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Abstract

Nowadays, many systems rely on decentralized architectures as a way to provide services
to many users that require high availability, fault tolerance, and scalability. Avoiding a
centralized component, which is often the source of bottlenecks and a single point of
failure, makes these systems more autonomous and robust. Additionally, not relying on
proprietary infrastructures also brings privacy-related benefits. Systems that require some
form of coordination between different components in order to perform a particular task,
for instance in the context of edge computing, usually benefit from relying on decentralized
architectures. Examples of these systems include swarms of satellites, IoT appliances,
industrial machines, clusters of computers processing large amounts of data, among
others.

Decentralized architectures need to provide two fundamental functionalities: the man-
agement of peers participating in the system, commonly called membership management,
and mechanisms to support communication between peers in order to send and receive
information. Many solutions providing these functionalities were already developed in
the context of peer-to-peer systems, specially when considering the development of proto-
cols based on overlay networks. While, on one hand, the existence of several decentralized
protocols, some of which providing similar services, allows for applications to choose the
most suitable one for their operation. On the other hand, should the need for a change of
protocol providing a given service arise, applications may have to be extensively rewritten
due to the differences between interfaces. This also makes it difficult to reuse solutions
based on the same decentralized services across different applications.

This work studies existing decentralized protocols with a focus on their operation,
exposed interfaces, and provided services. Then, leveraging on the lessons learned from
the performed study, we propose generic abstractions for interacting with decentralized
protocols based on the implemented services. Moreover, our architecture provides mech-
anisms to simplify the management of protocols that can be leveraged by applications
based on decentralized protocols to take advantage of an edge computing approach. In
this document, we also present the implementation, based on our architecture, of a set of
applications and existing protocols.
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Resumo

Hoje em dia, vários sistemas baseiam-se na utilização de arquiteturas descentralizadas
para fornecer serviços com garantias de alta fiabilidade, disponibilidade e escalabilidade.
Evitar a utilização de um componente centralizado permite evitar pontos de estrangula-
mento bem como a existência de um único ponto de falha, tornando estes sistemas mais
autónomos e robustos. Adicionalmente, não depender de infraestruturas proprietárias
traz também benefícios relacionados com a privacidade. Uma das aplicações mais comuns
para este tipo de arquiteturas são sistemas que necessitam de alguma forma de coorde-
nação entre os diferentes atores que os compõem para realizar uma determinada tarefa,
por exemplo, no contexto da computação na edge. Estas tarefas podem tratar-se de coorde-
nação entre grupos de satélites, dispositivos IoT, máquinas industriais ou computadores
responsáveis pelo processamento abundante de dados, entre outros.

De uma forma geral, sistemas baseados em arquiteturas descentralizadas necessitam
de fornecer duas funcionalidades fundamentais: mecanismos de gestão dos nós que
participam no sistema, conhecidos como gestão de filiação (membership management), e
mecanismos de comunicação entre esses mesmos nós. Diversas soluções já existem, em
particular no domínio dos sistemas entre-pares (peer-to-peer), onde protocolos baseados
em redes sobrepostas (overlay networks) são habitualmente utilizados. Assim, apesar da
existência de múltiplos protocolos, capazes de fornecer serviços similares, permitir às
aplicações escolher o mais adequado à sua operação, a substituição de um protocolo
por outro pode levar a que uma aplicação tenha de ser significativamente modificada.
A reutilização de código entre aplicações baseadas na utilização dos mesmos serviços
também se torna difícil devido às diferentes interfaces expostas pelos protocolos.

Neste trabalho diversos protocolos descentralizados foram estudados, considerando
a sua operação, interfaces expostas e serviços disponibilizados, de forma a propor um
conjunto de abstrações genéricas para interagir com os mesmos baseadas nos serviços
fornecidos. A arquitetura apresentada permite também uma gestão simplificada dos
diversos protocolos utilizados por aplicações, baseadas em computação na edge, para obter
os serviços necessários. Neste documento, apresentamos ainda a implementação, baseada
na nossa solução, de um conjunto de aplicações e protocolos já existentes.
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1

Introduction

Nowadays, distributed architectures are widely used as a way to build robust, scalable,
and fault-tolerant systems. These architectures are those in which components cooperate
with one another over a network in order to perform a given task. We can define a
network, such as the Internet, as a set of interconnected machines (or processes) able to
communicate between themselves [37].

Systems that operate on top of a network can take advantage of a more centralized
or decentralized approach. In a centralized system all information needs to be sent to
a (potentially logic) central point, like a data center, to be processed, thus making this
central component responsible for a significant part of the operation. Alternatively, in
a decentralized architecture the nodes present on the network can work together and
cooperate, by sending and receiving messages directly among themselves, to perform
the required operation. Steen and Tanenbaum discuss in [37] the difference between a
distributed system and a decentralized system stating that both may rely on multiple machines
performing a certain operation but in the first case “processes and resources are sufficiently
spread across multiple computers”, e.g., an email service that relies on multiple servers
as a way to distribute load and improve fault-tolerance, yet on the second case “processes
and resources are necessarily spread across multiple computers” making the distribution
of processes a core aspect of the system.

A decentralized approach offers many advantages when compared to a single process
or a group of autonomous processes with no communication between themselves sending
and receiving information to/from the same central location. These include improved
availability by avoiding single points of failure, because a node can substitute another one
in the execution of a given task, or better scalability by opening possibilities for clients
and data to be distributed across nodes [29, 37]. Decentralized systems may also improve
reliability by replicating information on different nodes minimizing the risk of data loss.
These approaches may even increase privacy and tolerance to malicious attacks due to
the lack of a single target and the possibility of using the nodes in the network to hide the
identity of users or the exchanged information among them [10, 11].
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CHAPTER 1. INTRODUCTION

On the other hand, centralized systems can be considered easier to maintain as informa-
tion only needs to be sent to a central point [37]. As a consequence, they do not have to deal
neither with the heterogeneity questions related with the characteristics of each node nor
the membership management and communication issues regarding the distributed nature
of the infrastructure. In fact, when comparing centralized and decentralized systems it
is not uncommon to consider decentralized systems algorithms to be more complex and
difficult to understand and implement than their centralized counterparts.

Distributed systems can vary from large sets of globally interconnected machines and
processes relying on proprietary network infrastructures, in many cases running in the
same data centers as is the case of large companies like Google, Microsoft, or Amazon [2];
to smaller scale networks of connected devices based on already existing networks like
the Internet.

A particular type of network architectures, consisting of direct information exchange
and coordination by connecting a set of computers among themselves, are known as
Peer-To-Peer (P2P) networks. The exchange of information can be done by leveraging an
underlying network on top of which connections, like TCP channels, are open between
machines. Although a global view of the system could be maintained, this would require
every node to know about every other peer in the system leading to problems in dynamic
network environments where a high number of nodes entering and leaving the system
is expected, as this information would need to be constantly updated. In order to deal
with this challenge, a common solution is to allow nodes to only maintain connections to
a small set of other peers, i.e., relying on a partial view of the system. If these connections
are defined at the application level they originate structures known as Overlay Networks
which can act as the membership protocol for a P2P system [29].

In overlay networks, a node should maintain a set of other nodes, often called neighbors,
to whom connections are established. The connections between nodes then form a graph
that allows messages from one node to reach, eventually with the help of other ones,
any process on the network. Generally it is possible for new nodes to join a pre-existent
overlay network by contacting current participants [29]. On one side, these networks can
have numerous connected users cooperating, for instance, to process large amounts of
data or to share information in a decentralized way, as in the BitTorrent [47] protocol. On
the other side, small networks of nodes cooperating in the execution of a given task also
exist. This is the case of Internet Of Things (IoT) sensors in a house sending information
between themselves [11], the industrial machines on a factory exchanging data [46, 36,
52], decentralized solutions for the management of energy grids [27, 45, 6], or swarms of
satellites in space communicating and autonomously adjusting their positions to avoid
collisions [54, 59]. Many decentralized protocols, responsible for providing a given set of
services to applications, rely on building overlay networks to interconnect the different
nodes on a logical network, in order to exchange the required data for the system operation.

In 2020, according to Forbes [48], 59 zettabytes of data were “created, captured, copied,
and consumed in the world”, which compares to the 33 zettabytes two years early. The large
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amount of data being produced, alongside with the need for a faster and more efficient
processing of such data, paved the way for a new distributed computing paradigm called
edge computing. The idea behind edge computing is allowing computations to be executed
closer to clients and outside big data center facilities [33, 38]. This approach allows for
faster response times for clients and, at the same time, reduces the load induced in each
component of the network, from machines in data centers, to the amount of traffic on
networks [9]. As we will discuss further ahead, the use of peer-to-peer architectures that
take advantage of the interconnected devices can play a significant role in the development
of new approaches to edge computing. In fact, nodes in a peer-to-peer network can be
considered “on the edge” of the network and closer to end-users, enabling applications
that want to take advantage of the edge computing paradigm, to rely on these networks.
However, contrary to peer-to-peer systems, edge computing systems can still rely on
centralized infrastructures like cloud datacenters.

1.1 Motivation

Independently of what type of decentralized system is considered two main capabilities
should be guaranteed to enable its operation: i) mechanisms for membership management
(or membership protocols [29]) that are responsible for managing the nodes that are part of
the system, the ones entering and the ones leaving either by failure or explicit request and
ii) mechanisms for allowing nodes to communicate between them to coordinate actions
and exchange information.

Applications taking advantage of the edge computing paradigm can rely on decen-
tralized protocols as a way to obtain the membership management and communication
services needed for their operation. These applications interact with decentralized proto-
cols through the interfaces exposed by them to access the services provided and needed
for the operation of applications.

Many protocols have been proposed, in particular in the context of peer-to-peer archi-
tectures, that address in different ways the challenges related with both the membership
management and support for different communication primitives between peers. In partic-
ular, when considering peer-to-peer systems, overlay networks can be used, as discussed
previously, to address the challenges related with the system membership. In fact, various
examples of protocols relying on overlays networks have been proposed, in the context
of P2P architectures, such as Chord [57], Kademlia [42], Freenet [10], HyParView [30],
among others [34, 62, 23, 8, 28] with two main types arising based on the way peers
are organized and connected between themselves forming the topology of the network:
structured and unstructured overlay networks. The first ones are defined by enforcing
specific patterns on the connections between peers, thus leading the overlay network to
evolve towards a specific topology, usually more beneficial to the task that needs to be
performed (e.g., nodes can form a ring, a tree, among others). The second ones do not
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CHAPTER 1. INTRODUCTION

enforce any type of network topology, allowing nodes to organize freely in a flexible way
(usually randomly) [29, 38, 26].

Each protocol provides a specific set of services to applications that, in turn, rely on
them for their operation by interacting through the exposed interfaces. Although the
existence of multiple solutions providing similar services allows application developers
to have a wide variety to choose from, this also leads to the existence of multiple interfaces
to interact with, even when protocols provide similar services. In fact, the lack of a set
of standard and generic abstractions to interact with the different decentralized services,
leads not only to highly different (and incompatible) interfaces between similar protocols
but also between distinct implementations of the same protocols.

The specific abstractions that are exposed by protocols to provide membership man-
agement or communication mechanisms bring many challenges to developers. First, the
developer needs to be aware of multiple interfaces, not only when developing applications
based on different services, but also when relying on different protocols, even if these
conceptually provide the same abstractions [14, 3]. Also, this impacts the maintainabil-
ity and improvement of systems as this heterogeneity means that the re-usability of an
application code is limited when using different underlying protocols, for instance, to
better cope with a particular execution environment. Moreover, this leads to a lack in
the availability of generic solutions for instantiation and management of decentralized
protocols, regardless of their operation or services provided, whose existence would be
quite beneficial for applications relying on multiple services and protocols.

As discussed previously, the motivation for this work comes from the need of develop-
ing new generic abstractions that allow performing the operations required by applications
leveraging on the edge computing approach, namely the ones related with membership
management and communication. These abstractions should be related with the services
provided by protocols to applications, in opposition to the current protocol-dependent
ones that pose challenges when developing new systems as well as when improving
and/or maintaining current ones.

1.2 Contributions

The contributions that result from this dissertation are the following:

• We provide a study of multiple protocols and approaches employed, both for mem-
bership management and communication, in the context of decentralized systems.
This study has the main objective of understanding the differences and similarities
between the operations provided by each protocol, thus allowing the definition of a
set of generic abstractions to interact with them.

• Based on the previous study, we identified a set of decentralized services, with
protocols being categorized based on the services that they provide. For each service,
a generic interface was developed to allow the interaction between applications and
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decentralized protocols through service-based interfaces, instead of a protocol-based
ones.

• We propose an architecture, integrating the generic interfaces mentioned above with
a set of other components, whose objective is to provide a simple, easy-to-use, and
extensible solution for applications that require the use of services provided by
decentralized protocols. This solution acts as a middleware between applications and
protocols and integrates aspects related with protocol instantiation, management,
and application-protocol interaction.

• We provide a reference implementation, based in Java, of the architecture mentioned
above. This reference implementation also includes the implementation of some
well known decentralized protocols based on the proposed architecture, namely
regarding the interfaces of the services provided. We also provide some applications
that take advantage of the decentralized services considered in our solution.

• Based on the reference implementation, as well as the applications developed to
take advantage of our solution, we also present and discuss an experimental evalu-
ation whose objective is to understand the impact of our solution both in terms of
application development and performance.

1.3 Research Context

The work presented here has been partially motivated by the Trustworthy and Resilient
Decentralised Intelligence for Edge Systems (TaRDIS) [59] European project aimed at “support-
ing the correct and efficient development of applications for swarms and decentralized
distributed systems, by combining a novel programming paradigm with a toolbox for
supporting the development and executing of applications”.

1.4 Document Structure

Besides this introductory chapter the dissertation is structured as follows:

• Chapter 2 presents the relatedworkregarding the topics discussed in this dissertation.
In this chapter the important concepts, necessary for a clear understanding of the
work presented in this dissertation, are also presented.

• Chapter 3 details the challenges that we address in this work as well as our study
regarding the services provided by decentralized protocols and the generic ab-
stractions devised to interact with each one. An architecture for dealing with the
presented challenges, based on the defined generic abstractions, is also presented in
this chapter.
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• In Chapter 4 a reference implementation of the solution proposed before is presented.
The chapter begins with an overview of the main aspects of that implementation,
followed by a detailed description of each implemented component. Then, an
explanation of how our solution can be leveraged to develop applications that
rely on a decentralized approach is provided together with a comparison between
applications relying and not relying on the solution proposed in this dissertation.

• In Chapter 5 we present the methodology on which we relied to evaluate the pro-
posed solution. This chapter also presents the results obtained from the evaluation,
together with a discussion regarding those results.

• The document ends with Chapter 6 where we present the main conclusions as well
as the work directions that may be followed in the future based on the solution
proposed here.
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2

Related Work

In this chapter we present relevant work that serves as a basis for this dissertation and
discuss the important concepts for a clear understanding of this work.

First, the aspects related with peer-to-peer architectures (P2P) and edge computing
are introduced. Then, we provide an overview of what are overlay networks, existing
architectures, characteristics, and properties identifying the main positive and negative
aspects of each one. We further discuss several applications that rely on decentralized
protocols, based on peer-to-peer architectures and overlay networks, for their operation,
like publish-subscribe or file sharing applications. A study of existent decentralized
protocols is also presented as well as the frameworks for simplifying their development
and the work already developed on devising generic approaches to interact with those
protocols. At the end of this chapter, a summary of the contents is provided.

2.1 Edge Computing and Peer-To-Peer architectures

In this section both the edge computing paradigm and peer-to-peer architectures will be
presented in-depth. We will also discuss how systems can leverage on the combination of
both approaches to complete a given task.

2.1.1 Edge Computing

As discussed earlier in this document, the development of systems that rely on edge
computing paradigms can be considered, nowadays, as a way to tackle multiple chal-
lenges. These include i) the significant increase in the amount of data that needs to be
processed [48], and ii) the need of a fast and efficient information processing, both from
end-users and systems that are required to quickly detect changes and trigger response
actions [9]. This scenario raises questions related with the scalability capacity of central-
ized architectures and shows the necessity of removing computations from centralized
environments, like data centers. A solution for these challenges can be the transfer of
computations, partially or totally, towards the edge of the network near the client devices or
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even, if possible, to client devices, while minimizing as much as possible the dependency
on centralized components or infrastructures [33, 9].

A particular example of using the network edge to accelerate computational tasks,
especially when considering Internet of Things (IoT) devices, is called Fog Computing [38,
33, 9]. This approach relies on the use of nodes (fog nodes) available in the network
between the clients and large scale data centers. These nodes could be used to distribute
the execution of computations, considering properties like location, processing capacity,
among others. Consequently, this allows for a more expedite and efficient data processing
and, at the same time, reduces the amount of data that needs to be transmitted throughout
the network. Various types of fog nodes can be used and, for instance, data can be
analyzed first in nodes near the client to provide a quick result and, then, sent to a data
center for gathering and statistical treatment [9]. This would be important in situations
such as if we consider a sensor that triggers some automation based on the analysis of
the information retrieved. Mechanisms relying on fog computing can also play a role in
situations where privacy concerns need to be addressed by allowing critical data, such
as medical information, to be analyzed in the nearest nodes with only more generic and
anonymized information being sent to data centers. As a result, fog computing can even
help to deal with privacy regulations at a regional level [38, 33].

An evolution of fog computing consists in performing the computations on the actual
devices that retrieved the information by taking advantage of their embedded processing
capabilities. This evolution is called Mist Computing [40] and, by itself, does not imply
that some data cannot be sent to fog nodes and/or central processing facilities for further
analysis and aggregation.

The distribution of computation between machines on the edge of the network relying
on decentralized architectures is not something new as it has been employed for decades.
An example of this is the SETI@Home [1] project, which allows computers to cooperate
in processing large amounts of scientific data with the objective of studying the existence
of extraterrestrial life by analyzing radio signals retrieved from space. This project is
an interesting case study as it effectively uses end-user devices, like computers, to help
process large amounts of data without the need of central processing. In this case a central
server was effectively used for distributing the computations between client devices as the
data is retrieved by radio telescopes and, as so, a central point of operation needs to exist
in order to provide the information. Still, this is an example of how devices on the edge of
the network can be used, relying on decentralized mechanisms, to process large amounts
of information. When we consider situations where data sources are in itself decentralized
(like in the case of IoT devices), this approach can even become more interesting. Notably,
the computation model employed in SETI@Home (and similar projects) is composed of
small and fully independent computational tasks (named embarrassingly parallel). More
complex computations require more complex approaches in order to be executed on the
edge.

One of the challenges when considering edge computing paradigms is related with
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the heterogeneity that may exist due to significant differences between the characteristics
of nodes in terms of processing power, storage capacity, network capabilities, reliability,
among others [33, 40]. Some studies [33] even consider the separation of the network
nodes into distinct categories based on their characteristics, forming multiple levels of
nodes. These may vary from the ones “in the center” of the network, with high processing
capacity and availability, like data centers, to devices on the edge, with limited availability
and mixed performance, like IoT sensors. To allow nodes to be split into levels, as
presented before, authors suggest the study of a set of characteristics such as processing
and storage capabilities or availability guarantees. The expected increase of devices more
close to clients emphasizes even more the need to develop methods that can cope and be
performant even in presence of significant heterogeneity as the computational resources
can be limited.

The heterogeneity between the conditions of different networks discussed before,
depending on the characteristics of the nodes present in each one, supports the existence
of multiple decentralized protocols providing the same services to applications. This way,
applications can benefit from relying on a decentralized service provided by a protocol
more performant on the expected network conditions.

2.1.2 Peer-To-Peer architectures

Peer-to-peer architectures allow processes to interact and cooperate directly without the
need for a centralized point of coordination. This is achieved by having nodes directly
connected to a set of known neighbors with which they cooperate to perform a given
operation, thereby removing the need to contact a central point, like a server. This
connection between peers generally happens on top of an existing network, like the
Internet, effectively creating what is called an overlay network. As we will discuss later in
this chapter, in most architectures a peer does not even need to know all the other network
participants, therefore relying on a partial view of the network [29, 38]. In these solutions,
although a node is only connected to a subset of network participants, it should be able
to communicate throughout the entire network due to mechanisms such as having nodes
relaying messages to their respective neighbors, and so on until reaching the intended
destination. One of the most well known protocols leveraging on a P2P architecture is
the BitTorrent protocol in which peers communicate between themselves to perform file
transfers in a distributed manner, with files being divided into chunks that can then be
traded between peers and combined to reconstruct the complete file [47, 38].

Peer-to-peer networks have many advantages when compared with centralized so-
lutions, namely when considering that they can overcome challenges related with the
existence of a single point of failure/attack, thus possibly improving reliability and security.
Privacy questions can also be tackled as their decentralized nature allows for data to be
dispersed and processed along the network instead of doing so using machines in central
locations, like data centers [11]. Some P2P networks, like the one proposed in Freenet [10],
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even strive for anonymization of the data exchanged between peers, making it harder to
know which peers have a specific segment of data or which ones are looking for it. On
the other hand not relying on a central server means that for creating, maintaining, and
operating a peer-to-peer system, specialized mechanisms for allowing peer management
and communication are required to exist as they need to be able to manage a possibly
large number of participants and allow for communication between them. In fact, overlay
networks can be effectively considered as a mechanism for management of peers to be
used in P2P architectures [29].

Napster is considered the pioneer in peer-to-peer file sharing architectures. Created
in 1999, the system brought the idea of a set of users sharing content stored on their own
machines, in a decentralized manner, by cooperating with each other over the network.
This way, peers could directly download the content from the host machines without the
need for a central storage server [29]. Although this approach effectively allowed for a
decentralized file-sharing system it employed a centralized component, responsible for
providing the index of contents available in the network and their location, effectively
materializing a centralized resource location service. Consequently, the Napster approach
relied on the use of a centralized directory server that should be contacted to find which
peers in the network had a specific resource, coordinate with them, and obtain the files [8].
Napster was closed due to legal reasons related to copyright and, although the legal
matters of this closure are outside the scope of this document, the technical aspects that
allowed this outcome should be considered. The use of a centralized server was effectively
the reason that enabled the closure, as it represented a central point of failure and, if offline,
the system was not capable of operating properly with users being unable to discover
other peers storing the desired content [8, 7].

It is when the P2P mechanisms for peer management and communication are con-
sidered, that a relation can be established between edge computing and peer-to-peer
systems. On one hand, as seen before, edge computing allows for computations to be
transferred from central points, like data centers, to machines near the clients or even into
the client devices. On the other hand, peer-to-peer networks allow for multiple devices
to be connected without the need of a centralized architecture. We can now understand
why peer-to-peer architectures can contribute to the edge computing paradigm by taking
advantage of the solutions for both membership management and communication as a
way to interconnect devices “on the edge” of the network. In fact, the distributed nature of
devices on the edge matches the principles behind P2P systems and overlay networks as
they are “highly decentralized, robust and can be easily adapted to promote hierarchical
topologies” [33] like the ones considered in fog [9] or mist computing [40].

It is worth noting, however, that multiple protocols for maintaining peer-to-peer
systems exist nowadays [10, 42, 57, 23, 8, 47, 43, 58, 28, 30, 62], each one employing
its own mechanisms for managing the network of nodes (i.e., the overlay network) and
allowing information to be exchanged between them. Some of these protocols provide
the same services, but relying on different approaches for both membership management
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and communication, each one more suitable to be used on a specific set of conditions.
Furthermore, each protocol exposes a specific interface to allow applications to interact
with the services provided [14, 3], originating a heterogeneous set of interfaces exposed
by protocols providing the same services, and sometimes, even when comparing multiple
implementations of the same protocol.

This heterogeneity is what motivates the importance of developing generic abstractions
for allowing the use of different solutions, considering the ones already employed in the
context of P2P, under the same set of service-based generic programming interfaces.
Moreover, applications that rely on decentralized approaches, in particular those who
need to leverage on multiple protocols for different services, would benefit from the
development of mechanisms to simplify the management of decentralized protocols,
independently of their actual implementation or services provided.

2.2 Overlay Networks

In this section a more in depth study of overlay networks will be conducted regarding
their main characteristics and properties, in particular when considering the network view
and structure. First an overview of overlay networks will be carried out regarding their
basic concepts and main properties, followed by a comparison between global and partial
views. Then, both structured and unstructured overlay networks will be presented, as
well as a comparison between the positive and negative aspects of each one. An overview
of decentralized communication protocols will also be provided in this section.

As described before in this document, an Overlay Network can be defined as a set of
nodes connected between themselves on top of an underlying network (hence the name
overlay). We can consider that each node represents a process and maintains a set of
other nodes as its neighbors. In fact, in many cases overlay networks rely on the Internet
as the underlying network and processes open TCP connections between themselves
creating links [38, 30, 34]. In an overlay network nodes can be connected to other ones
independently of their physical location or the physical links that exist between them. As
an example, in a network operating on top of the Internet, a node located in Portugal
can have neighbors located in Japan because, although a direct connection may not exist,
logical links are created on top of the underlying network. Many P2P systems rely on
overlays as membership management mechanism because this type of networks enables
processes to be effectively interconnected with the other nodes on the network acting
as peers in the system [29]. In the literature, overlay networks are often described as
graphs 𝐺 = (𝑉, 𝐸) where the vertices of the graph correspond to the nodes and the edges
correspond to the connections established between them [32, 31, 30, 26, 8].
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2.2.1 Global view vs Partial view

Before presenting a more in-depth study of overlay networks, it is important to characterize
them based on the view that each node has of the system membership. Therefore, P2P
architectures can be characterized, based on the connections established by each node
participating in the system with the other ones, in Global View or Partial View architectures.
Each one of these approaches has a profound impact not only on the mechanisms that
need to be employed for membership management and communication but also on the
performance of the network on a given operational scenario.

