
[5] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of manet simulators. In Proceedings of the Second ACM

International Workshop on Principles of Mobile Computing, POMC ’02, pages 38–43. Association for Computing
Machinery, 2002.

[6] J. Chroboczek and D. Schinazi. The Babel Routing Protocol. Technical report, Jan. 2021.
[7] T. H. Clausen, C. Dearlove, P. Jacquet, and U. Herberg. The Optimized Link State Routing Protocol Version 2.

Technical report, Apr. 2014.
[8] P. A. Costa, A. Rosa, and J. a. Leitão. Enabling wireless ad hoc edge systems with yggdrasil. In Proceedings of the 35th

Annual ACM Symposium on Applied Computing, SAC ’20, pages 2129–2136, New York, NY, USA, 2020. Association
for Computing Machinery.

[9] S. R. Das, R. Castaneda, Jiangtao Yan, and R. Sengupta. Comparative performance evaluation of routing protocols
for mobile, ad hoc networks. In Proceedings 7th International Conference on Computer Communications and Networks
(Cat. No.98EX226), pages 153–161, 1998.

[10] S. R. Das, R. Castañeda, and J. Yan. Simulation-based performance evaluation of routing protocols for mobile ad hoc
networks. Mobile Networks and Applications, 5(3):179–189, Sept. 2000.

10

[11] T. Dillon, C. Wu, and E. Chang. Cloud computing: Issues and challenges. In 2010 24th IEEE International Conference
on Advanced Information Networking and Applications, pages 27–33, 2010.

[12] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th
Annual International Conference on Mobile Computing and Networking, MobiCom ’04, pages 114–128. Association for
Computing Machinery, 2004.

[13] R. Dube, C. D. Rais, Kuang-Yeh Wang, and S. K. Tripathi. Signal stability-based adaptive routing (ssa) for ad hoc
mobile networks. IEEE Personal Communications, 4(1):36–45, 1997.

[14] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free routes in networks with frequently changing
topology. IEEE Transactions on Communications, 29(1):11–18, 1981.

[15] M. Gerla. Fisheye State Routing Protocol (FSR) for Ad Hoc Networks. Internet-Draft draft-ietf-manet-fsr-03, Internet
Engineering Task Force, June 2002.

[16] Z. J. Haas. A new routing protocol for the reconfigurable wireless networks. In Proceedings of ICUPC 97 - 6th
International Conference on Universal Personal Communications, volume 2, pages 562–566 vol.2, Oct. 1997.

[17] G. He. Destination-sequenced distance vector (dsdv) protocol. Networking Laboratory, Helsinki University of Technol-
ogy, pages 1–9, 2002.

[18] Y.-C. Hu, D. A. Maltz, and D. B. Johnson. The Dynamic Source Routing Protocol (DSR) for Mobile Ad Hoc Networks
for IPv4. Technical Report 4728, Feb. 2007.

[19] N. Javaid, A. Javaid, I. A. Khan, and K. Djouani. Performance study of etx based wireless routing metrics. In 2009
2nd International Conference on Computer, Control and Communication, pages 1–7, 2009.

[20] D. Johnson and G. Hancke. Comparison of two routing metrics in olsr on a grid based mesh network. Ad Hoc Networks,
7(2):374–387, 2009.

[21] B. Karp and H. T. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th
Annual International Conference on Mobile Computing and Networking, MobiCom ’00, pages 243–254. Association for
Computing Machinery, 2000.

[22] W. Kiess and M. Mauve. A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks,
5(3):324–339, 2007.

[23] K.-H. Kim and K. G. Shin. On accurate measurement of link quality in multi-hop wireless mesh networks. In
Proceedings of the 12th Annual International Conference on Mobile Computing and Networking, MobiCom ’06, pages
38–49. Association for Computing Machinery, 2006.

[24] S. . Lee and M. Gerla. Dynamic load-aware routing in ad hoc networks. In ICC 2001. IEEE International Conference
on Communications. Conference Record (Cat. No.01CH37240), volume 10, pages 3206–3210 vol.10, 2001.

