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Abstract. It is common that, in a long-term asynchronous collaborative
activity, groups of users engage in occasional synchronous sessions. In this
paper, we discuss the data management requirements for supporting this
common work practice. As users interact in different ways in each setting,
requirements and solutions often need to be different. We present a data
management system that allows to integrate a synchronous session in
the context of a long-term asynchronous interaction, using the suitable
data sharing techniques in each setting and an automatic mechanism to
convert the long sequence of small updates produced in a synchronous
session into a large asynchronous contribution. We exemplify the use of
our approach with two multi-synchronous applications.

1 Introduction

Groupware applications are commonly classified as synchronous or asynchronous
depending on the type of interaction they support. Synchronous applications sup-
port closely-coupled interactions where multiple users synchronously manipulate
the shared data. In synchronous sessions, all users are immediately notified about
the updates produced by other users. At the data management level, it is usu-
ally necessary to maintain multiple copies of the data synchronized in realtime,
merging all concurrent updates produced by the users. Several general-purpose
systems have been implemented [25, 28, 26].

Asynchronous applications support loosely-coupled interactions where users
modify the shared data without having immediate knowledge of the updates pro-
duced by other users. At the data management level, it is common to support
a model of temporary divergence among multiple, simultaneous streams of ac-
tivity [4] and to provide some mechanism to automatically merge these streams
of activity. Some general-purpose (e.g. [18, 5]) and application-specific (e.g. [17]
for document editors) systems have been implemented.

A common work practice among groups of individuals seeking a common
goal is to alternate periods of closely-coupled interaction with periods of loosely-
coupled work. During the periods of closely-coupled interaction, group elements
can coordinate and create joint contributions. Between two periods of close in-
teraction, individuals tend to produce their individual contributions in isolation.
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In this paper, we address the data management problems of supporting this
type of work practice in groupware applications, dubbed as multi-synchronous
applications. We describe the three main mechanisms we have used to add sup-
port for synchronous sessions in the DOORS system [21], a replicated storage
system designed to support asynchronous groupware.

First, a mechanism to allow applications to synchronously manipulate the
data stored in the data management system. Second, a mechanism that allows to
use different reconciliation and awareness techniques in each setting, as needed by
some applications (e.g.: text editing systems tend to use operational transforma-
tion [8] in synchronous settings, and versioning [2, 3] in asynchronous settings).
Finally, a mechanism to automatically convert long sequences of synchronous
operations into a small sequence of asynchronous operations. This mechanism is
needed to accommodate the difference of granularity in the operations used in
each setting (e.g. in text editing systems, insert/remove character operations are
used in synchronous settings, and update text line/paragraph/section operations
are usually used in asynchronous settings).

The remainder of this paper is organized as follows. Section 2 discusses the
requirements and presents the design choices used for supporting applications in
synchronous and asynchronous settings. Section 3 present the DOORS system,
detailing the integration of synchronous and asynchronous interactions. Section 4
presents multi-synchronous applications implemented in our system. Section 5
discusses related work and Sect. 6 concludes the paper with some final remarks.

2 Design Options

In this section we present the design options used to integrate synchronous in-
teractions in an object-based system designed to support the development of
asynchronous groupware applications. We start by reviewing the basic require-
ments that must be addressed to support each type of interaction independently.

2.1 Basic Requirements and Design Options

Synchronous Interaction: In synchronous applications, users access and mod-
ify the shared data in realtime. To this end, a common approach is to allow
several applications running on different machines to maintain replicas of the
shared data. When an update is executed in any replica, it must be immedi-
ately propagated to all other replicas. To achieve this requirement, our support
for synchronous replication lies on top of a group-communication infrastructure
and includes support for latecomers, as it is usual in synchronous groupware.

The user interface of the synchronous application must be updated not only
when the local user updates the shared data, but also whenever any remote
user executes an update. To this end, our system allows applications to register
callbacks for being notified of changes in the shared data. These callbacks are
used to update the GUI of the application. This approach allows a synchronous
application to be implemented using the popular model-control-view pattern,
with the model replicated in all participants.