(a) Global View (b) Partial View

Figure 2.1: Comparison between global view and partial view on a P2P system network

2.2.1.1 Global View

Systems relying on a global view are characterized by having each node know all other
nodes in the network, therefore, having “access to the full membership information” [29],
i.e., if we consider Π as the set of all network participants, the set of neighbors of a node
A is Π \ {𝐴}. A global network view allows every node to directly communicate with any
other node present in the network, thus ensuring a very efficient network topology for
both direct communication or broadcast of messages. In fact, if we consider broadcast and
a global view, a node is only required to send a message to all its neighbors to accomplish
broadcast.

Simple membership management protocols can also be used for maintaining overlay
networks based on a global view. Consider this example: when a new peer (𝐴) joins
the network, by connecting to an already participating process (𝐵), 𝐴 can receive all the
neighbors of 𝐵 and establish connections with them. These connections are performed by
relying on the underlying network, using a protocol like TCP [38], gaining a global view
of the system and letting the other nodes know about the new one joining. On the other
side, when a node leaves the network, the neighbors only need to detect the fault — or be
informed by the leaving node if possible — and no longer consider it as neighbor.

The main disadvantage of a global view is related with the high load put on the
network participants due to the number of neighbors that each node needs to manage,
especially in situations where the network has more than a few peers and/or a significant
level of churn is expected. The churn is a term related with the number of nodes entering
and leaving a P2P network at a given time [29]. This problem leads to architectures relying
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on a global view only being useful in situations where both the number of peers and the
churn effect are expected to be low, like in local networks built in controlled environments.

2.2.1.2 Partial View

Systems relying on a partial view [29, 32] are characterized by having each node to be
aware of only a small portion of the peers in the network. This means that a node 𝐴 may
not be able to communicate directly, i.e., using a direct link such as a TCP channel [38, 30,
34], with a node 𝐵 also participating in the network. In these architectures, nodes need to
rely instead on other participants that should relay information — possibly multiple times
— until it reaches the intended destination. When considering overlay networks, relying
on partial views is the most common architecture as it solves the scalability and capability
issues related with keeping track of the entire membership that arise when considering
global views. On the other hand, this approach means that more sophisticated and
complex membership management mechanisms are needed in order to define which (and
how many) nodes should be chosen as neighbors, how changes in the overlay membership
are handled when a new node wants to join or a participant becomes disconnected, as well
as how nodes can communicate efficiently with others throughout the network. Many
approaches for dealing with these aspects will be considered when studying the different
overlay network solutions [30, 34, 42, 57, 8, 10].

Figure 2.1 shows the comparison between a global view and a partial view P2P systems,
both with the same set of nodes 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷} but with a different set of edges. Note
that the architecture of the global view is, in fact, represented as a complete graph.

2.2.2 Overlays Properties

Below we present some important properties of overlay networks, namely connectivity and
accuracy, that have a direct impact on the correctness of operation, and network diameter,
clustering, and node degree, that should also be considered to improve performance.

Connectivity and Accuracy In order to enable the correct operation of an overlay network
both connectivity and accuracy should be guaranteed [29, 30]. On one hand, connectivity is
related with the ability of any node to exchange information with any other, by leveraging
on the overlay links established between them, which should guarantee that exists “at
least one path from each node to all other nodes” [29]. If a node, or a set of nodes,
loses connectivity this means that it is no longer possible to contact these peers using
the network. On another hand, peers should also eventually drop existent connections
to failed nodes in the network to guarantee higher accuracy, i.e., that a node does not
have a significant number of neighbors that are no longer available. The accuracy value
can be calculated, per node, as the division between the number of available neighbors
and the total number of neighbors and, at a network scale, as the average of accuracies.
In fact a lower accuracy value can have impact on mechanisms such as random walks,
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described in Section 2.3.1, causing messages to be sent more often to neighbors that are
not available [29].

Network Diameter, Clustering, and Node Degree Some aspects should be considered
when studying overlay networks with the objective of improving efficiency, namely network
diameter, clustering, and node degree [29, 30]. The network diameter is related with the
lengths of the paths between two peers and, therefore, networks should try to maintain
a small diameter in order to make it easier for messages to reach the entire network.
The network diameter can be considered as the average of path lengths between peers.
The degree of a node is related with the number of neighbors that a node have, and
the network should ensure that a uniform degree is maintained in order to not have a
significant discrepancy between the number of neighbors of nodes, thus originating load
imbalance. Clustering is related with the heterogeneity of neighbors between processes as
overlays should strive to keep a low clustering level by maintaining significant differences
in neighbor sets between peers, i.e., heterogeneity should exist between the neighbors
of different nodes. The clustering coefficient can be defined, per node, as “the number of
edges between that node’s neighbors divided by the maximum possible number of edges
across those neighbors” [30]. The average of clustering coefficients allows the evaluation
of the network clustering level with higher values (between 0 and 1) meaning higher levels
of message redundancy and high probability of network segments isolation, therefore
having a negative impact on fault-tolerance [30].

2.2.3 Overlays Topology

When studying the characteristics of overlay networks two main types of network topolo-
gies arise: structured and unstructured overlay networks. This characterization is related
with how the peers are linked together between themselves, which has a significant impact
on which operations can leverage on the network and how they are implemented. Both of
these categories will be discussed in this section.

It is important to note, at this point, that in this section only networks based on partial
views will be considered because when a global view approach is used the questions
related with the topology of the network no longer matter. In fact, when considering a
global view, the only possible topology is one with all nodes connected between themselves
in a complete graph and always able to communicate over direct links. However, nodes
on an overlay network based on a partial view can have, under certain conditions, a global
view of the network. This could happen, for instance, if the number of peers participating
in the network is low (as in the special case of a single node).

2.2.3.1 Structured Overlay Networks

Structured overlay networks can be described by relying on peer management protocols
that strive to maintain a specific network topology with the objective of making a certain
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operation, generally search within the network, more efficient. In structured overlays
the set of links maintained between processes on the network are not random, and those
links are created (or discarded) with the objective of maintaining a certain topology in
the structure of the network, such as a ring, a tree, among others [38, 57, 42]. This specific
topology should be chosen taking into consideration the expected operation of the overlay,
network conditions and/or peer characteristics with the objective of ensuring a reliable
and efficient operation.

One of the most common situations for the use of structured overlay networks, in the
context of P2P, is resource location by relying on Distributed Hash Tables (DHTs) [29, 38]. A
DHT works, on a high level view, in the same way as a common hash table, i.e., data is
organized in key-value pairs where the key is composed by a hash of some information
correlated to the data (or the data itself) and the value represents the information to store.
The difference, when considering DHTs, relies on how key-value pairs are actually stored
in the nodes using a distributed approach. Generally the set of values 𝑆, that can be issued
by a hash function ℎ, is distributed between all nodes present in the network becoming
each node responsible for a subset of 𝑆 (which could be chosen, as an example, taking into
consideration the identifiers of the nodes). Then, when data related with a key 𝑘 needs
to be located, a node can perform a hash of the key ℎ(𝑘) and contact the peer which is
expected to be responsible for storing the information [38]. When a new node joins the
network the subset of values that will become his responsibility should be computed and,
possibly, information can be transferred from other nodes to it [57].

As discussed before, when relying on structured overlay networks for implementing
DHTs, the topology of the network should primarily ensure the efficiency of the search
operation, i.e., that a node searching for a key could as efficiently as possible contact the
node responsible for that key. Two well known P2P systems relying on structured overlays
for providing a DHT-based key-value pairs storage are Chord [57] and Kademlia [42].

2.2.3.2 Unstructured Overlay Networks

Contrary to structured overlays, unstructured overlay networks do not strive to impose
a specific topology to the connections performed between peers participating in the
network [38, 29]. In this case the links maintained by nodes with their neighbors depend
on many factors and the topology of the network cannot be inferred a priori. These factors
include the moment when nodes joined the network, the peer to which a node connects
when joining, or even properties of nodes such as location, processing capacity, network
connection, reliability, among other aspects.

Generally when considering unstructured overlays, a new process joins the network
membership by contacting an already participant one who is then responsible for enabling
the joining node to obtain a setofneighbors. This couldbe done, for instance, by forwarding
the information about the join throughout the network to allow current participants to
establish connections with the new node [30, 34].
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The membership management mechanisms of unstructured overlays are expected to
be more simple and less computationally expensive, when compared to the structured
counterparts, as a specific topology does not need to be enforced [29] and, as so, each node
is responsible for choosing the set of neighbors based on previously defined heuristics and
possibly also taking into consideration constraints regarding a minimum and maximum
number of neighbors. In fact, it is expected that when a node needs to add a new neighbor,
due to not having a sufficient amount of neighbors or a connection failure, it should try to
connect with other processes in the network, obtained through its neighbors, choose the
best one according to the heuristics and attempt to establish a connection. In some cases
nodes can even drop currently available neighbors in order to substitute them for newer
ones [30, 8, 62].

Generally we can consider all nodes participating in an overlay network as contributing
equally, nevertheless, there are architectures where a few nodes contribute, in some form,
more that others to the network operation.

Super-Peers A relevant architecture commonly used in unstructured overlays is related
with the definition of special nodes called Super-Peers. This approach is leveraged in many
overlay designs, like the ones proposed in Overnesia [34] as well as (newer versions of)
Gnutella [5, 25]. The super-peers approach can be defined by the existence of a specific
type of peers in the network that have some set of characteristics that allow them to
be “promoted”, based on aspects defined by the network implementation [29]. These
characteristics are often related with processing capability, storage and/or reliability.
Generally, the idea behind super-peers relies on biasing network participants to prefer
connections with a certain set of peers to help build a more stable and efficient network.
It is important to note that the use of this mechanism does not impose a topology on the
network, thus not forming a structured overlay, but instead the mechanisms for choosing
a super-peer as neighbor are inserted into the heuristics on which nodes rely to choose
a neighbor over others [8]. As an example, when considering protocols performing
search operations, we can think of super-peers as nodes expected to be able to store more
information than others, which explains the preference for performing more connections
to this type of peers. Although relying on a super-peer based approach can improve
efficiency, this strategy puts in question the uniformity of node degrees discussed in
Section 2.2.2 and, in some situations, can lead to negative consequences as a failure in a
super-peer will produce a major effect on the network when compared with a common
node [34]. The definition of the candidates to super-peers also constitutes a challenge as
the characteristics might not be trivial to define [29].

2.2.4 Decentralized Communication Protocols

If a system relies on a centralized approach processes are only required to contact a central
node, e.g., a server, in order to obtain the desired resources or execute a given operation. On
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the other hand, if a decentralized P2P system is in place, specially considering architectures
leveraging on overlay networks, more complex communication protocols are required.

In the case of P2P systems relying on structured overlay networks the communication
is often performed by contacting directly the node responsible for the identifier of a
given resource [29], as discussed in Section 2.2.3.1. However, this does not mean that a
(generally) small set of neighbors does not need to be contacted in order to reach the node
responsible for the resource, as a partial view of the system is maintained, hence requiring
mechanisms, like the ones proposed in Kademlia or Chord, to find the desired node, e.g.,
the node with the nearest identifier to the key [29, 57, 42].

The communication protocols applied to P2P systems leveraging on unstructured
overlays are much different from the ones employed in structured overlays, as the absence
of a specific topology makes it harder for one peer to contact another one, responsible for
providing a given resource. In many situations systems rely on Gossip-based Dissemination
Protocols [29] where peers collaborate in exchanging messages throughout the network by
sending them consecutively to 𝑓 neighbors, which should then relay the message again if
they have not received it yet. The parameter 𝑓 is known as fanout and in many systems
is configurable, with higher fanout values leading to faster message dissemination in
exchange for more redundancy and load in the network [29].

2.2.5 Structured versus Unstructured Overlay Networks

As presented in Section 2.2.3.1, structured overlay networks have the main advantage
of allowing an efficient discovery of a node or resource if the information about the full
identifier is known, however this also brings some disadvantages. Chawathe et al. discuss
in [8] some challenges of relying on structured overlay networks. First, the effort that
is required for maintaining the expected topology and perform the management of the
information stored is expected to be higher. This is even more important when considering
large and/or dynamic networks, with a significant churn effect due to a high number of
nodes continuously joining and leaving the network. Furthermore, another challenge of
the DHTs is related with searching for a resource based on a partial key instead of the
complete one (known as exact-match queries). Consider this example: the hash of “NOVA
School of Science” can — and will most likely — be completely different from “NOVA
School of Science and Technology” and if the first expression is used, on a DHT, to search
for a resource whose key is, in fact, the second one the resource would not be found.

Unstructured overlay networks, on the other hand, are more suitable for situations
where a high number of exact-match queries are not expected, and the searches are
mainly done using partial query expressions. This is explained by the use of gossip-
based dissemination protocols, where the search for a given resource is made locally at
each node when it receives the query, with all matching results being sent to the source
node [8]. Another advantage of the unstructured overlays approach is related with the
membership management mechanisms, as these are expected to require less computational
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resources [29], due to not imposing a specific topology. This leads to networks able to
work more efficiently in highly dynamic environments with significant levels of churn
and/or a high number of peers.

The main disadvantages of an approach based on unstructured overlays are related
with the expected high level of communication in the network due to the possibility of a
significant number of messages being retransmitted throughout the network. Even though
adequately configured mechanisms, such as time-to-live (TTL) values, discussed in detail in
Section 2.3.1, and fanout parameters can mitigate this problem, if incorrectly configured or
implemented the network can become useless due to a high load. An additional possibility
is relying on a super-peer mechanism, described in Section 2.2.3.2, which contributes to
the mitigation of this challenge by reducing the traffic in the network [29].

Although more resilient to unstable network conditions and churn than structured
overlays, in unstructured overlays the mechanisms for neighbor selection should also be
considered to not create an excess of dynamism in the network, therefore undermining
their operation. One other problem arises when using unstructured overlay networks to
store resources: it is not guaranteed that a resource is located even though it is present
in the network. This could happen when a combination of the defined parameters like
TTL, network diameter, topology, and/or randomly chosen walks lead a query returning
no result, although a matching resource exists in the network. This problem has more
importance if a high level of needles [8], i.e., lower replicated resources, are expected to be
present in the network. In fact, the replication of data is not only important in unstructured
overlays to guarantee that information is not lost even when nodes become disconnected,
but also to improve the efficiency and recall of search operations.

2.3 Applications relying on Peer-To-Peer protocols

Multiple applications can be built by relying on peer-to-peer systems taking advantage
of overlay networks to manage the network membership. In this section some of the
most common types of applications that leverage on the use of P2P architectures will be
described. These types of applications provide mechanisms such as Resource Location,
Broadcast, Publish-Subscribe, Distributed File Sharing, and Distributed Computation.1

2.3.1 Resource Location

This is the most commonly described application when considering peer-to-peer architec-
tures and this could be explained by the fact that the first widely used P2P systems, like the
already presented Napster and Gnutella networks, were designed exactly for this purpose
as explained before in this document. Generally speaking Resource Location consists on
relying on a network to find a given resource which can be, for instance, a file, a machine
with specific resources or a node with a given identifier.

1While here we refer these as applications, in some contexts like [29] these are referred as services.
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As stated in Section 2.2.3 an application providing resource location can leverage on
P2P systems relying on structured or unstructured overlay networks. In the first case,
consistent hashing [57] is generally employed to find a resource to which the full identifier
is known while, on the second, gossip-based dissemination techniques, like flooding or
random walks [38, 29], are usually employed to allow the retrieval of a resource even without
knowledge of its full identifier.

Flooding Flooding consists on sending a query throughout the entire network by for-
warding it to all neighbors that should then forward the query again. This approach can
put a high level of load into the network so, to deal with this situation, mechanisms like
Flooding with Limited Horizon [29] might need to be put in place. This mechanism relies
on adding a time-to-live (TTL) value to queries that, when reached, leads the query to
be discarded. If the matching resource is found, the node that contains the resource can
reply directly to the origin node or send the result back through the network peers [38,
10]. It is important to note that even if a matching resource is found, queries may continue
to cross the network leading to the possibility of obtaining multiple results [8].

Random walks Random walks, on the other hand, consist on a node sending a query
only to a small set of neighbors (or even one), chosen at random. The nodes receiving
the query then verify if the requested resource is present and, if successful, reply to the
origin node as described before in the flooding method. When a node receives a query,
it should relay it again using the same procedure. Although originating much less stress
on the network when compared to flooding, random walks also need to use a TTL-like
mechanism to stop queries from continuing indefinitely and end up in a situation where
too much load is put on the network [38, 8].

2.3.2 Broadcast

Broadcast consists, as the name suggests, in disseminating data throughout an entire
network in order to reach every participating peer. Although questions related with the
effort put on the network should be considered, broadcasting applications can leverage
on the use of underlying P2P architectures. A simple implementation of broadcast can
be done by relying on the flooding mechanisms already discussed in Section 2.3.1 [39].
Therefore, if all messages that are flooded through the network contain a unique identifier,
like an UUID, the participating nodes are able to verify if a message was already received
by them and, if not, deliver it locally and retransmit throughout all neighbors [29].

When studying broadcast services provided on top of peer-to-peer systems, the topol-
ogy of the network can have a significant impact on the operation. As an example, a
tree based topology would allow a reduction in the load put on the network, as message
redundancy is avoided due to the absence of cycles, however, a failure on a link could lead
to a network partition [39]. An interesting solution for building a tree for broadcast and,
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at the same time, increase fault tolerance is relying on protocols such as Plumtree [28]
which are able to maintain a tree structure, even in presence of node failures, on top of
a protocol relying on an unstructured overlay acting as peer sampling service [29, 38], like
the HyParView [30] protocol described in Section 2.4.

Applications may also implement Multicast services aimed at delivering information
only to a subset of nodes. As in broadcast, a multicast service can be built on top of
overlay networks, with Steen and Tanenbaum [39] proposing a solution where nodes
maintain multiple sets of neighbors, each one from a different multicast group. This way
messages can be flooded only in the context of each group that acts as a separate overlay.
Additionally, protocols like Plumtree can also be considered in these situations through
the construction of multiple trees (each one maintained by a Plumtree instance), instead
of only one.

2.3.3 Publish-Subscribe

Publish-Subscribe services are nowadays widely used in a variety of situations with compa-
nies like Google [64] or Amazon [63] offering this type of service through their respective
cloud computing platforms. Publish-subscribe systems allow for an asynchronous form
of event-driven communication where information consumers subscribe to a set of topics,
related with the data they wish to receive and, on the other hand, producers send messages
tagged with those topics, that should only be delivered to participants in the network that
subscribed them [38, 15].

In some publish-subscribe systems it is even possible for a consumer to receive infor-
mation sent while it was disconnected from the network when it becomes online again [15].
This can be important in situations where it is expected that a node does not always have
a stable network connection, such as vehicles in an IoT network, thus leading to possible
reliability issues that can be tackled with this approach.

A simple approach to publish-subscribe based on P2P networks is to rely on broadcast
operations. In fact, if a message is disseminated throughout an entire network with
information about the topic (or the set of topics) related to it, each node can then decide
if it should deliver the information received by comparing the message topics with a
local subscriptions set. An advantage of this approach is related with the capability of
allowing the subscription and unsubscription operations to be done locally, without the
need for any exchange of information between network participants. However, it could
lead to a significant load on the network if a high number of messages is sent, which is
expected when considering publish-subscribe services. Moreover, this will generate a
high quantity of unuseful traffic related with the retransmission of messages that will not
be delivered by most nodes because the topic was not subscribed. Nevertheless, other
approaches exist for implementing publish-subscribe services on top of P2P networks like
Scribe, “a large-scale event notification infrastructure for topic-based publish-subscribe
applications” [56] which relies on an overlay network called Pastry [55].
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2.3.4 Distributed File Sharing

Peer-to-peer protocols, such as BitTorrent, are also widely used to build distributed file
sharing applications. The BitTorrent protocol allows decentralized downloads of files by
providing mechanisms to clients that enables them to transfer chunks from other network
participants and then merge them together to obtain the complete file. [47, 38]

Protocols related with distributed file sharing provided over P2P architectures should
strive to ensure that users are required to collaborate in sharing information and discourage
a practice called free riding [38, 25], where a user takes advantage of the network to obtain
resources but does not contribute. This practice can lead to a significant imbalance on
the system by creating situations where, although having a high number of data requests,
the number of nodes effectively providing resources is low. The free riding practice is a
challenge which was already studied in the context of the Gnutella network in [25]. The
BitTorrent protocol limits this problem by imposing a mechanism that requires users to
effectively exchange chunks of information who own at approximately the same rate at
which data is being received [38].

2.3.5 Distributed Computation

The distribution of computation between machines with the objective of parallelizing
data processing, in an approach commonly called Grid Computing, is one more example
of an application where the use of P2P architectures can be leveraged. In fact, the
SETI@Home [1] infrastructure already discussed in Section 2.1 provides an example of
how nodes connected on a peer-to-peer network can contribute to the parallel processing
of data. However, this service relied only partially on a decentralized architecture as a
central server was needed for both data distribution and post-processed data retrieval.

Foster and Iamnitchi [17] present a comparison between the Grid Computing and P2P
paradigms and, according to the authors, although the main objective of both approaches
is related with “resource sharing within virtual communities” and both rely on the same
approach, in some aspects differences exist between the two. These differences are related
with the computational power of nodes, which is expected to be higher in the case of
Grid Computing, or the mechanisms in place to deal with a high number of nodes, lower
guarantees of availability or enforcing a fair usage of the system by clients, which are more
developed in the context of the P2P paradigm.

However, when considering both the increase in the size of computer grids and the
increase in computational performance of day-to-day devices, both approaches seem to
converge into each other. This leads the use of P2P mechanisms to handle grids of machines
executing distributed computations to be considered as a possibility in some situations.
An example of this overlapping between both approaches is the work by Verbeke et al. [61]
where a framework for enabling Grid Computing on top of a P2P architecture, operating
on a heterogeneous environment is presented.
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2.4 Examples of Peer-To-Peer protocols

In this section some examples of peer-to-peer protocols, relying on overlay networks, will
be discussed. The study of the protocols presented here, namely regarding their operation,
services provided, and properties, served as starting point for the solution presented in
Chapter 3.

Kademlia Kademlia [42] is one of the most well known P2P protocols reliant on struc-
tured overlay networks and is commonly used to implement DHTs. The system relies on
a network of peers, each one with an assigned identifier, that store neighbor nodes on
buckets, called k-buckets and seen as leaves in a binary tree. The routing operation, as well
as the storage of the nodes in the k-buckets, is based on a XOR distance metric between the
binary representation of the identifiers. When a node wants to contact other node with (or
near) a given identifier, it first contacts 𝛼 peers (where 𝛼 is a configurable parameter) from
the nearest k-bucket, based on a XOR operation, and should receive, from the contacted
nodes, the closest 𝑘 known nodes on which the operation is then repeated until no other
node with the nearest identifier is received. This solution allows for queries in Kademlia
to approach, step by step, a node with a given identifier or the closest one which could,
for instance, be responsible for storing a value related with that identifier. An interesting
scenario for using Kademlia are situations where the interaction of a node with the closest
ones, regarding the XOR metric applied to the identifiers, is more frequent as peers are
expected to have more information about the network topology near their identifier due
to the way nodes are split between buckets.

Chord The Chord protocol [57] is, alongside with Kademlia, one of the most well known
P2P protocols leveraging on the use of structured overlay networks. The main service
provided by Chord is the same as the one provided by Kademlia, i.e., the capability of
finding the nearest node to a given identifier, although one of the differences is related
with the capacity of Kademlia for providing the set of the closest nodes, while Chord is
only expected to provide the closest one. Like Kademlia, the Chord protocol is generally
used to implement DHTs with each resource being stored on the node with the closest
identifier, leveraging on consistent hashing. To operate correctly the Chord protocol
employs mechanisms to maintain, even in the presence of failures, a ring-shaped structure
where each node keeps information about its successor, i.e., the network node with the
next key on the identifier space. When implementing a DHT based on Chord, the successor
of a resource identifier is also the node that should store the resource. For performance
reasons, each node also maintains a set of entries called fingers to expedite the execution
of queries by contacting directly the nearest finger to an identifier, therefore avoiding, in
most situations, the need for iterating through consecutive nodes.
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Kelips The Kelips [23] protocol is a decentralizedprotocol forbuilding a DistributedHash
Table (or DHT). As in the case of other DHTs, like Kademlia or Chord, the Kelips protocol
relies on consistent hashing to attribute a given identifier to nodes and resources stored.
Then, nodes are put together in affinity groups with other nearest nodes by considering
the identifiers. Each node maintains information about nodes and resources stored in
its affinity group as well as some additional information about contact nodes from other
groups. The information maintained at a node, in Kelips, is associated with a heartbeat
count that, if not updated, will lead to the deletion of the entry. The updates are performed
through the dissemination of messages throughout the affinity group but also between
affinity groups by relying on the contacts known, by each node, in other groups. The
mechanisms employed in Kelips allow for efficient resource lookup and store operations,
as a node who wants to obtain a resource just needs to perform a hash on the resource
identifier and send the query to a contact within the respective affinity group. The contact
will then look for the resource in the index containing the resources stored on the affinity
group and return the address of the node that effectively stores the requested resource.
The operation to add a new file is equivalent to the one described before but the node, in
the group, responsible for storing the new resource will be chosen at random.

