
Semantics-based reconciliation for collaborative

and mobile environments

Nuno Preguiça1, Marc Shapiro2, and Caroline Matheson2
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Abstract. IceCube is a system for optimistic replication, supporting
collaborative work and mobile computing. It lets users write to shared
data with no mutual synchronisation; however replicas diverge and must
be reconciled. IceCube is a general-purpose reconciliation engine, pa-
rameterised by “constraints” capturing data semantics and user intents.
IceCube combines logs of disconnected actions into near-optimal reconcil-
iation schedules that honour the constraints. IceCube features a simple,
high-level, systematic API. It seamlessly integrates diverse applications,
sharing various data, and run by concurrent users. This paper focus on
the IceCube API and algorithms. Application experience indicates that
IceCube simplifies application design, supports a wide variety of appli-
cation semantics, and seamlessly integrates diverse applications. On a
realistic benchmark, IceCube runs at reasonable speeds and scales to
large input sets.

1 Introduction

In order for collaborative users to contribute to the common task or coordinate,
they must be able to update their replicas of the shared information. Further-
more, in mobile environments, mobile users need to access shared data during
disconnection periods or to face slow or expensive networks. Thus local replicas
may diverge and need to be reconciled. This is not trivial however because of
conflicts.

Most existing reconcilers use syn-
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Fig. 1. Syntactic scheduling spuriously
fails on this example

tactic mechanisms such as timestamps
and drop actions to avoid conflicts. For
instance in Figure 1, User 1 is request-
ing a reservation for room A and also
for either B or C. A bit later User 2
requests either A or B. Reconciling in
timestamp order reserves A and B for
User 1, and User 2 cannot be satisfied.
If instead the reconciler ignores times-
tamps but understands the meaning of
“or” it can accomodate both users.
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Fig. 2. IceCube system structure

The IceCube reconciler constitutes a general-purpose middleware that is flex-
ibly parameterised by application semantics. It works seamlessly across users,
applications and objects that need not be aware of each other’s existence.

A model IceCube environment is sketched in Figure 2. It shows two com-
puters (Anne’s and Brian’s PCs), each with its own replicas of shared data
(Appointments, Accounts, and Flights). An application can tentatively update
a local replica [13]. Tentative updates are logged.

IceCube will combine the concurrent logs into sequential executions called
schedules. In contrast to the inflexible schedulers of previous systems, IceCube
obeys the application semantics, expressed by way of so-called constraints. Con-
straints constitute a general and powerful API for applications to express pre-
cisely their dependencies and invariants. By viewing scheduling as an optimisa-
tion problem, IceCube also avoids dropping actions unnecessarily.

Benchmarks show that IceCube reconciles in reasonable time and scales nicely
to large logs, thanks to the following contributions. (i) Our static constraints,
which incur no runtime cost, are sufficiently expressive for a wide spectrum
of applications. (ii) The engine decomposes large inputs into independent sub-
problems.

The IceCube approach may appear hard to use, but in our experience it is
practical. We report on a number of useful applications that we have coded.
IceCube simplifies application development. Furthermore, multiple applications
and object types will reconcile consistently and seamlessly.

Table 1 summarises the different phases and the interactions between appli-
cations and IceCube, to which we will refer in the rest of this paper.

This paper is organised as follows. We present a usage scenario in Section 2.
Section 3 discusses the basic data and action abstractions. Section 4 presents our
central abstraction of constraints. The scheduler’s algorithms are explained in
detail in Section 5. We evaluate performance and quality of IceCube in Section 7.



Tentative operation Initialise reconciliation Compute schedule Commit
App → IceCube IceCube → App IceCube → App IceCube → App

Tentative execution Collect object constraints Take checkpoint Commit actions
Record action in log Execute action
Set log constraint Compensate action

Return to checkpoint

Table 1. Summary of interface between applications and IceCube

Fig. 3. Possible reconciliation for travel scenario

Section 8 discusses related work, and Section 9 summarises conclusions and
lessons learned.

2 A multi-application, multi-data scenario

A simple scenario will give a feel of how IceCube operates. Anne and Brian are
planning a business trip to meet some colleagues. While away from the network,
Anne uses a calendar application to schedule a meeting, a travel application to
reserve a flight to get there, and an account manager to pay for the flight. Anne
groups her three actions into an atomic “parcel” (to be described shortly), even
though they span separate applications.