Asynchronous Interaction: In asynchronous interactions, users collaborate
by accessing and modifying shared data. To maximize the chance for collabora-
tion, it is usually important to allow users to access and modify the shared data
without restrictions (besides access control restrictions). To provide high data
availability, our system combines two main techniques. First, it replicates data
in a set of servers to mask network and server failures. Second, it partially caches
data in mobile clients to mask disconnections. High read and write availability
is achieved using a “read any/write any” model of data access that allows any
clients to modify the data independently.

This optimistic approach leads to the need of handling divergent streams of
activity (caused by independent concurrent updates executed by different users).
Several reconciliation techniques have been proposed in different situations (e.g.
the use of undo-redo [15], versioning [3], operational transformation [8, 30, 31],
searching the best solution relying on semantic information [23]) but no single
technique seems appropriate for all problems. Instead, different groups of ap-
plications call for different strategies. Thus, unlike most systems [7, 3, 18] that
implement a single customizable strategy, our system allows different applica-
tions to use different reconciliation techniques.

Awareness has been identified as important for the success of collaborative
activities because individual contributions may be improved by the understand-
ing of the activities of the whole group [6, 12]. Our system includes an integrated
mechanism for handling awareness information relative to the evolution of the
shared data. Different strategies can be used in different applications, either re-
lying on explicit notification, using a shared feedback approach [6], or combining
both styles. Further details on the requirements and design choices for asynchro-
nous groupware in mobile computing environments are presented elsewhere [21].

2.2 Integrating Synchronous and Asynchronous Interactions

An asynchronous groupware activity tends to span over a long period of time.
During this period, each participant can produce his contributions indepen-
dently. Groups of participants can engage in synchronous interactions to produce
a joint contribution. Thus, it seems natural to consider the result of a synchro-
nous interaction as a contribution in the context of the long-term collaborative
process. We address the specific requirements for implementing this strategy in
our object-based system in the remaining of this section.

Updates with different granularities: Some applications use operations
with different granularities in synchronous and asynchronous settings. For exam-
ple, consider collaborative editing systems1. Synchronous editors (e.g. Grove [8],
REDUCE [32]) allow multiple users to modify a shared document by executing
operations to insert or remove a single character. These operations are imme-
diately propagated and executed in all users’ replicas. In contrast, systems for
asynchronous settings (e.g.: CVS [3], Iris [17]) tend to use a copy-modify-merge

1 Similar situations occur for other applications (e.g. conferencing systems, graphical
editors), as discussed in [22].



paradigm, where reconciliation of divergent replicas is achieved by considering
updates on large regions (e.g.: lines in CVS and document elements in Iris).

One reason for this situation is the difference in the level of expected aware-
ness. In synchronous settings, users expect to have immediate knowledge about
all other users’ updates. Thus, all update operations must be propagated. In
asynchronous settings, users are expected to work in isolation without having
immediate knowledge of the modifications produced by other users. Therefore,
coarse-grain updates can be propagated when a user finishes a working session.

Two additional reasons exist. The first is related with the reconciliation tech-
niques used in each setting and it will be discussed later. The second reason is
related with the technical difficulty of managing a very large number of small
operations. For each operation, an excessive amount of data is created (including
the type and parameters of the operation and information to order and trace de-
pendencies among operations – the problem of reducing the information needed
to trace dependencies is only partially addressed in [27]). This poses problems
in terms of storage, network bandwidth and complexity of the reconciliation
process.

The above reasons suggest that the granularity of operations used in each
setting should be different: small for synchronous settings and large for asyn-
chronous settings. To this end, our system includes a mechanism to compress
the log of small operations executed by users. During a synchronous interaction,
the small operations are incrementally converted and compressed in a small se-
quence of large operations in background. This sequence of large operations is
the result of the synchronous session and it is integrated in the asynchronous
collaborative process as any contribution produced by a single user.

