
Future Generation Computer Systems 118 (2021) 14–36

r
J

a
i
t
H
g
3

s
e
e
s
d
a
g

f
(
(

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

It’s about Thyme: On the design and implementation of a time-aware
eactive storage system for pervasive edge computing environments
oão A. Silva ∗, Filipe Cerqueira, Hervé Paulino, João M. Lourenço, João Leitão,
Nuno Preguiça
NOVA Laboratory for Computer Science and Informatics, Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade NOVA de
Lisboa, 2829-516 Caparica, Portugal

a r t i c l e i n f o

Article history:
Received 20 December 2019
Received in revised form 23 October 2020
Accepted 8 December 2020
Available online 15 December 2020

Keywords:
Distributed storage
Publish/subscribe
Wireless networks
Mobile devices
Edge computing

a b s t r a c t

Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of
that data has localized and ephemeral interest, but can be of great use if shared among co-located
devices. However, mobile devices often experience poor connectivity, leading to availability issues
if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the
edge computing paradigm pushes computations and storage beyond the data center, closer to end-
user devices where data is generated and consumed, enabling the execution of certain components
of edge-enabled systems directly and cooperatively on edge devices. In this article, we address the
challenge of supporting reliable and efficient data storage and dissemination among co-located wireless
mobile devices without resorting to centralized services or network infrastructures. We propose Thyme,
a novel time-aware reactive data storage system for pervasive edge computing environments, that
exploits synergies between the storage substrate and the publish/subscribe paradigm. We present the
design of Thyme and elaborate a three-fold evaluation, through an analytical study, and both simulation
and real world experimentations, characterizing the scenarios best suited for its use. The evaluation
shows that Thyme allows the notification and retrieval of relevant data with low overhead and latency,
and also with low energy consumption, proving to be a practical solution in a variety of situations.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We are witnessing a rapid growth of both the capabilities
nd amount of mobile devices worldwide [1,2]. As such, there
s a wide adoption of smartphones and tablets for performing
he most diverse activities, from leisure to work-related tasks.
ence, the volume of data generated by these devices, like user-
enerated content and sensor data, is also growing rapidly [2,
].
Much of the data generated by mobile devices in all sorts of

ocial gatherings (like sports events, protests, festivals, or cer-
monies) has localized and ephemeral interest. People in such
vents are usually interested in similar types of information (e.g.,
tatistics and videos at sports events), and such interest typically
iminishes over time. Thus, swift and spontaneous data storage
nd dissemination among neighboring mobile devices can be of
reat usefulness. For instance, smartphones carried by people

∗ Corresponding author.
E-mail addresses: jaa.silva@campus.fct.unl.pt (J.A. Silva),

a.cerqueira@campus.fct.unl.pt (F. Cerqueira), herve.paulino@fct.unl.pt
H. Paulino), joao.lourenco@fct.unl.pt (J.M. Lourenço), jc.leitao@fct.unl.pt
J. Leitão), nuno.preguica@fct.unl.pt (N. Preguiça).
ttps://doi.org/10.1016/j.future.2020.12.008
167-739X/© 2020 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
in such gatherings can collect lots of useful data that, when
shared among co-located devices, may help others discover new
points of interest, enjoy videos of special moments (from multiple
viewpoints), or avoid waiting lines or crowded areas in a venue.

In many situations, making information available may be of
paramount importance (e.g., disaster situations [4], military sce-
narios [5]), or just really helpful (e.g., crowded events [6]). So,
being dependent on network infrastructure access to support
such use cases may be unwise, or even unfeasible, due to their
potential overload or destruction. Even assuming the availabil-
ity of infrastructure, transferring large amounts of data to and
from the cloud can lead to network congestion, various delays,
and possible monetary costs. Furthermore, in those scenarios,
mobile devices often experience poor or intermittent connec-
tivity, leading to availability issues if application storage and
logic are fully delegated to a remote cloud infrastructure. Still,
the non-negligible costs associated with network infrastructure
setup (e.g., adding access points) further motivates the need
to have devices interact in a device-to-device (D2D) manner,
through an infrastructure-less or ad-hoc network [7]. Thus, the

main question we address in this article is: how to support reliable

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2020.12.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.12.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jaa.silva@campus.fct.unl.pt
mailto:fa.cerqueira@campus.fct.unl.pt
mailto:herve.paulino@fct.unl.pt
mailto:joao.lourenco@fct.unl.pt
mailto:jc.leitao@fct.unl.pt
mailto:nuno.preguica@fct.unl.pt
https://doi.org/10.1016/j.future.2020.12.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

a
b
w

n
o
m
b
p
a
t
a
d
s
s

o
s
a
d
p

n

m
f
o
t
b
S
s
p

T

2

c
a
t

2

s
t
m
c
b
r
t
K
s
p
s
P
b
s

p
s

nd efficient data storage and dissemination among co-located mo-
ile devices without resorting to centralized services and subsisting
ith no network infrastructure?
The extensive proliferation of mobile devices at the edge of the

etwork, along with the increasing growth of their capabilities,
ffers a massive computing and storage infrastructure of (still
ostly) untapped resources. Together, the ubiquitous smart mo-
ile devices, the opportunistic gathering of users, and the growing
ervasiveness of edge computing environments [8,9], have en-
bled novel opportunities for data storage and dissemination at
he network edge. In fact, it is more efficient to communicate
nd distribute information among nearby devices than to use
istant centralized intermediaries [10,11]. By storing data near its
ource (e.g., where it is generated), applications can be more re-
ponsive while relieving some of the load from cloud and network
infrastructures, potentially also providing increased data privacy
and ownership.

Allowing systems’ components to actively and directly collab-
orate at the edge requires some form of distributed data reposi-
tory as to share and disseminate information. Thus, we propose
Thyme, a novel time-aware reactive storage system for networks
f mobile devices, that exploits synergies between the storage
ubstrate and the P/S communication paradigm. It fuses the stor-
ge interface with a P/S abstraction, enabling co-located mobile
evices to store and disseminate data among them. Contrary to
revious solutions, queries are in the form of subscriptions that

have a specific time scope defining when they are active (and
can even include the past). Leveraging this novel time-aware
abstraction, Thyme is able to achieve robust, efficient and timely
data storage, dissemination, and querying. It also allows both
the notification and retrieval of desired data with low overhead
and latency, using limited bandwidth and while being resilient to
possible message losses and node failures.

