

DEEDS – a Distributed and Extensible Event Dissemination Service

Sérgio Duarte, José Legatheaux Martins,
Henrique J. Domingos and Nuno Preguiça

{smd, jalm, hj, nmp}@ di.fct.unl.pt

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Abstract

In this paper, we present our ongoing research on the develop-
ment of a complete event dissemination solution aimed at a broad
range of distributed environments, including both stationary and
mobile systems. We detail an event dissemination model based on
a publish/subscribe/feedback paradigm over active event channels
that incorporate specific routing logic to achieve protocol trans-
parency, custom quality of service guarantees and multiple deliv-
ery semantics. The main features of a matching programming
model are also described, including those targeted at mobile ap-
plication development.

1 Motivation

Event-driven programming is a recognized and well-
established paradigm, present in a wide variety of
computation scenarios. Asynchronous interactions,
based on events, follow naturally in distributed
computing and provide a particularly convenient and
speedy way of engineering complex distributed ap-
plications out of assorted, off the shelf, possibly het-
erogeneous software components. Nevertheless, this
convenience is somewhat offset by a relative lack of
event dissemination tools capable of overcoming the
challenges of large-scale and heterogeneous settings.
Mass adoption of mobile and wireless computing
habits and, further penetration of the Internet in
every aspect of everyday life, will only enhance the
need for systematic solutions rather than the ad-hoc
approaches one has grown accustomed to witness
when dealing with these environments.

Delivery of events in local area domains is usually
well ordered, fast, predicable and rather reliable
[2][3][4][5] [9]. These attributes mean that, when
confined to local and short scale environments, the
task of event dissemination maps well to a single or
a small set of communication protocols. Naturally,
under these rather benevolent conditions, research
on event related studies has neglected, to some ex-
tent, the actual transport of events in favor of
higher-level constructs, such as event algebras and
elaborate content-based subscription languages

[9][10][8][3][5]. However, as soon as either large
scale or mobility is put into the mix, the job of event
propagation takes serious proportions.

Mobility, on its part, introduces the newness of
permanent disconnection and intermittent unreliable
services with poor or variable quality of service
warranties [12]. These are not exceptional condi-
tions; they have to be accepted as normal modes of
operation that require explicit support [13]. Large-
scale event dissemination, on the other hand, faces
obstacles mainly in the form of scalability concerns,
heterogeneous transport protocols and administra-
tive traffic barriers. No simple re-wiring of the
communication protocol stack is capable of
addressing the problem of scale.

In our view, these realities dictate that sensible ap-
proaches to the problem of efficient event dissemi-
nation, involving scale and mobility, should pay
closer attention to the actual propagation of events,
focusing on explicit support for heterogeneity and
present it in a consistent manner that discourages
non-reusable, ad hoc solutions to specific needs. It
is along those lines, we shall present DEEDS, our
ongoing work on the design of a comprehensive
event dissemination architecture with the ambitious
goal of providing seamless support for stationary
and mobile users, regardless of the scale and het-
erogeneity of their distribution.

In the next three sections, we describe the main
design and architectural features of DEEDS and the
proposed programming model. In the remaining
two, we compare our ongoing efforts to related
work and issue some concluding remarks.

2 Overview of DEEDS

DEEDS is a JAVA-based, broad event dissemina-
tion solution developed with flexibility and extensi-
bility in mind and intended to fit the needs of a wide
range of applications and execution scenarios. It

features explicit support for mobile applications in
the form of a series of specific abstractions, found
across the event dissemination model and pro-
gramming interfaces.

The event dissemination model advocated in
DEEDS is based on a publish/subscribe/feedback
paradigm over active event channels. These repre-
sent the enhancement of the notion of event channel
with techniques inspired from the field of active
networks [1].

Event channels are logical entities, with names that
applications use as rendezvous points. They serve
as intermediaries between event sources (publish-
ers) and event consumers (subscribers), supporting
asynchronous, temporally and space decoupled in-
teractions between them. Furthermore, event chan-
nels are also useful as a structuring tool, organizing
the event flow by aggregating related events.

In DEEDS, besides the name, a few other attributes
characterize an active event channel. The most im-
portant of those is the publicized quality of service
(QoS), represented in terms of abstract qualities
such as reliability, type of latency, semantics of
delivery, failure model, and so on. It is important to
stress that quality of service is not negotiable, but a
permanent aspect of each event channel individu-
ally. Meeting the advertised quality of service is,
indeed, a problem, especially if one considers the
sheer number of possible combinations of the QoS
attributes and each site’s local conditions. It is pre-
cisely to handle the problem that the active trait of
DEEDS’ event channels has been adopted. Under
this activation scheme, each event channel is fitted
with specific plug-in code, whose job is to interface
with the underlying infrastructure and deliver the
promised quality of service. These plug-ins, dubbed
system routing assistants, can be made specific to a
site’s particular conditions to match available re-
sources and administration policies. System routing
assistants are system-level objects that end-user
applications are un-ware of. For this reason, they
can be (administratively) replaced at any time (for
instance if an improved version is made available or
if conditions change and a different kind is re-
quired). As such, their use constitutes the answer to
DEEDS’ pursued extensibility and tailorability.

