
MacroDB: Scaling Database Engines on
Multicores?

João Soares, João Lourenço and Nuno Preguiça
CITI/DI-FCT-Univ. Nova de Lisboa

Abstract. Multicore processors are available for over a decade, but gen-
eral purpose database management systems (DBMS) still cannot fully
explore the computational resources of these platforms. This paper ex-
plores a simple and easy to deploy approach for improving DBMS perfor-
mance in multicore platforms, by maintaining multiple database engines
running in parallel, rather than a single instance, thus circumventing the
increase in contention due to load interactions. Unlike previous works,
we focus on in-memory DBMS, exploring different design solutions that
combine distributed systems and concurrent programming techniques.
We show that we are able to improve performance over standalone solu-
tions, without modifying either database or application code, by up to 3
times while minimizing response times.

1 Introduction
Multicore processors are now available for over a decade, and still pose chal-
lenges to the design of database management systems (DBMS) [10,17,21,3,7].
Existing studies show that current DBMS engines can spend more than 30% of
time in synchronization-related operations (e.g. locking and latching), even when
only a single client thread is running [11]. Additionally, running two concurrent
database operations in parallel can be slower than running them in sequence
[26], due to workload interference. This is a limiting factor for the scalability of
DBMS in current multicore platforms [19].

Several research solutions have been proposed to improve the use of resources
offered by multicore machines. Some solutions aim at using multiple threads to
execute query plans in parallel, or using new algorithms to parallelize single
steps of the plan, or effectively parallelizing multiple steps [25,26,7,6,3]. Other
solutions try to reuse part of the work done during the execution of multiple
queries [9], or using additional threads to prefetch data that can be needed in the
future [17]. Although some of these solutions start to appear in niche markets,
general purpose DBMSs have been slower to adopt them, since implementing
such solutions requires significant design modifications.

This paper addresses the problem of improving the scalability of DBMS on
multicore machines, focusing on in-memory databases (IMDB). IMDBs provide
high performance because they do not incur in disk I/O overhead. The high per-
formance and ease of embedding them in applications have made these systems
increasingly popular, being used by a large number of applications and high-
performance transaction processing systems, such as Sprint [4] and H-Store [14].
? This work was partially support by FCT/MCT projects PEst-OE/E-

EI/UI0527/2011 and PTDC/EIA-EIA/108963/2008. João Soares was partially
supported by FCT/MCTES research grant # SFRH/ BD/ 62306/ 2009.

2

 0

 100

 200

 300

 400

 500

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
H2

(a) Single DB engine

 0

 100

 200

 300

 400

 500

 1 2 4 6 8 10 12 14 16 18

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
H2

(b) One DB engine per client

Fig. 1: Scalability of read-only workload

Scalability issues of in-memory DBMS Compared to disk based databases, IMDBs
incur in no overhead or contention in accessing I/O. Thus, we would expect these
systems to scale with the number of cores. To verify if this was true, we have run
the TPC-C benchmark with a 100% read-only workload in popular HSQL and
H2 IMDBs on a 16 core Sun Fire X4600 with 32 GBytes of RAM. The results of
Figure 1(a) show that these engines do not scale, even when transactions do not
conflict with each other. For understanding if the lack of scalability was due to
lack of resources, we concurrently ran an increasing number of pairs client/DB
engine in the same machine. Figure 1(b) presents the results of such experiment,
showing an increasing aggregate throughput. These results make it clear that
the problem lies in the design of current IMDBs.

1.1 Proposed approach

In this paper, we explore a simple and easy to deploy mechanism for scaling
IMDB, by relying on database replication and building on knowledge from dis-
tributed and replicated database systems. By treating multicore machines as
an extremely low latency cluster, extended with shared memory, we deploy a
middleware system, MacroDB, as a collection of coordinated IMDB replicas, for
providing scalable database performance on multicores systems.

MacroDB uses a master/slave replication approach, where update trans-
actions execute on the master replica, which holds the primary copy of the
database. The slaves maintain independent secondary copies of the database,
receiving read-only transactions from clients, while updates are asynchronously
propagated to them upon commit on the primary. This approach minimizes
contention since: i) Read-only transactions are fully executed on slave replicas,
reducing the number of transactions each replica processes, thus distributing
the load among the available replicas, and ii) update transactions are applied in
slave replicas as sequential batches of updates, leading to no contention among
them.