Gnutella After the already discussed Napster approach, Gnutella was devised as a fully
decentralized file-sharing peer-to-peer protocol taking advantage of a flooding technique
with limited scope [8] as a way to eliminate the need for a centralized search model. In the
first versions of Gnutella a simple approach was implemented where each network node
formed links, using TCP connections, to a set of other nodes and resource location was
performed by flooding queries throughout the network, expecting nodes with matching
resources to reply directly, with the requested data, to the nodes that acted as origin of the
queries [53]. This approach presented scalability issues as the usage increased, leading
the Gnutella network to became flooded with queries and, although a solution based on
time-to-live (TTL) values was put in place this, on the other hand, lead to queries failing
to obtain the expected results as only a few nodes were visited [25, 8].

Gia Gia [8] is a file-sharing P2P system reliant on an unstructured overlay network
developed with the objective of improving the mechanisms already proposed in Gnutella.
Gia relies on biased random walks (an approach also described in [29]) to find resources,
leading nodes to choose higher capacity peers when forwarding a query, although also
relying on a token based flow control mechanism where a node that handles more queries
earns the right, from its neighbors, to issue a higher number of queries. In the approach
followed by Gia, in addition to a TTL mechanism, a limitation on the maximum responses
that a query should originate is also put in place to tackle the load induced by the possible
existence of multiple results. Other solutions are also used in the overlay that supports
Gia, such as a mechanism for topology adaptation that strives to put nodes with low
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capacity near higher capacity ones, with the objective of increasing connectivity on high
capacity nodes, effectively following a super-peer approach.

Cyclon Cyclon [62] is a peer-to-peer protocol devised with the objective of managing
an unstructured overlay network, by maintaining a partial view of the network in each
node. To this end, Cyclon employs a shuffle mechanism that forces nodes to periodically
exchange messages containing a subset of the nodes from their views as well as updating
the local views with the information received from incoming messages. The protocol aims
to be robust in the presence of node failures and strives to maintain a set of beneficial
properties in the graph formed by the overlay network, like low diameter and clustering,
as well as symmetric node degrees. In fact, Cyclon can act as a peer sampling protocol, i.e.,
a protocol that is responsible for providing a sample of peers that can then be used by
other protocols for their operation [29, 38]. This sample is obtained through the partial
view that is maintained by each node, and can be important for the operation of other
protocols, such as the ones responsible for providing message dissemination services on
top of an overlay network. An interesting aspect of Cyclon is the dynamic sample of nodes
provided by the protocol, that changes over time due to the cyclic strategy [31] employed
through the exchange of periodic messages to update the views of the nodes.

HyParView HyParView [30] is a protocol responsible for maintaining an unstructured
overlay network devised with the objective of supporting a reliable broadcast of messages
in a gossip-based approach. Unlike other peer sampling protocols, like Cyclon, which
build an overlay network by relying on a single partial view composed by the known
neighbors, the HyParView overlay relies on two distinct partial views: a smaller one
known as active view, from which the sample of peers is effectively obtained, and a larger
one, called passive view, used to replace the nodes of the first one when needed. The
active view relies on a reactive strategy with nodes being replaced only when failures
occur, while the passive view is updated by a cyclic strategy with each node periodically
exchanging information about its known set of peers, from both views, with a member of
the active view. The main advantages of HyParView are related with its high reliability
even in the presence of a high level of node failures and the stability of the active view, due
to the reactive approach. This stability is important for the operation of some protocols
that may rely on the peer sampling service provided, like the Plumtree protocol described
below.

Plumtree The Plumtree [28] protocol is a decentralized protocol responsible for the
dissemination of data throughout a network. Plumtree employs an interesting approach
as it builds a tree on top of an unstructured overlay network maintained by an underlying
peer sampling protocol, like HyParView. This makes the dissemination of messages more
efficient, due to the structured approach where messages do not need to be flooded to all
neighbors of each node while, at the same time, provides fault tolerance even in conditions
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where a significant level of churn is expected. This is due to the underlying unstructured
overlay network, which is expected to be more resilient in unstable conditions when
compared to a structured one. For maintaining the tree structure the Plumtree protocol
relies on the messages received from neighbor nodes to detect cycles in the graph formed
by the underlying network. Therefore, if a message is received by a node from more than
one neighbor, a cycle is detected and one of the connections is considered redundant,
leading the following messages to not being transmitted through that connection. On
the opposite side, nodes periodically exchange messages, through flooding with all their
neighbors, containing the identifiers of the messages previously received, allowing a node
to detect if a message was lost. When a node discovers that a disseminated message
was not received, it can request the message from the (active) neighbor from whom it
discovered the absence of the message. Additionally, the node will also connect to the
active one, therefore healing the tree.

Freenet Freenet [10] is a peer-to-peer protocol aimed at providing decentralized file
storage with privacy guarantees. The objective of the protocol is to create a network able
to store resources and efficiently route queries to obtain them while, at the same time,
providing privacy guarantees for the nodes that store or request a given resource. The
Freenet protocol relies not only on hashing mechanisms to define the keys for the resources,
but also on a set of cryptographic primitives to guarantee privacy and security related
properties, like the integrity of the data. To perform the retrieval of a resource, queries
containing the resource key are routed through the network by relying on the routing
table of each node. The routing tables maintain information about the keys stored in the
local node or in other nodes, enabling a search for a given key by contacting the node
related with the nearest key available on the routing table, if the key is not contained in the
local node. Then, the same operation is performed by the next nodes until the resource is
found or a maximum hops limit is reached. When a resource is found, it is returned to
the node who performed the request through the inverse path, which enable the nodes
in between to cache the resource. To ensure privacy, the Freenet protocol relies on a set
of special mechanisms such as the capability of nodes to hide the origin of a resource
by claiming themselves as the origin, even though the resource was obtained from other
node. Moreover, in order to tackle attackers that might try to introduce excessive load on
the network, nodes can unilaterally decide to drop a given query if an excessive maximum
hops value is detected.

2.5 Frameworks for developing Peer-To-Peer protocols

With the objective of simplifying the development of peer-to-peer protocols multiple
frameworks were already developed. Examples of these frameworks include Appia [44],
Libp2p [49], and Babel [19]. These frameworks generally provide a set mechanisms to
simplify the development of decentralized systems by enabling the developers to take
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advantage of common communication, data exchange, and coordination primitives, when
developing decentralized protocols, eliminating the need for development from scratch.
These include primitives to allow the communication between different processes on a
network, e.g., by relying on protocols like TCP, UDP, or QUIC. Usually, mechanisms for
exchanging information between distinct protocols, running on the same process, are also
provided with the objective of composing multiple protocols together in order to develop
more complex ones.

Appia [44] is a framework focused on the development of decentralized systems by
combining multiple protocols together in a stack. Appia introduces the concept of channels,
a stack of protocol instances (or sessions) that should be crossed by messages, using a FIFO
mechanism, to impose the required properties. A session is, in fact, the implementation
of a layer encapsulating a given set of properties and multiple layers provide a given
Quality of Service (instantiated through channels). One of the main advantages of Appia
is related with the capability of inter-channel coordination by sharing sessions between
distinct channels. The communication between distinct sessions is performed through
events triggered by one session and received by others, who should specify their interest
in those events.

Libp2p [49] is a modular framework providing a set of libraries and protocols aimed
at acting as building blocks for developing protocols and applications where interaction
between distinct peers on a network is required, therefore simplifying the development
of solutions based on P2P approaches.

Libp2p provides mechanisms for identifying peers and addressing them on a network
as well as the capability of exchanging information through a set of communication pro-
tocols. The discovery and addressing mechanisms are supported on identifiers generated
from key pairs together with the use of mDNS for local network discovery and/or a
Kademlia DHT for discovery and routing. Regarding the communication aspects, imple-
mentations of transport protocols like TCP, UDP, QUIC, among others [50] are available
to be used in decentralized solutions leveraging on Libp2p. Other modules are also
provided like secure communication over TLS or hole punching to allow communication
between nodes behind firewalls and NATs. Depending on the modules required, the
implementations are available in multiple languages such as Go, Swift, or Rust [50, 51].

In the following section we focus on Babel as this is the framework on which our
implementation of the solution presented in this dissertation relies on. The rationale for
choosing the Babel framework as basis is discussed in Chapter 4, where the complete
implementation is presented in detail.

2.5.1 The Babel framework

Babel [19] is a Java framework focused on simplifying the development of decentralized
systems by allowing programmers to focus on writing algorithm related logic, instead
of spending time dealing with low level aspects like network communication, thread
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Figure 2.2: Overview of the Babel framework architecture (extracted from [19])

management, or concurrency. Figure 2.2, retrieved from the paper that describes the
framework [19], provides a high level overview of the Babel framework architecture.

In Babel, multiple protocols run on the same process and interact with each other using
an event-driven approach where interaction is performed through primitives like requests,
replies, and notifications. Timers are also available and can be set to trigger at time intervals
or a given moment to deal with both periodic and non-periodic tasks. Babel protocols need
to define when to send an event and how events arriving at the protocol will be handled by
implementing and registering callbacks (or handlers) for each event type. Both protocols
and events are defined by programmers, in Babel, through the extension of Java classes.
Each protocol has a unique identifier and should be registered in Babel, which will then
run it on a single thread where events are queued and executed in serial, thus removing
the need for dealing with concurrency. All events in Babel, namely messages, requests,
replies, notifications, and timers, also have a unique identifier to verify which event was
triggered and perform the necessary actions, e.g., executing the registered callbacks.

Communication, through the network, between distinct processes is also available by
using network abstractions called channels, through which messages can be sent. When a
protocol needs to communicate with another one on a different process, it should send a
message containing the data, through the channel, to the destination. Then, when arriving
at the destination, Babel messages are delivered, through the respective channel, to the
protocols related with that channel where they are handled accordingly, as any other
event, based on the callbacks registered. To allow the serialization and deserialization of
messages, respectively, from and to the Java classes that represent them, serializers and
deserializers should also be defined and registered, for a given type of message, on the
channel. These serializers are required, when sending a message, to serialize the object
into a byte array format or vice-versa when a message is received by the channel.
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2.6 Generic solutions for interacting with Peer-To-Peer protocols

Some works have already been proposed with the objective of defining generic solutions
for interacting with peer-to-peer protocols, in particular those relying on overlay networks.
An initial approach was presented by Dabek et al. in [14], devising some interesting
mechanisms for interacting with P2P protocols through a generic interface. However, this
approach falls short in some aspects.

First, the presented Application Programming Interface (or API) is only suitable for inter-
acting with structured overlay networks. Moreover, although considering mechanisms
for interacting with DHTs and message dissemination, these are not described in detail,
focusing only on an API called KBR (or Key-based Routing) containing operations related
with the routing of messages to nodes, given an identifier. We also consider that this
solution makes many assumptions about the operation of the protocols maintaining the
structured overlay, such as the proposed forward upcall which informs applications about
the routing of a message through the node. As an example, we believe that this upcall
creates two challenges: i) it is not in line with the expected behavior of protocols like
Kademlia, where queries are not effectively routed from node to node, and ii) allows ap-
plications to overwrite the operation of protocols by changing values related, for instance,
with the next hop.

Regarding the mechanism for overwriting the operation of protocols, although, as
discussed in the work, this could be an advantage due to the increased flexibility, we
believe that it delegates to the application a responsibility of the protocol. Additionally,
the range operation also cannot be implemented in protocols such as Kademlia [3]. Finally,
the work does not devise any operations for allowing a node to join or leave the network
maintained by the decentralized protocol (although an update upcall is defined to inform
applications about the occurrence of these events).

In summary, the approach presented in [14] proposes relevant mechanisms forallowing
a generic interaction with protocols based on structured overlay networks and the services
provided by them. These include the specification of callbacks to notify applications about
events occurred on the underlying protocol (for instance when a neighbor joined or left),
as well as the definition of an API for key-based routing. However, the authors approach
has an excessive focus on the operation of overlay networks, instead of focusing on the
programmers that are interested in building applications relying on the services provided
by decentralized protocols.

Relying on the work mentioned before as a starting point, an architecture known as
OverArch was proposed by Baumgart et al. in [3]. This architecture considers both struc-
tured and unstructured overlay networks and strives to address some issues regarding the
original approach proposed in [14]. In OverArch mechanisms for both key-based routing
over structured overlays and dissemination over unstructured overlays are proposed, as
well as additional components responsible for object location and storage, and anycast
or multicast operations. These mechanisms further extend the ones presented in [14],
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allowing protocols like Kademlia to be supported by the architecture.
Although providing a significant improvement, the solution put forward by OverArch

still maintains a high level of control over the operation of protocols, exposing interfaces
that are not simple to be used by programmers not familiar with the internal operation
of decentralized protocols as some protocol-related logic is exposed by the interface and
needs to be understood by the programmer. In fact, as in [14], OverArch even allows for
applications to overwrite the operation of protocols through the exposed API. Moreover,
OverArch does not simply operate as a layer of abstraction between decentralized protocols
and applications, as it provides a series of components related with communication and
routing table management, leading to the exposure of protocol-related logic through the
API, making it difficult to distinguish between the protocol and the abstraction.

Additionally, in the proposed architecture each interface is related with a specific type
of overlay (structured or unstructured), e.g., Key-based Routing for structured overlays
and Key-independent Message Dissemination for unstructured overlays. The possibility of
the same interface being used by protocols relying on both structured and unstructured
overlays is not considered.

Furthermore, none of the solutions discussed in this section provide mechanisms for
simplifying the management of multiple decentralized protocols required by an applica-
tion, namely regarding the generic instantiation of protocols by defining the services or
properties required. Additionally, different models of interaction between applications
and the exposed interfaces, for instance providing synchronous and asynchronous oper-
ations, are also not considered. These aspects are proposed in the solution presented in
this dissertation, together with the development of service-based interfaces focused on
simplifying the implementation of applications that rely on services provided by decen-
tralized protocols. We believe that programmers developing applications based on our
solution, through the mechanisms and generic abstractions provided, do not even need
to have a significant knowledge of the underlying protocols providing the decentralized
services as well as their operation.

2.7 Summary

In this chapter the fundamental concepts and related work for this dissertation were
presented. The chapter started with an overview of edge computing and peer-to-peer
architectures, followed by a study of overlay networks by presenting the key aspects and
work developed in this area that are taken into consideration throughout this dissertation.
Then, an overview of applications that can rely on the use of peer-to-peer protocols was
presented as well as a set of protocols able to provide services based on a decentralized
P2P approach. Additionally, we presented in this chapter a set of frameworks aimed
at simplifying the development of P2P protocols and decentralized systems. Finally,
a discussion about other works focusing on the development of generic solutions for
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interacting with decentralized protocols, in particular considering overlay networks, was
also provided.

In the next chapter we present the generic abstractions devised, for each service
provided by decentralized protocols, as well as the proposed architecture for our solution.
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Generic Decentralized Abstractions

In this chapter, we propose a set of generic abstractions, focused on key decentralized
services, devised with the objective of aiding programmers in the development of decen-
tralized applications. These are expected to simplify development, improve maintain-
ability, and facilitate further improvements, while abstracting, as much as possible, the
implementation details or internal operation of specific protocols.

Our objective is to propose an architecture that allows programmers to easily choose
(and switch between) the decentralized protocols used in an application by interacting
with service-based interfaces instead of protocol-based ones. Furthermore, the solution
should provide ways to easily instantiate new protocols, as well as manage the ones that
are currently running. Figure 3.1 provides a simple representation of the considered
model.

The chapter is organized as follows. First, in Section 3.1, we describe the challenges
to which these abstractions intend to answer and then, in Section 3.2, an overview of the
different services provided by decentralized protocols is presented, as well as the generic
interfaces proposed for interacting with each one. In Section 3.3, we present the proposed
solution architecture by describing each component in detail. The chapter ends with a
summary in Section 3.4.

Figure 3.1: Overview of the solution model
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3.1 Problem Description

Nowadays, multiple applications rely on decentralized protocols as a way obtain the
necessary services to operate. Leveraging on these services, applications can then provide
other high-level services like resource location, distributed file storage, publish-subscribe
mechanisms, distributed computation or messaging, among others.

A significant number of decentralized protocols already exist, many of which providing
the same types of services but relying on different approaches more suitable for specific
execution scenarios or operational conditions. By comparing these protocols is possible
to understand that, even when considering ones that provide the same set of services, the
interfaces exposed to enable application-protocol interaction are, in most cases, completely
different and unique to interact with each one. This, although contributing to the existence
of a diverse set of tools to be chosen from depending on the operational conditions, creates
challenges to developers, which include, but are not limited to:

• Developers need to be aware of multiple interfaces even when considering protocols
providing the same service;

• Changing the protocol used by an application to another one providing the same
set of services might require major application changes;

• Switching between protocols (possibly at runtime), providing a specific service, in
response to changes in operational conditions is not possible due to the individual
interfaces provided. This can happen, for instance, if in a decentralized application
that became more popular, the protocol in use needs to be changed due to the
increase in the number of users;

• If an application relies on multiple decentralized protocols for its operation, hav-
ing to deal with specific interfaces to interact with each one not only decreases
maintainability but also is more prone to errors.

As an example, we can consider protocols like Kademlia [42] and Chord [57] or
HyParView [30] and Cyclon [62]. By comparing the first two it is possible to understand
that both protocols implement a service able to provide applications with the node (or
the set of nodes) near a given identifier. In the second case the same situation can be seen
as both HyParView and Cyclon protocols are able to provide a peer sampling service,
by maintaining an overlay network and returning a subset of nodes, among all currently
active in the network, to applications. In both pairs of protocols, although the services
provided by each one are essentially the same, the interfaces exposed for allowing the
interaction with those services are different, which leads to the challenges described above
in this section.

Another challenge faced when building applications relying on decentralized protocols
is related with the code complexity needed to instantiate and interact with those protocols,
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in particular when an application needs to rely on multiple protocols. To simplify the
use of protocols by applications, not only generic interfaces should be defined regarding
each service as to overcome the challenges stated earlier, but also the instantiation of the
protocols providing those services should be simplified. This can be done by allowing
applications to only define the decentralized services needed, the properties required
from the protocols providing them, and a set of parameters related with the instantiation
and operation of those protocols. These parameters can include, for instance, their own
network address or the contact nodes to be used when joining the network.

3.2 Decentralized Services Interfaces

Part of the work required when proposing a solution for the challenges presented in
Section 3.1 is related with devising which decentralized services will be considered. This
includes the generic interfaces, related with each service, that must be implemented by
protocols providing those services and exposed to applications. It is worth noting however
that, as we will see in Section 3.3, the solution presented here is generic, thus allowing
the extension of the services proposed, through the definition and registration of new
interfaces.

Two main challenges arise when devising the interfaces of services. The first one is
related with the definition of the services itself by splitting protocols, and even operations
inside the same protocol, into each different service (based on functionality), and therefore
interface. On one hand, if interfaces have many, loosely related, operations this will result
in an excessive number of largely different protocols being required to provide the same
set of operations. This will lead to an unuseful solution where many protocols, although
providing a service, are not able to implement many of its operations, do not implement
them as expected, or have low performant implementations. This is particularly important
because applications should be able to use a decentralized protocol just by specifying
the services needed for their operation and expect an adequate protocol to be provided.
On the other hand, defining multiple, very similar, interfaces just to accommodate minor
differences between the operation of different protocols will result in numerous interfaces,
many of which only implemented by a very reduced number of protocols, defeating the
purpose of this effort.

The second challenge is related with the definition of the API for each operation.
Excessively generic operations will result in difficulties when using the API, for instance,
by forcing programmers to be aware of multiple parameters to be able to use the operations
correctly. Conversely, over specific operations will result in multiple, very similar and
closely related, operations together in the same service interface therefore resulting, once
again, in a hard-to-use programming interface.

When designing the interfaces for each service, we not only considered the operations
that are available to applications, but also the existence of notifications. We defined notifi-
cations as information that applications can receive (asynchronously) from decentralized
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protocols, through each service interface, but that are not a direct result of a requested
operation, e.g., information about a status change of another network node.

We also considered the existence of service-related properties in each interface, like
the type of overlay (structured or unstructured) in which a protocol, implementing the
interface, relies on. As a result, a set of properties were defined for each service. These
properties are optional and each protocol, providing a set of services and therefore
implementing a set of interfaces, can then define what properties are provided and their
respective values. Service-related properties can be used by applications to choose the
best protocol for the required operation, among all that provide the same service.

Before presenting each one of the service-based interfaces considered, it is important
to offer explanations for some parameters that are widely used in the operations described.
In some operations we present parameters with the Host data type. This type can be
considered as the information required to identify and contact a given node on the
network, e.g., a <IP, Port> pair. Some operations also contain a parameter, called
requestId, described as a byte array. This parameter makes it easier to use the interfaces
of services in an asynchronous way, relying on a request/reply event-driven architecture,
by guaranteeing that the identifier provided by applications on the request, can be returned
on the reply, therefore allowing applications to easily match a reply with the respective
request.

Based on the study of the applications and protocols discussed, respectively, in Sec-
tions 2.3 and 2.4, as well as the remaining related work, we propose four services that can
be provided by decentralized protocols to applications.

As many protocols [30, 62, 42, 57, 8, 10, 23] require operations to manage the network
(generally an overlay), e.g., in order to join or leave it, a Membership Management service is
proposed, providing the required operations. This service becomes particularly important
when considering protocols whose objective is exactly maintaining a network of nodes
like the peer sampling protocols. To allow the dissemination of messages throughout the
network, a service provided by multiple decentralized protocols [30, 62, 28, 31, 58, 43], the
Dissemination service is also defined.

Additionally, to support the capability of finding a given node (or set of nodes) by
providing a key, a resource identifier, or query data a Routing service is proposed [42, 57,
8]. Finally, the Resource Storage service is also presented with the objective of supporting
protocols [42, 57, 23, 10, 8] providing a decentralized resource storage service.

It is important to note that, contrary to what is proposed in [14] and [3], we do not
make any assumption about whereas a service should be provided by protocols relying on
structured or unstructured overlay networks. As an example, we can consider the Routing
service. This service can be provided both by protocols relying on a structured overlay to
obtain the nodes near a given identifier and by protocols leveraging on an unstructured
overlay to return the nodes that are related with a given query. The same logic can be
applied to the Dissemination service as it can be provided by a protocol relying on a
structured overlay (e.g., using a tree to remove cycles) or an unstructured overlay through
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flooding. Similarly, in the remaining services no assumptions are made regarding the
network structure.

In Sections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 we present and discuss each one of the different
services described before, as well as the operations, notifications, and properties defined
in the interfaces related with each one.

3.2.1 Membership Management

The Membership Management service interface is related with the network management
operations that are provided by the decentralized protocols. We expect that almost all
protocols need to implement this interface as they are required to provide a management
service with operations for joining or leaving a network and getting the current neighbors.

Although we expect many protocols to implement this interface, it is particularly im-
portant when considering protocols that provide a peer sampling service, like HyParView
or Cyclon because these protocols can take advantage of the GetNeighbors operation to
provide the sample of network nodes to applications.

The following sections describe, respectively, the operations, notifications, and prop-
erties considered for the Membership Management service interface.

3.2.1.1 Membership Management Operations

For the Membership Management service interface three operations were considered:
Join, Leave, and GetNeighbors. The detailed description of each operation is presented
below.

Join(Set<Host>) The Join operation is responsible for allowing a node to join a network
given a set of nodes (defined here with the Host data type) that should be used as
contact nodes. The way each protocol takes advantage of this set for joining the
network is protocol-dependent, e.g., a protocol can use only the first node on the set
(eventually contacting other ones if some are not available), multiple nodes with no
specific order, or multiple nodes by the order they appear on the set.

Leave() The Leave operation is responsible for allowing a node to leave the network. This
operation does not require any parameters and protocols should implement it in a
way that is in accordance with the expected protocol behavior when a node stops or
crashes and no longer takes part on the network. A node that left the network using
this operation should be able to join again using the Join operation. As an example,
if a node 𝐴 requests the Leave operation, the network should be on the same state
that would be expected if 𝐴 crashes and then restarts (without performing the Join
operation).

GetNeighbors(byte[], Integer) → (byte[], Set<Host>) The GetNeighbors opera-
tion is responsible for providing the set of nodes that are neighbors of the node
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that requests the operation. The definition of a neighbor is protocol-dependent
and each protocol providing the Membership Management service, and therefore
implementing this operation, can provide the set of neighbors based on the specific
protocol definition.

As explained before, this operation is particularly important when considering
protocols that provide a peer sampling service, as they can take advantage of this
operation to provide the sample of network nodes.