Different reconciliation and awareness techniques: In some applica-
tions, different reconciliation and awareness techniques are used in synchronous
and asynchronous settings. For example, in collaborative text editors, opera-
tional transformation [8, 30, 14] has become the reconciliation technique of choice
in synchronous mode while versioning [3, 18, 2] is used in asynchronous mode. To
understand the reason for this difference, it is important to understand the lim-
itations of each technique and how users interact to overcome such limitations.

It is known that operational transformation can lead to semantic inconsis-
tencies [30, 19] when concurrent updates are executed. The following example
illustrates the problem. Suppose that a document contains: There will be stu-
dent here. In this text there is a grammatical error that can be corrected by
replacing “student” by “a student” or “students”. If two users concurrently ex-
ecute these different changes, operational transformation leads to: There will be
a students here. The result is semantically incorrect, as it contains a new error.
Moreover, the merged version does not represent any of the users’ solutions and
it is likely that it does not satisfy any of the users.

In synchronous settings, this problem can be easily solved as users immedi-
ately observe all concurrent modifications. Thus, users can coordinate themselves
and immediately agree on the preferred change. This is only possible because
users have strong and fine-grain awareness information about the changes pro-



duced by other users. In this case, the automatic creation of multiple versions
to solve conflicts would involve unnecessary complexity. Moreover, it is not clear
which user interface widgets to use for presenting these multiple versions.

In asynchronous settings, updates are not immediately merged and each con-
tribution tends to be large. Thus, as users have no (strong) awareness information
about the updates produced by other users, it is likely that using operational
transformation to merge concurrent updates to the same semantic unit would
lead to many semantic inconsistencies. This is the main reason for not using
this technique in asynchronous editing systems: it seems preferable to maintain
multiple semantically correct versions and let users merge them later, instead of
a single semantically incorrect version that does not satisfy anyone.

Regarding awareness, the difference in the used techniques is an immediate
consequence of the coupling degree. In synchronous settings, users must have im-
mediate feedback about other users’ actions. Thus, very accurate and detailed
information must be constantly disseminated and presented to users. In asyn-
chronous settings, it is common that users only need to know what changes have
been produced recently (and what users may be editing the document). Thus,
it is often sufficient to maintain with each document a log that describes the
changes produced by each user in each isolated working-session (e.g. CVS [3]).

A system that supports synchronous and asynchronous interactions should
accommodate different reconciliation and awareness techniques for each settings.
To this end, we structure data objects used in collaborative applications accord-
ing to an object framework that includes independent components to handle
most aspects related with data sharing, including reconciliation and awareness
management. Thus, for each data type, the programmer may specify a different
technique (component) to be used in each setting.

As discussed earlier, our system allows to use operations with different granu-
larities in each setting by automatically converting the operations. This approach
is important for reconciliation as the techniques used in each setting expect op-
erations with different granularities. It is also important for awareness support,
as the granularity of awareness information needed in each setting is closely re-
lated with the granularity of operations. In our system, the awareness component
handles the awareness information produced when an operation is executed.

3 DOORS

In this section, we start by briefly presenting the DOORS system architecture
and the DOORS object framework. A more detailed description, discussing sup-
port for asynchronous groupware, can be found in [21]. Then, we detail the
integration of synchronous sessions in the overall asynchronous activity.

3.1 Architecture

DOORS is a distributed object store based on an “extended client/replicated
server” architecture. It manages coobjects: objects structured according to the
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Fig. 1. DOORS architecture (a) with four computers with different configurations.
Coobjects are replicated by servers, partially cached by clients and manipulated by
applications. Coobjects are structured according to the DOORS object framework (b).