MacroDB provides a scalable data management solution, that does not re-
quire any changes to neither database engines or the applications. Our experi-
ments show that MacroDB is able to provide performance benefits ranging from
40% to 180% over standalone database engines in a diverse range of benchmark
workloads, such as TPC-C and TPC-W, while for write-dominated workloads,
such as TPC-C, MacroDB suffers from only a 5% to 14% overhead over stan-
dalone solutions. Additionally, the memory used by the database replicas is not

3

Manager'

Primary'
Replica' Secondary'

Replicas'

MacroDB'

Client' Client' Client' Client'

Fig. 2: MacroDB Architecture

directly proportional to the number of replicas, as replicas share immutable Java
objects, thus making MacroDB practical even with large numbers of replicas.

This paper is organized as follows, section 2 describes our system and some of
the prototype considerations. Section 3 presents the evaluation results. Section 4
presents some related work, and section 5 concludes this paper.

2 MacroDB
MacroDB is a middleware infrastructure for scaling IMDBs on multicore ma-
chines. It replicates the database on several engines, all running on the same ma-
chine, while offering a single-copy serializable view of the database to clients [2].

It works independently of the underlying database engine, acting as a trans-
parent layer between applications and the database. Statements received from
the application are passed, without modifications, to the underlying engines.
This makes MacroDB easy to deploy, since it does not require any modification
to existing applications or database engines. This section details the architecture
and algorithms used in the system.

2.1 Architecture
The MacroDB architecture, depicted in Figure 2, is composed by two main
components: the manager, responsible for coordinating transaction execution
in the database replicas; and the database replicas, i.e., the engines responsible
for maintaining copies of the database. Clients remain oblivious of the replicated
nature of MacroDB since it offers them a standard JDBC interface, and provides
them with a single-copy serializable view of the database [2].

Clients do not communicate directly with the database engines, instead they
communicate with the MacroDB manager, a JDBC compliant front-end which
coordinates client queries and the underlying replicas. The manager receives
statements from clients and forwards them, without modification, to the appro-
priate replica, guaranteeing their ordered execution, and replying to clients the
respective results. Its main function is to: i) route client request to the appro-
priated replica, ii) manage operation execution to guarantee that the system
provides a single consistent serializable view of the replicated database to the
applications, and iii) to detect and recover possible replica failure. In the next
section, we detail transaction execution.

2.2 Transaction Execution
MacroDB uses a master-slave replication scheme [12,23]. The master maintains
the primary copy of the database, while the slaves maintain secondary repli-
cas. Update transactions, received from clients by the manager are executed

4

concurrently on the primary copy, being asynchronously propagated to the sec-
ondary replicas upon commit. This means that secondary replicas might not
be completely up to date at a given moment. Read-only transactions execute
concurrently on the secondaries.

Each secondary replica maintains: i) an associated version, that maintains
the number of update transactions committed in the replica. This version is kept
in shared memory, as an atomic commit counter, and can be accessed by any
thread running in MacroDB; ii) a list for pending update batches, and iii) a
thread responsible for executing these batches.

We will now detail the steps for executing update and read-only transac-
tions. We assume the setReadOnly method of the JDBC interface is used for
defining read-only and update transactions. The code for transaction execution
is presented in Figure 3. For simplicity, we omit the code for error handling and
present an explicit begin transaction operation - in the prototype, the code for
begin transaction is executed when the first query or update operation is called
after a commit or rollback.

Update Transactions For each client connection, when an update transaction
begins, a newly associated batch is created. All statements executed in this
context are executed by the master replica, using the context of the caller thread,
and their results returned to the client. Additionally, if the operation was an
update, it is added to the batch for that transaction.

If the client decides to commit the transaction, the commit is executed in
the master replica, using the caller thread. If the commit succeeds, the version
number associated with the master replica is incremented and the update batch,
stamped with that version number, is inserted into the lists of pending batches
for the secondary replicas. For correct transaction ordering, MacroDB needs to
guarantee that no new transaction starts and commits between the commit of a
transaction and its ordering, thus this it the only operation that requires coor-
dination with other threads. For guaranteeing that the commit does not block,
we require the underlying database engines to use two-phase locking (instead
of commit time certification strategies), which is the case in most in-memory
database systems. If the client decides to rollback or if the underlying engine is
unable to commit the transaction, a rollback is executed in the master replica
and the associated batch is discarded.