In typical storage systems [12–14], users are required to ac-
tively and explicitly search for the desired data, following a re-
quest/reply interaction model. Since the kind of distributed envi-
ronments we target are highly volatile and dynamic, we adopt a
reactive and loosely coupled data dissemination mechanism [15].
By integrating a P/S abstraction, users (or applications) can regis-
ter their interests, being subsequently notified of any data items
matching those interests. This allows users to quickly discover
what data exist in the system in a reactive manner, and only be
otified about data they are interested in.
In the kind of gatherings we are addressing, individual mo-

ents are intrinsically tied by time relations (e.g., the band per-
orming at time x in the music festival, or the second speech
n a rally). Also, people are often interested in information with
hese associated time references (e.g., find photos of the opening
and). Hence, Thyme considers time to be a first order dimension.
ubscriptions include a time frame that defines their active time-
pan, either in the future, in the present, or in the past, effectively
roviding the full time decoupling of the P/S paradigm [15].
We present two different approaches to Thyme. The first one,

hyme-LS, follows a lightweight, yet effective, unstructured ap-
proach using local storage and query flooding. The second more
intricate one, Thyme-DCS, is inspired by the fact that geograph-
ical positions have a close relation to topology in wireless net-
works, and follows a data-centric storage (DCS) approach [16],
whereby we build a storage substrate over a geographic hash
table (GHT) [17]. We implement both approaches in the ns-3
network simulator [18]. Moreover, we also address the applica-
tion of Thyme to networks of real mobile devices, implementing
Thyme-DCS as a library for Android devices, and developing a
proof-of-concept photo sharing application on top.

Although previous systems present in the literature offer some
features similar to Thyme (e.g., tuple spaces [19,20] or peer-
to-peer (P2P) systems [12,14]), none provides the same overall
15
characteristics (as we detail in Section 2). Thus, to the best of our
knowledge, Thyme is the first system to provide reliable reactive
storage for pervasive edge computing environments that may be
effectively and efficiently used in either small, medium and large
scale scenarios.

This article builds on the work presented in [21] and ex-
tends it. Here, we present an in-depth definition of the time-
aware reactive storage abstraction (Section 3); and also a more
comprehensive description of the design of our time-aware re-
active storage system, Thyme (Section 4), and of its two dif-
ferent approaches, Thyme-LS (Section 5) and Thyme-DCS (Sec-
tion 6). Furthermore, we leverage the work in [22] to elaborate
an extensive evaluation of our proposed solution. We further
describe an implementation of the Thyme-DCS approach, as a
Java library, for sharing and storing data in networks of An-
droid mobile devices (Section 7); and also the design of a photo
sharing Android application atop Thyme that enables users to
share and persist photos in multiple photo galleries sustained
by a network of mobile devices (Section 7.4). Lastly, we report
a characterization of the scenarios best suited for the use of
the proposed solutions, through a three-fold evaluation: via an
analytical study (Section 8), and both simulation (Section 9) and
real world experimentations (Section 10). We close the article
with a broad discussion of our main findings (Section 11) and our
conclusions (Section 12).

In summary, the original contributions of this article are the
following:

1. A detailed definition of our time-aware reactive storage
model;

2. An analytical study where we derive approximate formulas
for communication costs and operations complexity, and
use them to compare our different approaches;

3. An extended evaluation of our approaches through simula-
tion experimentations; and

4. An in-depth study of the energy costs in the Thyme-DCS ap-
proach through real world experimentations with Android
devices.

. Related work

Concerning work related to our proposal, we address and
ompare against three main categories: P/S systems, data storage
nd dissemination systems in general, and the particular case of
uple spaces.

.1. Publish/subscribe

Typical P/S systems are stateless, meaning that only sub-
cribers online at the time of publication are notified. Hence,
he notion of publication persistence has not been addressed in
ost systems. Some approaches for wired settings exploit the
oncept of a persistent data repository, by means of distributed
uffers [23] (allowing only to specify how many data items to
equest from the past when subscribing) or by integration with
raditional databases [24] (without any notion of time). Apache
afka [25], a system originated at LinkedIn, has recently gained
ignificant popularity, clearly demonstrating the feasibility and
otential of the P/S communication paradigm. However, such
olutions do not consider time as a first order dimension of the
/S abstraction. Furthermore, solutions for wired scenarios cannot
e easily adapted for wireless setting where connectivity is not
table.
Table 1 highlights the main aspects when comparing our pro-

osal with other P/S systems. In the particular context of wireless
ettings, Chapar [27] is, as far as we know, the only persistent P/S

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
C

2

p
K
a
h
e
c
n
a
v
t
m
s
m

d
d
r
p

i
s
r
i
c
w
a
a
e

w
T
s
r

d

able 1
omparison with P/S systems.

Environment Time Assignment Substrate

[23] Wired Subscriptions REBECA [26]
[24] Wired – DB
Chapar [27] Wireless Publications OLSR [28]
Thyme [21] Wireless Pub. & Sub. GHT/Flooding

Table 2
Comparison with data storage and dissemination systems.

Infrastructure Data Avail. Substrate

Krowd [12] Yes No 1-hop DHT
Ephesus [29] Yes Yes DHT
MobiTribe [30] Yes Yes Central Server
PAN [13] No Yes Prob. Quorums
Phoenix [31] No Yes Simple Quorums
iTrust [32] No No Random Walks
PDS [14] No ± ICN [33]
Thyme [21] No Yes GHT/Flooding

system. However, it only assigns time to publications, which are
buffered only until their lifetime expires (as a time-to-live). In
Thyme, subscriptions have their time scope assigned. While pub-
lications are permanently stored, they may be deleted from the
system upon request. Thus, new subscribers can always request
previously published data. Moreover, Chapar is not functionally
symmetric, demanding more work from broker nodes, and thus
achieving poor load balancing, an aspect that has been explicitly
considered in the design of Thyme.