The GetNeighbors operation receives the requestId and numNeighbors parameters.
The requestIdparameter can be defined, when making the request, as a unique iden-
tifier (a byte array) to simplify the operation use in asynchronous environments. The
numNeighbors is an optional Integer parameter allowing applications to define how
many neighbors should be returned. Protocols can use this parameter as intended (or
not consider it at all), e.g., providing all neighbor nodes when numNeighbors <= 0
or at most numNeighbors nodes if numNeighbors > 0.

The operation returns the requestId provided, as explained before, and a set of
nodes (defined here with the Host data type) that represent the neighbors of a node.
The size of the node set may be variable, depending on the protocol parameters
and operation, like the active view size on the HyParView protocol or the cache
size on Cyclon, and/or the numNeighbors parameter if it is defined and the protocol
supports it.

3.2.1.2 Membership Management Notifications

Two (asynchronous) notifications, NewNeighbor and DropNeighbor, were devised to be
triggered, by protocols, to applications interacting with them through the Membership
Management service interface. The detailed description of each notification is presented
below.

NewNeighbor We considered the NewNeighbor notification to be sent, by protocols, to
applications interacting with them through the interface when a new neighbor is
added, i.e., when a new node is present on the set returned by the GetNeighbors

operation, if no limitation on the set size is requested. The notification only has one
field, represented here with the Host data type, containing the information about
the new neighbor.

DropNeighbor We considered the DropNeighbor notification to be sent, by protocols,
to applications interacting with them through the interface when a neighbor is
dropped, i.e., when a node is removed from the set returned by the GetNeighbors

operation. The notification only has one field, represented here with the Host data
type, containing the information about the removed neighbor.
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3.2.1.3 Membership Management Properties

A set of properties, related with the Membership Management service interface, was also
defined in our solution. As explained before these properties are optional and allow
applications to choose the best protocol, considering their specific requirements, between
all protocols providing the same service. Therefore, protocols may or may not provide
values to those properties, but, if provided, these properties can help applications to
choose the best protocol for their operation. The properties considered for this service are
presented below.

View Type The View Type property defines the type of network view, Global or Partial,
of a given protocol. As discussed in Section 2.2.1, we consider that protocols rely
on a global view of the network if every node knows all the other network nodes as
neighbors. On the opposite side, we consider a partial view if a node might only
know a subset of all network nodes as neighbors. If a protocol maintains a partial
view of the network, a mechanism needs to exist in order to update it, more details
on this are provided below when describing the Peer Sampling Type property.

Peer Sampling Type This property can be used by peer sampling protocols to define its
peer sampling service as Static or Dynamic. We consider that a peer sampling
protocol provides a static sampling service when the sample of nodes returned, i.e.,
the set of nodes returned by the GetNeighbors operation, does not change during
the operation and after a stabilization period, if no nodes join or leave the network.
HyParView is an example of a static peer sampling protocol. Any peer sampling
protocol that maintains a total network view is considered static because, if the view
contains all nodes on the network, then it will only change if a node joins or leaves.

A peer sampling protocol can be considered as dynamic if the sample of nodes
returned suffers changes over time, even if no nodes were added or removed from
the network. The Cyclon protocol is an example of a dynamic peer sampling protocol.

The terms Reactive/Cyclic can also be used to express a similar property, although
these terms are more related with the update mechanism for the partial view of
protocols [31]. On one hand, reactive peer sampling protocols only update their
network view in reaction to nodes entering or leaving the network, thus maintaining
a static sample when no changes occur on the network membership. On the other
hand, cyclic peer sampling protocols employ a cyclic strategy to update their views by
periodically exchanging peers with other nodes, thus providing a dynamic sample
of nodes that changes over time. The preference, in this work, for the usage of the
Static/Dynamic terms is explained by our focus on the user taking advantage of
our solution, more interested in the service provided by the protocol rather than its
internal mechanisms. This becomes clear when studying protocols like HyParView
which employs a combination of a reactive and cyclic strategies, although, from a
user standpoint, the view provided is effectively static.
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Request Nodes This property is closely related with the numNeighbors parameter of the
GetNeighbors operation and is defined as a boolean value. If the property is set as
true this means that the protocol supports the definition of a maximum number of
nodes to be returned when performing the GetNeighbors operation, i.e., considers
the numNeighbors parameter. If the property is set as false the protocol does not
consider the numNeighbors parameter.

Overlay Structure This property allows the classification of a protocol as structured or
unstructured, based on the structure of the overlay network on which it relies.
As explained in Section 2.2.3, in a structured overlay network nodes are required
to perform connections with other nodes to enforce a specific network topology,
generally more beneficial to the task being performed. Conversely, in an unstructured
overlay network the connections between nodes are not enforced and the network
topology, at a given time, cannot be inferred a priori because it depends on factors
like the moment in which a given node joined or left the network, or even random
events like membership shuffles between nodes.

3.2.2 Routing

The Routing service interface provides the operations related with the capability of
obtaining a node or a set of nodes, present on the network, based on a query, therefore
effectively routing the query to a node. Many protocols, like Kademlia and Chord, provide
this service by returning the nearest nodes to an identifier based on a protocol-dependent
distance definition.

Protocols focused on resource location both based on exact-match queries, like Kadem-
lia or Chord, or non exact-match queries, like Gnutella [53, 25, 8] or Gia [8], can take
advantage of this interface by implementing the FindNodes operation.

In the following sections we describe the operations and properties considered for the
Routing service interface. In this interface no notifications were defined.

3.2.2.1 Routing Operations

For the Routing service interface we considered a FindNodes operation, described below,
to be used by applications interacting, through the interface, with a decentralized protocol
providing the service.

FindNodes(byte[], byte[]) → (byte[], Set<Host>) The FindNodes operation is re-
sponsible forallowing the routing of a query, throughout the network, to a given node
or set of nodes. The operation receives two parameters, requestId and searchData.
The requestId parameter, defined as a byte array, can be leveraged by applica-
tions, as explained before, when interacting with protocols asynchronously, whereas
the searchData parameter contains the query to be verified when performing the
routing operation.
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With the objective of maintaining the operation as generic as possible, we do not
make any assumption on the data type of queries that can be sent to protocols to
perform the routing operation and, as so, we consider the searchData parameter
as being a byte array. Thus, protocols implementing the operation are responsible
for processing the query data received in accordance with their specific operation,
e.g., protocols like Gnutella or Gia may consider the searchData to be a textual
representation of a resource, whereas protocols like Kademlia or Chord can perform
a hash on the data provided and use the result to return the nearest nodes based on
some distance metric.

The operation returns the requestId provided and a set of nodes (defined here with
the Host data type) containing the result of the routing operation. The use of a set
as a return value is explained by the necessity of maintaining the operation generic,
in order to allow it to be implemented by multiple routing protocols with different
necessities. This way, as an example, protocols like Gnutella or Gia can provide the
set of nodes where matching resources were found, with no specific order, Chord
can provide a set containing only one element, representative of the nearest node to
the identifier, while Kademlia can return an ordered set of the nearest nodes to the
given identifier, based on the XOR metric.

3.2.2.2 Routing Properties

Regarding the properties of the service, we present below the Multiple Results property.

Multiple Results The Multiple Results property consists on a Boolean value specifying if
a protocol can return multiple nodes when performing the FindNodes operation, i.e.,
if the returned set may contain more than one element, or otherwise, if the protocol
only returns at most one element.

3.2.3 Resource Storage

The Resource Storage service interface provides operations that can be leveraged by
protocols implementing mechanisms for resource storage and location, like Distributed
Hash Tables (or DHTs). Many protocols that provide the Routing service, presented in
Section 3.2.2, are also expected to provide this one, however we consider that both services
have significant differences regarding their operations and, as so, they should be separated
into two distinct services.

Therefore, while the Routing operations are related with obtaining a set of network
nodes by routing queries throughout the network, the Resource Storage operations are
related with the ability of providing decentralized resource storage, independently of
the underlying mechanisms. Even so, many protocols that provide a Routing service,
by returning the nearest nodes for a given query, generally relying on an identifier, are
also capable of storing resources on those nodes, by considering the resource identifier,
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effectively implementing a DHT. This is the case of protocols like Kademlia and Chord,
already presented as an example previously on Section 3.2.2.

We can also consider the Freenet protocol [10] as a possible protocol for exposing this
interface to provide its operations. In fact, Freenet is an example of a protocol that might
not provide the Routing service but provides the Resource Storage one.

The following sections present the operations and notifications devised for this service
interface.

3.2.3.1 Resource Storage Operations

We considered three operations, related with the storage of resources, to be included
in the interface of the service: PutResource, GetResource, and RemoveResource. Each
operation is presented below.

PutResource(byte[], byte[]) The PutResource operation allows the storage of a new
resource on the system. Our interface defines two parameters for this operation:
the key parameter, used as key for the resource (e.g., the name of the resource),
and the data parameter, which contains the content. As we do not make any
assumption about the key or data types, we consider both fields as being an array
of bytes. Protocols implementing this operation should then store the resource in
some node(s) present on the network, taking into consideration both the key and
content, for allowing later retrieval.

It is important to note that, regarding resource persistence on the decentralized
system, e.g., when dealing with node failures, our solution does not impose any
type of guarantees and, consequently, this depends entirely on the protocol in use.
However, many decentralized protocols [10, 42, 57] store resources on multiple
nodes to guarantee some degree of persistence even in the presence of failures.

This operation should also be used to update a given resource, by providing the
resource key and the new content to update. Once again, the guarantee that the
resource(s) with the given key, present on the network, will be updated depend on
the protocol in use.

GetResource(byte[], byte[]) → (byte[], Boolean, byte[], byte[]) This opera-
tion allows the retrieval of a resource, stored on the decentralized system, by provid-
ing the respective key. We propose two parameters for performing this operation: a
requestId parameter, defined as a byte array, to facilitate the use of this operation
in asynchronous environments, as explained before, and a key parameter, a byte
array which contains the identifier of the resource to obtain.

The operation should return the requestId provided during the call, a boolean
found indicating if the requested resource was obtained, the key used to perform
the resource search, and the content (defined as a byte array), which is only valid
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if the found field is set to true. As before, the guarantees regarding the retrieval of
a resource with a given identifier, even if present on the network, or which one is
returned, if multiple exist with the same key on different nodes of the system, are
protocol-dependent.

RemoveResource(byte[]) The RemoveResource operation allows for the removal of a
resource stored on the network, given an identifier. The operation only receives a
key parameter, defined as a byte array, which represents the identifier of the resource
to be removed. As in the above operations, the guarantees regarding the removal of
resources, i.e., if all resources stored on the system with the provided identifier will
be removed, are up to the protocol in use.

3.2.3.2 Resource Storage Notifications

We propose two notifications to be triggered by protocols and sent to applications in-
teracting with them through this service interface: a NewResource notification and a
RemovedResource notification. These notifications should be triggered when a resource
is inserted or removed on a node of the decentralized protocol implementing the service.
More details about both notifications are presented below.

NewResource The NewResource notification should be triggered when a new resource is
inserted on a given network node of the protocol implementing the resource storage
interface. The notification contains the key of the inserted resource. As an example,
if we consider the Kademlia or Chord protocols, this notification can be triggered,
on a given node, after a resource is stored on it, i.e., the node is the nearest one when
considering the key of the resource. If a resource is stored on multiple nodes, e.g.,
for persistence purposes, the NewResource notification should be triggered in all of
them.

RemovedResource The RemovedResourcenotification should be triggered when a resource
is removed on a given network node of the protocol implementing the resource
storage interface. The notification contains the key of the removed resource. As
before, if we consider the Kademlia or Chord protocols, this notification can be
triggered, on a given node, when a resource is removed from the node. If a resource
stored in multiple nodes is removed from all of them, a RemovedResourcenotification
is expected to be triggered in each one.

3.2.4 Dissemination

The Dissemination service interface is responsible for enabling the interaction with mes-
sage dissemination operations. This interface should be implemented by protocols that are
able to disseminate a message throughout the network, for instance providing a broadcast
or multicast service.
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Protocols responsible for the dissemination of information, like HyParView or Cyclon
(when considering the use of these directly as dissemination protocols), Plumtree [28],
GoCast [58], or Araneola [43], are examples of protocols that can implement this interface
to provide the dissemination service.

In this work we consider the existence of a Disseminate operation that should be
implemented by protocols providing the service. This operation enables applications, rely-
ing on dissemination protocols, to interact with the dissemination service, independently
of the underlying protocol, through a common interface.

The following sections describe the operations and notifications considered for the
Dissemination service interface.

3.2.4.1 Dissemination Operations

For the Dissemination service interface, we considered a Disseminateoperation, described
below, that can be used by applications interacting, through the interface, with a decen-
tralized protocol providing the service in order to disseminate information throughout
the network.

Disseminate(byte[]) The Disseminate operation is responsible for allowing the dissem-
ination of data throughout the network and should be implemented by protocols
providing this service. The operation considers only one parameter, data, which
contains the information to be disseminated. As we do not make any assumption on
the type of information that can be disseminated by protocols providing this service,
the data parameter can be considered as an array of bytes.

3.2.4.2 Dissemination Notifications

A DataReceived notification can be sent, by protocols, to applications interacting with
them through the Dissemination service interface. We present below a detailed description
of this notification.

DataReceived The DataReceived notification can be leveraged to notify the applications,
relying on a protocol providing the dissemination service, that new data, dissem-
inated by any node on the network, was received. The DataReceived notification
contains the data field, a byte array responsible for storing the disseminated data.

3.3 Proposed Solution

In this section we propose a solution for the challenges presented in Section 3.1. Our
solution consists on multiple components, working together to provide an abstraction
layer between applications and decentralized protocols. The purpose of this abstraction
layer, acting as a middleware, is providing a generic, standard, and simple way for allowing
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Figure 3.2: Overview of the solution components

applications to interact with decentralized protocols, through generic interfaces defined
per service, in opposition to the common per protocol approach.

Additionally, the solution presented here also aims at simplifying the choice and
instantiation of the most adequate protocol, providing the decentralized services required
by an application, as well as allowing a simple management of the multiple decentralized
protocols being executed simultaneously to provide the required services.

Our solution consists on four main components:

• The Protocol Manager;

• A set of generic interfaces for allowing applications to interact with decentralized
protocols;

• The decentralized protocols providing a set of services;

• The applications that require services provided by the protocols.

Figure 3.2 presents an overview of the components as well as the interactions between
them. Sections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 describe, in detail, each one of the components
considered.
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3.3.1 Protocol Manager

The Protocol Manager component is responsible for managing all the other system com-
ponents as well as maintaining information about their operation. In our solution we
consider that, in each process, only one instance of the Protocol Manager should exist,
and every other component should be able to access the Protocol Manager to obtain the
necessary resources or information about the system.

Among other relevant information, the Protocol Manager should maintain information
about:

• The decentralized protocols available, as well as the services provided by each one;

• The interfaces available (related with each service) for interacting with decentralized
protocols;

• The decentralized protocols running at a given moment;

• The generic interfaces instantiated, at a given moment, to enable the interaction
between the applications and the running protocols;

• Global system properties;

• Properties that are required when instantiating the protocols.

The Protocol Manager provides the necessary operations for allowing the instantiation
of a new decentralized protocol, providing a given service required by an application.
We considered that, in our solution, applications can request the instantiation of a new
decentralized protocol both by providing the protocol name (e.g., Kademlia) or the services
provided (e.g., Routing). As a result, the Protocol Manager should expose two distinct
operations, described below and presented in Listings 3.1 and 3.2, to enable the use of each
one of the different mechanisms. Besides the parameters presented here the operations
can also be extended with other, implementation-specific, ones.

It is important to note that, when requiring the instantiation of a new protocol, an
identifier, the protocolId, should be provided to be associated with the protocol. Appli-
cations, as well as other system components, can then rely on this identifier to refer to the
specific running protocol when interacting with the Protocol Manager, e.g., for requesting
the interfaces to interact with it.

Both operations, for instantiating a new protocol, should return the required informa-
tion about the running protocol. This information should contain, at least, the protocol
identifier, as well as the generic interfaces to be used when interacting with each one of
the services provided by the protocol. Other implementation-specific information may
also be provided as a return value of the operation.

The operation presented in Listing 3.1 should be used to initialize a new decentralized
protocol by name. The operation receives the parameters described below.
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Listing 3.1: Protocol instantiation by name
<Integer,Set<GenericAPI>> newProtocol

(DecentralizedProtocol protocol, Integer protocolId,
Boolean useExisting, Host host,
Properties runProperties)

protocol The protocol parameter should contain information about the protocol to be
instantiated.

protocolId The protocolId parameter should be used, by applications, to define an
identifier for the protocol to instantiate. This identifier can then be used, by other
system components, to refer to a specific protocol, for instance, when interacting
with the Protocol Manager.

useExisting The useExisting parameter can be used by applications to define what
should happen if an instance of the requested protocol is already running. If this
parameter is set to true and an instance of the requested protocol is already running,
the Protocol Manager does not create a new one and, instead, returns information
about the existent one. If this parameter is set to true, applications should check
the identifier of the protocol returned (protocolId) as a result of the newProtocol

operation, because it might not be the one requested if another one is already running.

host The host parameter allows applications to specify the host information, e.g., IP
address and port, that the protocol should use for its operation. If the useExisting
parameter is set to true and a protocol instance is already running, this parameter
should not be considered.

runProperties The runProperties parameter provides applications with the ability to
specify the static configurations that a protocol should use when running. As an
example, if we consider the Cyclon protocol, these properties allow us to define
the cache size, the shuffle interval, or how many nodes should be exchanged in
each shuffle. It is important to note that we do not make any assumptions about
the existence of default configurations specifying the values, for each property, that
should be used if no others are provided. However, if those configurations exist, they
must be overwritten by the ones defined in the runProperties parameter. Moreover,
if the useExisting parameter is set to true and a protocol instance is already running,
this parameter should not be considered.

The operation presented in Listing 3.2 can be used to initialize a new protocol by
specifying the set of services it should provide, i.e., without needing to choose a specific
protocol. This operation enables the use decentralized protocols, even without requiring
applications to choose a specific protocol. Below we present the parameters that should
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be supplied when requesting the operation. We omitted the explanations related with the
parameters that were already discussed before.

Listing 3.2: Protocol instantiation by service set
<Integer,Set<GenericAPI>> newProtocol

(Set<Services> servicesSet,
Integer protocolId, Boolean useExisting, Host host,
Properties requiredProperties, Properties runProperties)

servicesSet The servicesSet parameter consists on the set of services that should be
provided by the protocol. This way applications do not need to define exactly which
protocol will be instantiated, but only the services required. Each service matches a
generic interface presented in Section 3.2.

requiredProperties The requiredProperties parameter enables applications to pro-
vide a set of properties to be used when choosing the protocol to be instantiated,
between all protocols that provide the services requested in the servicesSet param-
eter. The properties provided in the requiredProperties parameter differ from the
ones in runProperties: whereas the first ones are related with each decentralized
service (presented in Section 3.2) and allow choosing the most appropriate protocol
for a specific scenario, the second ones are related with the protocol execution, as
explained before.

We do not enforce a system behavior when multiple protocols are available that
match both the set of services and properties required by an application. Therefore, each
implementation can define its own behavior in this situation, e.g., by having a pre-defined
order to choose from when instantiating a new protocol.

3.3.2 Generic Interfaces

The generic interfaces are special protocols that allow the interaction between applications
and decentralized protocols. Each interface consists on a set of operations, notifications,
and properties, related with a concrete decentralized service. We presented the interfaces
considered during this work in Section 3.2, however, if there is a need for an extension,
more can be defined by specifying the operations, notifications, and properties available.
This allows for our solution to be generic and suitable to be used with a wide variety of
decentralized protocols, even if the service provided was not yet considered.

Although each interface instance is unique to interact with a service provided by
a protocol, multiple applications should be allowed to take advantage of it to interact
with the service. All interfaces related with a protocol are created when the protocol
is instantiated and, if a new application needs to use a service provided by a running
instance of a protocol, it should request the appropriate interface through the Protocol
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Manager (using the protocol identifier) and rely on it to perform the interactions. When a
new protocol is instantiated through the Protocol Manager, it will provide applications
with the instances of the generic interfaces through which the operations can be requested,
as seen before.

We propose three mechanisms for allowing the interaction between applications and
generic interfaces in order to request the execution of an operation made available by a
service:

• A fully asynchronous interaction based on event-driven mechanisms with requests
and replies;

• A Promise-based interaction where applications are able to decide how to wait until
the completion of an operation;

• A synchronous (blocking) interaction where applications always wait until the
operation is complete.

By considering a wide range of interaction mechanisms we aim at: i) providing applica-
tions with different possibilities of interaction, depending on their specific necessities and
ii) not limiting the languages or frameworks that can be used to implement our solution,
even if the implementation of some mechanisms is not possible or needed.

The fully asynchronous interaction model is based on requests, made by applications
through the interfaces, that are then handled by the decentralized protocol implementing
it. Upon completion of the triggered operation, and if applicable, the interface will then
forward the reply to the application. In fact, we expect that interfaces should allow
applications to register handlers when performing an asynchronous operation request,
that will be executed when the result is available. Handlers can also be registered on the
interface, through specific operations, to deal with notifications sent from protocols to
applications, as defined in Section 3.2.

When a notification is to be delivered, the interface protocol is expected to obtain all
handlers registered for that type of notification and execute them. Similarly, when the
result of an operation is available, the interface should obtain the handler registered when
requesting the operation and execute it.

The promise based interaction model allows implementations to take advantage of
the constructions present in many programming languages, like Java [21], Scala [24],
C++ [20], or Rust [22], where an asynchronous operation can return a Promise (or Future)
that can later be tested (or waited) for completion. This allows applications to control
the amount of concurrency and deffer the execution of operations, e.g., by requesting an
operation, obtaining a Promise, performing some other computations, and verifying later
if the operation is completed and the results are available in order to continue execution.

In the synchronous interaction model, applications will immediately block and wait
for the completion of the requested operation, if applicable. This mechanism, although
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not allowing any type of concurrent execution, provides developers with a simpler and
less error-prone model of interaction as they do not need to define handlers for the results
of asynchronous operations nor deal with Promises.

Even through, as stated before, three types of application-interface interaction models
are possible within our solution, some operations, due to its nature, might not provide
all interaction options. As an example, we can consider the Disseminate operation of the
Dissemination service interface. This operation does not return any value to the application
requesting it, as it triggers the dissemination of data throughout the network, although
the application who requested it will also receive the data in the form of a notification.
In this case, in general, only one option is available for requesting the operation, as the
distinction between synchronous and asynchronous interaction does not exist in most
(obvious) implementations.

In summary, generic interfaces not only need to provide the operations required to
allow the interaction (synchronous and asynchronous) between applications and protocols,
but also ways for registering handlers for notifications and replies that can be delivered
asynchronously by the service. Moreover, to operate correctly, we believe that generic
interfaces need to maintain data structures able to store and retrieve information about
which handlers are registered for a given notification or reply, as well as about the
operations currently in progress. Those structures should be as efficient as possible
because, for instance, if the retrieval of the handlers that need to be executed is inefficient,
this will result in a negative impact on the operation of applications relying on the service.

3.3.3 Decentralized Protocols

The decentralized protocols are the core component of the system, and they implement the
services that can be leveraged by applications to perform their operations. As an example,
if we consider the Kademlia or Chord protocols they are able to provide the operations
related with the Routing service, as well as the ones related with Resource Storage.

With our solution, we strive on allowing developers to implement decentralized
protocols, that can be used together with the proposed abstraction layers, by imposing as
few restrictions as possible on the development. This way protocols must define which
services to provide and, as a result, the required interfaces, among the ones already
devised or by defining new ones. Then, protocols need to implement the logic to receive
operations, process them, return results, and trigger the notifications exposed by the
service interface. Although not mandatory, properties related with each service provided
may also be defined, to allow applications to choose the most suitable protocol for their
operation. We believe that even protocols already implemented on a given programming
language and/or framework can be easily adapted to our solution, just by specifying
which services are provided and implementing the logic required to deal with the related
interfaces.
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In addition to the impositions discussed before, regarding the necessity of imple-
menting the operations and notifications related with the interfaces of the services, some
additional restrictions may also exist related with the methods and parameters required
when instantiating the protocols. These restrictions depend on the implementation of the
Protocol Manager and are related with how the necessary parameters are transmitted to
the protocol, e.g., the protocol identifier, the host information, or the configurations related
with the protocol operation. In fact, although this might be implementation-dependent,
we expect the way each protocol is instantiated, i.e., the methods that need to be executed
on instantiation and the initialization parameters, to be common to all protocol implemen-
tations in order to allow the Protocol Manager to always use the same instantiation logic,
regardless of the protocol.

As all other components in the system, protocols can also rely on the Protocol Manager
to obtain information about the system operation, namely other running protocols, system
configurations, generic interfaces to interact with other protocols, among others.

3.3.4 Applications

The applications are the system components that act as a client of a set of services,
provided by a decentralized protocol. Applications should obtain from the Protocol
Manager instances of protocols providing the services required for their operation, both
by requesting a new instance to be created, or by obtaining information about a currently
running one. Applications, as well as any other component, can also request from the
Protocol Manager other relevant information about the system operation.