The thread associated with each secondary replica waits for the next update
batch to be inserted into the associated list, and executes it. Then, it atomically
commits the transaction and advances the version associated with the replica.
Since these updates are performed sequentially, we guarantee that no deadlock
will occur on the secondaries, thus all update batches will commit successfully.
By sequentially executing each commit in the master replica, and advancing the
version counter, we define a correct serialization order for update transactions,
without forcing an a priori commit order. Executing update batches in secondary
replicas in the same order as in the primary guarantees that all replicas evolve
to the same consistent state

5

var global : atomic i n t ve r s i on [0 . . num r e p l i c a s]
Map pendingTx [1 . . num r e p l i c a s]
Connection connB [1 . . num r e p l i c a s]

var per cl ient : Connection conn [0 . . num r e p l i c a s]
Batch txOps
i n t txRep l i ca

function begin (boolean readOnly)
a c t i v e = true
i f readOnly then

txVrs = ve r s i on [0]
txRep l i ca = Se l e c tRep l i c a ()
wait until ve r s i on [txRep l i ca] >= txVrs

else
txRep l i ca = 0
txOps = new Batch

function execQuery (Statement query)
conn [txRep l i ca] . execQuery (query)

function execUpdate (Statement update)
conn [0] . execQuery (query)
txOps . add (update)

function commit ()
i f readOnly then conn [txRep l i ca] . commit ()
else

LOCK REPLICA 0
r e s u l t = conn [0] . commit ()
i f NOT r e s u l t then throw CommitFailed
newVrs = ++ver s i on [0]

for i := 1 to num secondary r e p l i c a s
pendingTx [i] . put (newVrx , txOps)

function threadLoop (i n t num)
vrs = ve r s i on [num]
forever

batch = pendingTx . blockingGetRemove (vrs + 1)
connB . execBatch (batch)
LOCK REPLICA num

connB [num] . commit ()
vrs = ++ver s i on [num]

Fig. 3: MacroDB code.
Read-only transactions All queries from read-only transactions execute directly
on secondary replicas, being executed in the context of the caller thread. For
providing a single consistent view of the replicated database, MacroDB enforces
that a read-only transaction will only execute on a secondary that is up-to-date,
i.e., when its version is, at least, equal to the version of the primary when that
transaction started. On the beginning of a read-only transaction, the manager
reads the current version of the primary replica. This defines the version for the
secondary replica in which the transaction will execute, waiting, if necessary,
until the selected secondary is up-to-date, i.e., it waits until the version on the
selected secondary is, at least, equal to the version read from the primary. This
guarantees that the selected secondary is not in an old state, which could po-
tentially lead to a violation of causality for the client. Thus, MacroDB provides
clients with a single copy serializable view of the replicated database.

Fault Handling When a replica fault is detected, an immediate recovery process
is initiated. If the master fails, all currently executing update transactions abort,

6

and all new update transactions are postponed until a new master is active.
A new master is then selected from the set of secondary replicas, replacing
the previous one after successfully executing all pending update batches. This
guarantees that no update transaction is lost, and that all replicas have the same
consistent state, since all update batches have been executed in all of them. At
the moment of this selection, new read-only transactions are only forwarded to
the remaining secondaries. At this moment the new master becomes active and
the system behaves as if a secondary replica had failed. Whenever a secondary
replica fails, its current transactions abort, and new read-only transactions are
forwarded to the remaining replicas. A new secondary replica is then created
and recovered from a non-faulty one.

2.3 Correctness

For the correctness of the system, it is necessary to guarantee that all replicas
evolve to the same state after executing the same set of transactions. Also, for
guaranteeing that MacroDB provides a single consistent view of the replicated
database, it is necessary to guarantee that a transaction is always serialized after
all update transactions that may precede it commit. This is achieved because
the system enforce the following properties.

Theorem 1. All replicas commit all update transactions in the same, serializ-
able, order.