.2. Data storage and dissemination

Table 2 highlights the main aspects when comparing our pro-
osal with other general data storage and dissemination systems.
rowd [12] and Ephesus [29] enable content sharing and storage
mong nearby mobile devices. While Krowd relies on a one-
op distributed hash table (DHT), requiring each device to know
very other device in the network, Ephesus is sustained by a
lassical DHT. As an handicap, they both require some kind of
etwork infrastructure for inter-device communication (e.g., an
ccess point). Of the two, Ephesus is the only to address de-
ice mobility or failure, and data availability, via replication. In
urn, Thyme supports several wireless technologies, and targets
ulti-hop environments using a GHT, known for being more
uitable in wireless networks. It also employs several replication
echanisms to address mobility and data availability.
MobiTribe [30] is a system for content sharing on mobile

evices, across the Internet. It uses a central server for content
iscovery, peer registration and metadata management. Data is
eplicated in several peers according to their interests, and it uses
refetching techniques to improve retrieval latency.
PAN [13] and Phoenix [31] are two systems for reliable storage

n mobile ad-hoc networks (MANETs). PAN is an asymmetric
ystem based on probabilistic quorums, while Phoenix uses a
ound-based simple quorum protocol for one-hop networks only.
Trust [32] and PDS [14] focus on data discovery and retrieval on
o-located devices. iTrust is based on random walk techniques,
hile PDS is inspired in information-centric networking. PDS’s
ggressive caching policy can lead to serious storage overheads,
nd since data is only cached if requested, less popular data may
ven disappear. iTrust does not address data availability issues.
All these systems employ the request/reply interaction model,

hereby peers have to proactively search for content. In turn,
hyme explores synergies between the P/S paradigm and the
torage substrate, to provide both persistent publications and a
eactive interaction model, thus allowing applications to react
16
Table 3
Comparison with tuple spaces systems.

Purpose Data sharing

TuCSoN [38] Internet Constant
LIME [19] Federated TS Transient
TOTA [20] Autonomous Propagation Rule-based
Thyme [21] Wireless Constant

to new data being generated and stored. At the same time, it
presents the potential to decrease network traffic, as users do not
need to be constantly searching for the desired data.

Other approaches based on opportunistic and delay-tolerant
networking [34–36] provide communication and content sharing
in the presence of intermittent connectivity. They take advantage
of opportunistic contacts between peers to allow the exchange
and spread of information. This means content dissemination is
best effort, i.e., information spreading depends on the availability
and willingness of interested peers to carry such content. Some of
these systems also provide a reactive interaction model for data
retrieval. They are, however, devised for extreme environments
that relax temporal restrictions to the order of hours or days,
something not feasible for the kind of use cases we target.

2.3. Tuple spaces

The Linda model [37] (or tuple spaces) is an interaction
paradigm for parallel computing. It provides a shared data space
abstraction, i.e., a shared repository of immutable structured
information, called tuples. It provides three simple operations:
in, read and remove a tuple from the tuple space; rd, (non-
estructively) read a tuple from the tuple space; and out, write

a tuple into the tuple space. Systems like TuCSoN [38], LIME [19],
and TOTA [20] adapted the tuple spaces model for mobile and
wireless environments. Besides the model’s proactive operations
(for inserting, reading, and removing tuples), these systems allow
actions to be performed as reactions to certain events. Table 3
highlights the main aspects when comparing our proposal with
other tuple spaces systems.

Although reactions are similar to Thyme subscriptions, they
have significant differences. First, reactions always execute on
the client side, i.e., on the host that installed it, and always
receive the tuple that triggered the reaction. This does not allow
load balancing when executing the reactions and when matching
reactions with tuples. It also has the potential to generate more
traffic than actually required, because it is not possible to filter
data at the source. In Thyme, subscription matching is executed
by randomly selected peers that may change in each matching,
thus improving load balancing and optimizing the data to be
delivered to each client.

Another major difference is that tuple spaces do not differ-
entiate between data and metadata management, i.e., everything
is represented as a tuple. In Thyme, when receiving a notifica-
tion, nodes only receive an object’s metadata (containing a small
amount of information), and only after that decide if the object
is interesting enough and proceed to retrieve it. Since metadata
is usually much smaller than the actual data, this strategy can
considerably reduce network traffic. Also, when managing repli-
cation and mobility, metadata may require updates. Since tuples
are immutable, the only way of modifying metadata is to remove
and insert a new (changed) tuple, which may trigger unwanted
reactions. This can be bypassed by making an intricate decom-
position of the metadata into several tuples. Although this may
work in small scale scenarios, it can quickly become cumbersome,
and penalize performance in large scale scenarios, as targeted by
Thyme.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36
TuCSoN [38] was designed for mobility in Internet environ-
ments and presents the notion of programmable tuple spaces
(spread over Internet nodes). Tuple spaces are enhanced in that
their behavior in response to agent’s operations can be extended
so as to embody application-specific computations. These tu-
ples spaces are rather complex and cumbersome to reason with.
Furthermore, it is not easily adaptable to dynamic wireless envi-
ronments (e.g., it assumes reliable communication), and its main
focus in on the programmability of the (coordination) tuple space.

LIME [19] breaks up the notion of a global tuple space, and
distributes its content across multiple mobile components. When
components are within range (i.e., mobile agents are on the
same host or communication is available between mobile hosts),
the contents of the tuple spaces held by the individual mobile
components are transiently shared, forming a federated tuple
space. The contents of these virtual tuple spaces evolve in time
according to the current connectivity pattern. Although reactions
enable tuple spaces to react to the insertion of relevant tu-
ples, they are sensitive to hosts’ connectivity, since the federated
tuple space only takes into account data spaces from compo-
nents within range. In several mobile and wireless environments,
this approach is not sufficient to generally support distributed
services or applications. Therefore, LIME was devised for small
scale scenarios. In turn, Thyme leverages a lightweight flooding
approach or a GHT for ensuring the best possible connectivity
in large scale scenarios, and its routing schemes jointly with
its replication mechanisms allow the matching of publications
against subscriptions of all peers in the network.