Anne’s machine being disconnected, the local database replicas are necessar-
ily partial and possibly stale. Disconnected updates are only tentative, against
the local replicas. However, they will become effective after connecting and rec-
onciling; for instance, her payments will be executed, when, and if, the flights
are committed.

In the meantime, Brian wants the system to help him choose between two
different possibilities, a convenient but expensive flight on 12 October, and a
cheaper but less convenient one on 11 October. He gives a higher value to the
former to indicate his preference. The two choices constitute an “alternatives”
construct, each of which contains a “parcel” combining reservation and payment.

Other users are similarly updating the databases concurrently. When Anne
and Brian reconcile, they may experience conflicts such as double bookings,



insufficient funds, or a full flight. Figure 3 presents an output from the recon-
ciler: on top, a suggested non-conflicting schedule; the bottom lists the actions
dropped from the schedule with explanations why dropped. In this case, Brian
could not pay for the expensive flight, presumably because in the meantime a
colleague has spent some of the travel account. The booking action in the same
parcel is therefore dropped too. Instead, the cheaper flight alternative is sched-
uled. If Anne presses “Accept” at this point, the updates are committed to the
underlying databases, i.e., the meeting added to the shared calendar, the flights
are reserved, and costs are debited. Alternatively she may press “Retry” to ask
IceCube to propose a new schedule based on the same inputs, or “Cancel” to
exit and reconcile later.

3 Shared data and actions

Here we describe the replicated data and action classes; this information will be
useful when we come to understanding constraints.

Replicated data is of class ReplicatedState, where applications provede imple-
mentations for the abstract checkpoint and returnToCheckpoint methods. This is
so that the IceCube engine can undo tentative actions.

An action is an operation that
interface ActionExecution {

// test precondition; no side effects
boolean preCondition (ReplicatedState);
// update state; return postcondition + undo info
boolean execute (ReplicatedState, UndoData);
// undo; return false if can not undo
boolean compensate (ReplicatedState, UndoData);

}

Fig. 4. Action execution interface

is provided by some application; in
effect, a method pointer or a clo-
sure. Some important interfaces of
actions are in Figures 4, 5 and 6.
The application programmer pro-
vides implementations for these in-
terfaces, which are invoked by Ice-
Cube during reconciliation.

The ActionExecution interface of Figure 4 is used to perform an action.
IceCube first executes its preCondition method, then execute. The former (which
may have no side effects) tests whether the action is valid in the current state.
The latter updates the state. If either returns false, this indicates a dynamic
constraint (defined shortly) has been violated.

The compensate method rolls back an update, provided undo information
that was returned by the corresponding execute.

Not illustrated in the figure, an action has an integer value, 1 by default;
this conveys user preferences between actions. The remaing interfaces will be
detailed in later sections.

4 Constraints

A constraint is a correctness condition on schedules. Constraints are our central
abstraction for conflict detection and scheduling. A static constraint relates two
actions unconditionally. An example is the conflict between two appointment



requests for Anne at 10:00 in different places. A dynamic constraint consists
of the success or failure of a single action, depending on the current state. For
instance, overdraft of the expense account constitutes a dynamic constraint.

No schedule generated by the engine ever violates a static constraint, there-
fore static constraints incur no run-time cost. In contrast, dynamic constraints
are expensive, as a violation may cause unlimited roll-back. Fortunately, our
technique of dividing the work into sub-problems (to be explained later) usually
limits roll-backs to a small number of actions.

4.1 Primitive static constraints

The static constraints are built upon two primitives, Before, noted →, and
MustHave, noted ⊲ . Any schedule s must satisfy the following correctness con-
ditions:

1. For all actions α, β ∈ s, if α → β then α comes before β in the schedule
(although not necessarily immediately before),

2. For any α ∈ s, every action β such that α ⊲ β is also in s (but not necessarily
in that order nor contiguously).

Although the Before relation might be cyclic, a correct schedule may not contain
a cycle of Before. The scheduler breaks any existing cycles by dropping actions
appropriately. This search for an optimal acyclic sub-graph in a non-binary cyclic
graph makes reconciliation an NP-hard problem [4].

4.2 Log constraints

A log constraint is a static constraint between actions of the same log. User and
application use log constraints to make their intents explicit. The addLogCon-
straint API assigns log constraints to an action.