DEEDS’ also provides support for protocol hetero-
geneity, meaning that the quality of service of an
event channel is not tied to a particular communica-
tion protocol. Contrary to that, event channels are
meant to be, as much as possible, protocol transpar-
ent, so that it is up to the system routing assistants
to pick up the transports available on a site that are
considered more appropriate to meet their objective,

as documented in their specifications. Therefore, it
is perfectly possible to have a multicast-based pro-
tocol chosen to deliver events in a local area net-
work and have, instead, a unicast protocol such as
http deliver them to a remote location, behind a
firewall, where a completely different scheme may
be in place.

Providing specific support for mobile clients is an-
other concern that has driven the design of DEEDS.
To that end, the dissemination model incorporates
provisions for event persistency, by allowing event
channels to advertise an event playback capability.
In this model, persistency is an attribute of event
channels, not of individual events. Therefore, a
volatile channel will discard events as soon as they
are delivered, while a persistent one will have at
least a part of its history available for playback.

Mobility is further addressed in the event dissemina-
tion model by extending the basic publish/subscribe
/feedback paradigm with a specific framework that
allows applications to fine-tune the way events are
transported. The basis of this framework consists of
special plug-in objects, dubbed application routing
assistants, which applications supply when they
publish events or subscribe a channel. These objects
are expected to monitor network conditions and
behave according to the needs of their parent appli-
cation, for instance by filtering out low priority
events when bandwidth is scarce, performing event
digests or temporarily storing events for discon-
nected and offline applications. Operations such as
these are common practice when dealing with mo-
bile clients. DEEDS also supports these practices,
but the paradigm that has been adopted goes further
than that, and actively promotes a standard way of
implementing those procedures that is much tidier
and manageable than plain ad-hoc alternatives.

The event dissemination model, discussed so far, is
powered by a distributed architecture, engineered
towards the demands of scale. The following sec-
tion portrays this support architecture in some detail
and, in particular, describes how the servers self-
organize to create the event dissemination network.

3 Architecture Overview

The core of the DEEDS' event dissemination archi-
tecture consists of a collection of stationary servers
interconnected by various types of transport-level
network (redundant) connections. The objective is
to form a virtual (backbone) network, where servers
act as routers and, the transport connections be-
tween them correspond to the links that define the
network topology. Under this design, the system
routing assistants, presented previously, provide the

routers’ processing logic that directs the forwarding
of events from the publishers to the subscribers.

To address comfortably the requirements of scale,
the server network is organized into domains, en-
compassing servers that share a reasonable degree
of system-administration coordination. Therefore,
servers belonging to the same domain should ex-
perience a relatively homogenous view of the
world, especially in what regards to transport avail-
ability and configuration of system routing assis-
tants. This is not an absolute requirement but eases
significantly the development of system routing
assistants, and promotes a more efficient event dis-
semination overall.

Secondary servers, running on desktop or mobile
personal computers, make up the remaining of the
event dissemination network. Their primary job is
to interface with the aforementioned backbone net-
work and, in doing so, provide connectivity to client
applications. These servers have limited routing
responsibilities, relying on the services of a desig-
nated backbone server for all inter-server communi-
cation. Consequently, in contrast to what happens
with backbone servers, the location and identity of
secondary servers is not proactively advertised and
has a limited scope of visibility, usually restricted to
the designated primary server.

Stationary servers, regardless of their primary or
secondary status, also serve as anchor points for
remote application routing assistants. This capabil-
ity is meant to provide mobile clients with a home
base location, where to migrate portions of applica-
tion code that will process events in their absence or
that will adapt the event flow to match the observed
conditions of the mobile link.

A system-wide replicated data cache, known as the
system registry, is maintained by every server in the
dissemination network. The registry gathers all in-
formation pertaining to server and network opera-
tion, from persistent static configuration data to
volatile soft state, generated during server opera-
tion. The scope of replication is determined by the
individual nature of each of the cache items and is
encoded in a radius of interest tag, ranging from
strictly local to fully global. Dedicated event chan-
nels are used to refresh registry entries and keep
overall consistency, following a policy that priori-
tizes updates to keep the bandwidth overhead within
the set limits.