[25] J. Leitão, P. Á. Costa, M. C. Gomes, and N. M. Preguiça. Towards enabling novel edge-enabled applications. Technical
report, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2018.

[26] S. Mueller, R. P. Tsang, and D. Ghosal. Multipath routing in mobile ad hoc networks: Issues and challenges. In M. C.
Calzarossa and E. Gelenbe, editors, Performance Tools and Applications to Networked Systems, pages 209–234, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[27] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Approach To Mobile Ad-hoc Networking
(B.A.T.M.A.N.). Internet-Draft draft-wunderlich-openmesh-manet-routing-00, Internet Engineering Task Force, Apr.
2008.

[28] V. D. Park and D. S. M. Corson. Temporally-Ordered Routing Algorithm (TORA) Version 1 Functional Specification.
Internet-Draft draft-ietf-manet-tora-spec-04, Internet Engineering Task Force, July 2001.

[29] C. E. Perkins, S. Ratliff, J. Dowdell, L. Steenbrink, and V. Pritchard. Ad Hoc On-demand Distance Vector Version 2
(AODVv2) Routing. Internet-Draft draft-perkins-manet-aodvv2-03, Internet Engineering Task Force, Feb. 2019.

[30] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer. Sharp: A hybrid adaptive routing protocol for mobile ad hoc
networks. In Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing,
MobiHoc ’03, pages 303–314. Association for Computing Machinery, 2003.

[31] D. G. Reina, S. L. Toral, F. Barrero, N. Bessis, and E. Asimakopoulou. The Role of Ad Hoc Networks in the Internet
of Things: A Case Scenario for Smart Environments, pages 89–113. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[32] S. Ruehrup. Theory and practice of geographic routing. In X. C. Hai Liu, Yiu-Wing Leung, editor, Ad hoc and sensor
wireless networks: architectures, algorithms and protocols, volume 69, chapter 5, pages 69–88. Bentham Science, 2009.

[33] P. Samar and Z. Haas. Strategies for broadcasting updates by proactive routing protocols in mobile ad hoc networks.
In MILCOM 2002. Proceedings, volume 2, pages 873–878 vol.2, 2002.

[34] P. Samar, M. R. Pearlman, and Z. J. Haas. Independent zone routing: an adaptive hybrid routing framework for ad
hoc wireless networks. IEEE/ACM Transactions on Networking, 12(4):595–608, 2004.

[35] R. Sanchez-Iborra and M. Cano. Joker: A novel opportunistic routing protocol. IEEE Journal on Selected Areas in
Communications, 34(5):1690–1703, May 2016.

[36] C. A. Santivanez and I. Stavrakakis. Towards adaptable ad hoc networks: The routing experience. In M. Smirnov,
editor, Autonomic Communication, pages 229–244, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

11

[37] R. C. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc sensor networks. In 2002 IEEE Wireless
Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609), volume 1, pages 350–355
vol.1, 2002.

[38] Tao Lin, S. F. Midkiff, and J. S. Park. A framework for wireless ad hoc routing protocols. In 2003 IEEE Wireless
Communications and Networking, 2003. WCNC 2003., volume 2, pages 1162–1167 vol.2, 2003.

[39] F. L. Templin, R. Ogier, and M. S. Lewis. Topology Dissemination Based on Reverse-Path Forwarding (TBRPF).
Technical report, Feb. 2004.

[40] C.-K. Toh. Long-lived Ad Hoc Routing based on the Concept of Associativity. Internet-Draft draft-ietf-manet-longlived-
adhoc-routing-00, Internet Engineering Task Force, Mar. 1999.

[41] L. D. Xu, W. He, and S. Li. Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,
10(4):2233–2243, 2014.

12

	Introduction
	Routing in Wireless Ad Hoc
	Route Computation
	Message Forwarding

	Routing Framework for Wireless Ad Hoc Networks
	Overview
	Control Plane
	Forwarding Plane

	Framework Parameters

	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Related Work
	Final Remarks

