
DEEDS - An event dissemination service for mobile
and stationary systems

Sérgio M. Duarte, José Legatheaux Martins,

Henrique João Domingos e Nuno M. Preguiça

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
 {smd, jalm, hj, nmp}@di.fct.unl.pt

Abstract

Event-driven programming has emerged as one of the mainstream paradigms for the
engineering of distributed applications assembled out of loosely related software
components. In this paper, we present our on-going research in the development of a
flexible event-dissemination framework targeted at mobile and stationary computing
environments. We discuss a solution based on virtual multicast event channels, where
protocol heterogeneity support and active routing over a network of servers are advocated
as a flexible answer to the challenges posed by disconnection and variable connectivity
constraints.

1 Introduction

Distributed event-driven programming is an established choice for structuring applications in
many different areas. Well-known examples, among others, are distributed GUIs;
surveillance applications; shared virtual reality environments; multi-player games;
multimedia and CSCW applications. Scenarios involving mobility are no exception; the
current ability to broadcast short messages to (disconnected) mobile devices strongly hints
towards an event-based programming model [1].

A crucial aspect when dealing with mobility lies in the fact that disconnection and variable
connectivity are the norm, as opposed to what happens in traditional distributed systems,
where they are regarded as abnormal situations. Consequently, it is expectable that
conventional event-dissemination models may prove themselves inadequate in coping with
these traits of mobility. In particular, it is not very realistic to expect or impose a high-level of
consistency to all the listeners of an event source. Moreover, it is unacceptable to ignore the
problem and just consider periods of disconnection as some sort of communication blackouts.
Therefore, it seems unreasonable and inappropriate to resort to the same protocols for event-
dissemination among loosely connected mobile computers and well connected stationary

computers. Yet, the use of a uniform programming model based on the same abstractions
seems very desirable.

Closely related to the event-driven programming model are the notions of event objects and
event propagation channels. The relevance of these paradigms is unquestionable and asserted
by their widespread support in almost every standard for object oriented, component based
systems (e.g. JavaBeans, DCOM, CORBA).

Essential to the event channel paradigm is that channels reflect structure in the event flow, by
capturing patterns that are persistent relatively to application life cycles. As such, they
transcend particular instances of event sources and event consumers, and glue together
seemingly unrelated events and applications. Thus, event channels have the potential to
actually drive the design and shaping of distributed applications, particularly those based on
loosely coupled components that exchange information in an asynchronous manner.

Important as they are as a structuring tool and binding mechanism, event channels possess an
increased value for mobility applications. Again, the fact that disconnection is a normal mode
of operation means that the common tight-coupled models of consumer and producer
interaction are arguably inadequate. Mobility scenarios, therefore, require that event
production and event consumption should be made into independent processes. In this regard,
event channels can act as true intermediaries in the event dissemination, playing a part that
goes beyond the logical existence usually seen.

In the remaining of this paper, we present the main design issues driving our investigation in
the development of a framework where events and event channels are meant to be standard
building blocks of distributed applications, including mobile ones. This framework (and the
associated system) is globally named DEEDS, which stands for DAgora* [2] Event
Dissemination Service.

2 Overview of DEEDS

DEEDS is a Java based, general-purpose notification system modeled around a de-coupled,
publish-subscribe paradigm based on active event channels, a notion partially borrowed from
active networks [3]. The architecture is driven mainly by scalability concerns and transparent
support for arbitrary communication transports and various event delivery semantics.

The active event channel concept proposed by DEEDS provides applications with what can
be viewed as “virtual multicast channels”, characterized by abstract quality of service
guarantees that are realized by multiple network protocols. The novelty about these enhanced
(active) event channels lies in the possibility of binding more than one network protocol to
each virtual channel and allowing any of those bindings to be subjected to localized
customization by applications or system administration.

DEEDS provisions for protocol heterogeneity within the same event channel may sound
useless, at first, or look like a source of unnecessary complication. However, there are many

*The DAgora platform and its bibliography are available at http://dagora.di.fct.unl.pt. This platform aims to ease the construction of distributed, large-scale CSCW systems.

cases where it can be exploited to great advantage. For instance, a SMS based protocol could
be used to relay high priority events to a disconnected mobile computer, which in a well-
connected state would rather be reached by some conventional IP-based protocol.
Furthermore, a third protocol could yet be used to buffer the remaining lower priority events
until full connectivity is resumed. Elsewhere on the network, a different set of protocols may
be more adequate in dealing with local environment conditions suggesting a different (local)
event channel configuration.