Proof. At the primary, as commits execute atomically in isolation, the serial-
izable order is defined by the order of each commit. Since secondary replicas
execute update transactions in a single thread, i.e., sequentially, by the same
order, all replicas commit all update transactions in the same order.

Theorem 2. A transaction is serialized after all update transactions that pre-
cede it commit.

Proof. For update transactions, this is guaranteed by the database engine at
the primary. For read-only transactions, MacroDB enforces this property by
delaying the beginning of a transaction until the secondary replica has executed
all transactions committed at the moment the begin transaction was called.

2.4 Minimizing Contention for Efficient Execution

As presented earlier, the master-slave replication approach used in MacroDB
executes update and read-only transactions in different replicas. Thus, read-only
transactions never block update transactions and vice-versa, since these execute
in distinct replicas. The execution of update transactions in secondary replicas
may interfere with read-only transactions, depending on the concurrency control
scheme used in the underlying database. Both H2 and HSQL support multi-
version concurrency control that allows read-only transaction to not interfere
with update transactions. Since only a single update transaction executes at a
time, in secondary replicas, this approach guarantee serializable semantics.

Read-only transactions still need to wait until the secondary replica is up-to-
date before starting. Our approach, of executing update transaction as a single

7

batch of updates minimizes the execution time for these transactions, thus also
minimizing waiting time.

We can infer, from the results presented in the introduction, that there is
contention among multiple threads inside the database engine even when trans-
actions do not conflict. We minimize this contention by reducing the number of
transactions that execute in the same replica at the same time - by executing
only a fraction of the read-only transactions in each secondary replica and by
executing update transactions quickly in a single database operation.

3 Evaluation
In this section we evaluate MacroDB performance, comparing it with a single
uncoordinated instance of the database engines (standalone versions), by mea-
suring the throughput of each system. For this comparison we used the TPC-C
benchmark, varying the number of clients and workloads. We also evaluated the
performance impact of varying the number of secondary replicas of MacroDB.
Additionally we also used the TPC-W benchmark.
Prototype Considerations Our current MacroDB prototype is built in Java, and
includes the necessary runtime system, as well as a custom JDBC driver. By
using this simple approach, developers are able to integrate MacroDB into their
applications by simply adding its library and modifying the URL used to connect
to the database engine, without additional changes to the application code. The
number of replicas and underlying database engines used are defined in the
connecting URL. When the first client connects to the database, replicas are
instantiated and the runtime system is started.
Setup All experiments were performed on a Sun Fire X4600 M2 x86-64 server ma-
chine, with eight dual-core AMD Opteron Model 8220 processors and 32GByte of
RAM, running Debian 5 (Lenny) operating system, H2 database engine version
1.3.169 and HSQL engine version 2.2.9, and OpenJDK version 1.6. All MacroDB
configurations use a full database replication scheme.

3.1 TPC-C
We ran the TPC-C benchmark using 4 different workloads, standard (8% reads
and 92% writes), 50-50 (50% reads and 50% writes), 80-20 (80% reads and
20%writes) and 100-0 (100% reads), for 2 minutes, on a 4 gigabyte database.
The number of clients varied between 1 and 10. The results presented are the
average of 5 runs, performed on fresh database copies, disregarding the best and
the worst results, and were obtained from the standalone uncoordinated versions
of HSQL and H2, and MacroDB using HSQL (MacroHSQL) and H2 (MacroH2),
configured with 1, 3 and 4 replicas (Rep1, Rep3 and Rep4, respectively).

Standard workload Figures 4(a) and 4(b) present the results obtained run-
ning TPC-C with a standard workload. As expected, under update intensive
workloads, our system is unable to benefit from the additional replicas for load
balancing, since all updates must be executed on the same replica. Thus, the
standalone versions of the database engines outperforms the MacroDB versions.
These results also show an important aspect of MacroDB, its overhead. As put
in evidence, our system is able to impose a fairly reduced overhead, compared to
the standalone versions, ranging between 5% and 14%, even in update intensive
workloads.