In the current prototype, we have found the following three log-constraint
types useful, which are built by composing the primitives. Constraint predSucc(α,
β) establishes that action β executes only after α has succeeded (causal ordering).
For instance, say a user tentatively updates a file, then copies the new version.
To maintain correct behaviour in the reconciliation schedule, the application
records a predSucc constraint between the write and the copy. predSucc(α, β) is
equivalent to α → β ∧ β ⊲ α.

The parcel log-constraint is an atomic (all-or-nothing) grouping. Either all of
its actions execute successfully, or none. parcel(α, β) is equivalent to α ⊲ β∧β ⊲ α.3

For instance a user might copy two whole directory trees inside a third directory
as a parcel. If any of the individual copies would fail (e.g., for lack of space,
or because the user doesn’t have the necessary access rights) then none of the
copies is included in the reconciled schedule.

3 Unlike a traditional transaction, a parcel does not ensure isolation. Its actions may
run in any order, possibly interleaved with other actions (unless otherwise con-
strained).



The alternative log constraint provides choice of at most one action in a set.
alternative(α, β) translates to α → β ∧ β → α, i.e., a cycle that the scheduler
breaks by excluding either α or β (or both) from the schedule. An example is
submitting an appointment request to a calendar application, when the meeting
can take place at (say) either 10:00 or 11:00. Users use alternative constraints to
provide the scheduler with a fallback in case of a conflict.

4.3 Object constraints

An object constraint is a semantic relation between concurrent actions.
In preparation for reconciliation,

interface ActionObjectConstraint {
// test whether this and other action conflict
boolean mutuallyExclusive (Action other);
// Favorable ordering of actions
int bestOrder (Action other);

}

Fig. 5. Object constraint interface

and for every pair of concurrent ac-
tions, IceCube calls the methods in
the ActionObjectConstraint interface
of Figure 5 to collect its object con-
straints. The application developper
provides implementations for these
methods: mutuallyExclusive should

return true if both actions cannot be in the same schedule; and bestOrder should
return true to indicate a preference for scheduling this action before the other.

Object constraints express static concurrency semantics, similarly to
Schwartz [14] or Weihl [18]. For instance, creating a file and creating a directory
with the same name is mutuallyExclusive.

Another example: an ac- Account credit/credit debit/debit debit/credit
Different accounts ¬overlap ¬overlap ¬overlap

Same account commute commute bestOrder

Dynamic constraint: no overdraft
Calendar add/add remove/remove remove/add

Other user, time ¬overlap ¬overlap ¬overlap

Same user & time Mut.Excl. commute bestOrder

Dynamic constraint: no double-booking

Table 2. Account and Calendar constraints

count manager indicates a
bestOrder preference to sched-
ule credits before debits. Like
alternative, the constraint mu-
tuallyExclusive(α, β) translates
to α → β ∧ β → α. bestOr-
der(α, β) is equivalent to α →
β.

As an example, Table 2 summarises the object and dynamic constraints of
the account manager, and a calendar application with actions to add or remove
an appointment.

4.4 Explicit commutativity

Two actions that are not explicitly related by → can run in any order. However it
is useful to further differentiate pairs of commuting actions that have no mutual
side effects. This is important in several places; for instance when rolling back
an action, later actions that commute with it do not need to be rolled back.

The ActionEnhancement methods of Figure 6 provide explicit commutativity
information; they have priority over mutuallyExclusive and bestOrder.

A domain is an opaque hash characterising a set of objects read or written by
an action. GetDomain returns any number of domains. Actions with no common



domain are commutative. For instance the domain of an account manager might
be a hash of the account number.

If two actions have a common
interface ActionEnhancements {

// domain identifiers
long[] getDomain ();
// do this and other action (same domain) overlap
boolean overlap (Action other);
// do this and other (overlapping) action commute
boolean commute (Action other);

}

Fig. 6. Action commutativity interface

domain, IceCube calls their over-
lap method to test whether they
overlap; if not, they are commu-
tative. In our accounting example,
overlap tests, first if the other ac-
tion is also a accounting action (be-
cause domains are not guaranteed
unique), then whether it operates
on the same branch and account number.

When two actions overlap, method commute tests whether they commute
semantically; if yes they are commutative. For instance, two credits to the same
account overlap but commute.

4.5 Dynamic constraints

To check a dynamic constraint the system must execute the action against the
current state. Both preCondition and execute return a boolean value; if either re-
turns false a dynamic constraint has been violated. A preCondition is not allowed
to have side effects in order to avoid the cost of rolling back.