In TOTA [20], tuples are injected and can autonomously prop-
agate into the network according to specific rules (i.e., they are
not assigned to specific tuple spaces). Each tuple is formed by: a
content, the tuple data; a propagation rule, the policy by which
the tuple has to be cloned and diffused across the network,
and how the tuple content should change during propagation;
and a maintenance rule, the policy whereby the tuple content
should evolve/change due to events or time elapsing. Propagation
consists in a tuple cloning itself, being stored in the local tuple
space, and moving to neighbor nodes recursively. Tuples are
not necessarily distributed replicas. According to their propaga-
tion and maintenance rules, they can assume different values in
different nodes (expressing some kind of contextual or spatial
information). In the end, unlike traditional event-based models,
tuples propagation is not driven by a P/S schema, but is encoded
in the tuples’ propagation rule. By constantly monitoring the
network local topology and the insertion of new tuples, TOTA
can automatically re-propagate or modify the content of tuples
as necessary conditions occur. Subscriptions only react to changes
in a node’s local tuple space (or from its one-hop neighbors). To
achieve something similar to Thyme, data should be propagated
to every network node in order for subscriptions to be matched
against the data. Otherwise, some nodes would not be notified
about relevant data. TOTA also requires every node to execute the
matching of subscriptions against tuples, thus suffering from re-
dundant work and poor load balancing. In contrast, Thyme allows
for better load balancing, distributing the load when matching
subscriptions and publications.

2.4. Others

Regarding app stores, there are several applications for sharing
files between mobile devices, e.g., SuperBeam [39] and Xen-
der [40] allow synchronous one-to-many data exchange. How-
ever, data is only available while its owner is online. There are
still other applications [41,42] and specialized devices [43] that
provide ad-hoc (multi-hop) communication among mobile de-
vices, allowing data dissemination when network infrastructures
are inaccessible.
17
3. Time-aware reactive storage

Typical storage systems provide a request/reply proactive in-
teraction model for data retrieval, making it difficult to be aware
of the available data, and requiring users to explicitly search
for it. Also, in most P/S systems, publications are transient, i.e.,
once matched and disseminated, they are not further stored or
processed. Thus, only subscribers online at the time of publication
are notified. To overcome such shortcomings, we build strong
synergies between the storage substrate and the P/S paradigm. On
the one hand, the storage substrate leverages the P/S abstraction
to provide a reactive interaction model whereby users register
their interests through subscriptions and are notified as new
relevant data is generated, not requiring them to be constantly
searching for new data. On the other hand, the P/S abstraction
takes advantage of the storage substrate to provide persistent
publications, enabling the time-awareness concept and providing
full time decoupling [15].

Our storage interface provides the usual data store operations:
insert, retrieve, and delete. Additionally, due to its integration
with the P/S abstraction, it also offers the regular P/S oper-
ations: publish, subscribe, and unsubscribe. All operations are
asynchronous, receiving results through callbacks.

3.1. Inserting data

Due to the integration with a P/S abstraction, the insert op-
eration (of the storage substrate) is fused with the publish op-
eration (of the P/S system). As a result, the insertion of a data
object into storage may trigger the sending of notifications to
subscribers.

A data object is the basic unit of work and is seen as an opaque
set of bytes. Every object has some associated metadata that
consists in a tuple

⟨oid, T , s, tspub, nid⟩
where:

• oid is the object identifier;
• T is a set of tags or keywords related with the object, e.g.,

hashtags used in social networks;
• s is a summary or a small description of the object, e.g., a

thumbnail of an image or a video;
• tspub is the object insertion/publication timestamp; and
• nid is the owner’s node identifier.

To avoid name collisions (among different nodes), the system-
wide unique object key is the pair ⟨oid, nid⟩, composed of both the
object and the owner’s node identifiers.

Tags are used as topics for subscriptions, thus enabling a topic-
based P/S system. Although topic-based addressing [44] is not
as expressive as content-based systems [45], it requires far less
filtering and computations, which fits our target environments
populated by battery-constrained mobile devices. Nonetheless,
this tagging feature provides a flexible annotation scheme, e.g., by
adding the owner’s node identifier to the tags of its own objects,
an application can easily enable the retrieval of all the objects
stored by a certain node/user.

3.2. Deleting data

To support subscriptions with a past time frame, insertions
must be persistently stored within the system. Accordingly, this
model also supplies an operation to remove data from storage.
The delete operation removes an object from storage, making
it inaccessible to future subscriptions. Note that subscriptions
targeting the past will not see deleted objects, even if these were
initially available in the subscription’s time frame.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

w

t
f
’
o

f
⊥

a
t
s
d
w
f
t

m
m
t

N
w
o
o

n

t
n
l
i
a
w
o
b
m

3

a

t
o
w

a
t
o
s
r
e
b

4

s
c
i
r
i
–
t
a
a

4

v
t
e
t
t

p
t
t
v
o
i
t
s

e
f
f
f
m
o
w
s

4

{

b
a
n
p
e
W

s

Taking into account a simple access control mechanism, only
the owner of a data object can delete it (i.e., a node can only
delete objects it inserted).

3.3. Querying data

Since we make use of the P/S abstraction, querying data means
subscribing to the desired tags. As a response, notifications will be
received for data objects matching the issued subscriptions.

With time as a first order dimension, a subscription consists
in a tuple

⟨sid, q, tss, tse, nid⟩
here:

• sid is the subscription identifier;
• q denotes the query that defines which tags are relevant;
• tss and tse are the timestamps defining when the subscrip-

tion’s time frame starts and expires, respectively; and
• nid is the subscriber’s node identifier.

Unlike typical topic-based P/S systems, that only allow one
opic per subscription, we support arbitrary propositional logic
ormulas where literals are tags associated with objects (e.g.,
A& (B | C)’ captures objects tagged with A and at least one of B
r C).
The tss and tse timestamps specify the subscription’s time

rame in which the subscription is active, where the special value
represents, respectively, the times at which the system started

nd stopped to exist. Assuming a subscription is issued at time
: tss = ⊥ ∧ tse = t matches events that happened before the
ubscription (this allows a typical search or find operation on the
ata store); tss = t ∧ tse = ⊥ matches events after or concurrent
ith the subscription; and tss = tse = ⊥ matches all the past and

uture events in the system. Notice that these parameters can also
ake any concrete timestamp value.