DOORS object framework. A coobject represents a data type designed to be
shared by multiple users, such as a structured document or a shared calendar. A
coobject is designed as a cluster of sub-objects, each one representing part of the
complete data type (e.g. a structured document can be composed by one sub-
object that maintains the structure of the document and one sub-object for each
element of the structure). Each sub-object may still represent a complex data
structure and it may be implemented as an arbitrary composition of common
objects. Besides the cluster of sub-objects, a coobject contains several compo-
nents that manage the operational aspects of data sharing — Fig. 1.b depicts
the approach (we describe each component and how they work together later).

Figure. 1.a depicts the DOORS architecture, composed by servers and clients.
Servers replicate workspaces composed by sets of related coobjects to mask net-
work failures/partitions and server failures. Server replicas are synchronized dur-
ing pair-wise epidemic synchronization sessions. Clients partially cache key coob-
jects to allow users to continue their work while disconnected. A partial copy of
a coobject includes only a subset of the sub-objects (and the operational com-
ponents needed to instantiate the coobject). Clients can obtain partial replicas
directly from a server or from other clients.

Applications run on client machines and access data using a “get/modify
locally/put changes” model. First, the application obtains a private copy of the
coobject (from the DOORS client). Second, it invokes sub-objects’ methods to
query and modify its state – update operations are transparently logged in the
coobject. Finally, if the user chooses to save her changes, the logged sequence of
operations is (asynchronously) propagated to a server.

When a server receives operations from a client, it delivers the operations to
the local replica of the coobject. It is up to the coobject replica to store and
process these operations. Servers synchronize coobject replicas by exchanging
unknown operations during pairwise epidemic synchronization sessions.



3.2 DOORS Object Framework

As outlined above, the DOORS system core executes minimal services and it del-
egates on the coobjects most of the aspects related with data sharing, including
reconciliation and the handling of awareness information. To help programmers
to create new applications reusing good solutions, we have defined an object
framework that decomposes a coobject in several components that handle dif-
ferent operational aspects (see Fig. 1.b). We now outline this object framework,
introducing each component in the context of the local execution of an operation.

Each coobject is composed by a set of sub-objects that may reference each
other using sub-object proxies. These sub-objects store the internal state and
define the operations of the implemented data-type. The cluster manager is
responsible to manage the sub-objects that belong to the coobject.

Applications always manipulate a coobject using sub-objects’ proxies. When
an application invokes a method on a sub-object proxy, the proxy encodes the
method invocation (into an object that includes all needed information) and
hands it over to the adaptation component. The adaptation component is re-
sponsible for interactions with remote replicas. The most common adaptation
component executes operations locally.

The capsule component controls local execution of operations. Queries are
immediately executed in the respective sub-object and the result is returned to
the application. Updates are logged in the log component. When an operation is
logged, the capsule calls the concurrency control component to execute it.

The concurrency control/reconciliation component is responsible to execute
the operations stored in the log. In the client, operations are usually executed
immediately. The result of this execution is tentative [7]. An update only affects
the official state of a coobject when it is finally executed in the servers. In [21],
we have discussed extensively how to use different reconciliation strategies (com-
ponents) in the context of asynchronous groupware applications.

The execution of an operation may produce some awareness information. The
awareness component immediately processes this information (e.g. by storing it
to be later presented in applications and/or propagating it to the users).

Besides controlling operation execution, the capsule defines the coobject’s
composition. The composition described in this subsection represents a common
coobject, but different compositions can be defined. The capsule implements the
interface used by the system to access the coobject. The attributes component
stores the system and type-specific properties of the coobject.

To create a new data-type (coobject) the programmer must do the following.
First, he must define the sub-objects that will store the data state and define the
operations (methods) to query and to change that state. From the sub-objects’
code, a pre-processor generates the code of sub-object proxies and factories used
to create new sub-objects, handling the tedious details automatically. Second, he
must define the coobject composition, selecting the suitable pre-defined compo-
nents (or defining new ones if necessary). Different components can be specified
for use in the server and in the client during private and shared (synchronous)
access. Different data-sharing semantics are obtained using different components.



3.3 Integration of Synchronous Sessions

In this subsection we detail the integration of synchronous sessions in the overall
asynchronous activity.