8

 10
 15
 20
 25
 30
 35
 40

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep1
Rep3
Rep4

(a) HSQL vs. MacroHSQL (standard)

 12
 14
 16
 18
 20
 22
 24

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

H2
Rep1
Rep3
Rep4

(b) H2 vs. MacroH2 (standard)

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep1
Rep3
Rep4

(c) HSQL vs. MacroHSQL (50-50)

 15

 20

 25

 30

 35

 40

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

H2
Rep1
Rep3
Rep4

(d) H2 vs. MacroH2 (50-50)

Fig. 4: TPC-C standard and 50-50 workload results

50-50 workload Figures 4(c) and 4(d) present the results obtained running
TPC-C with a 50% read and 50% write workload. In moderate update workloads,
MacroDB versions of both HSQL and H2 are able to achieve higher through-
put than the standalone versions, offering up to 40% and 70% improvements
over HSQL and H2 respectively. Although MacroDB is able to scale better than
the standalone engines, its scalability is still limited by the nature of the work-
load. The secondary replicas are able to balance read-only transactions, but the
moderate update nature of this workload still imposes great stress at the master
replica, thus limiting scalability. This is put in evidence by the, almost negligible,
performance difference when MacroDB is configured with 3 or 4 replicas, i.e.,
2 or 3 secondary replicas. These results show that, even at considerable update
rates, MacroDB is able to achieve a 70% improvement over standalone engines.

80-20 and 100-0 workloads The nature of read intensive workloads allows
MacroDB to take full advantage of its replicated architecture. Both MacroDB
versions achieve higher throughput than their standalone siblings, with an in-
creased performance of 93% and 165%, and 166% and 176% performance in-
crease over HSQL and H2, under an 80% (Figures 5(a) and 5(b)) and 100%
(Figures 5(c) and 5(d)) read workloads, respectively.

These results put into evidence the benefits of load balancing in reducing
contention, since both MacroDB systems achieve higher performances with ad-
ditional secondary replicas. The performance benefits of MacroDB is only limited
by the number of replicas. As presented next, increasing the number of repli-
cas allows MacroDB to further scale, achieving even higher performance figures.
It also put into evidence that running 4 database replicas (1 primary and 3
secondary) is not sufficient to fully explore the processing power of our current
system. Since current processors offer up to 20 threads per CPU chip [13], current
engines considerably underutilize such platforms.

9

 10
 20
 30
 40
 50
 60
 70
 80

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep1
Rep3
Rep4

(a) HSQL vs. MacroHSQL (80-20)

 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

H2
Rep1
Rep3
Rep4

(b) H2 vs. MacroH2 (80-20)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep1
Rep3
Rep4

(c) HSQL vs. MacroHSQL (100-0)

 20
 30
 40
 50
 60
 70
 80

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

H2
Rep1
Rep3
Rep4

(d) H2 vs. MacroH2 (100-0)

Fig. 5: TPC-C 80-20 and 100-0 workload results

 0
 20
 40
 60
 80

 100
 120

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep3
Rep4
Rep6

(a) TPC-C 80-20 Workload

 0
 20
 40
 60
 80

 100
 120

 1 2 4 6 8 10

Th
ro

ug
hp

ut
 (K

tra
ns

/s
ec

)

Clients

HSQL
Rep3
Rep4
Rep6

(b) TPC-C 100-0 Workload

Fig. 6: MacroHSQL with 6 replicas

Also, the overhead measured by running a MacroDB with a single replica
are consistent in all experiments, with a maximum value of 8%, independently
of the nature of the workload, when compared to the standalone DBMS. It is
also important to note the lack of scalability of the standalone versions of both
database engines. These IMDBs scale fairly well up to 2 or 4 clients, but above
that point performance improvements are not significant, in the majority of the
experiments, thus showing that a major redesign is needed to improve DBMS
performance on current multicore processors.

Additional Replicas To further explore the computational power offered by
our setup, we ran TPC-C, using the 80-20 and 100-0 workloads, on a MacroDB
with 6 replicas (1 primary and 5 secondaries). The obtained results, presented
in Figures 6 for MacroHSQL, show the benefits of increasing the number of
replicas on a MacroDB. This increase allows MacroDB to offer performance
improvements of up to 234% over standalone engines. These results also put
into evidence how current chips are underutilized by current IMDB engines,
since MacroDB was able to successfully improve performance, over standalone
engines, even when running 6 engines on a single machine.