These methods can test arbitrary predicates that cannot easily be expressed
with static constraints. The typical example is to check that the balance of an
account is sufficient before executing a debit action.

It could be argued that dynamic constraints subsume static ones. While it is
true that → could be checked dynamically, this would be orders of magnitude
more expensive than our static scheduling algorithm. Furthermore ⊲ cannot be
captured with a dynamic check, which can only look at already-executed actions,
not future ones.

5 Reconciliation scheduler

As the scheduling problem is NP-hard, IceCube explores the space of possible
schedules heuristically.

We now present more detail of the heuristics and optimisations. Benchmarks
presented in Section 7 show that the algorithm is efficient, scales well and closely
approximates the true optimum.

5.1 Partitioning into sub-problems

For efficiency, we first the search space such that the combined complexity is
much smaller than the original problem. IceCube partitions the actions into dis-
joint sub-problems, such that: actions in any sub-problem commute with actions
in all other sub-problems, and there are no static constraints connecting actions



from different sub-problems. Actions from different sub-problems may be sched-
uled in arbitrary order, and executing or rolling back an action belonging to
some sub-problem does not affect actions of another sub-problem.

Partitioning occurs in three stages. First, actions are partitioned according
by domain identifier (see Section 4.4), with a complexity linear in the number of
actions. Then, each such domain again subdivided into sets of commuting actions
(thanks to the interface of Figure 6), for a complexity quadratic in domain size.
Finally, any of the resulting sets that are connected by a static constraint or have
an action in common are joined together, for a complexity proportional to the
number of actions. For space reasons, we omit further detail; interested readers
are referred to our technical report [11].

5.2 Heuristic search

The scheduler performs efficient heuristic sampling of small portions of the search
space for each sub-problem. If the user requests a new schedule, or the compu-
tation hits a dynamic constraint violation, the search restarts over an unrelated
portion of the search space.

An exhaustive search has exponential complexity. In contrast, our heuristics
have only quadratic cost (in sub-problem size), and have results virtually indis-
tinguishable from exhaustive search. This is confirmed by our benchmarks in
Section 7.

Iteratively, the scheduler heuristically selects the best (as defined in the next
paragraph) action α from a set of candidates. If executing α violates a dynamic
constraint, the scheduler undoes its execution and removes it from the candidate
list. Otherwise it adds α to the current schedule, and removes from the candi-
dates any action that conflicts statically with α. This algorithm guarantees that
schedules are heuristically optimal and satisfy the constraints.

Given some partial schedule s, each candidate action α is assigned a merit
that estimates the benefit of adding α to s, measured by the number of other
actions can be scheduled after α. After experimenting, we have found that the
following heuristic to be the most effective. The merit of α is:

1. Inversely proportional to the total value of actions β that could have been
scheduled only before α, i.e., such that β /∈ s ∧ β → α.

2. Inversely proportional to the total value of alternatives to α.
3. Inversely proportional to the total value of actions mutually exclusive with

α.
4. Proportional to the total value of actions β that can only come after α, i.e.,

such that β /∈ s ∧ α → β.

The above factors are listed in decreasing order of importance.
The merit also takes dynamic constraints into account. When a dynamic con-

straint is violated, we want to avoid violating it again. It is not known precisely
which action(s) caused the constraint to to fail, but it can only be an action
of the same sub-problem. Therefore we decrease the merit of the current action
and of all actions that precede it in the same sub-problem.



scheduleOne (state, summary, goodActions) =
schedule := []
value := 0
actions := goodActions
WHILE actions <> {} DO

nextAction := selectActionByMerit (actions, schedule, summary)
precondition := nextAction.preCondition (state)
IF precondition = FALSE
THEN // pre-condition false

// abort partially-executed parcels
cantHappenNow := OnlyBefore (nextAction, schedule)
toExclude := MustHaveMe (nextAction)
toAbort := INTERSECTION (schedule, toExclude)
IF NOT EMPTY (toAbort)
THEN // roll back

SIGNAL dynamicFailure (goodActions \ toExclude)
ELSE

summary.updateInfoFailure (actions, toExclude)
actions := actions \ toExclude \ cantHappenNow
LOOP

// pre-condition succeeded; now execute
postcondition := nextAction.execute (state)
IF postcondition = TRUE
THEN // action succeeded

toExclude := OnlyBefore (nextAction, schedule)
toExclude := MustHaveMe (toExclude)
actions := actions \ toExclude
summary.updateInfo (actions, nextAction)
schedule := [schedule | nextAction]
value := value + nextAction.value

ELSE // post-condition false: roll back
toExclude := MustHaveMe (nextAction)
SIGNAL dynamicFailure (goodActions \ toExclude)

RETURN { state, schedule, value }

Fig. 7. Selecting and executing a single schedule

The merit estimator executes in constant time.