Having applications explicitly coded for special circumstances, requiring multiple protocols,
is an alternate possibility but not really a solution. That leads, necessarily, to ad-hoc solutions
that demand code modification whenever execution conditions change. This problem is
addressed by DEEDS event channel framework by exposing only the abstract characteristics
of the communication protocols in use, such as latency, or persistency, to name a few. This
way, it is possible to create applications that are programmed with those characteristics in
mind, not the actual protocols. In this manner, applications are bound to specific event
channel semantics. If care is taken to preserve those channel characteristics across transport
customizations, then no code modification is necessary and applications are still apt to run
under the new conditions. The model promises great flexibility and transparency but relies on
the guarantee that sound event channel configurations are maintained.

In accordance with their denomination, DEEDS active event channels can perform
application specific computations on the events they route. The active capabilities of the
channels can be used to influence the routing of events in at least two useful ways. First, it
allows applications to fully explore DEEDS’ protocol heterogeneity support, by allowing
them to program the DEEDS’ infrastructure to find the best match between the available
network transports and the desired event channel semantics. Second, it allows applications to
perform event filtering on a per event basis. This is valuable, especially for mobile
applications, because it establishes a general framework for adapting, degrading or prioritize
the event flow in response to network bandwidth changes [4]. Active routing is an essential
part of the DEEDS system and is explained in more detail in the next sections.

DEEDS is being designed on top of some of the services and interfaces offered by Jini [5].
This choice is justified by both technological reasons and practical ones. In our mind, Jini
presents a very sound design and, in particular, offers several core-services that agree very
well with DEEDS requirements. Therefore, it makes good sense to use it to make our system
compatible with mainstream technology and, in the process, avoid reinventing the wheel.

3 Programming Model

DEEDS events are one-way, generally small and self-contained notifications, exchanged by
the processes using the system. Events are object instances of any class that extends the
RemoteEvent class of Jini. This class includes the bare minimum set of event attributes
(fields) and methods necessary to the propagation of events within a distributed system. On
the other hand, the remaining event data is application-specific and arbitrary in both type and
structure.

DEEDS top-level programming interface is purely for publish-subscribe purposes. At this
level, applications interface with a particular event channel to send or request events. The
programming model is purposely simple and focused, destined to enforce a standard
programming pattern that is likely to be repeated across most, if not all, application scenarios.

DEEDS other programming interface deals with event channel lookup, creation, and
management. User-level applications will typically use this interface to locate and bind
themselves to an existing channel or create their own. Channel management, on the other
hand, is directed towards service-level or administrative applications. It provides the
mechanisms to select the network protocols and other software components required to
implement the particular working semantics of an event channel, as denoted by the abstract
properties provided in its creation. In order to remain protocol-transparent, as mentioned
previously, user-level applications are discouraged to use this part of the interface.

The active-routing capabilities of the channel dissemination infrastructure are explored using
special application-supplied objects named routing assistants, as explained in the following
section. From the software-engineering standpoint, routing assistants are to be regarded as
another application structuring mechanism, again, intended to impose a common
programming pattern when dealing with filtering, quality of service and other transport
related issues. Routing assistants are a tool in a framework that seeks clarity of design, by
allowing the core of event-aware applications to focus on the meaning of events and worry
less on how to receive them or get them through.

4 Active Routing
As stated previously, DEEDS allows multiple network protocols to be used in the
propagation of events associated with a particular event channel. The legitimacy of this
choice is based on the absence of a universal network protocol, suitable to all connectivity
scenarios. Any attempts to develop a such all-powerful protocol are unrealistic. Instead, a
more cost-effective alternative is to combine existing protocols and explore their relative
strengths. The price one pays for that path is a more complicated event routing problem.

In the presence of multiple routes to send or receive events, it is not always possible to
determine which is the best one or, given the choice, which one an application would prefer.
Variable connectivity conditions conspire to make those decisions even more difficult, so that
one is bound to realize that there is no solution to this problem that is both general and static.
Application-assisted routing (active routing) helps in this regard by letting applications
directly influence the routing of events.

The form of active event routing offered by DEEDS allows event publishers and event
consumers to provide Java objects (routing assistants) that will assist in the routing process.
Given an event and a choice of network protocols (classified by their properties), the function
of a routing assistant is to select which protocols will be used to forward that event. Active
routing is optional; the system uses a default routing assistant when one is not provided.

It is important to stress that active routing is primarily intended to add flexibility in the
dissemination of events between end-points that experience variable degrees of connectivity,

such as those involving mobile computers and a host network. In this context, mobile
applications are encouraged to use routing assistants to manage the outgoing flow of
(published) events to the host network. Likewise, events destined to a mobile computer will
be forwarded according to the particular desires of the receiving applications, as encoded in
the supplied routing assistants.

DEEDS provides a framework and a support system for the execution of routing assistants.
These objects can access event fields and network monitoring variables that not only provide
data for routing decisions, but also for other computations such as event filtering.