Memory Usage To measure the practicality of our proposal, we measured the
memory overhead imposed by MacroDB, over the standalone database engines

10

Replicas

MacroDB 2 3 4

H2 1.53× 1.56× 1.76×
HSQL 1.64× 2.29× 2.56×

Fig. 7: Memory overhead

Workload
Throughput(WIPS)
H2 MacroDB(Rep3)

Browsing Mix 261.6 458.4

Shopping Mix 202 428.6

Fig. 8: TPC-W results

(Figure 7), varying the number of replicas. Contrarily to what may be expected,
the memory used by MacroDB is not directly proportional to the number of
replicas. This is due to the fact that replicas share immutable Java objects, such
as Strings. The obtained results show that, a MacroDB configured with HSQL
replicas, uses at most 2.5 times more memory than the standalone engine, while
a MacroDB configure with H2 replicas, uses at most 1.7 times more memory than
the standalone engine, when using a 4 replica configurations. This makes deploy-
ing MacroDB practical on single machine multicores, even with large numbers
of replicas.

3.2 TPC-W

As an additional experiment, we compared the results obtained running TPC-
W benchmark on a single, uncoordinated, H2 engine and a MacroDB using
three H2 replicas (Rep3). The results obtained, presented in Figure 8, show the
throughput, in web interactions per second (WIPS), obtained running TPC-W
browsing and shopping mix, on the machine previously described with a database
of 2 gigabytes, for 20 minutes and using 128 emulated browsers, with no thinking
time. The performance improvements of MacroDB over the standalone version
of H2 ranges from 75% to 112%, thus showing the benefits of our system.

4 Related Work
Several works have addressed the issues of database scalability on multicores.
Most of these proposals focus on an engine redesign; on reuse of previous engine
work; or on the addition of threads to automate specific procedures or to prefetch
data [17,21,3,7,26,9]. These works are complementary to ours, since our focus is
to allow existing engines to scale on current hardware without modification.

MacroDB, an example of a Macro-Component [15], follows the path that mul-
ticores should be seen as extremely low latency distributed systems [5,1,19,20],
extended with shared memory. Thus, techniques previously developed for dis-
tributed systems are suitable for re-engineering and deploying on these platforms.

Many database replication studies have proposed solutions for improving ser-
vice availability and performance [18,24,8,16]. Although complementary to our
work, MacroDB builds on some of the techniques from these systems, applying
them to multicore systems.

Multimed [19], an adaptation of Ganymed [18] for multicores, has previously
explored database replication in single multicore machines. Although similar to
our work, MacroDB presents differences that make it unique. First, unlike Mul-
timed, we focus on in-memory databases, which presents different challenges for
providing scalability, by not incurring in I/O overhead. Second, our solution
aims at providing a single-copy serializable view of the database, instead of rely-
ing on weaker snapshot isolation semantics. Finally, by considering a multicore

11

system as a distributed system extended with shared memory, we explore the
shared memory for efficient communication between replicas and to expose data
for efficient consistency management, load balancing and transaction routing.

5 Final Remarks
In this paper we presented MacroDB, a tool for scaling database systems on mul-
ticore platforms. Designed as a transparent middleware platform, it integrates
replicas of existing unmodified database engines to offer increased concurrency
and performance over standalone DBMS engines. MacroDB is transparent to
applications, offering a single serializable view of the database, without need
of rewriting the application code, while reducing contention and minimizing re-
sponse times, by dividing and routing transactions according to their nature.

MacroDB is implemented using a custom JDBC driver and a self contained
runtime, and can be used with any JDBC compatible database engine. Thus,
performance improvements are obtained without modification to the database
engine or the application. It is also easy to configure, allowing database engines
and configurations to be specified by the JDBC driver URL.

Our evaluation shows that MacroDB offers 40% to 180% performance im-
provements over standalone in-memory DBMS, for various TPC-C workloads.
Under update intensive workloads (92% update transactions), MacroDB has a
reduced overhead of less than 14% when compared to standalone database en-
gines. For TPC-W workloads, MacroDB is able to achieve improvements of up
to 112%, over standalone in-memory DBMS.