Due to the unreliable nature of our target (wireless) environ-
ents, subscribers are notified of all relevant data in a best effort
anner. After a subscription, notifications may be triggered in

wo situations:

• upon an insertion, by detecting that the object being stored
matches existing subscriptions; and

• upon issuing a subscription that spans into the past, by de-
tecting that this new subscription matches previously stored
objects.

ote that, to minimize the information passing through the net-
ork, notifications are sent to the respective subscribers carrying
nly the metadata of the matching objects (and not the entire data
bjects).
The unsubscribe operation revokes a subscription before it

aturally expires after its end timestamp, tse.
When issuing a subscription for a popular tag, that spans into

he past, the subscriber might get flooded by a large amount of
otifications (i.e., an excess of past notifications), which implies
ots of communication. To attenuate this problem, when subscrib-
ng for a time frame in the past, a subscriber is only notified
bout the nmost recent objects from a total of xmatching objects,
ith n ≤ x. Then, if interested, a subscriber can request more
f those objects, receiving the notifications in explicitly requested
atches (similar to the concept of pagination). All subsequent
atching objects will be notified as usual.

.4. Retrieving data

Through subscriptions, users are notified only about data they
re interested in, allowing them to discover what data exist in
 i

18
he system in a reactive manner. Even so, a typical search/find
peration can still be done by subscribing to the desired query
ith timestamps tss = ⊥ and tse = now (Section 3.3).
Due to our reactive model, objects can only be retrieved as

response to notifications (using the received object metadata),
hus revealing a relation between the subscribe and retrieve
perations. So, object metadata is the only information given to
ubscribers for them to decide if objects are relevant enough for
etrieval. Received notifications must be acted upon, and may
ither be discarded, trigger an immediate retrieve operation, or
e stored by the application for later processing.

. System overview

The design of a time-aware reactive storage system for perva-
ive edge computing environments presents a set of interesting
hallenges. For example, where to place data and how to find
t? What are the proper trade-offs between communication and
eliability? How and what data to disseminate (and when)? And
n the end, how to integrate the two interfaces – storage and P/S
without losing their principal characteristics, and, at the same

ime, making the resulting interface easy for developers to grasp
nd use? Thyme’s design, that we present next, considers these
nd other issues.

.1. Use cases

Thyme can be used to build generic data dissemination ser-
ices for the kind of environments we are targeting. We argue
hat Thyme fits perfectly in scenarios where big crowds are gath-
red, using their mobile devices to collect data (e.g., photos, video,
ext) and share that same data with people in their vicinity, akin
o social networks [46].

Consider, for instance, a scenario where spectators in different
arts of a football stadium may share their views of the game
hrough self-generated multimedia content. In this case, specta-
ors would be able to see key moments of the game from multiple
iewpoints, including those of the spectators in key locations
r closer to the field. Offering such possibility can significantly
mprove user experience – something football teams are willing
o invest in, if it means they will attract more fans to their
tadiums [47].
In fact, this kind of augmented user experience is already being

xplored by some companies [47], using the venues’ existing
ixed communication infrastructures, which are single points of
ailure that may be subjected to overload conditions and other
ailures (e.g., power outages [6]). In turn, the pervasiveness of
obile devices and the advances in the edge computing paradigm
ffer the possibility to provide such enriched user experience
ith negligible cost for infrastructure managers, while at the
ame time, working to alleviate the load on those infrastructures.

.2. System model

We consider a classical asynchronous model comprised of Π =

n1, . . . , nk} mobile devices (hereafter called nodes) with no mo-
ility restrictions, other than those imposed by the venue they
re in and the natural speed limits of humans1. Our algorithms do
ot assume any radio technology or routing infrastructure, being
ractical in several wireless settings. Nodes communicate by
xchanging messages through a wireless medium (e.g., Bluetooth,
i-Fi ad-hoc, Wi-Fi Direct [48], Wi-Fi Aware), and have no access

1 The record for top speed achieved by a human is 12.4 m/s, by Usain Bolt,
een during the 100 meters final of the 2009 World Championships in Athletics,
n Berlin.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

a
s
s
e

i

f
S
o
a
l
c
p

,
u
a
i
r
s
s
c
g
m
t
i

Fig. 1. System overview.

to any form of shared memory. Nonetheless, nodes should be able
to establish (point-to-point) communication channels with (all)
their one-hop neighbors, and thus need to have some kind of
discovery mechanism in order to determine their neighbors. We
also consider the classical crash-stop failure model, whereby
nodes can fail by crashing but do not behave maliciously.

Data objects are considered immutable. Also, we do not con-
sider security or access control concerns, thus only publicly share-
able data is manipulated (e.g., as in social networks). Due to the
unreliable nature of wireless communication mediums, Thyme
notifies subscribers of all relevant data as completely and faith-
fully as possible, i.e., missing some notifications is permitted
because applications are not expected to be mission-critical.

Each node has a globally unique identifier and can determine
its geographical position, through GPS or other means [49]. Thus,
nodes can be aware if they are moving or not. We also assume
nodes’ clocks to be synchronized (with a negligible skew). Both
these assumptions are reasonable since we target mobile de-
vices (e.g., smartphones) and nowadays even low-end devices
come equipped with GPS and synchronize their clocks with the
network providers, while other solutions allow device location
even indoors [49].

4.3. Architecture

Since we target decentralized networks based on battery-
constrained devices, load balance is a concern. As such, in Thyme,
kin to (flat) P2P systems, nodes are functionally symmetric and
hare the same responsibilities, i.e., there are no centralized or
pecialized components (like P2P super-peers or P/S brokers), and
ach node can be a publisher, a subscriber, or both.
Thyme’s design comprises three main layers, depicted in Fig. 1.

The bottom layer handles message routing. The middle layer is
the storage substrate. The top layer is Thyme itself, providing its
nterface for applications.