Our scheduling algorithm, displayed in pseudo-code in Figure 7, selects, with
randomisation, some action among those with highest merit, executes it, and
adds it to the schedule if execution succeeds.

If executing candidate action α violated a dynamic constraint, it will not be
scheduled, but the scheduler must roll back any side effects α may have had.4

Furthermore, if the scheduler previously executed actions β such that β ⊲ α (for
instance, α and β are part of a parcel), then β is removed from the schedule and
its side effects rolled back as well.

When adding some action α to the schedule, the engine drops from fu-
ture consideration any action β that (if scheduled) would violate a static con-
straint against α. This consists of the sets MustHaveMe(α) = {β|β ⊲ α} and
OnlyBefore(α, s) = {β|β → α ∧ β /∈ s}.

The scheduler calls scheduleOne repeatedly and remembers the highest-value
schedule. It terminates when some application-specific selection criterion is satis-

4 Selected actions are executed immediately, in order to reduce the amount of roll-back
in case of dynamic constraint violation.



fied — often a value threshold, a maximum number of iterations, or a maximum
execution time.

The overall complexity of scheduleOne is O(n2), where n is the size of its
input (a sub-problem). Readers interested in the full algorithm and justification
of the complexity estimate are referred to our technical report [11].

6 Calendar application

To give a flavour of practical usage, we describe the calendar application in
some detail (other applications are presented in more detail elsewhere [11]). It an
appointment database shared by multiple users. User commands may request a
meeting, possibly proposing several possible times, and cancel a previous request.
A user command tentatively updates the database and logs the corresponding
actions.

Database-level actions add or remove a single appointment. The user-level
request command is mapped onto an alternative containing a set of add actions;
similarly for cancel. Each such action contains the time, duration, participants
and location of the proposed appointment.

Figure 8 contains some relevant code for add and remove. Object constraint
and commutativity methods do the following:

1. getDomain: A shared calendar constitutes a domain.
2. overlap: Two actions (of the same calendar) overlap when either time and

location or time and participants intersect.
3. commute: Overlapping remove actions commute with one another, since re-

moving a meeting twice has the same effect as once.
4. mutuallyExclusive: if two add actions overlap, they also are mutually exclusive.
5. removes should preferably execute before adds to increase the probability

that adds can be accommodated.

The code for add and remove actions implement the action execution methods
from Figure 4:

1. preCondition: add.preCondition checks that the appointment doesn’t double-
book anything currently in the database.5 remove.preCondition returns true.

2. The execute method updates the database and saves undo information.
3. The compensate method rolls back a previous executeusing the undo infor-

mation.

Besides the add and remove, it was necessary to create a calendar Repli-
catedState (CalendarState) to keep the calendar information (i.e., the scheduled
appointments). Finally, a GUI interface allows users to access and modify the
shared calendar.

The whole calendar application is very simple, totaling approximately 880
lines of code. This application was used as one of our performance and quality
benchmarks, as we report in Section 7.

5 The static constraints appear to make this check unnecessary, but it remains neces-
sary in some corner cases.



class AddAction extends AbstractAction {
long []domainId;
MeetingInfo meeting;

public boolean preCondition( ReplicatedState s0) {
CalendaState s = (CalendarState)s0;
return s.roomFree( meeting.location, meeting.time) &&

s.peopleFree( meeting.participants, meeting.time);
}
public boolean execute( ReplicatedState s, UndoData info) {

boolean result = ((CalendarState)s).insert( meeting);
info.set( new Boolean( result));
return result;

}
public boolean compensate( ReplicatedState s, UndoData info) {

if( ! ((Boolean)info.get()).booleanValue()) // nothing to undo
return true;

return ((CalendarState)s).remove( meeting) != null;
}
public long []getDomain() {

return domainId;
}
public boolean overlap( Action otherAction) {

if( otherAction insetanceof AddAction)
return meeting.overlaps( ((AddAction)otherAction).meeting);

else
return meeting.overlaps( ((RemoveAction)otherAction).meeting);