The memory used by the database replicas is not directly proportional to
the number of replicas, as replicas share immutable Java objects, thus making
MacroDB practical even with large numbers of replicas.

References

1. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new os architecture for scal-
able multicore systems. In: Proc. SOSP’09. (2009)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems. Addison-Wesley Longman. (1986)

3. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core cpus. In: Proc. SIGMOD ’11. (2011)

4. Camargos, L., Pedone, F., Wieloch, M.: Sprint: a middleware for high-performance
transaction processing. In: Proc. EuroSys ’07. (2007)

5. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the
gaps between theory and practice. In: Proc. SIGMOD ’08. (2008)

6. Chekuri, C., Hasan, W., Motwani, R.: Scheduling problems in parallel query opti-
mization. In: Proc. PODS’95. (1995)

7. Cieslewicz, J., Ross, K.A., Satsumi, K., Ye, Y.: Automatic contention detection
and amelioration for data-intensive operations. In: Proc. SIGMOD’10. (2010)

8. Elnikety, S., Dropsho, S., Pedone, F.: Tashkent: uniting durability with transaction
ordering for high-performance scalable database replication. In: Proc. EuroSys’06.
(2006)

12

9. Giannikis, G., Alonso, G., Kossmann, D.: Shareddb: killing one thousand queries
with one stone. In: Proc. VLDB’12. (2012)

10. Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N., Ailamaki, A., Falsafi, B.:
Database servers on chip multiprocessors: Limitations and opportunities. In: Proc.
CIDR’07. (2007)

11. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: Oltp through the
looking glass, and what we found there. In: Proc. SIGMOD ’08. (2008)

12. Helal, A.A., Bhargava, B.K., Heddaya, A.A.: Replication Techniques in Distributed
Systems. Kluwer Academic Publishers. (1996)

13. Intel: Xenon processor e7 family (2012), http://www.intel.com/
14. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones,

E.P.C., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J., Abadi, D.J.: H-store:
a high-performance, distributed main memory transaction processing system. In:
Proc. VLDB’08. (2008)

15. Mariano, P., Soares, J., Preguiça, N.: Replicated software components for improved
performance. In: Proc. InForum’10 (2010)

16. Mishima, T., Nakamura, H.: Pangea: an eager database replication middleware
guaranteeing snapshot isolation without modification of database servers. In: Proc.
VLDB’09. (August 2009)

17. Papadopoulos, K., Stavrou, K., Trancoso, P.: Helpercoredb: Exploiting multicore
technology for databases. In: Proc. PACT ’07. (2007)

18. Plattner, C., Alonso, G.: Ganymed: scalable replication for transactional web ap-
plications. In: Proc. Middleware’04. (2004)

19. Salomie, T.I., Subasu, I.E., Giceva, J., Alonso, G.: Database engines on multicores,
why parallelize when you can distribute? In: Proc. EuroSys ’11 (2011)

20. Song, X., Chen, H., Chen, R., Wang, Y., Zang, B.: A case for scaling applications
to many-core with os clustering. In: Proc. EuroSys’11. (2011)

21. Unterbrunner, P., Giannikis, G., Alonso, G., Fauser, D., Kossmann, D.: Predictable
performance for unpredictable workloads. In Proc. VLDB’09 (2009)

22. Vandiver, B., Balakrishnan, H., Liskov, B., Madden, S.: Tolerating byzantine
faults in transaction processing systems using commit barrier scheduling. In: Proc.
SOSP’07. (2007)

23. Wiesmann, M., Schiper, A., Pedone, F., Kemme, B., Alonso, G.: Database repli-
cation techniques: A three parameter classification. In: Proc. SRDS 2000. (2000)

24. Wiesmann, M., Schiper, A.: Comparison of database replication techniques based
on total order broadcast. IEEE Trans. on Knowledge and Data Engineering 17
(2005)

25. Ye, Y., Ross, K.A., Vesdapunt, N.: Scalable aggregation on multicore processors.
In: Proc. DaMoN’11. (2011)

26. Zhou, J., Cieslewicz, J., Ross, K.A., Shah, M.: Improving database performance
on simultaneous multithreading processors. In: Proc. VLDB ’05. (2005)