As illustrated in Fig. 1, we propose two different approaches
or the two bottom layers (routing and storage). Thyme-LS (see
ection 5) uses nodes’ local storage, and query flooding, thus data
bjects are stored locally by their owners, while subscriptions
re fully replicated in every node of the system. Its routing
ayer provides flooding to the entire network (using UDP broad-
ast), and (multi-hop) unicast using a typical ad-hoc routing
rotocol (e.g., DSDV [50], OLSR [28]).
In turn, Thyme-DCS (see Section 6) follows a DCS approach [16]

sing a simple key–value storage substrate that we built over
cell-based GHT for wireless networks [17]. Its routing layer

s materialized by this GHT, called cell hash routing (CHR). As
epresented in Fig. 2, the physical/geographical space where the
ystem is to be available is divided in a grid, i.e., into equally-
ized square-shaped cells, and all physical nodes within a cell
ollaboratively act as a virtual node. Messages are addressed to
eographic locations, thus routed to the cell that contains the
essage destination. Messages addressed to a cell are delivered

o all physical nodes within the cell (similar to [51]). For instance,
n Fig. 2, a message addressed to a location inside the boundaries
19
Fig. 2. Geographic hash table and its virtual nodes.

of cell 4 is received by the red node (chosen randomly by the
routing protocol of the GHT; see Section 6.6.1), and then is
forwarded to all the other neighbor nodes inside the cell.

The use of the GHT is two-fold: (1) cells are used to store all
system data (data objects, its metadata, and subscriptions); and
(2) cells are exploited to match subscriptions and objects, i.e.,
cells act as virtual P/S brokers.

Wireless communication mediums are known to be subject
to many forms of interference, hence messages may be lost and
not reach their final destination. However, as a design principle,
this layer does not provide any mechanisms to recover from lost
messages on the wireless medium, delegating this responsibility
to the upper layers (abiding by the end-to-end argument [52]).

5. An unstructured approach: Thyme-LS

Thyme-LS employs a lightweight unstructured approach and
has no extra maintenance overhead. It uses nodes’ local stor-
age, and query (in our case, subscription) flooding. Both insert
and delete operations are entirely executed locally. Thus, objects
are only stored by their owners. On the other hand, Thyme-
LS uses subscription flooding as its event routing strategy (like
Gryphon [45,53] and SIENA [54]). Hence, subscribe and unsub-
scribe operations are flooded and executed in every node, so
subscriptions are fully replicated across all the system. These
operations are broadcasted to all its one-hop neighbors who,
then, forward the message to all their one-hop neighbors and so
forth. Nodes keep track of received messages so that the ones
already forwarded will not be sent again. Since every node has the
complete set of all the system-wide subscriptions, the matching
between objects and subscriptions is completely local.

In this approach, notifications may be triggered in two occa-
sions:

• upon an insert operation, if that new object matches any of
the node’s locally stored subscriptions; and

• upon issuing a subscription (when flooding the respective
message), each node that receives a subscription checks if it
matches any of its locally stored objects.

Retrieve operations request the desired objects directly from
their owners, using the information received in the notifications,
and the multi-hop unicast communication primitive provided by
the routing layer (Section 4.3).

Here, node mobility is handled in a completely transparent
way by the underlying protocol used in the routing layer. Nodes
can move freely, and the routing protocol takes care of all the
necessary changes that come from that movement in order to

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

s
s

c
s
o

a
l
s
a
a
i

6

t
g
a
a
s
s

6

o
m
t
j
o
o
t

f
f
m

6

r
c

6

v
d
t
o
c
N
c

Fig. 3. Insert and subscribe operations in Thyme-DCS. The tags’ hashing determines the cells responsible for managing the object metadata (cells 3 and 10) and the
ubscription (cells 3 and 13). If a subscription has matching tags with an object, it will also have overlapping (responsible) cells, guaranteeing the matching and
ending of notifications to the subscriber.
ontinue to provide connectivity. Also, since objects are only
tored locally by their owners, Thyme-LS does not guarantee
bjects’ persistence once their owners fail or leave the system.
When joining the system, nodes broadcast a join request. To

void a flooding of replies, only a few neighbors (randomly se-
ected through a coin toss) respond back with their locally stored
ubscriptions. Also, to minimize collisions, replies are delayed
(configurable) random amount of time. If no replies are received
fter a maximum number of retries, the joining node assumes it
s alone, and starts operating as normal.

. A structured approach: Thyme-DCS

This approach leverages heavily on the notion of cell (or vir-
ual node) conveyed by its routing layer (Section 4.3). By using
eographical information, Thyme-DCS has two complementary
spects: (1) it provides topology-awareness by design; and (2)
llows the inference of the location of relevant data to sub-
criptions, enabling access to such data using a location-aware
trategy.

.1. Inserting data

When executing an insert operation, this approach leverages
n the cells conveyed by the underlying GHT. Object data and
etadata are managed differently. The latter is indexed (and,

hus, replicated) in all the cells resultant from hashing the ob-
ect tags. The actual object is replicated in all the nodes of the
wner’s cell (see Section 6.2). This ensures only a small amount
f data (i.e., the metadata) is sent through the network, whereas
he bulk of the data is kept near its source.

Fig. 3 illustrates an insert operation of a photo with identi-
ier ‘‘tree.jpg’’, and tags ‘‘tree’’ and ‘‘green’’. The cells resultant
rom hashing each tag are responsible for managing the object’s
etadata and checking if subscriptions match this object.

.2. Replication

Since we target dynamic and pervasive edge computing envi-
onments, in order to provide data availability and tolerance to
hurn, this approach employs two replication mechanisms.

.2.1. Active replication
Active replication takes advantage of the virtual nodes pro-

ided by the cell-based GHT. Upon an insertion, an object is
isseminated inside the owner’s cell. Onward, every node inside
he cell should be able to reply to retrieve operations for that
bject. This ensures tolerance to churn and guarantees that stored
ontent will remain in the system even if their owners’ leave.
ote that the objects’ metadata is also (actively) replicated in the
ells resultant from hashing the objects’ tags (Section 6.1).
20
6.2.2. Passive replication
In turn, passive replication leverages on the nodes that already

retrieved an object to provide more replicas scattered in the
network, increasing data availability. At the same time, it offers a
list of multiple locations from where the object may be retrieved.

6.2.3. Replication list
To enable both mechanisms, the system needs to keep track

of the whereabouts of each object replica. This is achieved by
listing an object’s replica locations in its metadata, in what we
call replication lists, Lrep (a list of pairs with node identifier and
cell address—⟨nid, cid⟩). Thus, in this case, the object metadata
consists of a tuple

⟨oid, T , s, tspub, nid, Lrep⟩

The replication lists are bound to a (configurable) maximum
number of locations, maintaining only the most recent entries.
Also, a list only contains one entry for an object’s active replica,
representing all the nodes inside that cell (and this is a permanent
entry on the list despite its recency).