5 Architecture Overview
The DAgora Event Dissemination Service architecture consists of a network of cooperating
(logical) servers; each structured as a federation of several Jini services. Jini is a Java based
architecture, developed by Sun Microsystems, with the goals of providing standard
mechanisms to enable users, devices and services locate, advertise, use or manage network
resources. Jini views the network as a dynamic place, where services come and go with
minimal outside intervention. Its design is particularly biased towards federation, so that
simple, lightweight services can cooperate for a higher purpose. Like most of the extensive
collection of Java standard extensions, Jini is readily available and well documented, and is
distributed with an open-source reference implementation.

DEEDS (logical) servers fall, nicely, into the Jini federation model. The servers perform
several functions that are very different in nature but are still inter-dependent. Instead of a
complex monolithic design, it is much simpler and flexible to conceive them as smaller
cooperating services. Discovery, service lookup, naming, binding, and service administration
are some of the facilities provided by Jini that DEEDS will use to achieve the overall
functionality of a DEEDS server.

The servers are found wherever event-aware applications are expected to execute. Proxy-
servers are otherwise used in hosts with limited computing resources. To provide wide-area
support, heavy-duty servers form the basis of a backbone, interconnecting far apart local area
domains.

The main function of DEEDS servers is, as expected, to provide support to the actual
propagation of events. For that purpose, they give shape to a logical or virtual network
(Figure-1), whose “physical” links correspond to the various transport-connections
established between them. Keeping with the analogy, DEEDS servers exert functions akin to
those performed by the routers of a physical network. In particular, alongside with the
forwarding of events, they are required to exchange state and topology information about the
links of the virtual network. Additionally, on a higher level of operation, they provide the
execution environment for routing assistant objects.

Server allocation and involvement in the event-routing process is dynamic. Servers are added
or dropped automatically in response to the accounted subscriber and publisher membership
lists for each event channel, so that routing of events uses the minimum number of servers.

DEEDS

Java

Java

JavaDEEDS

Java
Java

DEEDS

Java
Java

Java

DEEDS

Java Java

Java

DEEDS

DB

DEEDS
Java

Java

Java

TCP

IP
Multicast

LAN 2

Secure

Reliable
Multicast

Applications

Desktop PC
Mobile PC

SMS
HTTP

Persistence

Protocol
Applications

LAN 1
Heavy duty PC

Figure 1 - An example of a virtual network of DEEDS servers.

6 Related Work

The recent shift of application development towards an increasing network-centric focus has
resulted in a growing interest in the engineering of distributed applications using the familiar
event-programming paradigm. This trend is reflected in the emergence, in recent years, of
several event and data dissemination platforms [6, 7, 8, 9, 10, 11, 12, 13]. Most of these
systems share among them many concepts and goals, and DEEDS is no exception. However,
given the wide range of target environments and support technologies, emphasis on most
aspects varies greatly, making comparisons difficult. Some stress reliability and high quality
of service but require specific and expensive communication protocols, while a few are
primarily geared toward near real-time event propagation with low quality of service. Others
concentrate more on providing sophisticated event handling based on pattern matching and
worry less on establishing a fully distributed solution. Some are exclusively for local-area
network usage, in contrast with others that target wide-area environments. The following few
are good examples of the available work and representative of their respective classes, so we
find it useful to explain them in some detail and provide short comparisons with our own
system.

iBus/MessageBus

[10] This is a communication middleware designed to allow Java applications to interact over
a multicast channel abstraction, using a publish/subscribe model that is based on the JMS API
standard by Sun Microsystems [11]. iBus supports protocol composition, by means of
protocol stacks, offering various qualities of service such as reliable multicast, virtual
synchrony, encryption, etc. The native set of protocols can be further extended by the
developer to add new types of quality of service.

In iBus, the preferred communication model is peer to peer, in which messages are volatile
and flow directly from application to application, without intervention of support servers. A
recent update of this system added support for persistent messages but require funneling to a
dedicated centralized hub.

iBus and DEEDS share many objectives but use radically different approaches. First, iBus is
essentially a communication middleware that extends application code. DEEDS, on the other
hand, is structured as an independent platform service that applications interface with. iBus
communication is normally peer-oriented, while DEEDS subscriber/publisher interactions are
completely de-coupled, based on events routed through a federation of servers. iBus
addresses quality of service by extending or adapting the application protocol stack. Instead,
DEEDS relies on active routing over a dissemination network consisting of multiple
redundant paths, supported by alternative protocols.

Castanet

[13] This system is targeted at data replication and software updating through the Internet
using the TCP protocol within a Java environment. The Castanet architecture is based on
channels, tuners and transmitters. Channels correspond to content published by server-side
provider applications (transmitters) that are subscribed and downloaded by the tuners (client-
side applications). Castanet channels offer data persistency on the client-side (tuner) and
follow a synchronization policy based on polling. The system is an example of an essentially
user-centric class of platforms, which, in this case, features a mechanism for uploading end-
user channel preferences, as a form of feedback. This platform bears little or no resemblance
with DEEDS.