Manipulate coobjects in synchronous sessions: Each site that partici-
pates in a synchronous session usually maintains its own copy of the shared data.
To this end, we need to maintain several copies of a coobject synchronously syn-
chronized.

To achieve this goal, we use the synchronous adaptation component that
propagates updates executed in any replica to all replicas. This component relies
on a group communication sub-system (GCSS) – JGroups [1] in the current
implementation – for managing communications among session participants.

An application (user) may start a synchronous session in a client when it
loads a coobject from the data storage. In this case, the coobject is instantiated
with the components specified for shared access in the client. In particular, a
version of the synchronous adaptation component must be used. This component
creates a new group (in the GCSS) for the synchronous session.

When a new user wants to join a synchronous session, the user’s application
has to join the group for the synchronous session (using the name of the session
and the name of one computer that participates in the session). During this
process, the application receives the current state of the coobject (relying on
the state transfer mechanism of the GCSS) and creates a private copy of the
coobject. Any user is allowed to leave the synchronous session at any moment.

In each group there is a designated primary (that can change during the
group lifetime). Besides being responsible to save the result of the synchronous
session, the primary plays an important role in the instantiation of sub-objects.
When the cluster manager of any replica needs to instantiate a new sub-object,
it asks the primary to send the initial state of the sub-object (as obtained from
the DOORS client) to all replicas. This approach guarantees that all replicas
instantiate all sub-objects in a coherent way.

Applications manipulate coobjects by executing operations in sub-objects’
proxies, as usual. The proxy encodes the operation and delivers it to the adapta-
tion component for processing. Query operations are processed locally as usual.
For an update operation, the adaptation component propagates the operation
to all elements of the synchronous session using the GCSS (step 2 of Fig. 2).

The GCSS may deliver operations in the same total order or in FIFO order
to all replicas. When the operation is received in (the adaptation component of)
a replica, including the replica where it has been initially executed, its execution
proceeds as usual (by handing the operation to the capsule for local execution, as
explained in Sect. 3.2). When total order is used, replicas are kept consistent by
simply executing all operations by the order they are received. When FIFO order
is used, no delay is imposed on local operations, but replicas receive operation in
different order. Thus, it is usually necessary to use an operational transformation
reconciliation component to guarantee replica convergence.

To update the application GUI, an application may register callbacks in the
adaptation component to be notified when sub-objects are modified due to op-
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Fig. 2. Synchronous processing of an update operation in three replicas of a coobject.

erations executed by remote users (or local users). These callbacks are called by
the adaptation component when the execution of an operation ends (step 9).

The DOORS approach to manage synchronous interactions, described in this
subsection, does not imply any contact with the servers. An application running
on a DOORS client can participate in a synchronous session if it can communi-
cate with other participants using the underlying GCSS. Thus, a group of mobile
clients, disconnected from all servers, may engage in a synchronous interaction
even when they are connected using an ad hoc wireless network.

Saving the result of a synchronous interaction as an asynchronous

contribution: As discussed in Sect. 2.2, some applications need to convert the
small operations used in synchronous mode into the large operations used in
asynchronous mode.

In the DOORS system, this is achieved by the log compression mechanism
implemented by the log component. As described in Sect. 3.2, all update oper-
ations executed in a synchronous session are stored in the log before being exe-
cuted. Besides the full sequence of operations, the log component also maintains
a compressed version of this sequence. An operation is added to the compressed
sequence after being stably executed (and after the reconciliation component
executes the last undo or transformation to the operation) using the algorithm
presented in Fig. 3. This process is executed in background to have minimal
impact on the performance of the synchronous session.



Compress (seqOps: list, newOp: operation) =

FOR i:= seqOps.size - 1 TO 0 DO

IF Compress( seqOps, i, newOp) THEN RETURN seqOps

ELSE IF NOT Commute( seqOps.get(i), newOp) THEN BREAK

END FOR

seqOps.add( ConvertToLarge( newOp))

RETURN seqOps

Fig. 3. Algorithm used for log-compression.