As explained before, applications interact with the decentralized protocols by re-
questing operations and registering handlers through the generic interfaces provided.
Consequently, application programmers are able of changing the protocol providing a
given service to another one, just by modifying the instantiation call to the Protocol Man-
ager, without making further changes on the code, as the interfaces remain the same.
However, applications should never interact directly with protocols and, as such, requests
for obtaining a protocol instance or to execute an operation must always be performed,
respectively, through the Protocol Manager or the returned generic service interfaces.

The solution presented here also makes it easier to reuse code, therefore simplifying
application development. If two applications 𝐴 and 𝐵 are expected to rely on the same
decentralized services, even though provided by different protocols, we expect that code
from application 𝐴 can be reused in 𝐵, and vice-versa. This happens because, although
the underlying protocols are not the same, the interfaces through which both applications
interact with the protocols are exactly the same. As expected, protocols can also be reused
in multiple applications without any change on both protocols and applications due to
the common interfaces implemented.

In fact, with this solution, we consider the possibility of also having decentralized
protocols acting as applications. This happens, for instance, if we consider dissemination
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Interface
Components

Services
Membership Management Routing Resource Storage Dissemination

Operations
Join
Leave

GetNeighbors
FindNodes

PutResource
GetResource

RemoveResource
Disseminate

Notifications NewNeighbor
DropNeighbor

— NewResource
RemovedResource

DataReceived

Properties

View Type
Peer Sampling Type

Request Nodes
Overlay Structure

Multiple Results — —

Table 3.1: Summary of the proposed service-based generic programming interfaces

protocols, such as Plumtree, that rely on a peer sampling service to obtain the sample of
network nodes required for its correct operation. In these situations, the dissemination
protocol has a double role, acting as a protocol providing the dissemination service and,
at the same time, as a client application of protocols providing, through the Membership
Management service interface, the peer sampling service. The dissemination protocol
can even provide a Membership Management interface for applications to interact with,
by forwarding the operations to the underlying protocol. As an example, if the Join

operation of the dissemination protocol is requested, this operation will effectively be
performed by the underlying peer sampling protocol which is responsible for maintaining
the network.

Using decentralized protocols as client applications of other underlying protocols,
required for their operation, like in the dissemination example discussed above, allows
for an even more generic approach with more configurable, although simple to use,
decentralized protocols. As an example, we can have multiple instances of the same
protocol, running on the same process, relying on distinct underlying protocols, among
all available, for providing a given service. This could be done just by defining a property
on the runProperties, during protocol instantiation, which will then lead to a change
in the underlying protocol, requested from Protocol Manager, during the upper protocol
initialization.

3.4 Summary

In this chapter we have presented a proposal that aims at simplifying the interaction be-
tween applications and decentralized protocols with a positive impact on the development
and maintainability of decentralized applications.

Our solution acts as an abstraction layer or middleware between applications and
protocols, providing the first ones with generic interfaces focused on the services provided,
instead of the protocols itself. Moreover, through the definition of the Protocol Manager,
we also provide simple and easy-to-use mechanisms to manage all decentralized protocols
running on a process, making it easier for building and maintaining applications requiring
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multiple decentralized services to work.
To allow the development of the solution presented here, it was also necessary to study

various already existent decentralized protocols, as well as the distinct services provided by
them, in order to define coherent, comprehensive, and useful generic interfaces. Table 3.1
provides a summary of the operations, notifications, and properties proposed for each
generic programming interface.

Throughout this chapter we have not made any assumption regarding implementation
aspects, namely the ones related with programming languages or frameworks. We believe
that our architecture is generic enough to be implemented in multiple programming
languages and frameworks depending on the use case and/or developers preferences.

In the following chapter we propose a reference implementation, based in Java, of the
solution presented here.
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Implementation

In this chapter we present a reference implementation of the solution laid out in the
previous chapter. As stated previously, our solution is generic enough to be implemented
in a wide variety of programming languages and frameworks, hence, when describing it in
Chapter 3 we have not made any assumption regarding implementation aspects. Here, we
present an implementation of our solution for generic abstractions based on the Babel [19]
Java framework. In this implementation we not only implemented the programming
interfaces to interact with decentralized protocols, but also the management mechanisms
to allow a simple use, instantiation, and management of decentralized protocols and
services by applications.

The chapter is structured as follows: first, in Section 4.1 we provide an overview of our
implementation as well as a discussion on the usage of the Babel framework as cornerstone.
Then, in Section 4.2 we describe in detail the implementation of each component of the
solution. Section 4.3 further specifies how the solution presented here can be used to
develop an application and provides a comparison with the development of the same
application without using it. The chapter ends with a summary of contents in Section 4.4.

4.1 Implementation Overview

Our reference implementation of the generic abstractions for interacting with decentralized
services aims at allowing applications to easily take advantage of services provided by
decentralized protocols, by relying on the common programming interfaces and the
architecture presented in Chapter 3. For this purpose we relied extensively on the Java
inheritance mechanisms both by using Java interfaces and class inheritance to make the
implementation of the solution as generic and easy to use as possible. Moreover, although
the Babel framework was used as base in our implementation, applications do not need
to interact directly with it and programmers are not required to be aware of any Babel
mechanism to use the interfaces exposed by services and protocols already developed,
only those who wish to develop extensions to protocols or services need to be aware of
the operation of the framework.
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Listing 4.1: Example of a simple message dissemination
1 public static void main(String[] args) throws Exception {
2 ProtocolManager.registerProps(args);
3 ProtocolManager protocolManager = ProtocolManager.getInstance();
4

5 Host myself = new Host(InetAddress.getByName("127.0.0.1"), 10000);
6 Host contactNode = new Host(InetAddress.getByName("127.0.0.1"), 10001);
7

8 ProtocolInformation protocolInformation =
9 protocolManager.newProtocol(Collections.singleton(AvailableAPI.DISSEMINATION),

↩→ (short) 10000, true,
10 true, myself, null, null);
11

12 MembershipManagementAPI membershipManagementAPI = protocolInformation.getAPI(
↩→ AvailableAPI.MEMBERSHIP_MANAGEMENT);

13 DisseminationAPI disseminationAPI = protocolInformation.getAPI(AvailableAPI.
↩→ DISSEMINATION);

14

15 membershipManagementAPI.joinRequest(new JoinRequest(Collections.singleton(contactNode)
↩→ ));

16

17 disseminationAPI.disseminationRequest(new DisseminationRequest("Hello␣World!".getBytes
↩→ ()));

18

19 Runtime.getRuntime().exit(0);
20 }

Listing 4.1 represents a very simple application that relies on our solution to dissemi-
nate a message throughout the network. In a high level view we can describe the presented
operation in the following steps: first an instance of the Protocol Manager is obtained
and, through it, we request the instantiation of a protocol able to provide a dissemination
service. Then, the application obtains the required interfaces for performing operations
related with network membership and dissemination, through which it requests the Join
and Disseminate operations for, respectively, joining the network and disseminating a
“Hello World!” message. The node is located at port 10000 and relies on another node
running in port 10001 as contact node.

As illustrated by this example, the application code does not even need to define which
specific decentralized protocol to use, on the contrary it only needs to indicate which
services are required and interact with them through the respective interfaces. In fact,
with our solution, even if we explicitly choose the protocol to be instantiated, the change
from one protocol to another, providing the same set of services, is as simple as changing
the Java enumerate provided as the protocol parameter of the newProtocol method.

To develop the reference implementation of the solution presented in Chapter 3, we
relied on the Babel [19] framework. Our decision to use Babel as the underlying framework
for this reference implementation is based on two aspects: i) the architecture of Babel
allows programmers to focus on the development of the solution rather than on, potentially
complex and time-consuming, support mechanisms for providing communication, thread
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management, concurrency, or events management and ii) implementing our solution in
Java allow us to take advantage of the inheritance mechanisms and strong type system of
the language, which are important when developing abstractions that are expected to be
generic and extensible, for instance, by enabling the enforcement of some restrictions and
behaviors.

Below, in this chapter, the detailed implementation of each system component defined
in Section 3.3 will be presented, as well as the concrete applications developed to test
and evaluate our implementation. All listings presented in this chapter refer to a Java 8
development environment.

4.2 System Components

In this section we will describe in detail the implementation of each one of the components
presented before in Section 3.3. This section is divided as follows: in Section 4.2.1 we
present the implementation of the Protocol Manager component, followed by the Generic
Interfaces in Section 4.2.2. Then, in Section 4.2.3, we describe the implementation of
the supported decentralized protocols and, in Section 4.2.4, we present each application
developed based on our generic abstractions.

4.2.1 Protocol Manager

The Protocol Manager, as explained in Section 3.3.1, is responsible for the coordination
of all other system components, namely the instantiation of new protocols and interfaces
and the management of the running ones. It is also responsible for maintaining all the
necessary information about the system operation, namely the current system properties
and running protocols, and to expose operations to access that information. As an
example, applications (or even other protocols) can rely on the Protocol Manager to obtain
the interfaces required for interacting with the services provided by protocols that are
running at a given moment.

We need to ensure that, in eachprocess, only one instance of the ProtocolManagerexists,
being delegated on it all the management operations. For that purpose we implemented
a singleton pattern where applications should always call a static getInstance method
exposed by the ProtocolManager class, without any parameters, to obtain a Protocol
Manager instance. If an instance already exists it will be returned, otherwise a new one
will be instantiated. The Protocol Manager can obtain the running configuration either
from a configuration file or from an array of Strings representing properties obtained from
the command line, however, in the latter case, properties should be registered with the
registerProps method, that receives an array of Strings as parameter, before performing
the first call to the getInstance method.

As in our reference implementation we leveraged on the Babel framework, the Protocol
Manager is also responsible for launching the Babel instance as well as register all the
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necessary protocols in Babel. Therefore, the instantiation and initialization of Babel is
done during the instantiation of the Protocol Manager.

To maintain information about the system, the Protocol Manager relies on a Map
data structure containing the identifiers of the running protocols as keys and objects of
the type ProtocolInformation, with information about the running protocol, as values.
The ProtocolInformation class holds information about an instantiated decentralized
protocol, its running configuration, the programming interfaces (or APIs) that can be used
to interact with each service provided by the protocol, and a Boolean representing if the
protocol is initialized. The generic programming interfaces to interact with the protocol
are stored, in the ProtocolInformation object, on a Map structure with a Java enumerate,
representing the decentralized service, as key and the interface instance as value. This
key-value mapping is possible because, as explained in Section 3.3.2, for each service
provided by a protocol only one interface should exist, and all applications should rely on
it to interact with the service. More details about both the enumerates representing the
available services and the classes representing the generic interfaces will be provided in
Section 4.2.2. Regarding the Boolean value storing if a protocol is initialized, it is related
with an init operation that all decentralized protocols must have, when implemented
using Babel. This operation, after which the Boolean value will be set as true, should be
called, through the Protocol Manager, only once for each protocol.

In our implementation we also considered concurrency aspects because, when in-
teracting with the Protocol Manager, multiple threads might require operations to be
performed simultaneously, leading the operations to require thread-safety guarantees.
This is required so that we can support multithreaded applications using our implemen-
tation, as well as due to the multithreaded architecture of Babel where distinct protocol
instances run on distinct threads. This may result in multiple components of our solution,
developed as Babel protocols, interacting simultaneously with the Protocol Manager at a
given time.

To handle the concurrency requirements discussed before, different data structures
were employed: on one hand, the data structure, described before, for storing informa-
tion about the running protocols on the Protocol Manager, is implemented by a Java
ConcurrentHashMap because, as an example, a request can be made by an application,
for instantiating a new protocol, while other component is requesting information about
a running protocol, causing writes and reads on the Map to occur simultaneously. On
the other hand, the data structure storing, on the ProtocolInformation class, the in-
stances of the interfaces for the services provided was implemented relying on a Java,
non-concurrent, HashMap as data is only inserted during protocol instantiation, when
all interfaces to interact with it are also instantiated. Furthermore, we had to define
synchronized regions when developing the Protocol Manager to avoid the occurrence of
data-races when instantiating a new protocol, e.g., to guarantee that no other protocol is
instantiated with a given identifier after verifying that the identifier of a new protocol is
available. However, we do not expect this to pose a significant impact on the performance
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because it was only required during the operation to instantiate a new protocol, which we
do not expect to be performed regularly.

Besides the registerProps and getInstance methods, discussed before, the Protocol
Manager exposes the newProtocol, initProtocol, and provideProtocolInformation

methods to applications. Each method is described in detail in the following sections.

4.2.1.1 NewProtocolmethod

The newProtocol method is responsible for the instantiation of a new decentralized
protocol. This method represents the implementation of the operation with the same
name discussed in Section 3.3.1. Two different signatures, presented in Listings 4.2 and 4.3,
are available. The first one should be used when specifying, by name, the exact protocol
to instantiate, while the second one should be used when instantiating a protocol by the
set of services that it provides.

Listing 4.2: Signature of the newProtocol method (by name)
1 public ProtocolInformation newProtocol(AvailableProtocol protocol, short protocolId,

↩→ boolean init, boolean useExisting,

2 Host host, Properties runProperties)

3 throws FailureCreatingAPIInstanceException,

↩→ FailureCreatingProtocolInstanceException,

4 FailureInitializingProtocolException, ProtocolIdAlreadyExistsException

The description of each parameter presented in Listing 4.2 is available below. Then,
the operation of the method will be described.

protocol The protocol parameter is used to specify the exact protocol to be instanti-
ated and expects a Java enumerate of type AvailableProtocol representing the
decentralized protocol, among the ones available.

protocolId The protocolId parameter expects a Short value representing the identifier
of the protocol to instantiate. If a protocol with the given identifier already exists,
the method will throw a ProtocolIdAlreadyExistsException.

useExisting The useExisting parameter receives a Boolean value representing if a new
instance of the protocol shouldbe created, if another instance of the protocol is already
running. Applications setting this flag as true when requesting the instantiation of
a new protocol should verify, in the object returned, if the protocol instantiated has
the identifier requested or, otherwise, what is the identifier of the instance returned.

init The init parameter receives a Boolean value representing if the protocol should be
initialized after instantiation. If this parameter is set to false, the initialization should
be performed later by calling the initProtocol method described in Section 4.2.1.2.
This parameter will not be considered if the useExisting parameter is set to true
and the new protocol instance is not created because one already exists.
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runProperties The runProperties parameter receives a Properties object containing
the set of configurations to be used when running the protocol, such as the active
view size in HyParView [30], or the shuffle interval in Cyclon [62]. Besides this
parameter, our implementation also considers the existence of a mechanism based
on a configuration file where the default properties, for each decentralized protocol
available, can be defined. Therefore, the properties provided in the runProperties
parameter will overwrite the ones with the same key, defined in the global configu-
ration file. This parameter will not be considered if the useExisting parameter is
set to true and the new protocol instance is not created because one already exists.

host The host parameter receives a Host object representing the IP address and port
where the protocol is going to be made available. Using the global configuration
file, or the properties provided in the runProperties parameter, it is also possible
to define an IP address and port by providing properties with keys in the format
protocol.[protocolId].address and protocol.[protocolId].port containing,
respectively, the IP address and port. This parameter will not be considered if the
useExisting parameter is set to true and the new protocol instance is not created
because one already exists.

After performing a request to obtain a new protocol, through the newProtocolmethod
of the ProtocolManager class, the following operations will be performed in order:

1. If the useExisting parameter is set to true, an iteration is performed through all
running protocols in order to find if one matching the request is available. If a
matching protocol is found, the respective ProtocolInformation object will be
returned;

2. If the useExisting parameter is set as false, or if no running protocol matches the
requested one, a new decentralized protocol will be instantiated with the identifier
provided (a verification is also performed to ensure that no other protocol already
uses the identifier);

3. The configurations required for running the protocol are obtained by merging
the ones defined on the global configuration file with the ones provided on the
runProperties parameter;

4. If no host is provided through the host parameter, the Protocol Manager obtains it
from the configuration file;

5. The protocol is instantiated by relying on a Java Class object, related with the
protocol, registered on the AvailableProtocol enumerate. This operation is done,
through the Java reflection mechanism, by calling the constructor of the protocol class
with the required parameters, i.e., the Properties object representing the running
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configuration, the protocol identifier, and the protocol host. After instantiation the
protocol is also registered on Babel;

6. All required instances of classes that will act as programming interfaces (or mid-
dleware) for interacting with the services provided by the protocol are instantiated
by matching the services defined in the AvailableAPI enumerate with the Java
interfaces implemented by the protocol. A Class instance, related with the API of
each service, is obtained from the respective enumerate entry, from the ones that
match the services implemented by the protocol, and instantiated relying on the
Java reflection mechanisms. These interface objects are, in fact, also developed as
Babel protocols (more details in Section 4.2.2) and, as so, the registration on Babel
and initialization is performed like any other Babel protocol;

7. A new ProtocolInformation object is created containing information about the
decentralized protocol, its running configuration, and the set of protocols, acting as
programming interfaces, instantiated for each service. All information is stored on
the data structures of the Protocol Manager, as previously discussed;

8. If the init parameter is set to true, the protocol init method is called and the
execution of the protocol inside the Babel framework starts by starting the respective
Babel thread;

9. Finally, the ProtocolInformation object containing all information about the run-
ning protocol is returned.

Listing 4.3: Signature of the newProtocol method (by set of services)
1 public ProtocolInformation newProtocol(Set<AvailableAPI> protocolsApis, short

↩→ protocolId, boolean init, boolean useExisting,

2 Host host, Properties requiredProperties, Properties

↩→ runProperties)

3 throws FailureCreatingAPIInstanceException,

↩→ FailureCreatingProtocolInstanceException,

4 FailureInitializingProtocolException, ProtocolIdAlreadyExistsException

The method shown in Listing 4.3 can be executed to request the instantiation of a new
protocol, by providing the set of decentralized services required, instead of the specific
protocol. This method receives a protocolsApis parameter, instead of the protocol

parameter, presented in Listing 4.2. Moreover, a requiredProperties parameter is also
available. The description of each parameter is presented below.

protocolsApis The protocolsApis parameter receives a set of Java enumerates, with
type AvailableAPI, that represent the decentralized services provided by protocols,
among the ones available. This parameterallows defining whichservices mustbe pro-
vided by the protocol requested. Therefore, when calling the newProtocol method,
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our implementation guarantees the retrieval of a protocol that provides, at least, all
the services specified in the protocolsApis parameter or, if such protocol is not avail-
able, the operation will throw a FailureCreatingProtocolInstanceException.

requiredProperties The requiredProperties parameter receives a Properties object
representing the properties of the service that must be met by the requested protocol,
like the peer sampling type (static or dynamic) or the view type (total or partial).
These properties, already described for each decentralized service in Section 3.2, al-
low applications to choose the best protocol for their operation among all that provide
the same services. When calling the newProtocol method, applications are neither
required to provide any property nor all the properties for a given service. If any
property is provided, the presented implementation guarantees the retrieval of a pro-
tocol whose properties match the ones provided or, if such protocol is not available,
the operation will throw a FailureCreatingProtocolInstanceException. These
properties should not be confused with the ones provided in the runProperties

parameter: while the first ones are related with the properties provided by the
protocol, regarding the services it implements, the second ones are related with the
configuration of the protocol.

The execution of the newProtocol method presented in Listing 4.3 is similar to the
one presented in Listing 4.2. In fact, in our implementation, the method presented in
Listing 4.3 calls the one in Listing 4.2 after discovering an adequate protocol, by taking
into consideration both the set of services provided in protocolsApis and the properties
defined in requiredProperties.

To choose an adequate protocol we iterate over all decentralized protocols implemented
and registered on the AvailableProtocol Java enumerate to discover one that is able to
provide all the services required, i.e., implements all the Java interfaces related with those
services. This verification is performed by relying on Java reflection to obtain all interfaces
implemented by the class that represents the protocol.

Moreover, to verify if the properties of a protocol match the ones requested, the
values of the requested properties are compared with the values of the respective protocol
properties, which are obtained through a static provideProtocolProperties method
exposed by the protocol class. As discussed in Section 3.3.1, the choice of the protocol
to instantiate if multiple are available matching the requirements, i.e., the services and
properties requested, is implementation dependent. Therefore, in our implementation we
choose the first protocol that meets all the requirements considering the order in which
protocols are registered on the AvailableProtocol enumerate.

A note should be made regarding the use of Java reflection mechanisms, in particular
when calling the constructors for instantiating the decentralized protocols and interfaces,
as well as when verifying the interfaces implemented by a protocol class. Although relying
on Java reflection is known to be slow [60, 16], we consider that its use does not pose a
performance issue, as it is only done during the instantiation of a protocol, which is a
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non-recurrent operation that is expected, in most applications, to only take place a limited
number of times.

4.2.1.2 InitProtocolmethod

Listing 4.4: Signature of the initProtocol method
1 public void initProtocol(short protoId)

2 throws ProtocolNotInstantiatedException, FailureInitializingProtocolException

The initProtocol method, whose signature is presented in Listing 4.4, allows the
initialization of an already instantiated protocol, i.e., the execution of the event handlers
and the init method of the protocol. The method only receives a parameter, protoId,
with the Short data type, representing the identifier of the protocol where the operation
will be performed. If no protocol is instantiated with the given identifier, the method
throws an exception.

Protocols must only be initialized once and, therefore, calling this method on an
already initialized protocol will not produce any result. A protocol may have already
been initialized if i) the initProtocol method was already executed for the protocol with
the given identifier, or ii) the init parameter of the newProtocol method was set to true
when requesting the protocol instantiation.

4.2.1.3 ProvideProtocolInformationmethod

Listing 4.5: Signature of the provideProtocolInformation method
1 public ProtocolInformation provideProtocolInformation(short protoId)

2 throws ProtocolNotInstantiatedException

The provideProtocolInformation method, shown in Listing 4.5 returns an object
with all information about an instantiated protocol, given the protocol identifier in the
protoId parameter. The ProtocolInformation object, already presented before in this
chapter, contains all information about a running protocol, namely, the protocol instance,
the running configurations, the set of generic interfaces to interact with the services
provided, and information about the protocol initialization. If no protocol is instantiated
with the identifier provided, the method throws an exception.

4.2.2 Generic Interfaces

The generic programming interfaces act as a middleware layer, allowing the interaction
between both applications and protocols providing decentralized services through a com-
mon, service-oriented, Application Programming Interface (or API). Although we named
these components interfaces, this terminology is not related with the concept of Java in-
terfaces, and should not be confused. The programming interfaces considered here are
built through the implementation of components acting as a layer of abstraction between
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applications and protocols, allowing operations to be requested through a common API
and then executed on the respective protocol. These components are also responsible
for redirecting to the application the results of operations, as well as notifications orig-
inating on the underlying protocol. Each interface exposes operations to interact with
a given service, among the ones available, and is responsible for implementing all the
necessary logic to support the distinct interaction mechanisms available. In summary,
the components acting as generic interfaces are responsible for providing a common and
generic abstraction layer for interacting with a decentralized service, independently of the
underlying protocol, by taking advantage of multiple (synchronous and asynchronous)
interaction mechanisms.

The interface components were developed as special Babel protocols that expose the
required APIs to execute the operations described in Section 3.2 both asynchronously and
synchronously, when applicable. Methods are also available for registering notification
handlers in order to deal with incoming notifications.

Although the programming interfaces are implemented as Babel protocols, we do not
require the interaction between applications and interfaces to be performed through Babel
as, in fact, we do not expect programmers of decentralized applications to know anything
about the operation or usage of Babel in order to be able to use our solution. Therefore,
although interface components interact with the protocols by relying on the event-driven
mechanisms of the Babel framework, i.e., by sending requests and receiving replies and
notifications, the interaction between applications and interfaces is possible through the
mechanisms listed below:

• Synchronous mechanisms where an application requests the execution of an opera-
tion and blocks until the respective result arrive;

• Mechanisms based on Java Futures, where an application requests an operation and
the interface returns a Java Future object that will only be completed, by the interface
component, when the respective reply arrives from the decentralized protocol;

• Asynchronous mechanisms where applications, when requesting an operation,
register a handler (implemented as a Java Consumer) to be executed when the
respective reply arrives. For notifications, handlers are registered based on the
notification class to deal with all notifications of that type;

• Asynchronous mechanisms based on event-driven requests, replies, and notifications
provided by Babel to be leveraged by applications written using the Babel framework,
but also relying on the generic abstractions proposed by our solution.

The programming interfaces can be developed by extending the GenericAPI Java
abstract class and should implement all the service specific logic regarding the operations
that can be performed through them, as well as expose the methods to perform those
operations. As a result, the subclasses should expose methods for performing each service
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Figure 4.1: Class diagram of the generic programming interfaces

operation, considering the multiple mechanisms available, register notification handlers,
as well as implement the necessary logic to receive service-specific operation results and
notifications returned by the underlying protocol. Then, they can rely on the GenericAPI

superclass to take advantage of the generic mechanisms that are common to all operations
and notifications. These mechanisms include, as an example, the maintenance of data
structures required for storing handlers and information related with the operations
requested. In Figure 4.1 we present the class diagram of the components implemented
that act as interfaces for decentralized services. The development of new programming
interfaces to interact with other services can be performed by further extending the
GenericAPI class.

Besides the middleware components described above, executed as special Babel pro-
tocols, we also defined a set of Java interfaces that should be implemented by the decen-
tralized protocols providing a service. These Java interfaces force protocols to implement
the methods that will handle the requests sent from the middleware component to the
protocol. Each decentralized protocol is required to implement all interfaces related with
the services provided. In Listing 4.6 we provide an example by considering the Java
interface that should be implemented by protocols providing a Membership Management
service.