Since nodes can move, their location may change over time.
Hence, after a node stabilizes in a (new) cell, it must update its
location for the passive replicas of the objects it holds (through
location update messages).

6.3. Deleting data

In the delete operation, the object metadata indexed by the
object tags is removed from the responsible cells. However, while
active replicas are also explicitly removed, the same does not
happen to passive ones. Nonetheless, since the metadata is re-
moved (and with it, so is the replication list) they become inac-
cessible and thus stop working as (passive) replicas.

6.4. Querying data

Since the GHT used by Thyme-DCS only routes messages to
geographical positions, there is the need to know where to send
notifications, i.e., the node’s address is not enough. Thus, sub-
scriptions are extended with the location (i.e., cell address) of
the subscriber node, cid. This information needs to be updated
every time the subscriber node changes its cell. In the end, a
subscription in Thyme-DCS consists of the tuple

⟨sid, q, tss, tse, nid, cid⟩

6.4.1. Divide and conquer
Leveraging on the fact that every propositional logic formula

has an equivalent in disjunctive normal form (DNF), we employ
a divide and conquer strategy of breaking the disjunction into its
individual conjunctive clauses, and evaluate each one separately.
For a match to occur, it suffices that one evaluates to true.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
a
c
A
t
t

i
l
T
t
m
T
a
s
i
b
t

he use of DNF enables load balancing when matching objects
gainst subscriptions, since the work can be split among different
ells/nodes, each evaluating only one of the query’s conjunctions.
dditionally, it minimizes the amount of information transmitted
o the responsible cells (by sending only a subset of the query, i.e.,
he relevant conjunction).

For each conjunction, we randomly select as its key one of
ts positive literals (what we call conjunction keys). Hashing that
iteral determines the cell where to send that part of the query.
hat cell becomes a (virtual) broker for the subscription, and
he nodes in the cell are responsible for checking if objects
atch the subscription, and notifying the subscribers, if need be.
hus, this approach employs the rendezvous-based event routing
pproach (like Scribe [55] and Hermes [56]). Fig. 3 depicts a
ubscription of a query with two conjunctions. For each, one of
ts literals is chosen as its key, and determine which cells will
ecome the virtual brokers for the subscription (in this case the
wo conjunction keys are ‘‘nature’’ and ‘‘tree’’).

For instance, assume the query

(A& B& E) | (A&¬C) | (D)

already in DNF. The disjunction is divided into its three conjunc-
tions: (1) A& B& E; (2) A&¬C; and (3) D. Due to the restrictions
already mentioned, conjunctions 2 and 3 have their keys auto-
matically determined (literals A and D, respectively). But, any
literal in conjunction 1 may be chosen to be its key.

Even that, in some cases, the conversion to DNF can lead to an
exponential explosion of the formula [57], we argue that most
ordinary users do not make use of complex queries nor logic
operators regularly. Thus, we do not expect this to be an issue
in practice.

6.4.2. Notifications
After a subscription, there are two occasions that may trigger

notifications:

• upon an insertion, cells indexing the object metadata by its
tags are responsible for checking if the new object matches
any existing subscriptions stored locally; and

• upon a subscription, cells indexing the subscription by its
conjunction keys are responsible for checking if the locally
stored metadata match that new subscription.

When we break the subscription query into its multiple con-
junctions, it suffices that one of the conjunctions evaluates to
true, for a match to occur. But, since the conjunctions are eval-
uated by (probably) different cells, when different conjunctions
of a same subscription both evaluate to true, the subscriber will
receive duplicate notifications for the same matched object. Let us
assume the query given before, (A& B& E) | (A&¬C) | (D). When
a match with object X , with tags A and D, is verified, both
conjunctions 2 and 3 are evaluated to true. Consequently, two
notifications will be sent to the subscriber (one from each cell that
verified the match). We embrace this byproduct of our divide and
conquer approach in two ways. First, we treat these duplicates
as a positive outcome, because this (small) redundancy provides,
to some degree, tolerance to lost messages. Second, we employ
a duplicate detection in the subscriber side (and drop duplicate
notifications).

6.4.3. Moving subscribers
When a subscriber moves to a different cell (i.e., each time

a node crosses the boundary of a cell), it must update its loca-
tion for every active subscription it owns. During this situation,
notifications sent to moving subscribers may never reach their
destination. In such cases, the underlying routing layer returns
negative acknowledgments (NACKs) for messages addressed to
 p

21
Fig. 4. Notification and retrieve operation in Thyme-DCS. The dotted arrow
is a notification sent to the subscriber. The other arrows represent a retrieve
operation (request and reply).

individual nodes that could not be delivered (see Section 6.6.4).
NACKs are used to convey that a node is no longer in its supposed
cell, which may be caused by movement, or node failure.

Node movement will be detected through the subscriber’s lo-
cation update2. In such case, Thyme can re-send the notifications
that were not previously delivered. Otherwise, after a (config-
urable) maximum waiting time, Thyme assumes the node has
failed, and simply stops sending notifications. In case the node
did not fail, and was just a straggler, it will have to re-issue all its
subscriptions.

6.4.4. Unsubscribing
When executing this operation, unsubscribe messages are sent

to the cells determined by hashing each conjunction key of this
subscription, and the specified subscription is removed from stor-
age.

6.5. Retrieving data

Retrieve operations leverage the replication mechanisms in
order to optimize from where to request an object. From all the
locations in the replication list (Section 6.2) received in the object
metadata (with the notification), the requesting node chooses the
geographically closer replica, and sends a retrieve request for the
desired object, as Fig. 4 illustrates. If a negative reply is received,
the requester proceeds and tries to retrieve the object from the
next closest location in the replication list (until no more options
are available, or a maximum number of retries is reached). As a
last attempt, the cell actively replicating the desired object will
be used (if not already tried), because it offers higher chances of
success compared to every other replica.

One interesting aspect of using geographical routing is that it
becomes easier for nodes to make hints on which replicas are
better (i.e., closer), using the geographic distance as metric. Since
geographical positions have a close relation to topology in wire-
less networks, we expect this approach to minimize the distance
data has to travel in the network, allowing for a location-aware
strategy when retrieving objects.