}
public boolean commute( Action otherAction) {

return false;
}
public boolean mutuallyExclusive( Action otherAction) {

return otherAction insetanceof AddAction &&
return meeting.overlaps( ((AddAction)otherAction).meeting);

}
public int bestOrder( Action otherAction) {

if( otherAction insetanceof RemoveAction &&
meeting.overlaps( ((RemoveAction)otherAction).meeting))
return ActionConstants.OTHER_FIRST;

else
return ActionConstants.ANY_ORDER;

}
}

class RemoveAction extends AbstractAction {
long []domainId;
MeetingInfo meeting;

public boolean preCondition( ReplicatedState s0) {
return true; //removing a non-existent meeting is not as error

}
public boolean execute( ReplicatedState s, UndoData info) {

MeetingInfo oldMeeting = s.remove( meeting);
info.set( oldMeeting);
return true;

}
public boolean compensate( ReplicatedState s0, UndoData info) {

MeetingInfo oldMeeting = (Meeting)info.get();
if( meeting != null)

return ((CalendarState)s0).insert( oldMeeting);
return true;

}
public boolean commute( Action otherAction) {

return otherAction insetanceof RemoveAction;
}
public boolean mutuallyExclusive( Action otherAction) {

return false;
}

}

Fig. 8. Calendar actions (simplified).



7 Measurements and evaluation

This section reports on experiments that evaluate the quality, efficiency and
scalability of IceCube reconciliation. Our two benchmarks are the calendar ap-
plication, described previously, and an application described by Fages [3].

The calendar inputs are based on traces from actual Outlook calendars. These
were artificially scaled up in size, and were modified to contain conflicts and
alternatives and to control the difficulty of reconciliation. The logs contain only
Requests, each of which contains one or more add alternatives. We varied the
number of Requests and the number and size of possible sub-problems. The
average number of add alternatives per request is two.

In each sub-problem, the number of different adds across all actions is no
larger than the number of Requests. For instance, in the example of Figure 1, in
the three Requests, there are only three different adds (‘9am room A’, ‘9am room
B’ and ‘9am room C’). This situation represents a hard problem for reconcili-
ation because the suitable add alternative needs to be selected in every request
(selecting other alternative in any request may lead to dropped actions).

In these experiments, all actions have equal value, and longer schedules are
better. A schedule is called a max-solution when no request is dropped. A sched-
ule is optimal when the highest possible number of Requests has been executed
successfully. A max-solution is obviously optimal; however not all optimal so-
lutions are max-solutions because of unresolvable conflicts. Since IceCube uses
heuristics, it might propose non-optimal schedules; we measure the quality of so-
lutions compared to the optimum. (Analysing a non-max-schedule to determine
if it is optimal is done offline.)

The experiments were run on a generic PC running Windows XP with 256
Mb of main memory and a 1.1 GHz Pentium III processor. IceCube and appli-
cations are implemented in Java 1.1 and execute in the Microsoft Visual J++
environment. Everything is in virtual memory.

Each result is an average over
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Fig. 9. Decomposition of reconciliation
time (single sub-problem).

100 different executions, combin-
ing 20 different sets of requests di-
vided between 5 different pairs of
logs in different ways. Any compar-
isons present results obtained us-
ing exactly the same inputs. Execu-
tion times include both system time
(scheduling and checkpointing), and
application time (executing and un-

doing actions). The latter is negligeable because the add code is extremely simple.

7.1 Single sub-problem

To evaluate the core heuristics of Figure 7, we isolate the effects of partionining
into sub-problems with a first set of inputs that gives birth to a single sub-
problem.
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time with partitioning.

Figure 9 measures the major components of IceCube execution time as log
size increases. The “Init” line plots the time to collect object constraints and
compute the initial summary of static constraints. “Partition” is the time to
run the partitioning algorithm (although the experiment is rigged to generate a
single sub-problem, the partitioning algorithm still runs). “Search” is the time to
create and execute schedules. “Total” is the total execution time. As expected,
partitioning takes only a small fraction of the overall execution time. Init and
Search are of comparable magnitude. The curves are consistent with our earlier
O(n2) complexity estimate.