For clarity purposes it is important to, once again, distinguish between two different
concepts that are described here with the interface expression. On one hand, we im-
plemented generic programming interface components that act as a middleware layer
between applications requiring decentralized services and protocols implementing those
services. These components are Java classes that are executed over the Babel framework
and implement the necessary logic to deal with all synchronous and asynchronous inter-
action mechanisms described above, providing applications with service-based common
APIs. On the other hand, Java interfaces were defined as a way to force protocols to
implement the necessary methods to deal with the requests sent to them, from the Babel
protocols implementing the middleware layer.
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Listing 4.6: Membership Management Java interface
1 public interface MembershipManagementProtocol extends GenericProtocolAPI {
2 Class<? extends GenericAPI> relatedAPI = MembershipManagementAPI.class;
3

4 void uponJoinRequest(JoinRequest request, short sourceProto);
5

6 void uponLeaveRequest(LeaveRequest request, short sourceProto);
7

8 void uponGetNeighborsRequest(GetNeighborsRequestInternal request, short sourceProto);
9

10 static Class<? extends GenericAPI> provideRelatedAPI() {
11 return relatedAPI;
12 }
13 }

By analyzing Listing 4.6 it is possible to verify that the protocols implementing the
Membership Management service are required to handle three types of requests related
with the Join, Leave, and GetNeighbors operations. These methods should be imple-
mented and registered on the protocol as handlers for each defined request class. The
interface also stores, on the relatedAPI field, the service to which it is related. More-
over, the Java interface presented extends another one, named GenericProtocolAPI, that
should be extended by all Java interfaces defined for being implemented in protocols
related with a given decentralized service.

In our implementation, we provide support for all services devised in Section 3.2.
Additional services can be supported by implementing classes extending the GenericAPI
abstract class, to act as middleware, as well as defining new Java interfaces, extending the
GenericProtocolAPI interface, to be implemented by protocols providing those services.
Moreover, a Java enumerate describing the properties related with the decentralized
service should also be developed. Finally, all the available services as well as the related
interfaces should be registered in the Java enumerate AvailableAPI.

Listing 4.7: Representation of the AvailableAPI enumerate
1

2 MEMBERSHIP_MANAGEMENT(MembershipManagementAPI.API_NAME, MembershipManagementAPI.class,
↩→ MembershipManagementProtocol.class, MembershipManagementProperties.class),

3 ROUTING(RoutingAPI.API_NAME, RoutingAPI.class, RoutingProtocol.class,
↩→ RoutingProperties.class),

4 DISSEMINATION(DisseminationAPI.API_NAME, DisseminationAPI.class, DisseminationProtocol.
↩→ class, DisseminationProperties.class),

5 RESOURCE_STORAGE(ResourceStorageAPI.API_NAME, ResourceStorageAPI.class,
↩→ ResourceStorageProtocol.class, ResourceStorageProperties.class);

Listing 4.7 presents the implementation of the Java enumerate AvailableAPI which
represents all decentralized services available in our implementation, i.e., the services for
which generic interfaces are defined. This is the same enumerate whose values should be
provided in a set when calling the newProtocol method, through the Protocol Manager,
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to create a new protocol instance based on the services provided. The Java enumerate
stores, respectively, information about the name of the service, the class that implements
the component acting as middleware, the Java interface that represents a decentralized
service and should be implemented by protocols providing it, and a Java enumerate class
indicating which properties are defined for the service. These service-related properties
are the ones that can be provided, if required, in the requiredProperties parameter
when requesting the provisioning of a new protocol.

In the following we present the operation of the middleware components, or generic
interfaces, regarding the instantiation, execution of operations, and notifications handling.

4.2.2.1 Instantiation of Generic Interfaces

As explained before, each interface component allowing the interaction with a decen-
tralized service is instantiated, by the Protocol Manager, after the request for a protocol
providing that service. Due to the implementation of the interface component as a Babel
protocol the constructor is expected to receive a Properties object, allowing the access
to the running configurations if required, a DecentralizedProtocol Java class represent-
ing the decentralized protocol for which the component is acting as middleware, and a
randomly generated Short identifier to act as interface identifier.

The decision about which interface components to create, after the instantiation of
a new protocol, is done by leveraging on Java reflection to get the set of Java interfaces
implemented by a protocol, between all defined on the AvailableAPI enumerate, thus
obtaining the services provided. Finally, an interface component is instantiated for
each service, by executing the constructor method of the Java class, related with the
service, registered on the AvailableAPI enumerate as the middleware component (or
programming interface). As the instantiation of the Java class is made using a Java Class

object registered on the Java enumerate, the constructor is also executed through Java
reflection mechanisms.

4.2.2.2 Requesting operations

The execution of operations can be requested, by applications, on each decentralized
protocol through the interface components, acting as middleware, by relying on the syn-
chronous and asynchronous mechanisms presented before. The interaction mechanisms
allow applications to choose how to expect the results of an operation, e.g., by blocking
until they are available, continuing execution and verifying later, or relying on even-driven
mechanisms with handlers. However, we do not need to always consider all mechanisms,
as operations that are not expected to return any result (e.g., Join, Leave, or Disseminate)
are inherently asynchronous, which discards the use of synchronous ones.

Conversely, when an operation is not expected to return any result, the request should
be made to the generic interface component which directly sends it to the underlying
protocol. This behavior is explained by the fact that the interface does not need to maintain

64



4.2. SYSTEM COMPONENTS

any information about the operation request, as no return value is expected. This is the case
of operations like Join or Leave (on the Membership Management service), Disseminate
(on the Dissemination service), and PutResource or RemovedResource (on the Resource
Storage service).

On the other side, if an operation is expected to return a result, the interface component
acting as abstraction layer needs to maintain some information about the request in order
to return the appropriate result. To explain in detail the mechanisms implemented to deal
with these situations we first describe how an operation request is performed and, then,
how the reply is handled.

When an operation request is performed, through the methods exposed by the generic
interface component related with a service, and a return value is expected, a new identifier
(implemented as an UUID) will be generated for the request. Then, the request information
is stored on a (concurrent) Map structure with the generated identifier as key and an
object storing the information as value. After that, the external request is mapped into an
internal request and sent to the underlying protocol through the event-driven mechanisms
of Babel because, as mentioned before, the interaction between interfaces and protocols is
performed through Babel. The internal request contains all the required information that
must be sent to the protocol, regarding the operation, plus the identifier generated earlier,
which the protocol is required to return when replying with the result of the operation.

The behavior described above is the same, independently of the mechanism through
which the operation was requested, although, in some situations additional logic is nec-
essary. As an example, when relying on the Future-based mechanism to perform an
operation, a Future object needs to be created, stored on the object that maintains informa-
tion about the request for later completion, and returned to the application. Additionally,
when requiring an operation to be performed by providing a handler to be executed when
the result is available, the Java Consumer that represents the handler also needs to be
stored. Finally, if the operation request was performed relying on the event-driven mecha-
nisms provided by Babel to perform the application-interface interaction, the identifier of
the Babel protocol which acted as the source of the request needs be stored for allowing
later reply. In summary, on every situation described before, additional logic is required,
and the additional data should be stored on the object responsible for maintaining the
request information.

When receiving, from the underlying protocol, a reply representing the result of an
operation, the Babel protocol implementing the service interface should obtain, from
the Map maintaining the information of the requests, the data stored about the request.
This data will then allow the adequate handling of the reply, e.g., by completing the Java
Future associated with the request or executing the Java Consumer registered as handler,
if applicable. Moreover, if the request was performed through the Babel mechanisms, the
reply will also be converted, from the internal reply received, to an external Babel reply
and sent to the protocol who originally performed the request.

A finalnote shouldbe made regarding a specific parameter receivedby some operations:
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the requestId. As described in Section 3.2, when performing operations where a return
value is expected, applications relying on our solution can provide a requestId which is
guaranteed to be delivered when returning the result, in order to allow the correlation
between an operation and the respective result, on asynchronous interaction. This value
could be used as internal request identifier, instead of the generated UUID described
earlier, however, this would result in requiring applications to always provide a unique
identifier as requestId, making the correct behavior of our solution dependent on the
data provided by the applications. This is why we settled with the generation of a unique
identifier, effectively managed by the programming interface layer, that acts as a request
identifier. As a result, if an application sends a requestId when performing an operation,
it will be stored on the object that maintains all the information about the operation request
and later returned, on the reply.

4.2.2.3 Dealing with notifications

As described in Section 3.2, notifications were also considered in our solution to allow
protocols to notify applications about events that are not a direct result of any operation
requested by the application, e.g., receiving data disseminated through a dissemination
protocol.

The Babel framework already provides abstractions called notifications for inter-
protocol communication, however when a Babel notification is triggered by a protocol, it
will be delivered to all Babel protocols that registered interest in that type of notification,
i.e., a protocol is not able to send a Babel notification to another specific protocol as it will
be received by all protocols interested in that type of notifications. The above behavior
became a challenge in our implementation if we consider, as an example, the existence of
two protocols 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐴 and 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝐵, both providing the Membership Management
service, respectively, through the interfaces 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝐴 and 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒𝐵 and sending
NewNeighbor notifications. As both interfaces are implemented as Babel protocols, both
will receive this type of notifications from protocols, which will result in one interface
receiving notifications intended to the other, and vice-versa.

To deal with the previous challenge, the interfaces were implemented in a way that,
when receiving a notification, a verification is performed on the identifier of the origin
protocol, i.e., the identifier of the Babel protocol that triggered the notification. This
leads to interface components only considering notifications whose identifier of the origin
protocol is equal to identifier of the protocol to which the interface was instantiated.
This is why, in our implementation, we considered two types of notifications: i) internal
Babel notifications, representing the notification objects sent from protocols to interfaces,
and ii) external notifications, representing the notification objects that are exposed to
applications.

Applications can register, using interface methods, handlers for each notification
provided by it. The handlers should be implemented as Java Consumers, i.e., references
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for methods that receive parameters (in this case the object representing the notification)
and do not return any value. It is important to note that we do not provide any guarantees
of thread safety when executing the handlers and, consequently, programmers should be
cautious when implementing handlers.

Registering Consumers is performed by passing them as parameters of the methods
responsible for the registration. Then, they are registered in a Map data structure defined
on the GenericAPI superclass which maintains the list of handlers to be executed for each
different type of notification. When a notification arrives at an interface component the
internal notification (from the protocol) is mapped to the external notification (returned
to applications) and the handlers registered for the corresponding type of notification are
executed. Additionally, the external notification is also retransmitted, via the mechanisms
provided by Babel, to applications that may rely on the generic abstraction devised, but
interact with them through the event-driven mechanisms exposed by Babel.

We clarify here that the handlers registered, by the client applications, on a given
interface to be executed when a notification (or an operation result) is available, have
nothing in common with the handlers that are registered, on Babel protocols, to deal
with events. Whereas, in Babel, a protocol can register a method to be executed when
a Babel reply or notification arrives, in our interfaces all registered handlers are Java
Consumers that will be executed relying on a thread pool when required, i.e., when
an operation is completed by the underlying protocol and the result is available, or a
notification is delivered. A detailed description of the thread pool mechanism is available
in Section 4.2.2.4.

4.2.2.4 Thread pool mechanism

As stated before, Java Consumers can be registered as handlers both to deal with noti-
fications and return values of operations. In the first case, the Consumers are stored,
as explained before, in a Map structure with the type of notification as key, for efficient
retrieval when a notification of a given type needs to be delivered. In the second case,
the Consumers are kept in the object that maintains information about a given operation
request, to be executed when the respective return value is available.

For executing the Consumers we leverage, in both cases, on the use of a thread pool
mechanism. The thread pool is global, and all interface components rely on the same pool
instance to execute the necessary operations. The pool is implemented by relying on a
Java fixed size thread pool, initialized with a specific number of threads that are always
available. Consumers will be executed immediately if a thread is available in the pool to
handle them, otherwise they will need to wait, in a queue, until a new thread becomes
available. Concurrency issues related with the simultaneous execution of Consumers, e.g.,
if two Consumers use the same data structure concurrently, need to be handled by the
programmer during implementation.

In each process running our solution, the thread pool size can be configured by
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Protocols Services
Membership
Management Dissemination Routing Resource Storage

Kademlia X X X
HyParView X

Cyclon X
Plumtree X X

FloodGossip X X

Table 4.1: Implemented protocols and services

setting the system.threadpoolsize global property with the required value. Adjusting
this property might be important when the registered handlers are expected to be more
complex and take significant time to execute (when compared with the expected interval
between notifications or results received). Consequently, applications can benefit from
the increase on the number of threads available to attenuate the increased complexity.

4.2.3 Decentralized Protocols

The decentralized protocols are the components responsible for effectively providing the
services that can be leveraged by applications relying on a decentralized approach. In
this work, we considered four services, described in detail in Section 3.2: Membership
Management, Dissemination, Resource Storage, and Routing. There are multiple existent
protocols able to provide each service considered, some of which already presented before
in this work. For implementation purposes we choose a set of decentralized protocols that
covers all the considered services, with some of them even being provided by more than
one implemented protocol. Table 4.1 presents each protocol implemented, as well as the
services provided by each one. Kademlia [42] was implemented from scratch, whereas
the remaining were adapted to our solution based on the ones already implemented in
Babel [12, 13].

It is noteworthy that the FloodGossip protocol is a simple gossip based dissemination
protocol where nodes flood messages throughout the entire network by sending them
to all neighbors. In this protocol the nodes should verify if a message was already
received (using an identifier) and, if not, send it to all neighbors, obtained by relying on
an underlying peer sampling service, which then perform the same operation until the
message eventually reaches all network nodes.

Our solution can be extended with more protocols than the ones presented here just by
implementing the Java interfaces related with the services provided. An example of these
interfaces is the one presented in Listing 4.6 on the previous section. By implementing
the interfaces, the protocol is forced to implement the methods responsible for receiving,
from the interface components described in Section 4.2.2, the internal events related with
the operations of the service. As protocols are also implemented on the Babel framework,
these methods should then be registered as Babel handlers for the events. Moreover,
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protocols should trigger service-specific notifications and replies that will be received
by the upper component which already implements the Babel handlers for those events.
Lastly, each protocol should be registered on the AvailableProtocol Java enumerate
which stores information about all protocols available on the system.

As discussed before, protocols can define a set of properties, related with the services
provided, to allow applications to choose the most appropriate one, among all imple-
menting a service. In our implementation we define these properties by storing them
on a .properties file related with each protocol, whose path should be provided on
the AvailableProtocol Java enumerate. As protocols can provide multiple services, the
properties keys are defined with a [service].[property] notation. When requesting a
new protocol, the Protocol Manager will consider the files containing the properties of
the protocol to perform the required verifications.

As an example, if one wants to add support for the Chord protocol in our architecture, a
Babel protocol needs to be implemented with the logic regarding the protocol. The protocol
class should implement the Java interfaces related with the Membership Management and
Routing services (and eventually the Resource Storage service) and register the adequate
Babel handlers, as well as trigger the respective events. Finally, the protocol needs to be
registered on the AvailableProtocol enumerate, as well as the path of the respective
properties file. Performing these steps makes the protocol available to any application
relying on our solution. Furthermore, if one wants to use a protocol, developed to provide
a service to one application, in another application, it only needs to add the protocol files
to the second one and register them on the AvailableProtocol enumerate.

Protocols should only send and receive events to and from the upper interface compo-
nents, therefore not interacting directly with the applications. In addition, protocols must
send the event to the appropriate service interface, if more than one service is provided,
e.g., if a protocol provides the Membership Management and Dissemination services,
each event needs to be sent to the respective interface.

The following sections describe some noteworthy challenges that arise when develop-
ing the decentralized protocols for the reference implementation.

4.2.3.1 Protocols as abstractions clients

As discussed in Section 3.3.4, not only applications can rely on our solution, but also
protocols acting as clients of the programming interfaces provided. Examples of this
situation can be found in the implementations of the Plumtree [28] and the FloodGossip
dissemination protocols as both rely on an underlying peer sampling protocol for network
management. In these situations the dissemination protocols request, from the Protocol
Manager, an instance of the peersampling protocol requiredand interactwith it throughthe
Membership Management programming interface, by calling the GetNeighbors operation
to obtain a sample of peers and then listening for the NewNeighbor and DropNeighbor

notifications in order to respond to membership changes. The upper dissemination
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protocols also expose the operations related with Membership Management, namely the
Join and Leave operations, to allow applications to request their execution, however, the
requests should be relayed to the underlying protocol, in charge of maintaining the network.
In our implementation, the underlying peer sampling protocol can even be defined just by
setting a property value, when requesting the instantiation of a dissemination protocol,
as the exposed interface that allows the interaction between protocols remains the same.

A note should also be made regarding the use of channels exposed by Babel when
coupling two protocols together, as described before. In Babel the communication between
different processes is performed over the network, through abstractions called channels.
Channels should be created by a host, on an IP address and port, to send and receive
data from channels of other processes on the network by opening connections, allowing
information to be exchanged. Then, when a connection to another host is no longer
required it can be closed. In Babel, channels can be shared across multiple protocols,
allowing the underlying protocol to share a channel with the upper protocol meaning
that, as an example, only one port is required for the protocols to operate, simplifying the
management of the network as only one channel is required and needs to be managed
instead of multiple ones.

Although the previously discussed mechanism for sharing channels brings advan-
tages, it also brought challenges during the implementation of our solution, in particular
when considering situations where requests for closing connections were performed by
both protocols. This is the case of Cyclon and the FloodGossip protocols when used in
conjunction, respectively, as peer sampling and dissemination protocol. In this situation
as the Cyclon protocol only maintains connections open during the exchange of informa-
tion, e.g., when executing shuffle operations, closing them afterwards, this would cause
messages to be dropped by the upper protocol if the connection to a node was closed by
the underlying one during that period. To overcome this challenge a new channel, called
SharedTCPChannelwas developed for Babel and is already available for use on the GitHub
repository [18, 19]. This channel relies on the same mechanisms of the pre-existent Babel
TCPChannel but maintains information about which protocols opened a connection to a
given host and, when executing the close connection operation, it is only effectively closed
if no other protocol required that connection to be opened.

4.2.3.2 Leave network operation

Another challenge encountered when implementing the protocols for the solution pre-
sented in this document was related with the Leave operation exposed by the Membership
Management service. As described in Section 3.2.1, this operation removes a node from the
network and should leave the node on the same state as it would be if it was instantiated,
and no Join operation was performed afterwards.

In general, performing this operation would require a node to stop sending messages
and close all connections on the network maintained by the protocol which, in turn, would
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force all neighbors to consider that the node left the network and act accordingly. However,
in Babel, two TCP connections are maintained to another host from the perspective of one
channel: an outgoing one, created from a node to another, and an incoming one, on the
opposite direction. Therefore, even if a node closes a connection this only applies to the
outgoing, as the incoming one is kept open and cannot be closed. Another possibility
could be discarding the channel and creating a new one, therefore closing all the TCP
connections related with the channel and even freeing the port again, but this is not possible
in the current version of Babel. To tackle this challenge, different mechanisms regarding
the implementation of the Leave operation were put in place when implementing and
adapting the protocols to our solution.

Our version of Kademlia was developed relying on TCP connections as these are the
ones supported by Babel. Hence, connections are always maintained between nodes from
the moment a node discovers another one, i.e., if a node 𝐴 discovers a node 𝐵 a connection
from 𝐴 to 𝐵 is established and, as a result, when 𝐵 detects that 𝐴 opened a connection
it also establishes the opposite connection. Information about existent connections is
maintained in a separated data structure and a node only closes connections when i) it
leaves the network or ii) a failure of a node is detected. Consequently, because Babel is
able to trigger channel notifications when an incoming or outgoing connection is closed,
if a node wants to leave the network it should close the connections to all other nodes to
whom connections are maintained. This will result in nodes receiving the information
about the closure of an incoming connection with the node that left, triggering the closure
of the outgoing connections and acting as if the node crashed, effectively removing it from
the network.

In Cyclon, as in our implementation TCP connections are only maintained during the
exchange of information, the mechanisms for leaving the network are simpler. Therefore,
when a node wants to leave it stops sending and replying to shuffle messages, leading its
neighbors to eventually consider the node as crashed and removing it from their network
views. Moreover, the connections that are active when the Leave operation is performed
are also closed.

In HyParView relying on any of the solutions presented above was not sufficient as a
node could still consider another one as being present in the network even if it closed all
outgoing connections. This would happen because HyParView relies on TCP connections
and the capability of establishing them as a failure detection mechanism. For that reason,
even if the outgoing connections of the leaving node were closed, the presence of the node
in the passive views of others this might lead to it being added again in the active views
as incoming connections could still be established because the channel was effectively
open (and cannot be fully closed due to the limitations discussed above). To handle this
situation, when performing the Leave operation, the HyParView protocol not only stops
all shuffles, closes all connections, and cleans all views, but also sends a special message
indicating that the node is not available when it receives messages from any other node
while out of the network. Other nodes should interpret those messages in the same way
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they would if the node crashed and therefore was unresponsive.
It is important to note that the solutions used in Cyclon and HyParView are not without

a drawback: the Join operation needs to be explicitly performed even in the first network
node (e.g., with an empty set of contact nodes) to allow the node to start answering
requests and effectively be present in the network. Otherwise, it will not answer any
request from other nodes (in Cyclon) or answer with the special not available message (in
HyParView).

4.2.3.3 Kademlia as resource storage protocol

The Kademlia protocol was implemented according to the operation described in the
original paper [42], in particular considering the XOR based node lookup mechanisms on
which the protocol operation relies. However, regarding the resource storage mechanisms,
we believe that some details of our implementation are noteworthy. First, the operation
to store a new resource is performed as expected, i.e., by performing a lookup for the
𝑘-nearest nodes to the resource identifier and storing the resource on them.

Then, each node storing resources is responsible, as described in the Kademlia paper,
for republishing the keys in a fixed (configurable) time interval in order to avoid losses of
data due to node failures, as well as to guarantee the storage of resources in the nearest
nodes, even if new nodes joined the system after the resource has been stored. Moreover,
we also employed the optimization where each node only republishes a key if it was not
republished by any other node, which can be verified by leveraging on the last update
timestamp of each resource. If, when republishing a key, a node discovers that it is no
longer on the nearest nodes set of the resource identifier, the resource is removed from
the node. This is, as far as we know, a different solution when compared to the ones
commonly employed when implementing Kademlia, such as the one in IPFS [4], where
the keys are republished by the nodes who requested the resource to be stored, instead of
the ones who effectively store the resource.

When obtaining a resource, all the nearest nodes to the resource identifier are queried
and should return the resource matching the provided identifier, or the information about
its absence. The first matching resource obtained from the nearest nodes is returned and
the lookup finishes. On the other side, if all nearest nodes do not contain the requested
resource or if a (configurable) lookup timeout is triggered, we consider that the resource
does not exist.

Finally, the operation to remove a resource from the network was also implemented.
This operation is not described in the Kademlia paper, and it was implemented based
on a best-effort assumption to comply with our Resource Storage programming interface.
Therefore, when a node wants to remove a resource from the network, a lookup for the
resource identifier is performed, and a resource removal message is sent to all nearest
nodes which should, in turn, perform the operation. It is expected that the removal
is eventually performed when republishing the key even in nodes that are not on the
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nearest nodes set but still maintain the resource, through the mechanism described above.
However, this operation does not guarantee the removal of a resource in all conditions.
As an example, if a node 𝐴, storing a resource, is no longer included on the set of the
nearest nodes of a resource, it will not receive the removal message, even though it can
be added again later, e.g., due to a failure on a node 𝐵 included in the set. This will lead
to the resource being republished, on the next republish window of 𝐴, which makes it
available again on the network even if previously removed.

4.2.4 Applications

The applications are the system components that interact with the decentralized services
provided by the protocols, through the generic programming interfaces. Applications are
expected to only interact with the Protocol Manager and the APIs provided, instead of
directly interacting with the decentralized protocols. As explained before, this approach
allows applications to change the protocol in which a given service relies on, without the
need for additional changes.

In general, as seen in the simple dissemination application presented in Listing 4.1,
applications will first call the getInstance method of the Protocol Manager to obtain a
manager instance and then rely on it, by calling the newProtocolmethod, to instantiate the
necessary protocols. Moreover, if an application needs to change the protocol in use, this
will only require a change of the requested protocol, when considering the instantiation
of a protocol by name, or the requiredProperties, when instantiating a protocol by the
services provided.

To validate, test, and evaluate our solution four applications were developed: a
peer sampling application, a routing application, a dissemination application, and a
decentralized storage solution that triggers notifications when resources are changed.
These applications entirely cover all aspects of our solution, by relying on all services
available. Sections 4.2.4.1, 4.2.4.2, 4.2.4.3, and 4.2.4.4 describe each one, respectively. The
performance evaluation results presented in Chapter 5 are based on both the routing and
dissemination applications described here whereas, for the evaluation of code complexity,
all applications were considered.