The basic idea of the algorithm is to find out an operation already in the
log that can compress the new operation (e.g. an insert/remove operation in a
text element can be integrated into an operation that sets a new value to the
text element by changing the value of the text). If no such operation exists,
the new operation is converted into an asynchronous operation and logged (e.g.
an insert/remove operation can be converted into an operation that sets a new
value to the text element – the value of the text after being modified).

To use this approach, the coobject must define the following methods of
the compression algorithm: Compress, for merging two operations; Commute,
for testing if the result of executing two operations does not depend on the
execution order; ConvertToLarge, for converting a small synchronous operation
into a large asynchronous operation The examples presented in the next section
show that these methods are usually simple to write.

The result of the synchronous session is the compressed sequence of opera-
tions. Only the designated primary can save the result of the session. In respect
to the overall evolution of the coobject, the sequence of operations is handled in
the same way as the updates executed asynchronously by a single user. Thus,
the sequence of operations is propagated to the servers, where it is integrated
according to the reconciliation policy that the coobject uses in the server.

Using different reconciliation and awareness strategies: As discussed
in Sect. 2.1, some applications need to use different reconciliation and awareness
techniques during synchronous and asynchronous interactions. In our system,
different techniques can be used by specifying that a coobject is composed by
different components in the server and during shared access in the client.

The reconciliation and awareness components, defined for use during shared
access, control data evolution and awareness in the synchronous session. The
reconciliation and awareness components, defined for use in the servers, control
behavior during asynchronous interactions, i.e., how stable replicas stored in the
servers evolve and what awareness information is maintained.

4 Applications

In this section, we present two applications that exemplify our approach to
integrate synchronous and asynchronous interactions. These applications and
the DOORS prototype have been implemented in Java.
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Fig. 4. Multi-synchronous document editor with a LaTeX document, while synchro-
nously editing one section.

4.1 Multi-synchronous Document Editor

The multi-synchronous document editor allows users to produce structured doc-
uments collaboratively — these documents are represented as coobjects. For
example, users may use a synchronous session to discuss and create the out-
line of the document and to edit controversial parts. Each user may, after that,
asynchronously produce his contributions editing the sections he is responsible.

A document is a hierarchical composition of containers and leaves. Contain-
ers are sequences of other containers and leaves. A single sub-object stores the
complete structure of a document, including all containers. Leaves represent
atomic units of data that may have multiple versions and different data types.
A sub-object that extends the multi-version sub-object stores each leaf.

For example, a LaTeX document has a root container with text leaves and
scope containers. A scope container may also contain text leaves and scope con-
tainers. Scope containers can encapsulate the document structure but they have
no direct association with LaTeX commands. For example, a paper can be repre-
sented as a sequence of scope elements, one for each section (see Fig. 4). The file
to be processed by LaTeX is generated by serializing the document structure.

Asynchronous edition: During asynchronous edition, users can modify
the same elements independently. The coobject maintains syntactic consistency
automatically, as follows. Concurrent updates to the same text leaf are merged
using the pre-defined strategy defined in its super-class: two versions are created
if the same version is concurrently modified; a remove version is ignored if that
version has been concurrently modified; otherwise, both updates are considered.
Users should merge multiple versions later. Concurrent changes to the same
container are merged by executing all updates in a consistent way in all replicas
(using an optimistic total order reconciliation component in the server).



Synchronous edition: The multi-synchronous editor allows multiple users
to synchronously edit a document. To this end, a document coobject is main-
tained synchronously synchronized using the synchronous adaptation component
that immediately executes operations locally. Thus, users observe their opera-
tions without any delay. For handling reconciliation during a synchronous ses-
sion, a reconciliation component that implements the GOTO operational trans-
formation algorithm [30] is used.