These experiments are designed to stop either when a max-solution is found,
or after a given amount of time. Analysis shows that the max-solution is reached
very quickly. The first schedule is a max-solution in over 90% of the cases. In
99% of the cases, a max-solution was found in the first five iterations. This shows
that our search heuristics work very well, at least for this series of benchmarks. A
related result is that in this experiment, even non-max-solutions were all within
1% of the max size.

Here is how the inputs are constructed. On average, each request is an al-
ternate of h adds; each add in one request conflicts with a single add of another
request. A log of x requests contains hx actions. To put the performance figures
in perspective, consider that a blind search that ignores static constraints would
have to explore a search space of size (hx)! which, for h = 2 and x = 1000, is of
the order of 102061. A more informed search that takes advantage of commuta-
tivity of actions would still have to explore a space of size 2hx ≈ 10600 for h = 2
and x = 1000. In fact there are only x distinct max-solutions.

7.2 Multiple sub-problems

We now show the results when it is possible to partition the actions into sub-
problems. This is the expected real-life situation.

The logs used in these experiments contain a variable number of Requests,
and are constructed to that 25% of the adds can be partitioned alone; 25% of
the remaining adds are in sub-problems with two actions; and so on. Thus, as
problem size increases, the size of the largest sub-problem increases slightly, as
one would expect in real life. For instance, when the logs contain 1,000 actions,
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the largest sub-problem contains the adds from 12 Requests, and 18 when the logs
total 10,000. The number of sub-problems is approximately half of the number
of actions; this ratio decreases slightly with log size. The average number of
alternatives per request is two.

IceCube always finds a max-solution, whether partitioning is in use or not.
Figure 10 shows the time to find a max-solution, with partitioning turned

on or off; note the increased scale of the x axis. As expected a solution is ob-
tained much more quickly in the former case than the latter. A running time
under 3 s for a log size of 10,000, much larger than expected in practice, is quite
reasonable even for interactive use. As the number of sub-problems grows al-
most linearly with the number of actions and the size of the largest sub-problem
grows very slowly, reconciliation time is expected to grow almost linearly. The
results confirm this conjecture. Moreover, the decomposition of the reconcilia-
tion time of Figure 11, shows that all components of the reconciliation time grow
approximately linearly, as expected.

7.3 Comparisons

Here we compare the quality and performance of IceCube to competing ap-
proaches. Results in this section pertain to the non-partitioned problems of Sec-
tion 7.1.

Most previous systems use a syntactic scheduling algorithm such as times-
tamp order or log concatenation. As these all suffer equally from false conflicts,
Figure 12 compares IceCube against the simplest one, log concatenation.



As expected, the results of semantic search are better than syntactic order-
ing. Whereas log concatenation drops approximately 12% of Requests, semantic-
directed search drops close to none (although IceCube’s drop rate grows very
slightly with size). Remember that dropping a single action may have a high
cost.

The baseline for comparison is the line marked “Single log.” This scheduler
selects all actions from a single log and drops all actions from the other; it is the
simplest non-trivial syntactic scheduler that guarantees absence of conflicts.

Figure 13 shows the execution time of our engine versus a log-concatenation
(hence suboptimal) scheduler. As expected, IceCube is much slower. This is in
line with the expected complexities, O(n2) in IceCube without partitioning, and
O(n) for the syntactic approach.

Figure 14 compares execution time of our heuristic with an exhaustive search
algorithm [7]. Given unlimited time, exhaustive search is guaranteed to find the
optimal schedule, but the figure shows this is not feasible except for very small
log sizes (up to 20 actions or so). When execution time is limited, exhaustive
search yields increasingly worse quality solutions as size increases. For instance,
exhaustive searches of five different logs, each containing 30 requests, and each
admitting a max-solution (size 30), returned schedules of size 28, 17, 6, 30, and
4 (average = 17) when limited to a very generous 120 s. With size 40 the average
is 18, and for size 100 the average is only 28, under the same time limit.

Fages [3] studies a constraint satisfaction programming (CSP) reconciliation
algorithm, with synthetic benchmarks. We now compare the quality of the two
approaches by submitting one of Fages’ benchmarks to IceCube, and our calendar
benchmarks to Fages’ system.

Fages’ benchmark randomly generates (on average) 1.5 × size Before con-
straints per node. Figure 15 compares the quality of Fages’ CSP solutions with
IceCube’s. The results are similar, but notice that IceCube appears to perform
slightly better on large problems. This shows that the IceCube heuristics per-
form well on a different kind of input. As Fages’ execution environment is very
different, it would make no sense to compare absolute execution times; however
we note that IceCube’s execution time grows more slowly with size than Fages’
constraint solver.