4.2.4.1 Peer Sampling application

The peer sampling application consists in a simple application that performs multiple
requests to obtain a set of nodes from an underlying protocol. The application is therefore
supported by a peer sampling protocol and interacts with it through the Membership
Management interface using the GetNeighbors operation. This application is described
in detail in Section 4.3 where it is used as an example when comparing between an
implementation based on our solution and an implementation performed using only
Babel.
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The application operates by first requesting a Join operation from the Membership
Management interface with the objective of joining the network maintained by the protocol.
Then, the requests are performed in a closed-loop, using a configured time interval, by
calling the blocking version of the GetNeighbors method exposed by the Membership
Management interface to obtain the sample of nodes. The nodes retrieved from the protocol
are presented on the console after each call to the method responsible for providing the
sample.

4.2.4.2 Routing application

The routing application is responsible forperforming query routing requests and expects to
receive the set of nodes that match each query. This application is supported by the Routing
interface, leveraging the FindNodes operation and an underlying protocol implementing
it. Furthermore, it also interacts with the Membership Management interface to perform
the Join operation.

We implemented two versions of the application, an interactive one, for manual testing,
and an automated one, in order to perform the evaluation. In the manual version both the
Join and FindNodes operations need to be performed manually, by interacting with the
application through the insertion of commands and providing, respectively, the contact
node and the data to be considered when routing the query. Moreover, the manual
application also supports the execution of the Leave operation.

In the automated version, each node first performs a Join operation, waits for a
predefined amount of time, and then issues multiple routing operations, using a randomly
generated query, in a closed-loop, i.e., when it receives the result of one operation the
next one is requested, during a predefined amount of time. For evaluation purposes the
moment at which the routing operations start and end, as well as a cooldown period
during which, although the node stays on the network it does not perform any routing
requests, are configurable.

In both application versions, we request an operation and expect the result to be
returned before the next one is performed. In the interactive version, the request is per-
formed by relying on the synchronous FindNodes method, provided by our API, blocking
until the return value is available. Regarding the automated version, the application relies
on the Future-based API method to perform the requests. This way the automatic routing
application calls the Future-based FindNodes method, obtains the returned future and
blocks until the operation is completed.

The use of Futures, instead of the blocking operation exposed by the API, is explained
by the necessity to define a timeout if no return value is available, which can be configured
when calling the Get operation of the Java Futures. In fact, the same could be done
through a configuration property of our solution, which sets the timeout for the blocking
operations, but by setting the timeout on the Future it can be configured at the application
level.
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4.2.4.3 Dissemination application

The dissemination application performs the dissemination of data throughout the network.
It is supported by the Dissemination interface, through the Disseminate operation and
the underlying protocol implementing it. As in the previous application, it also relies on
the Membership Management interface for performing the Join operation.

An underlying peer sampling service is often required for protocols providing a dis-
semination service, like Plumtree [28] or the implemented FloodGossip protocol, in order
to obtain a subset of network peers. Therefore, in our implementation, the dissemination
protocols that exhibit this behavior can request from the Protocol Manager an underly-
ing protocol able to maintain an overlay network and provide a sample of peers. The
interaction with this peer sampling protocol will be performed through the Membership
Management interface by requesting the GetNeighbors operation. This behavior means
that the Membership Management interface is, although indirectly, also extensively used
by this application.

As before, we developed two distinct versions of the Dissemination application: an
interactive one, where a user can manually request data to be disseminated through the
network (as well as perform the Join and Leave operations), through the insertion of
commands, and an automated one, for evaluation purposes.

The automated version of the dissemination application is implemented as follows:
first, the node performs the Join operation with a preconfigured contact node, then, it
starts a thread responsible for disseminating random data payloads with a given size
at fixed intervals, until a time limit is reached. Both the dissemination interval and the
payload size are configurable. For evaluation purposes, it is also possible to define the
moment for starting and stopping the message dissemination, as well as a cooldown
period during which messages disseminated by other nodes can still be received. We
present the evaluation aspects in detail in Chapter 5.

In this application, as the Disseminate operation is intrinsically asynchronous we
take advantage of the asynchronous mechanisms exposed by our programming interface
through the registration of a handler responsible for receiving the incoming data.

4.2.4.4 Decentralized Storage application

A more complex application responsible for providing a decentralized storage service,
with resource change notifications, was implemented. In addition to the Membership Man-
agement interface, this application relies on both the Resource Storage and Dissemination
programming interfaces. On one hand, the Resource Storage interface is required to per-
form the resources-related operations (PutResource, GetResource, and RemoveResource),
but on the other hand, the Dissemination interface is required to disseminate the notifica-
tions related with the modification of a resource. Below we describe in detail the operation
of the application.
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The mechanisms related with resource storage are implemented as expected, i.e, by
relying on the operations exposed by the Resource Storage API and implemented by the
underlying protocols. Consequently, the application requests, after the initialization, from
the Protocol Manager the instantiation of a protocol able to provide the Resource Storage
service and then leverages on the returned interfaces for interacting with it. The resources
are defined by a name, considered the resource key, and an array of bytes describing the
resource content. In our implementation, when interacting with the application, both the
name and resource content can be provided as String values.

For the notification mechanisms two different approaches could be followed: i) an
approach where only one instance of a dissemination protocol is executed in each node,
with all nodes participating in the same network, where each node that performs a change
on a resource is responsible for disseminating the notification, or ii) an approach where
each node runs multiple instances of dissemination protocols, therefore being present on
multiple networks, each one responsible for the dissemination of messages for a subset of
resources stored in the system.

The first solution is more simple and less computationally expensive, however, the
effort put on the network may be higher because messages need to be disseminated
throughout the entire network, even if only a small set of nodes are interested. Moreover,
each node will end up receiving numerous unnecessary messages that are not related
with any resource on which it is interested in and that, consequently, will end up being
discarded. This solution is suitable in environments where we expect that, in general, a
significant part of all nodes on the network will be interested in being notified about any
resource.

Conversely, the second solution is more complex and may be more computationally
expensive due to the large number of protocol instances that might need to run on a single
process. However, the effort that is put on each instance is expected to be lower because
it will only be responsible for disseminating information about changes on a subset of
resources, and only the nodes related with those resources will be present on the network.
As a result, this solution is more suitable when it is expected that only a small subset of
nodes is interested in receiving information about changes on a given resource.

In our implementation we opted for the second solution by leveraging on multiple
instances of a protocol providing the Dissemination service, each responsible for dissemi-
nating the data related with a subset of resources. Consequently, based on a maximum
number of dissemination instances that should be executed (𝑚𝑎𝑥𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) the applica-
tion will, for each resource, perform a hash function on the key resulting in an ℎ𝑎𝑠ℎ𝑣𝑎𝑙𝑢𝑒

where 0 <= ℎ𝑎𝑠ℎ𝑣𝑎𝑙𝑢𝑒 < 𝑚𝑎𝑥𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠. The ℎ𝑎𝑠ℎ𝑣𝑎𝑙𝑢𝑒 will then be used, by the sys-
tem nodes, to define the protocol identifier and request, from the Protocol Manager, the
instantiation of a dissemination protocol with that identifier. As a result, no more than
𝑚𝑎𝑥𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 dissemination protocols will be executed on each process.

We expect that two types of nodes need to participate on a dissemination network
relatedwitha subsetof resources sharing a common ℎ𝑎𝑠ℎ𝑣𝑎𝑙𝑢𝑒: i) nodes that are interested
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in receiving notifications about changes occurred on (at least) a resource whose ℎ𝑎𝑠ℎ𝑣𝑎𝑙𝑢𝑒

matches the one of the dissemination network, and ii) nodes that, even though may not
be interested in receiving notifications about any resource related with a given network,
are effectively storing those resources, e.g., the nearest nodes to the resource identifier in
protocols like Chord or Kademlia.

The first ones need to be present on the network in order to receive notifications
about the resources in which they are interested, in our implementation this corresponds
with the resources whose key was retrieved at some point by the node. The second
ones need to be present because they will act as contact nodes for the network, allowing
the application to use the nodes that effectively store a resource as contact nodes for
joining the dissemination network of that resource. In fact, the application relies on the
NewResource notification delivered through the Resource Storage interface to know when
a new resource is stored locally on the node, by the protocol providing Resource Storage.
When the notification is received the node should join the correspondent network, if not
joined yet, through the instantiation of the required protocol. On the opposite side, when
a RemovedResource notification arrives from the Resource Storage service, a node can
verify if no longer needs to be present on the network related with that resource, i.e., if
no other known resource is related with that network, and, if that is the case, trigger the
Leave operation of the Membership Management service.

To implement the logic described above, our resource storage application maintains
a data structure that stores, for each dissemination protocol maintaining a network for
supporting notifications of resources related with a given hash value, the sets of resources
subscribed and tracked. The subscribed resources are the ones that should be considered
when receiving a new dissemination notification as they are the ones from which the
application is interested in receiving notifications. The tracked resources consist on the
previously mentioned resources plus the ones that, although not interested in receiving
notifications, are effectively stored in the node, forcing it to participate on the networks
(related with the hash values) to be used as contact.

When the application wants to store a new resource, or modify an existent one, it
should perform a request, through the PutResource operation of the Resource Storage
interface, to store it by relying on the underlying protocol providing the service. After
that, it should verify if a dissemination protocol maintaining a network for the hash value
of the resource is already running and, if not, instantiate a new one. Then, if the resource
was not yet tracked by the node, it performs a Join operation on the dissemination
protocol, considering the nodes that store the file as contacts. Finally, a notification should
be disseminated through the dissemination protocol to inform other nodes about the
resource change. We should note that, regarding the dissemination protocol, even if one
protocol related with the hash value of the resource is running, but the resource is not in
the set of tracked ones, the Join operation should be performed. This is required in order
to possibly merge two dissemination networks that may be disjoint, i.e., have no peers in
common, because they were created for different resources, but with the same hash value
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as the new resource.
To obtain a resource stored on the decentralized storage system the application should

perform a GetResource operation, through the Resource Storage interface, to be executed
on the protocol providing the service. Moreover, as we consider that when a node
retrieves a resource it is interested in receiving notifications about future changes, it
should also join the dissemination network, as described above when discussing the
resource storage/modification logic.

Lastly, to remove a resource from the system, a node should call the RemoveResource

operation of the Resource Storage interface which will trigger the necessary actions on the
underlying protocol. Also, the node should verify if it needs to stay on the dissemination
network related with the hash value of the resource or, otherwise, if it can leave. The same
behavior should also be triggered on the nodes effectively storing the resource and where
it was actually removed, e.g., the nearest nodes to the resource identifier.

It is noteworthy however, that even with this implementation the notifications re-
ceived related with resource changes need to be filtered, by taking into consideration the
subscribed resources, as collisions between hash values of resource keys are expected
to happen. As an example, if we consider two resources 𝐴 and 𝐵, a hash function h,
and an application only interested in notifications about resource 𝐴, if ℎ(𝐴) = ℎ(𝐵) then
notifications about both resources will be disseminated throughout the same network,
leading to the necessity of filtering to only consider the notifications related with 𝐴.

The decentralized storage application presented in this section shows the importance
of relying on the implemented abstractions to simplify the development of more complex
applications that rely on multiple services provided by decentralized protocols. In this
example, a significant number of protocols are required to be executed simultaneously,
e.g., due to the necessity of instantiating multiple dissemination protocols based on the
hash value of the resources. Also, the interaction with various decentralized services is
required when considering the Membership Management services, to perform the network
management operations on both the protocols responsible for resource location and
dissemination, as well as when interacting with the Resource Location and Dissemination
services necessary for the operation of the application.

In this situation relying on common interfaces for interacting with the services pro-
vided by different protocols helps the developer when building the application and
managing the various running protocols providing distinct services, even if a complex
use of decentralized protocols is required.

4.3 Comparing applications implementation

In this section we presenta comparison between the implementation ofa simple application
using our solution and relying solely on Babel. The application considered here is the peer
sampling application discussed in Section 4.2.4.1 and presents the following behavior:
relying on a peer sampling protocol it joins the network, waits for two minutes to allow
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other nodes to join and, then, performs consecutive requests to the peer sampling protocol
in intervals of two minutes. The sample obtained as a result of each request is then
presented in the console.

Listing 4.8 presents the implementation of the application considering our solution
whereas in Listings 4.9 and 4.10 an implementation of the same application relying
exclusively on Babel is provided.

Listing 4.8: Example of a peer sampling application developed with our solution
1 public class PeerSamplingApp {
2 private static final short PEER_SAMPLING_PROTOCOL_ID = 10000;
3 private static final long REQUEST_TIME = Duration.ofMinutes(2).toMillis();
4

5 public static void main(String[] args) throws Exception {
6 Host contact = null;
7

8 if (args.length > 0)
9 contact = HostUtils.getHostFromString(args[0]);

10

11 ProtocolManager.registerProps(args);
12 ProtocolManager protocolManager = ProtocolManager.getInstance();
13

14 Properties protocolProperties = new Properties();
15 protocolProperties.setProperty(MembershipManagementProperties.PEER_SAMPLING_TYPE.

↩→ getProperty(),
16 MembershipManagementProperties.PeerSamplingType.STATIC.name());
17 protocolProperties.setProperty(MembershipManagementProperties.OVERLAY_STRUCTURE.

↩→ getProperty(),
18 MembershipManagementProperties.OverlayStructure.UNSTRUCTURED.name());
19

20 ProtocolInformation protocolInformation =
21 protocolManager.newProtocol(Collections.singleton(AvailableAPI.

↩→ MEMBERSHIP_MANAGEMENT), PEER_SAMPLING_PROTOCOL_ID,
22 true, false, null, protocolProperties, null);
23

24 MembershipManagementAPI membershipManagementAPI = protocolInformation.getAPI(
↩→ AvailableAPI.MEMBERSHIP_MANAGEMENT);

25

26 Set<Host> contactNodes = new HashSet<>();
27

28 if (contact != null)
29 contactNodes.add(contact);
30

31 membershipManagementAPI.joinRequest(new JoinRequest(contactNodes));
32

33 while (true) {
34 Thread.sleep(REQUEST_TIME);
35 GetNeighborsReply getNeighborsReply = membershipManagementAPI.

↩→ getNeighborsRequestBlocking(new GetNeighborsRequest());
36 System.out.println("Node␣neighbors:␣" + getNeighborsReply.getNeighbors());
37 }
38 }
39 }

By examining Listing 4.8 it is possible to understand how the proposed solution can
be used when developing applications taking advantage of a decentralized approach.
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First, an instance of the Protocol Manager is requested which leads to its creation, if
no instance was already created. After that, between lines 20 and 22, a protocol able to
provide the Membership Management service is requested by providing as first parameter
a set containing a single element representing the required service. In this example the
protocol is requested by specifying the set of services that should be provided, instead of
explicitly specifying which protocol should be instantiated. The remaining parameters
define, respectively, the protocol identifier, a boolean indicating if the protocol should be
initialized, a boolean indicating if a currently running instance should be returned, the
Host object representing the address and port of the protocol, the required properties
from the protocol, and the properties related with the running configuration. Section 4.2.1
provides a detailed description about the parameters required when requesting a protocol
instantiation.

When the request for instantiating the protocol is performed it is possible to observe
that, not only the set of services is provided, but also a Properties object containing the
required properties. This object is populated above and guarantees that the protocol
returned addresses two properties: it is based on an unstructured overlay network and
provides a static peer sampling service. These service-related properties are discussed in
Section 3.2, where each service is described in detail.

A closer look at the code responsible for instantiating a protocol reveals other particular
aspect: both the parameter related with the address and port of the protocol and the one
related with the running configurations are defined as null. This is explained by the fact
that, in our solution, the network location may be specified in the configuration file (or as
command-line argument), allowing the Protocol Manager to know the network location of
a protocol when instantiating it. Moreover, the running configurations of a protocol might
also not be provided and, in that situation, the default ones defined in the configuration
file are used. As discussed before, the required properties from a protocol should not
be confused with the running configurations of the protocol instance. Whereas the first
are related with the protocol properties regarding the services provided (e.g., if the peer
sampling service is static or dynamic), the second are related with the configuration of
the protocol (e.g., the size of the views or the timeouts).

After the instantiation of the protocol, the interface for requesting the operations
related with Membership Management is obtained from the ProtocolInformation object
and a Join request is performed with the contact node provided as parameter. If the
request is performed with an empty set the node will act as the first node in the network.
The application then starts issuing requests to the peer sampling protocol through the
Membership Management interface in two minutes intervals, also waiting two minutes
before the first request. It is important to note that, in this example, the application relies
on the blocking interaction mechanism to request the neighbors of the node, therefore
the call to the getNeighborsRequestBlocking method blocks the execution of the thread
until the results are available. After that, the results are presented in the console, and the
next request is performed.
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Listing 4.9: Peer sampling application developed exclusively with Babel
1 public class PeerSamplingAppBabel extends GenericProtocol {
2 public static final short APPLICATION_ID = 100;
3 public static final String APPLICATION_NAME = "Peer␣Sampling␣Application";
4 private static final long REQUEST_TIME = Duration.ofMinutes(2).toMillis();
5

6 private final Host contact;
7 private final short peerSamplingProtocolId;
8

9 public PeerSamplingAppBabel(Host contact, short peerSamplingProtocolId)
10 throws HandlerRegistrationException {
11 super(APPLICATION_NAME, APPLICATION_ID);
12

13 this.contact = contact;
14 this.peerSamplingProtocolId = peerSamplingProtocolId;
15

16 registerReplyHandler(GetNeighborsReply.REPLY_ID, this::uponGetNeighborsReply);
17 registerTimerHandler(PeerSamplingTimer.TIMER_ID, this::uponPeerSamplingTimer);
18 }
19

20 @Override
21 public void init(Properties properties) throws HandlerRegistrationException,

↩→ IOException {
22 Set<Host> contacts = new HashSet<>();
23

24 if (contact != null)
25 contacts.add(contact);
26

27 sendRequest(new JoinRequest(contacts), peerSamplingProtocolId);
28 setupTimer(new PeerSamplingTimer(), Duration.ofMinutes(2).toMillis());
29 }
30

31 private void uponPeerSamplingTimer(PeerSamplingTimer timer, long timerId) {
32 sendRequest(new GetNeighborsRequest(null), peerSamplingProtocolId);
33 }
34

35 private void uponGetNeighborsReply(GetNeighborsReply reply, short sourceProto) {
36 System.out.println("Received␣neighbors:␣" + reply.getNeighbors());
37 setupTimer(new PeerSamplingTimer(), REQUEST_TIME);
38 }
39 }

Listings 4.9 and 4.10 present the implementation of the same peer sampling application
discussed before, but based only on Babel. In this case the application needs to be
developed itself as a Babel protocol to be able to communicate, using requests and replies
provided by Babel, with the underlying peer sampling protocol. This is what explains
the need for two classes: the class with the application logic implemented as a Babel
protocol and a class containing the Java Main method responsible for instantiating Babel,
instantiate and register the required protocols (the application and the HyParView peer
sampling protocol), initialize them, and start Babel.

The implementation presented in Listing 4.9, has the same behavior as the one pre-
sented in Listing 4.8. To implement the required behavior, the application relies on
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Listing 4.10: Peer sampling application developed exclusively with Babel (Main class)
1 public class PeerSamplingApp {
2 private static final String CONFIG_FILE = "config.properties";
3 private static final short PEER_SAMPLING_PROTOCOL_ID = 10000;
4

5 public static void main(String[] args) throws Exception {
6 Host myself = HostUtils.getHostFromString(args[0]);
7 Host contact = null;
8

9 if (args.length > 1)
10 contact = HostUtils.getHostFromString(args[1]);
11

12 String[] babelArgs;
13 //Removes the first arguments witch are not Babel configs
14 if (contact != null)
15 babelArgs = Arrays.stream(args).skip(2).toArray(String[]::new);
16 else
17 babelArgs = Arrays.stream(args).skip(1).toArray(String[]::new);
18

19 Babel babel = Babel.getInstance();
20 Properties properties = Babel.loadConfig(babelArgs, CONFIG_FILE);
21

22 HyparView hyparView = new HyparView(properties, PEER_SAMPLING_PROTOCOL_ID, myself);
23 PeerSamplingAppBabel peerSamplingApp = new PeerSamplingAppBabel(contact,

↩→ PEER_SAMPLING_PROTOCOL_ID);
24

25 babel.registerProtocol(hyparView);
26 babel.registerProtocol(peerSamplingApp);
27 hyparView.init(properties);
28 peerSamplingApp.init(properties);
29 babel.start();
30 }
31 }

defining handlers for i) the trigger of a timer responsible for sending the peer sampling
requests, and ii) the replies received from the peer sampling protocol in response to the
requests performed. It is important the note that, in addition to the ones presented here,
a Java class representing the timer used to trigger the execution of a new request was also
required but, due to space constraints and simplicity, it is not presented here.

Regarding the constructor of the application, it not only registers the required handlers
but also receives the identifier of the underlying peer sampling protocol to use as well as
the contact node to be used when joining the network. The application initialization is
then performed by issuing a request to join the network and setting a timer for scheduling
the first peer sampling request.

Concerning the submission of requests to the underlying protocol to obtain a sample
of peers, this logic is implemented in the handler executed when the timer is triggered.
Therefore, when the timer is triggered by Babel, the request is sent using the Babel
sendRequest method. Finally, when receiving a reply from the underlying protocol to the
previously made request, the results are presented in the console and a timer is set again
to schedule the next request.
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By comparing both implementations of the application some aspects are worth dis-
cussing. First, the code complexity of the version relying solely on Babel is higher that the
one implemented with our solution. This is explained not only by the higher number of
classes and lines of code (even in this simple example), but also by the need of understand-
ing more complex aspects like asynchronous operations, handlers registration, and the
operation of Babel. The necessity of developing the application as a Babel protocol also
contributes for this increase in complexity, specially for programmers that are only inter-
ested in using existent decentralized protocols in applications in opposition to developing
new ones.

Another relevant aspect is the capability of choosing a decentralized protocol by the
services and properties required, instead of explicitly defining what protocol should be
instantiated. This is presented in the example using our solution but, in the example
relying on Babel, the HyParView protocol needed to be explicitly specified. Moreover,
with our solution, even if the protocol was explicitly specified (or if the properties required
changed, leading to the choice of another peer sampling protocol) the application would
not suffer any additional changes as the interfaces remained the same.

Furthermore, our solution provides many distinct approaches for interacting with the
operations exposed by the interfaces of the services. These approaches include blocking
operations (as the one employed here), a Future-based approach, and an asynchronous
approach through the specification of a handler to be executed when the results of
a specific operation are available. Additionally, an asynchronous approach based on
requests and replies (registered for each type of reply) provided by Babel is also available.
By comparison, the implementation relying exclusively on Babel only provides the last
model of interaction.

As an example, in this situation relying on a blocking approach for interacting with
the peer sampling service simplifies the development of the application and the resulting
code as the application does not require any asynchronous mechanism. In fact, this is
the case in many applications leaving developers with the burden of implementing more
complex, time-consuming, and error-prone asynchronous logic, where a synchronous
mechanism would be more simple and easy to use. Finally, by relying on the approach
exposed by our solution a timeout can be defined for blocking operations, through the
configuration file, protecting applications of waiting indefinitely for the results to arrive.
To implement the same behavior on the second application, more logic would need to be
implemented directly in the application, namely by implementing more timers.

4.4 Summary

In this chapter we have presented a reference implementation for the solution proposed
in Chapter 3 based on the Java programming language and the Babel framework. Our
implementation aims at allowing applications to easily instantiate, interact, and manage
protocols capable of providing decentralized services, by relying on a set of generic
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abstractions devised by service, instead of relying on protocol specific interfaces and
mechanisms.

It is worth noting that in this reference implementation we implemented all interaction
models (synchronous and asynchronous) between applications and protocols considered
in the solution architecture. The implementation presented here can also be provided
as a standalone Java package, e.g., available in a Maven [41] repository, to be used by
applications who wish to leverage on the abstractions and mechanisms implemented.

With this implementation we strived to develop an easy-to-use solution for applications
that rely on decentralized services for their operation, e.g., in order to take advantage of
the edge computing paradigm. We also expect this solution to be easily extended with
both new decentralized services and protocols, in addition to those already devised and
implemented.

The implementation of each component was presented in detail, including details on
the applications developed leveraging on our solution as well as available protocols. As
explained before, although in this chapter we have presented a reference implementation
based on a concrete programming language and framework we believe that our solution
is sufficiently generic to be implemented in a variety of languages and frameworks.

Finally, we completed the chapter with a comparison between the implementation of
an application using our solution versus relying solely on mechanisms provided by the
Babel framework where it was possible to observe the main advantages of the architecture
proposed.

In the next chapter we present an experimental evaluation of the solution, based on
the reference implementation and applications whose development was described here.
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Evaluation

In this chapter the experimental evaluation of our middleware solution is presented. This
evaluation focus both on the impact on performance and code complexity of the use of our
solution. Our objective is to study, on one hand, the performance impact of the abstractions
proposed in this document and, on the other hand, its influence on the complexity of the
code. This way we are able to compare the effect of our solution on the performance of the
applications versus the benefits it brings for programmers when developing applications
that rely on services provided by decentralized protocols.

The chapter is structured as follows: in Section 5.1 we describe the experimental
settings in which the evaluation took place. Then, in sections 5.2 and 5.3 we present and
discuss the results obtained in terms of performance and code complexity, respectively.
The chapter ends with a summary in Section 5.4.