Primary servers are also required to run a large-
scale discovery service, whose purpose is to main-
tain a database with the location and identities of
the servers of a given domain. The information col-
lected (and advertised) through this service consists

of candidate network entry points, which servers
can probe when they want to join (or rejoin) the
event dissemination network. Specifically, the dis-
covery service provides the minimum join informa-
tion necessary to establish a basic event channel
that allows a server to bootstrap its registry services
and properly integrate itself in the network. By de-
nying the join information to a candidate server, the
discovery service also incorporates the security
policies that control admittance to the network.

4 Programming Model

DEEDS’ programming model is divided in two
distinct levels, with very different purposes and
capabilities. The top one, the user-level, is geared
towards the development of event-ware applica-
tions. The other, the system-level, focuses on sys-
tem enhancement and administration. In both cases,
the programming interfaces are expressed in the
JAVA programming language and assume execu-
tion in a standard JAVA environment.

The definition of event used by DEEDS is quite
liberal. An event is a small, self-contained notifica-
tion consisting of a serializable JAVA object paired
with a 64-bit integer identifier. Additional informa-
tion, usually associated with event, such as source
identifiers or sequence numbers, is managed auto-
matically by the system runtime and exposed
through separate Receipt objects.

4.1 Core User-Level
Programming

The user-level programming interfaces, naturally,
reflect the publish/subscribe/feedback paradigm
adopted. Typically, applications perform lookup
operations in an event channel directory, with a
string name as parameter.

EventChannel channel;
EventChannelDirectory directory;

directory = DeedsSystem.getEventChannelDirectory();
channel = directory.lookup(“/channels/apps/App1”) ;

A successful lookup allows the application to pub-
lish events, subscribe the channel, or both.

The publish operation is very straightforward; the
application only needs to provide the event data
and, in return, accept a receipt object.

Receipt r = channel.publish(0x1L, new myEvent());

To receive events the application must perform a
subscribe operation. To that end, it supplies the
object that will be notified for each event individu-

ally. A 64-bit bit mask is also included to coarsely
filter undesired events based on their identifier. An
additional parameter identifies the subscription.

channel.subscribe(mask, new EventSubscriber() {

public void notify(Receipt receipt, MarshalledEvent mev) {
…
}

},…);

For performance reasons, the event is kept wrapped
in serialized form until accessed; this way expen-
sive un-marshalling operations are avoided when-
ever the application discards an event judging by its
identifier or by the contents of the accompanying
receipt.

The DEEDS event dissemination model also lets an
application send events back to the source of a pre-
viously received event. This is achieved through the
event feedback mechanism, which, unlike publish-
ing, is strictly a unicast operation that targets just
one receiver.

The feedback operation is similar to a publish op-
eration but requires the receipt of the event for
which a feedback event is being sent.

Receipt r = channel.feedback(receipt, 0x8L, new myEvent2());

The receipt is needed to designate the destination of
the feedback event. Receipts cannot be fabricated
with the purpose of feedback and regular ones are
refused if the original publisher did not subscribe
feedback events. The rest of the feedback-related
operations have very similar counterpart versions of
the interfaces presented here.

To cease receiving events, an application must un-
subscribe the event channel. The subscription iden-
tifier object provided in the subscribe operation is
the only argument required.

channel.unsubscribe(subscriptionID);

Assuming the event channels involved have already
been created, these operations are, basically, what is
needed to develop event-based applications. Con-
cerning the bulk of an application, the programming
style advocated does not involve much more. For
this to be realistic, applications must trust the event
channels to deliver the QoS they advertise. This is
an important point, DEEDS expects applications to
be developed with a particular QoS in mind, match-
ing an existing event channel profile that is feasible
in the target execution environment. Therefore,
event channel creation and deployment are particu-
larly sensitive procedures, depending on sound sys-
tem administration practices. For this reason, user-

level applications are restricted to cloning pre-
existing (template) event channels.

directory.clone(“/templates/reliable”,“/channels/apps/App1”,…,…);

4.2 User-Level Plug-ins

As stated earlier, the event flow micro-management
between applications and the dissemination infra-
structure is performed using a specific program-
ming framework - the routing assistant framework.
In a nutshell, the framework aims to standardize
most, if not all, application procedures regarding
event filtering, event prioritization, event digestion,
event-mailbox management, and other amendments
imposed by connectivity limitations. This is
achieved by supplying routing assistant objects as
additional parameters for the publish and subscribe
operations, effectively installing application-defined
behavior deep in the event dissemination infrastruc-
ture. Due to the sensitivity of these operations, rout-
ing assistants must be entirely resolvable from a
resource bundle of classes, previously registered in
the separate administrative procedure. Privileging
the class resource bundle registration procedure
ensures some security against malicious routing
assistants.