Cobea

[6] This is one of the CORBA based event architectures. Cobea, in particular, uses a
publish/register/notify model that supports server side event filtering based on parameter
templates. In Cobea, event sources first publish in a trader the types of events they notify and
their respective interfaces. Clients are notified when events match the parameter template that
they provided when they registered their interest. Cobea follows a client/server model and
relies on filtering to improve scalability. DEEDS and Cobea are different in both objective
and overall architecture. However, another recently available CORBA based architecture [12]
is somewhat closer in concept, supporting the event channel model, but having nothing
resembling DEEDS’ transport heterogeneity or active routing capabilities.

Salamander

[7] This is a feature-rich wide-area data dissemination middleware, designed to support push-
based applications. The publish/subscribe paradigm offered presents several important
characteristics such as persistent database queries, resource announcement and discovery,
adaptable quality of service, data persistency and support for client heterogeneity. The
Salamander platform allows applications to interface to virtual distribution channels in an
attribute data space supported by a tree of servers. Client applications connect to points of
service (nodes) in the server tree to publish or consume data. Furthermore, application plug-
in modules can be added along the distribution path to allow data modification (degradation)
and filtering.

DEEDS and Salamander are similar in several ways, but Salamander is considerably biased
towards data storage/caching/digestion along a hierarchical dissemination path, while
DEEDS favors a simpler flat multicast architecture with support for multiple alternative (less
conventional) transport protocols.

7 Concluding Remarks

We conclude this document with a few final thoughts and open issues regarding the event-
dissemination system we are developing.

First, we advocate that an event-dissemination platform aiming at general usefulness must be
backed by a particular programming model. We believe that such model should envisage that
the core of an event-based application should be concerned, solely, with the meaning of
events, on the assumption that they are delivered according to some desired and documented
fashion. It is up to the remaining of the system to meet such expected quality of service.

Meeting the above requirements for both stationary and mobile systems is difficult, to say the
least, especially if simplicity and flexibility are also to be achieved. We propose that a rich,
independent infrastructure of communication resources, tapped by separate and specific
application-code, according to similar principles of active networking, will be able to provide
an adequate answer for a wide range of application scenarios. Namely, it will be able to
address the specific challenges posed by disconnection and changing connectivity quality
introduced by mobility.

The above model is a significant departure from the more conventional approaches to the
event dissemination problem. Its validity remains largely unproven and requires further
investigation. Work is in progress in the construction of a demonstration prototype and closer
analysis of model application scenarios.

8 Bibliography
[1] T. Imielinski, H. Korth. Introduction to Mobile Computing. Mobile Computing, ed. T.

Imielinski and H. Korth, Kluwer Academic Publisher, 1996.

[2] H. J. Domingos, José A. Legatheaux Martins, Jorge F. Simão, J., "A Generic Platform and
Flexible Object-Group-Oriented Framework to Support Large Scale Collaborative
Applications," in Proceedings of the HICSS-30, 30th International Conference on System
Sciences - Vol.4, IEEE Computer Society Press, January 1997, pp.s 82 - 91

[3] Jonathan M. Smith, et all, Activating Networks: A Progress Report, IEEE Computer, April
1999, Vol. 32, No. 4, pp.s 32-41

[4] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, K. Walker. Agile Application-
Aware Adaptation for Mobility. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, 1997.

[5] Jim Waldo, The Jini Architecture for Network-centric Computing, CACM, July 1999, pp.s 76-
82 and http://www.sun.com/jini

[6] Chaoying Ma and Jean Bacon, "COBEA: A CORBA-Based Event Architecture," in
Proceedings of the 4th Conference of Object-Oriented Technologies and Systems, Santa Fe,
USA, April 1998, pps 117 - 131

[7] G. Robert Malan, F. Jahanian and S. Subramanian,"Salamander: A Push-Subscribe Distribution
Substrate for Internet Applications," In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, USA, December 1998, ppg.s 171 - 181

[8] Patterson, J. F., Day, M., and Kucan, J., "Notification Servers for Synchronous Groupware", in
Proceedings of the 6th ACM Conference on Computer- Supported Cooperative Work, ACM
Press, Nov. 1996, pp. 122-129.

[9] Object Management Group. Common Object Services Specification Volume 1

[10] S. Maffeis, "iBus/MessageBus - The Java Intranet Software Bus", http://www.softwired.ch

[11] Sun Microsystems, “Java Message Service”, http:/java.sun.com/jms

[12] Object Management Group, “Notification Service - TC Document, telecom/98-06-15”

[13] Marimba Inc. “Castanet”, http://www.marimba.com