5.1 Experimental Settings

The evaluation of our solution was performed based on the reference implementation
proposed in Chapter 4, in particular considering the developed applications that take
advantage of our architecture for interacting with the services provided by decentralized
protocols. All performance tests were executed on the DI/NOVA-LINCS Research Cluster,
using machines with the following specifications: 2 x AMD EPYC 7343 CPUs with a total
of 32 cores and 64 threads, 128 GB of DDR4 memory at 3200 MHz, 450 GB of internal
SSD storage, and a 2x10 Gbps network connection. All cluster machines used for the
experiments were co-located.

For performing the evaluation, we relied on the applications whose implementation is
discussed in Section 4.2.4. For the performance evaluation the routing and dissemination
applications were considered whereas for the evaluation of code complexity all appli-
cations were taken into account. To compare both performance and code complexity, a
second version of the applications was developed relying only on Babel [19] mechanisms,
instead of the programming interfaces provided by our solution. As discussed before
when presenting the applications in Section 4.2.4, for the routing and dissemination
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applications two distinct implementations were developed: an interactive one and an
automated one. Hence, for these applications only the automated implementations were
considered for evaluation and, as so, only those were also developed without relying on
the proposed abstractions.

For the version without abstractions, applications were developed as Babel protocols
as they needed access to the mechanisms for an asynchronous and event-based interaction
exposed by Babel to interact directly with the protocols through requests and replies. No
Protocol Manager or programming interfaces are available, and the applications, as well
as the protocols, were manually instantiated and registered in the Babel framework before
starting their operation. No mechanisms related with the instantiation of a protocol by
providing the set of services and properties are available in these applications. Figures 4.9
and 4.10, discussed in detail in Section 4.3, provide an example of how the applications
relying only on mechanisms exposed by Babel were implemented.

Regarding the applications considered for the performance evaluation, both versions
of the routing and dissemination applications perform a series of requests to execute
an operation on a decentralized protocol. The first one performs requests, in a closed-
loop, for routing a (randomly generated) query through the network and expects a set of
nodes matching the query to be returned. The second one requests the dissemination of
messages, of a given size, throughout the network in fixed time intervals.

The Kademlia [42] protocol was used as routing protocol for the routing application,
whereas the Plumtree [28] protocol (with HyParView [30] as peer sampling protocol) was
used as dissemination protocol for the dissemination application. The interaction between
Plumtree and HyParView, when relying on abstractions, is performed as described in
Section 4.2.3.1. It is worth noting that we decided to use HyParView as the peer sampling
protocol for Plumtree due to its capability of providing a static peer sampling service,
as discussed in Section 3.2.1.3. The Plumtree protocol benefits from relying on a peer
sampling service with these characteristics as discussed in [28].

Both the routing and dissemination applications were initialized similarly. First, the
mechanisms responsible for launching applications on each machine were executed in
serial with a delay of 5 seconds between each execution. Then, on each machine, all the
nodes were also started in serial with a delay of 1 second between each process launch.
Regarding the definition of the contact nodes, necessary for the operation of decentralized
protocols, it was performed as described next. The first process launched on each machine
received the first process launched on the previous machine as contact while, in the
following ones, the previously (locally) started process was defined as contact. A special
case happens when launching the first process on the first machine as this is the first node
on the network and, therefore, no contact node was defined.
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5.2 Performance Evaluation

In this section we present the performance evaluation of our approach by comparing both
routing and dissemination applications against their respective versions that only rely on
Babel. To evaluate the performance of our solution each application was executed for a
predefined amount of time and a set of metrics, described in detail in each of the following
sections, were considered. The results presented for each of the test conditions were, in all
cases, obtained from an average of multiple test executions and, when deemed necessary,
the confidence intervals (with a level of confidence of 95%) are also presented. Also, the
retrieval of the metrics for each test was performed by parsing the logs obtained from each
execution, after the test has been completed, in order to not contaminate the execution of
the tests with the load of computing or storing metric-related data.

A comparison between initialization times was also performed to assess the impact of
the Protocol Manager and the abstraction layer composed by the programming interfaces.
We consider the initialization time as the period between the request for the instantiation
of a protocol, both through the Protocol Manager or directly, and the moment when the
protocol is available to be used by an application.

In the following we describe the evaluation performed for each one of the routing and
dissemination applications. The metrics considered in each case are presented, as well
as the results obtained after executing the evaluation. A discussion of the results is also
provided.

5.2.1 Routing application

As described before, the routing application is responsible for performing routing requests
of randomly generated queries through the network, by relying on a routing protocol like
Kademlia. The application expects to receive the set of nodes matching the query provided.
In our evaluation the Kademlia protocol was executed with the following configurations:
𝑘𝑣𝑎𝑙𝑢𝑒 = 20, 𝑎𝑙𝑝ℎ𝑎 = 3, and the timeout for node lookups set for 10 seconds. The routing
requests were carried out by the application, in a closed-loop, for 4 minutes with a start
and cooldown period of 2 minutes each.

5.2.1.1 Evaluation metrics

When evaluating the performance of the routing application, the following metrics were
considered.

Number of requests sent The number of requests sent by the application for performing
routing operations, each with a different randomly generated query.

Number of results received The number of results received, from the routing protocol,
containing the set of nodes that result from the queries provided.
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Application Nodes Requests
Sent

Responses
Received

Latency
(𝑚𝑠)

Throughput
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠/𝑠) Recall

With
middleware

192 353151.3 353151.3 129.267 ± 0.834 1128.3 1.0
384 517837.7 517837.7 176.848 ± 1.650 1580.4 1.0
576 617627.3 617627.3 222.793 ± 0.370 1800.7 1.0

Without
middleware

192 357782.3 357782.3 127.686 ± 0.723 1143.1 1.0
384 522143.3 522143.3 175.432 ± 0.334 1591.9 1.0
576 620851 620851 221.686 ± 2.901 1810.1 1.0

Table 5.1: Routing application performance results

Average Latency The average latency, in milliseconds, until receiving the routing results.
The latency was obtained, for each request, by calculating the difference between
the moment when the request was performed and the moment when the respective
result arrived. Then, the average was calculated considering the latencies of all
requests.

Throughput The throughput is presented in responses per second and represents the
rate of routing responses arriving in a given time interval (1 second in this case). The
throughput was obtained by dividing the number of results received by the period
of testing (in seconds).

Recall The recall metric represents the fraction of values that are considered correct
between all returned by the routing protocol. This metric was calculated by verifying,
for each result obtained, if the returned set of nodes was correct and, then, dividing
the number of correct results by the total number of routing results received. To
verify each result, our parser considered all the nodes present on the network and
compared the results obtained with the expected ones, considering the nearest nodes
to the query provided, based on the XOR metric.

5.2.1.2 Discussion of results

The tests with the routing application were performed, in the conditions described above,
with 192, 384, and 576 nodes split, respectively, by 3, 6 and 9 machines running 64 nodes
each. Each test was performed three times and the presented results are the average of the
executions. The comparison of latencies between the versions of the routing application,
with and without relying on the developed abstractions, are provided in Figure 5.1. The
results regarding the remaining metrics are presented in Table 5.1. Furthermore, Figure 5.2
provides a comparison between the initialization time of both application versions. The
initialization time was obtained by calculating an average of the initialization times
considering 192 nodes split into three machines.

Through the analysis of the results presented in Table 5.1 and Figure 5.1 it is possible
to conclude that, although a slight increase in latency and, therefore, a reduction in
throughput, can be observed in the application version that relies on our solution, the
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Figure 5.1: Comparison between the latency results of the routing application

With middleware Without middleware
145

150

155

160

156.63

150.43

Ti
m

e
(in

𝑚
𝑠)

Figure 5.2: Comparison between the initialization times of the routing protocol

impact of the abstraction components is minimal. In fact, when considering the confidence
interval, both solutions might even be considered equivalent in terms of performance.
This result is in line with the expected behavior as we believe that the most impact on
latency is on the network side, and not on the computations performed locally. Therefore,
the impact that our abstractions could pose on latency, when sending requests or receiving
results, due to the additional computations, is mitigated by the impact of communicating
over the network. Additionally, the recall value of 1.0, obtained for all tests performed
confirms that both the implemented decentralized protocols and all other components of
our solution are behaving as expected, with all operation requests being correctly handled.

Regarding the time required for protocol initialization, the results show that the time
to initialize a protocol relying on the abstraction mechanisms is slightly higher than its
counterpart, even though when considering the confidence intervals the results can be,
to some extent, deemed equivalent. This is the expected result as the mechanisms for
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protocol instantiation are more complex in our solution than just calling the constructor
of a Java class and performing a protocol registration on Babel. However, we believe that
this result does not pose a significant performance problem because i) although higher, we
do not consider the initialization time when relying on the developed abstractions, to be
very significant, and ii) in most situations the instantiation of protocols in only performed
a few times during the execution of the applications (or even just at the start).

5.2.2 Dissemination application

Our solution was also evaluated through the use of a dissemination application. As
described before, this application requests the dissemination of messages with a config-
urable size, throughout the network, over a fixed period of time. The application generates
an identifier for each message (an UUID) and logs the moment when the dissemination
request was performed. Then, when a message is received, the identifier is obtained and
logged together with a timestamp.

For this application we leveraged on Plumtree as dissemination protocol and on Hy-
ParView as the underlying peer sampling protocol. The Plumtree timeout, for considering
a connection as failed was configured to 7 seconds, while the timeout for awaiting a GRAFT
response was defined to 3.5 seconds. The HyParView protocol relied on active and passive
views of size 5 and 12, respectively. The application performs the dissemination of a
message every 30 seconds, with a size of 100 KB, during a period of 4 minutes with a start
and cooldown period of 2 minutes each.

5.2.2.1 Evaluation metrics

When evaluating the performance of the dissemination application, the metrics described
below were considered.

Number of messages sent The total number of messages requested by the application to
be disseminated throughout the network, relying on the underlying protocols. For
each request, a payload with the pre-configured size was disseminated.

Total delivered messages The total number of messages delivered on the various in-
stances of the dissemination application. As an example, if a message is disseminated
by a node on a network containing 8 nodes, and all of them receive the message, we
consider the total delivered messages to be 8.

Average Latency The average latency was considered as the average of the maximum
latencies obtained for each disseminated message. To retrieve this metric the maxi-
mum latency for each message was obtained by calculating the difference between
the moment when the message was last delivered and the moment when the dis-
semination request was made. Then, an average of the maximum latencies was
performed to obtain the final result.
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Application Nodes Messages
Sent

Total Delivered
Messages

Latency
(𝑚𝑠)

Throughput
(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠/𝑠) Reliability

With
middleware

192 1536 294912 26.445 ± 0.488 614.4 1.0
384 3072 1179648 33.821 ± 1.497 2457.6 1.0
448 3584 1605632 40.273 ± 3.052 3345.1 1.0

Without
middleware

192 1618.7 310732.8 26.624 ± 0.946 647.4 1.0
384 3221.7 1237132.8 33.410 ± 1.088 2577.4 1.0
448 3757.6 1683404.8 35.962 ± 2.107 3507.1 1.0

Table 5.2: Dissemination application performance results

Throughput The throughput is presented in messages per second and represents the rate
of messages delivered on the system in a given time interval (1 second in this case).
The throughput was obtained by dividing the number of total delivered messages
by the period of testing (in seconds).

Reliability The reliability represents the fraction of disseminated messages that are
correctly delivered to nodes present in the network. In our evaluation we calculated
the reliability for each message by dividing the number of nodes on which the
message was delivered by the total number of network nodes. An average of the
reliability values was then performed to obtain the final result.

5.2.2.2 Discussion of results

The evaluation of the dissemination application was performed by executing 192, 384, and
448 nodes on 3, 6, and 7 machines respectively. Each test was repeated ten times and the
results presented here, for each test condition, are the average of the executions. The higher
number of tests performed, in comparison with the routing application, is explained by
the higher variation in the values of metrics that is expected from this application, thus
leading to the necessity of more tests to obtain comprehensive results. In Figure 5.3
we present the comparison between the latency values of both implementations of the
dissemination application, with and without relying on our solution. The complete results
are presented in Table 5.2. Additionally, Figure 5.4 presents the comparison between the
initialization time of protocols on both implemented versions. As before, the evaluation of
the initialization time was performed by calculating the average of all initialization times,
considering 192 nodes split into three machines.

Considering the results on Table 5.2 and Figure 5.3 it is possible to observe similar
results to the ones previously discussed for the routing application. Hence, a significant
difference in performance is not observable when comparing both implementations of
the dissemination application, as the results obtained can be deemed equivalent when
considering the confidence intervals. As discussed before, this is the expected result as
we believe that the influence of the network communication on performance, in particular
when taking into account the latency values, is more significant than the influence of
local computations. As a result, the impact of our solution on the overall performance is
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Figure 5.4: Comparison between the initialization times of the dissemination protocol

reduced. Furthermore, the reliability values of 1.0 also support the conclusion that our
solution is working as expected, with all dissemination requests being correctly handled,
as well as the deliveries of the messages to the applications.

A note should be made regarding the results for the messages sent and total delivered
messages metrics presented in Table 5.2. In the implementation of the application without
relying on the developed middleware, the results regarding those metrics present slight
variations between tests. This is explained because in this implementation we relied on
Babel timers to trigger the dissemination of messages, unlike its counterpart where due
to the use of our programming interfaces a thread was launched for sending the requests
as the application was not required to be implemented as a Babel protocol. This way,
the timers responsible for the dissemination of messages may be put in the queue of
events before the timer responsible for stopping the dissemination. The order of both
events in the queue matters in this situation, as the last trigger of the dissemination
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timer is expected to happen at the same time as the trigger of the timer for canceling the
dissemination. Consequently, each node can issue, at maximum, one more message than
initially expected. The results presented are an average of the messages sent and delivered
on each test performed.

When considering the results regarding the initialization time, presented in Figure 5.4
similar results to the ones discussed before are also observable. By comparing the
initialization times of both implementations of the dissemination application it is possible
to conclude that the initialization of a new protocol on the implementation relying on
our middleware takes slightly longer that its counterpart. This is the expected result as
more operations need to be performed in our solution, for instantiating a protocol, when
compared to calling the Java constructor of a protocol and registering the instance on
Babel.

The additional operations include verifications performed by the Protocol Manager
(e.g., related with the identifier of the protocol) and the instantiation of the generic inter-
faces allowing the interaction with the services provided by the protocol. Additionally,
the Protocol Manager is also required to retrieve the running configuration and store in-
formation about the execution of the new protocol. Moreover, as discussed in Section 4.2.1
the instantiation of the protocols in our solution is performed leveraging on the Java
reflection mechanisms, which are known to be slower when compared to directly calling
a constructor [60, 16].

5.3 Code complexity evaluation

For comparing the code complexity between the application versions with and without
relying on the programming interfaces and management mechanisms developed, we
performed an analysis on the number of lines of code required for implementing each
version. All applications described in Section 4.2.4 were considered, by comparing the
complexity of the version developed using our solution with the equivalent one relying
exclusively on the Babel framework.

When counting the lines of code required to implement each version of the applications
the blank lines and comments were not considered as well as the lines related with imports
and package definitions in Java classes. In the comparison between both versions of the
decentralized storage application, the lines related with the user interaction for performing
the operations were also not taken into account.

The results regarding the code complexity of each application are presented in Table 5.3.
The table presents the number of lines of code required to implement both versions of
each application and the percentage of reduction. A positive percentage means that the
implementation of the version relying on the abstractions developed is smaller, by the
factor expressed in the percentage, when compared to the one that relies directly on Babel.

Through the analysis of Table 5.3, that presents the comparison in terms of code
complexity between the different implementations of each application, it is possible to
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Applications Lines of Code % of reductionWith middleware Without middleware
Peer Sampling 29 64 54.7 %
Dissemination 70 132 46.9 %

Routing 66 120 45 %
Resource Storage 202 360 43.9 %

Table 5.3: Comparison between the complexity of each application

notice a significant improvement when leveraging on our solution for interacting with
decentralized services. This improvement is explained by the simple mechanisms for
protocol instantiation as well as the common programming interfaces exposed, providing
multiple synchronous and asynchronous interaction mechanisms between protocols and
applications.

As an example, when considering the Routing application, the version relying on
the abstractions developed can launch a thread, active on the period during which the
routing requests should be performed, to issue FindNodes operations in a closed-loop.
The code leverages on the Futures-based interaction mechanism, requesting the operation
and blocking on the returned future until the return value is available or a timeout expires.
The simple instantiation of a protocol just by calling an operation exposed by the Protocol
Manager, therefore obtaining the programming interfaces to interact with it and perform
the necessary operations is also an advantage. Additionally, being able to implement
the application without having to interact with the Babel mechanisms simplifies the
development both by reducing the learning curve for the programmer and the complexity
of code, as no initialize methods, specific constructors, nor event handlers are required
because the application does not need to be implemented as a Babel protocol.

Conversely, the version of the application that does not rely on the abstraction layer,
due to the necessity of development as a Babel protocol, needs to implement all logic
based on the asynchronous mechanisms, exposed by Babel, through the implementation
of handlers responsible for dealing with the replies from the FindNodes operation. The
application is also required to register those handlers in Babel. To implement the same
closed-loop behavior, the handler should send the next FindNodes request to the protocol
when the last one is received. Moreover, the start and stop of the routing requests needs
to be managed by a Babel timer, which requires the development of one more Java class
and the respective timer handler.

When considering more complex examples, like the Resource Storage application, the
advantages of our solution become even more evident as not only the number of lines
of code is reduced, but also the implementation of the application becomes easier for
the developer. As an example, when a node wants to add a new file a set of operations
might need to be performed, as discussed in Section 4.2.4.4. These operations include
instantiating a protocol to disseminate the notifications related with the file, performing a
Join operation in the dissemination protocol using the nearest nodes to the file identifier
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as contact nodes, and disseminating the notification throughout the network.
Implementing the logic described before requires coordination between distinct pro-

tocols and operations. An example of coordination is obtaining of the nearest nodes to
the file identifier, which needs to be done before requesting the Join operation from the
dissemination protocol, as the nodes retrieved will be used as contacts. The coordination
between different operations leverages on the blocking operations exposed by our solution
instead of dealing with an asynchronous interaction model that requires more complex
logic and is more error-prone.

Additionally, in more complex applications that require multiple decentralized proto-
cols to work properly, having a single component for managing all of them (in this case
the Protocol Manager) is also an advantage. Moreover, relying on generic interfaces for in-
teracting with the services provided by the protocols not only simplifies the development,
but also contributes to the maintainability by allowing the change from one protocol to
another without profound application changes.

Another advantage of using the solution proposed in this dissertation is related with
the distribution of logic between different classes. In the implementation of the Resource
Storage application leveraging on our solution the application logic is distributed between
two classes: one responsible for handling the input from the user, and another responsible
for the application logic itself, e.g., instantiating the protocols, calling the operations
from the services-based interfaces, or handling the notifications. Implementing the same
logic in the version relying exclusively on Babel is more complex as all classes need to
be implemented as Babel protocols. Consequently, two Babel protocols needed to be
implemented both for user interaction and application logic, with the communication
between them being performed through asynchronous mechanisms like requests, replies,
and notifications. This not only translates into more complex logic but also requires the
development of more classes, e.g., the version implemented with our solution required
the development of three Java classes versus the nine implemented using only Babel.

In Section 4.3, we furtherdiscussed the differences between using the solution proposed
in this dissertation and relying only on mechanisms exposed by the Babel framework
through a comparison between both implementations of the peer sampling application.

5.4 Summary

The evaluation presented in this chapter allow us to study the impacts of our solution for
decentralizedabstractions both in terms ofperformance andcode complexity. By analyzing
the results it is possible to conclude that, although a slight decrease in performance may
occur due to the existence of a middleware layer between applications and protocols
(even though the results can be considered equivalent when taking into consideration
the confidence intervals), it is compensated by the simplified service-based model of
interaction. Therefore, we believe thatoursolution significantly simplifies the development
process of applications that require the use of decentralized protocols, e.g., for relying
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on an edge computing approach, by leveraging on a set of standardized components
that make applications easier to develop and maintain, even if changes are needed in the
future.

The comparison performed on the code complexity, considering both implementations
of each application, shows that the proposed solution allows a simple development of
applications as the evaluation results show a significant decrease in the number of lines
of code that are required. Furthermore, programmers also benefit from having access
to generic (service-based) interfaces that increase maintainability and provide multiple
interaction models, both synchronous and asynchronous, allowing the usage of the
most appropriate approach. Also, relying on protocol management mechanisms can be
beneficial, in particular when considering more complex applications that require multiple
decentralized protocols.

In summary, we believe that the upsides of using the middleware solution presented
in this dissertation, for developing and maintaining decentralized applications, largely
exceed the possible downsides of a slight decrease in performance. In the next chapter we
present the conclusions and future work regarding this dissertation.
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Conclusions and Future Work

Nowadays, many applications rely on decentralized approaches to improve reliability,
fault-tolerance, and scalability due to the lack of a single point of failure as well as the
ability to distribute computations through multiple machines. In some cases, decentralized
architectures even provide useful privacy guarantees. These applications leverage on the
use of protocols, many of which developed in the context of peer-to-peer (P2P) systems,
that provide a set of decentralized services related with membership management and
communication. In fact, some applications use these services for relying on an edge
computing approach, allowing computations to be performed closer to clients, therefore
reducing latency and distributing the load on the system.

Although a significant number of protocols already exist for providing the required
services, some of which were discussed before in this dissertation, each one exposes a
specific interface to interact with it. This happens, not only when comparing protocols
providing similar services, but even when considering distinct implementations of the
same protocol. These protocol-based interfaces difficult the development of decentralized
applications and reduce their maintainability, e.g., by leading a protocol change, even for
another one providing the same set of services, to trigger extensive modifications on an
application. This gains even more importance when considering applications that rely on
multiple decentralized protocols for their operation. Furthermore, the existence of generic
mechanisms to simplify, not only the interaction between applications and protocols, but
also the instantiation and management of the decentralized protocols running on a process,
independently of their operation or services provided, would be beneficial.

In this dissertation we performed a study on a set of decentralized protocols, regarding
the services provided, operations exposed, as well as their properties. Then, we developed
a set of generic abstractions (or programming interfaces) that can be leveraged to interact
with them, by relying on a service-based approach in opposition to a protocol-based one.
Our solution provides multiple interaction mechanisms for requesting operations from
decentralized protocols, employing both synchronous and asynchronous approaches.
Programmers can also request a decentralized service to be provided even without
knowledge of the specific protocols providing it, as the instantiation of protocols can
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be requested just by defining the service(s) and (optionally) the properties required.
In summary, by combining the devised interfaces with the mechanisms developed for
managing decentralized protocols running on a system, a middleware solution based on
multiple components was developed.

We provided a reference implementation of the solution proposed, developed in Java,
based on the Babel framework. Finally, an evaluation was performed, leveraging on the
implementation mentioned before, to assess the impact of the solution on the performance
and code complexity of applications. The results showed that the improvements in terms
of code complexity are noticeable without a relevant impact on key performance indicators
of applications.

6.1 Future Work

In this section we present the work that might be developed in the future based on the
solution proposed in this dissertation.

Definition of more services and respective generic interfaces More abstractions could
be devised in order to accommodate protocols providing different services to ap-
plications. This would require a study of more protocols, providing services that
are distinct from the ones presented in this document, and the definition of the
respective programming interfaces. The extension mechanisms, already in place
on the solution proposed here, could be leveraged to implement those interfaces.
Moreover, the currently devised service-based interfaces can be extended if required,
as an example, by adding new operations and/or more parameters to the current
ones.

Integration of more protocols The development of more protocols, providing the ser-
vices presented in this dissertation or new ones, could also be performed. As in the
above case, the existing extension mechanisms to simplify the registration of new
protocols in our solution could be leveraged to adapt current implementations of
decentralized protocols to our solution.

Development of a distributed mechanism for protocol management The proposal, in
this dissertation, of generic mechanisms for instantiating decentralized protocols
also opens the possibility of developing a decentralized control mechanism for re-
motely managing the protocols running on each node. This mechanism might take
the form of a special protocol, running on nodes leveraging on our solution, that
allows performing requests for the remote instantiation of decentralized protocols,
providing the required services. With the remote management mechanism, a node
can not only request the local instantiation of a protocol using the generic abstrac-
tions presented in this work, but also request the instantiation of the protocol on
another node. However, this approach might lead to security challenges, namely the
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ones related with the possibility of performing attacks targeting the availability of
nodes, e.g., by forcing the execution of a significant number of protocols on a node.

Development of mechanisms for dynamic adaptation of protocols The developmentof
generic abstractions for interacting with decentralized protocols, through common
service-based interfaces, also paves the way for developing dynamic adaptation
mechanisms. These mechanisms would be capable of adapting the protocol in use in
response to changes in the operational conditions, e.g., if a network becomes more
unstable. This could lead to a protocol being changed to another one, providing the
same set of services, but more suitable to the new conditions without any impact
on the operation of the upper application, as the interface for interaction remains
the same. In fact, we can even consider situations where parts of a network are
maintained relying on a given protocol while others are maintained by a different
one, if the two are capable of being coupled together, while the abstractions allowing
applications to interact with those protocols remain the same.
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