Due to space restrictions, we cannot detail the ap-
plication routing assistant programming interfaces.
Nevertheless, a rough description of their makeup
and expected behavior is deemed necessary.

Applications routing assistants are, basically, a
pipeline or queue in which events flow from the
network towards the parent application or in the
opposite direction, depending on their type. Their
first decision is to control which events enter the
queue, by discarding unwanted events, as they ar-
rive, based on the their receipts and contents.
Events that do reach the event queue are sorted ac-
cording to a previously negotiated policy. Next,
they are presented, again, to the routing assistant for
dispatching to one or more of the available trans-
ports. During this phase, the routing assistant can
query the system about network conditions and the
properties of the various transports and, based on
the information, route, delay or discard the event.
The routing assistant is also allowed to inject or
replace events in the queue. Moreover, the event
queue, the routing assistant itself, and a data storage
scratch pad can be flagged as persistent to further
expand the possible uses of the framework.

4.3 System-level Plug-ins

New classes of event channels are added using spe-
cial plug-ins, known as system routing assistants, in
a two two-step procedure. One deals with the as-
pects of the actual programming of the routing as-
sistant object. The other, equally important, in-
volves the documentation of the specifications of
the new channel. A precise description of the event
channel is important because it is intended to serve
two purposes. First, it exposes the quality of service
that user-level programmers will use as reference.
Second, it enumerates the event channel’s execution
requirements, which serve as guidelines to system
administrators when deploying the event channel.

The base programming interfaces of a system rout-
ing assistant are rather simple, even though an event
channel with an elaborate quality of service will
very likely be a complex piece of software. Specifi-
cally, the system only expects the routing assistant
to be able to dispatch the events it presents it to.
Two separate streams of events are involved, a
multi-point stream produced by publish operations
and an optional unicast stream of feedback events.

public interface SystemRoutingAssistant{

 public GUID getChannel();

 public boolean isUnicastRouter();

 public void mroute(EventEnvelope ee) throws Exception;

 public void uroute(EventEnvelope ee) throws Exception;
}

Events received from remote servers are decoded
into EventEnvelope objects and then passed to the
appropriate routing assistant for further processing.
Non-standard envelopes (custom message types) are
supported by leaving the interpretation of the re-
maining envelope data to the system routing assis-
tant.

To ease their development and capitalize on already
available programming resources, routing assistants
can also rely on the system object registry to gather
information or to obtain references to external “ser-
vices”. These are presented in the form of dynamic
objects that other processes keep updated and store
in named containers. Containers keep track of
changes in the information they store and notify
interested parties.

Container c ;
c = (Container)Registry.getValue(“/Containers/Transports”);
c.addContainerListener(new ContainerListener {
 public void handleContainerChanges(Container c) {
 …
 }
});

This scheme allows system routing assistants to
synchronize their state (a routing table, for exam-
ple) in reaction to changes in the containers they
monitor. Since the information made available
through this process is not limited in any way and
can be extended at any time, we find these simple
programming interfaces a convenient way of adapt-
ing the overall system to the needs of present and
future event channels developers. Still, active net-
work issues such as security and resource consump-
tion[1] have been clearly downplayed but we be-
lieve future work in the area will not be hindered by
the present model decisions.

5 Related Work

Considerable work in information dissemination
systems has been produced in recent years, originat-
ing from both academic sources and the software
industry. The broad scope of available solutions
prohibits an exhaustive discussion, so we focus our
attention on representative platforms that pursue
similar objectives to our own interests.

TIB/Rendezvous[4] is a messaging middleware that
follows a subject-based publish/subscribe model
over a hierarchical namespace. It offers a fixed set
of QoS guaranties, such as “reliable delivery”, peer-
to-peer “certified delivery” and centralized
“transactionally guarantied delivery”. Its industrial
and closed nature does not compare well in terms of
extensibility.

Smartsockets[6] and iBus[2] are two other event-
channel based industrial solutions, which have
evolved into supporting Sun’s JMS standardized but
cumbersome messaging API [7]. iBus is a primarily
peer-to-peer solution but a recent update introduced
some protocol heterogeneity support through the
use of bridging/tunneling. In any case, an event
channel’s QoS is tied to the protocol stack in use.
Smartsockets promises scalability using a mesh of
servers but unlike DEEDS, the event routers are not
programmable and implement a rigid routing algo-
rithm.