When we submit our calendar problems to Fages’ system, execution time
grows very quickly with problem size. For instance, for only 15 of our requests,
Fages cannot find a solution within a timeout of 120 s. The explanation, we
suspect, is that Fages’ system does not deal well with alternatives.

8 Related Work

Several systems use optimistic replication and implement some form of recon-
ciliation for divergent replicas. Many older systems (e.g., Lotus Notes [5] and
Coda [8]) reconcile by comparing final tentative states. Other systems, like Ice-
Cube, use history-based reconciliation, such as CVS [2] or Bayou [17]. Recent



optimistically-replicated systems include TACT [19] and Deno [6]. Balasubrama-
niam and Pierce [1] and Ramsey and Csirmaz [12] study file reconciliation from
a semantics perspective. Operational Transformation techniques [15] re-write
action parameters to enable order-independent execution of non-conflicting ac-
tions, even when they do not commute. For lack of space we focus hereafter on
systems most closely related to IceCube. For a more comprehensive survey, we
refer the reader to Saito and Shapiro [13].

Bayou [17] is a replicated database system. Bayou schedules syntactically, in
timestamp order. A tentative timestamp is assigned to an action as it arrives.
The final timestamp is the time the action is accepted by a designated primary
replica. Bayou first executes actions in their tentative order, then rolls back
and replays them in final order. A Bayou action includes a “dependency check”
(dynamic constraint) to verify whether the update is valid. If it is, the update
is executed; otherwise, there is a conflict, and an application-provided merge
procedure is called to solve it. Merge procedures are very hard to program [16].
IceCube extends these ideas by pulling static constraints out of the dependency
check and the merge procedure, in order to search for an optimal schedule,
reconciling in cases where Bayou would find a conflict. IceCube’s alternatives
are less powerful than merge procedures, but provide more information to the
scheduler and are easier to use.

Lippe et al. [9] search for conflicts exhaustively comparing all possible sched-
ules. Their system examines all schedules that are consistent with the original
order of operations. A conflict is declared when two schedules lead to different
states. Conflict resolution is manual. Examining all schedules is untractable for
all but the smallest problems.

Phatak and Badrinath [10] propose a transaction management system for
mobile databases. A disconnected client stores the read and write sets (and the
values read and written) for each transaction. The application specifies a conflict
resolution function and a cost function. The server serialises each transaction in
the database history based on the cost and conflict resolution functions. As this
system uses a brute-force algorithm to create the best ordering, it does not scale
to a large number of transactions.

IceCube follows on from the work of Kermarrec et al. [7]. They were the
first to distinguish static from dynamic constraints. However their engine only
supports Before (not MustHave), does not distinguish between log and object
constraints, and does not have clean logs. Most importantly, an exhaustive search
algorithm like theirs cannot not scale beyond very small log sizes.

9 Final remarks

Supporting collaboration in mobile computing environments requires that appli-
cations and data management system rely on optimistic replication. As uncoordi-
nated contributions (updates) from several users may conflict, the reconciliation
mechanism is an important piece in system that support collaborative activities
in mobile computing environments.



In this paper, we have presented a general-purpose, semantics-aware recon-
ciliation scheduler that differs from previous work in several key aspects. Our
system is the first to approach reconciliation as an optimisation problem and to
be based on the true constraints between actions. We present novel abstractions
that enable the concise expression of semantics of these constraints. This sim-
plifies the development of applications using reconciliation, as demonstrated by
several prototype applications, and enables the reconciler to deliver high-quality
solutions efficiently. Although reconciliation is NP-hard, our heuristics find near-
optimal solutions in reasonable time, and scale to large logs. Finally, IceCube
is application-independent, and bridges application boundaries by allowing ac-
tions from separate applications to be related by log constraints and reconciled
together.

Our system has made it easier for developers to make their applications toler-
ant of tentative operation and to reconcile replicated data. Application develop-
ers need not develop their own reconciliation logic. The framework design keeps
application logic largely independent from the distribution, replication, and rec-
onciliation. For the latter, IceCube provides a general-purpose middleware that
applies to a large spectrum of applications. On the other hand, application design
for this environment remains a demanding intellectual task.

The source code for IceCube is available from http://research.microsoft.com/
camdis/icecube.htm.
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