For supporting synchronous edition, a text element also implements opera-
tions to insert/remove a string in a given version. These operations are submitted
when the user writes something in the keyboard or executes a cut or paste op-
eration. Remote changes are reflected in the editor’s interface using the callback
mechanism provided by the adaptation component. For example, Fig. 4 shows a
synchronous session with two users. The selected text version presents updates
from each user with a different color. In the structure and versions windows,
elements that have been modified in the current session are presented in red.

For converting synchronous operations into asynchronous operations, the fol-
lowing rules are used. Operations commute if they act upon different structure
elements or different versions. Otherwise, they do not commute. The update ver-
sion operation compresses insert/remove string operations — the new value of
the version is updated to reflect the insert/remove operations. No other compres-
sion rule is needed for converting a synchronous session into an asynchronous
contribution2. An insert/remove operation can be converted to a large update
version operation, where the new value of the version is the result of applying
the given operation to the current state of the version.

4.2 Multi-synchronous Conferencing Tool

In this section we describe a conferencing tool that allows to integrate discussions
produced in a chat tool as posts in a message board, thus allowing to maintain an
integrated repository of synchronous and asynchronous messaging interactions
produced in the context of some workgroup.

This application maintains a newsgroup-like shared space where users can
post messages asynchronously. A shared space is used to discuss some topic and
it may include multiple threads of discussion. A shared space is represented as a
coobject and each thread is stored in a single sub-object. In each shared space,
there is an additional sub-object that indexes all threads of discussion.

Two operations are defined: create a new thread of discussion with an initial
message and post a (reply) message to an existing thread. The following recon-
ciliation strategy is used in the servers: all updates are executed in all replicas
using a causal order. This approach guarantees that all reply messages are stored
in all replicas before the original message, but it does not guarantee that all mes-
sages are stored in the same order – this is usually considered sufficient in this
context.
2 Additional compression rules are applied as part of the normal log compression

mechanism: create/delete version pairs are removed; add/remove element pairs are
removed; an update version replaces a previous update version.



Our tool also allows users to maintain several replicas of a shared space
synchronously synchronized. This is achieved using the synchronous adaptation
component, as before. The reconciliation component executes all operations im-
mediately in a causal order (as in the servers). During synchronous interaction,
users can engage in synchronous discussions that are added to the shared space
as a single reply to the original post — replies are created using a chat tool.

The thread sub-object defines an additional operation for synchronous inter-
actions: add a message to a previous message. When the user decides to start
a new discussion, it issues a post message. This initial post message operation
compresses all following add message operations issued in the synchronous dis-
cussion (by including the new messages). In this case, the other rules needed
for log compression are very simple: two operations, a and b, commute if they
neither modify the same message nor b posts a reply to the message posted by
a, or vice-versa; no rule is need for converting operations as all add messages are
compressed into the initial post message.

5 Related Work

Several systems have been designed or used to support the development of asyn-
chronous groupware applications in large-scale distributed settings (e.g. Lotus
Notes [18], Bayou [7], BSCW [2], Prospero [5], Sync [20], Groove [11]). Our basic
system shares goals and approaches with some of these systems but it presents
two distinctive characteristics. First, the object framework not only helps pro-
grammers in the creation of new applications but it also allows them to use
different data-management strategies in different applications (while most of
those systems only allow the customization of a single strategy). Second, unlike
our system and BSCW, all other systems handle the reconciliation problem but
do not address awareness support. From these systems, three can provide some
integration between synchronous and asynchronous interactions.

In Prospero [5], it is possible to use the concept of streams (that log exe-
cuted operations) to implement multi-synchronous applications (by varying the
frequency of stream synchronization). This approach cannot support application
that need to use different operations or different reconciliation strategies.

In Bayou, a replicated database system, the authors claim that it is “possible
to support a fluid transition between synchronous and asynchronous mode of
operation” [7] by connecting to the same server. However, without a notification
mechanism that allows applications to easily update their interface and relying
on a single replica, it is difficult to support synchronous interactions efficiently.