Elvin[9], Siena[8], Gryphon[10] are examples of
content-based subscription solutions. These ap-
proaches require the use of structured events, whose
content must be interpreted by the dissemination
infrastructure to select the interested receivers. In
these systems, event consumers subscribe from a
global pool of events by providing elaborate filter
expressions, which must be evaluated against in-
coming events. Elvin is, currently, a non-scalable,
centralized solution but does offer support for dis-
connection. Both Siena and Gryphon address scal-
ability issues by migrating subscription expressions

over decentralized multi-server architectures. Still,
it is not clear how these authors address the implica-
tions of the heavy processing requirements associ-
ated with massive filter evaluation. DEEDS also
provides content-based subscriptions, albeit very
simple ones, but avoids heavy processing loads us-
ing, instead, binary masks over the integer event
identifier. Masks can be efficiently merged and
propagated but are much coarser and do require
programming discipline.

INS[14] is a resource and service discovery system
that integrates name resolution with message rout-
ing in a dynamic and mobile network of computing
devices. Two message delivery services are avail-
able: intentional anycast that targets an “optimal”
destination name, and intentional multicast, which
selects all destinations matching a given name. In
both cases, communication is best-effort, without
provisions for stronger guaranties, agreeing well
with the fact that INS is better suited for service
discovery and binding rather than extended message
exchanges.

Salamander[11] is a wide-area data dissemination
platform, geared towards broadcasting of scientific
data-streams by a tree of servers. Application plug-
ins can be added along the distribution path to allow
data degradation and filtering.

6 Concluding Remarks

We will end this discussion by mentioning the pre-
sent status of this work and some of the directions
that will guide our future work.

Current efforts of the team are focused on the
completion of a prototype that will, hopefully,
validate and demonstrate the guiding principles of
the platform. Although preliminary results are
encouraging, we expect the insights yet to be gained
from a full-featured prototype and the modeling of
sample, real-life applications will allow us to refine
the pursued concepts and address weaker spots,
such as security.

7 References

[1] J M. Smith, et al. “Activating Networks: A Progress Re-
port”. IEEE Computer, Vol. 32, No. 4, p. 32-41, April 1999.

[2] M. Altherr, M. Erzberger and S. Maffeis. “iBus - A Software
Bus Middleware for the Java Platform”. In International
Workshop on Reliable Middleware Systems, p. 43-53, Oc-
tober 1999.

[3] P. Eugster, R. Guerraoui, J. Sventek. “Distributed Asyn-
chronous Collections: Abstractions for Publish/Subscribe
Interaction”. ECOOP/2000, pp. 252-276, 2000

[4] TIBCO, “TIB/Rendezvous White Paper”.
http://www.tibco.com. 1999.

[5] C. Ma and J. Bacon, "COBEA: A CORBA-Based Event
Architecture". In proc. 4th Conference of Object-Oriented
Technologies and Systems (COOTS-98), pp. 117 – 131,
April 1998

[6] Talarian Corporation, “SmartSockets/SmartsocketsJMS
Whitepapers”. http://www.talarian.com.

[7] M. Happner, R. Burridge and R. Sharma. “Java Message
Service”. Sun Microsystems Inc. October 1998.

[8] A. Carzaniga, D. S. Rosenblum and A. Wolf. “Achieving
Scalability and Expressiveness in an Internet-scale Event
Notification Service”. In Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing
(PODC-00), July 2000.

[9] B. Segall, D. Arnold. “Elvin has left the building: A pub-
lish/subscribe notification service with quenching”. In Pro-
ceedings of AUUG97, Brisbane, 1997.

[10] G. Banavar et al. “An efficient multicast protocol for con-
tent-based publish-subscribe systems. In the 19th IEEE In-
ternational Conference on Distributed Systems
(ICDCS’99), May 1999.

[11] G. Malan, F. Jahanian and S. Subramanian. "Salamander:
A Push-Subscribe Distribution Substrate for Internet Appli-
cations". In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, p. 171-181, Decem-
ber 1998.

[12] T. Imielinski, H. Korth. “Introduction to Mobile Computing.
Mobile Computing - ed. T. Imielinski and H. Korth”, Kluwer
Academic Publisher, 1996.

[13] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J.
Flinn, K. Walker. “Agile Application-Aware Adaptation for
Mobility”. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[14] Adjie-Winoto W., Schartz E., Balakrishnan H., Lilley J.,
“The design and implementation of an intentional naming
system (INS)”. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP'99), De-
cember 1999.

	Motivation
	Overview of DEEDS
	Architecture Overview
	Programming Model
	Core User-Level�Programming
	User-Level Plug-ins
	System-level Plug-ins

	Related Work
	Concluding Remarks
	References