In Groove [11], some applications can be used in synchronous and asynchro-
nous (off-line) modes. In Sketchpad, the same reconciliation strategy seems to
be used (execute all updates by some coherent order, using a last-writer wins
strategy). This may lead to undesired results in asynchronous interactions as the
overwritten work may be large and important. In this case, it is not acceptable
to arbitrarily discard (or overwrite) the contribution produced by some user,
and the creation of multiple versions seems preferable [29, 16].



Other groupware systems support multi-synchronous interactions. In [10],
the authors define the notion of a room, where users can store objects persis-
tently and run applications. Users work in synchronous mode if they are inside
the room at the same time. Otherwise, they work asynchronously. In [13], the
authors present a multi-synchronous hypertext authoring system. A tightly cou-
pled synchronous session, with shared views, can be established to allow multi-
ple users to modify the same node or link simultaneously. In [24], the authors
describe a distance-learning environment that combines synchronous and asyn-
chronous work. Data manipulated during synchronous sessions is obtained from
the asynchronous repository, using a simple locking or check-in/check-out model.

Unlike DOORS, these systems lack support for asynchronous groupware in
mobile computing environments, as they do not support disconnected operation
(they all require access to a central server). Furthermore, either they do not sup-
port divergent streams of activity to occur during asynchronous edition or they
use a single reconciliation solution (versioning). Our solution is more general,
allowing to use the appropriate reconciliation solutions for each setting.

In [27], the authors propose a general notification system that supports multi-
synchronous interactions by using different strategies to propagate updates. They
also present a specific solution for text editors that implements an operational
transformation (OT) algorithm that solves some technical problems for using OT
in asynchronous settings. However, as discussed in Sect. 2.2, in asynchronous
settings, OT may lead to unexpected results that do not satisfy any user –
creating multiple version seems preferable. Our approach, allowing the use of a
different reconciliation technique in each setting, can address this problem.

In [19], the authors present a brief overview of SAMS, an environment that
supports multi-synchronous interactions using an OT algorithm extended with
a constraint-based mechanism to guarantee semantic consistency. The proposed
approach seems difficult to use and, as the previous one, it does not allow to use
different operations or reconciliation techniques in each setting (as it is important
for supporting some applications).

In [9], the authors present a system that supports both synchronous and
asynchronous collaboration using a peer-to-peer architecture to replicate shared
objects. In this system, replica consistency is achieved in both settings by ex-
ecuting all operations in the same order – an optimistic algorithm using roll
back/roll forward is used. Again, this approach does not address the need of
using different operations and different reconciliation strategies in each setting.

6 Final Remarks

In this paper, we have presented a model to integrate synchronous and asynchro-
nous interactions in mobile computing environments. Our approach is built on
top of the DOORS replicated object store, that supports asynchronous group-
ware relying on optimistic server replication and client caching.

To integrate synchronous sessions in the overall asynchronous activity we
address the three main problems identified as important in the discussion of



Sect. 2. First, our system maintains multiple replicas of the data objects stored
in the DOORS repository synchronized in realtime. To this end, we rely on a
group communication infrastructure to propagate all operations to all replicas.

Second, our system addresses the problem of using different reconciliation
and awareness strategies in different settings. To this end, the programmer may
use an extension to the DOORS object framework that allows to use different
reconciliation and awareness components in each setting.

Finally, it addresses the problem of using operations with different granu-
larities for propagating updates in synchronous and asynchronous settings. To
this end, it integrates a compression algorithm that converts a long sequence
of small operations used in synchronous settings into a small sequence of large
operations.

The combination of these mechanisms allows our system to provide support
for multi-synchronous applications – the applications presented in Sect. 4 ex-
emplify the use of the proposed approach. To our knowledge, our system is the
only one to provide an integrated solution for all those problems in a replicated
architecture that supports disconnected operation. More information about
the DOORS system is available from http://asc.di.fct.unl.pt/dagora/.
DOORS code is available on request.
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