2 In fact, these location updates can be merged with the updates for the
assive replicas (Section 6.2.3), reducing the amount of communication needed.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

6

f
p
I
w
g
a
t
d
t
a
a

s
a
r
m
i

6

R
p
g
g
i
f
i
a
T
r
w
o
–
a
i
c

6

a
t
d
T
e
a
I
i
i

a
r
t
l

6

v
l

f

a
b
a
a
n
o
s
o

.6. Storage substrate & routing layer

The major drawbacks of a routing protocol based on a DHT
or wireless networks are the mismatch between the logical and
hysical topologies, and the high maintenance overheads [58].
nspired from both wired [51,59] and wireless [17,60] settings,
e adopt a cell-based GHT as our routing protocol. By using
eographic information, there is no mismatch between the logical
nd physical topologies [58]. Also, by leveraging on the control
raffic of the underlying geographic routing protocol, the GHT
oes not add any other maintenance costs. At the same time,
he cell-based approach relaxes the requirements for location
ccuracy, and is more robust to topology changes (requiring no
ction as long nodes move inside their current cells).
DHTs only provide routing, thus we implement a DCS sub-

trate on top of this GHT, providing a simple key–value storage
bstraction. Data items are named, and both their insertion and
etrieval are performed using those names. To make this layer
ore suitable for the highly dynamic environments we target, we

ntroduce several mechanisms and optimizations.

.6.1. Routing
Our routing scheme is very similar to the ones used in [16,17].

outing is done at cell-level, using a variation of the greedy
erimeter stateless routing (GPSR) protocol [61]. GPSR makes
reedy decisions, forwarding messages to the next neighbor geo-
raphically closer to the message destination. When such strategy
s not possible, the algorithm resorts to a recovery mode that
orwards messages around the voids in the network. For forward-
ng messages from cell to cell, we use unicast in order to take
dvantage of the (per hop) MAC-level retransmission mechanism.
his layer provides: (1) a routing mechanism between cells; (2)
outing to an individual node (in a specific cell); and (3) broadcast
ithin the context of a single cell3. In our implementation, the
ne-hop broadcast is used as a neighbor discovery mechanism
transmitting periodic beacons with the node’s current cell –,

nd as the intra-cell communication primitive. Since broadcast
s not acknowledged at MAC-level, this makes it a best effort
ommunication primitive.

.6.2. Dynamic cell structure
It is impossible to ensure that every cell is populated. Thus, we

ddress empty cells forcing keys to take an entire loop around
hose cells [16,17], stopping in the cell closest to the supposed
estination (which becomes a proxy of the key’s destination cell).
his raises another problem when nodes populate previously
mpty cells, or leave the system and make some cell empty. So,
cell becoming empty has to deliver all its keys to its proxy cell.

n turn, a cell becoming populated needs to receive its keys from
ts proxy cell, and also all the keys of the empty cells for which
t now becomes the new proxy.

If two geographically independent clusters of cells connect
t some point in time, GPSR and this proxy logic will trigger a
earrangement of the cells structure and its data. Eventually, the
wo clusters will merge and cell data will stabilize in its due
ocation [16].

.6.3. Mobility awareness
We argue that moving nodes render routing information

olatile, thus, in sharp contrast with CHR and GPSR, our routing
ayer is mobility-aware: only stationary nodes actively participate
in message routing. Since our target scenarios have mild mobility
patterns (i.e., nodes do not move constantly, and some might

3 Although the broadcast is received by other nodes in range, the message is
iltered out at the routing layer.
22
Fig. 5. Message destination aggregation working examples. The dark squares are
populated cells, and black dots are the multiple message destinations.

not even move during the entire event), only stationary nodes
form the GHT. When a node starts to move and leaves its current
cell, it stops participating in the routing protocol (i.e., it stops
forwarding messages). It resumes the protocol when it detects
itself as being stationary, by joining the local cell. Notice that
in this event, data stored by the node in the previous cell is
replicated only at that cell. The data owner however, will also
update its new location in the metadata of previously inserted
objects (behaving as a passive replica for that content). While
moving, nodes still process received periodic beacons, allowing
them to keep communicating with the GHT.

6.6.4. Negative acknowledgments
According a typical GHT interface, nodes are not individually

addressable, i.e., we only send messages to specific geographic
positions (that correspond to cells in our cell-based approach).
Nonetheless, we support the sending of messages to a node in a
specific cell (e.g., send a message to node a in cell 12). To allow
the upper layers to react to a node failure or migration from one
cell to another, the routing layer replies with a NACK to a message
source, when a message addressed to an individual node could not
be delivered (because the node was not in the supposed cell).

6.6.5. Message destination aggregation
For messages that are to be delivered to multiple destina-

tions (e.g., notifications), we optimized our routing scheme by
only propagating a single message to those destinations, in what
we call message destination aggregation. This message is only
duplicated when strictly required, which happens when the mes-
sage’s next hop for different destinations is not the same (as
depicted in Fig. 5). Thus, achieving a kind of tree-like routing,
contributing to reduce the energy consumption and the occu-
pancy of the wireless medium. This mechanism is more effec-
tive in sparsely populated scenarios (Fig. 5(a)), as there are less
possible paths where messages can be duplicated. Contrary, in
densely populated scenarios, since there are more direct paths
from source to destination, this observation cannot be exploited
so efficiently (Fig. 5(b)).

6.7. Joining the system

In Thyme-DCS, a node joining the system waits a configurable
mount of time, listening for other nodes’ periodic beacons sent
y its neighbors. If, during that time, it receives a beacon sent by
neighbor in its own cell, the sender of that beacon is used as
n entry point. A join request is then exchanged, and the joining
ode receives all the cell state in a reply. If a maximum number
f retries is reached, the node assumes it is alone in the cell, and
tarts operating normally, i.e., the cell was empty, and is now
ccupied as described before.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
S

Fig. 6. Thyme-DCS Android library architecture.
able 4
ignature of the insert and subscribe operations.
void insert (DataObject data, Collection<Tag> tags, byte[] description, OperationHandler opHandler)
void subscribe (TagExpression query, Time start, Time end, NotificationHandler notHandler, OperationHandler opHandler)

data - data object to store
tags - tags associated with the data object
description - description of the data object to store
opHandler - handler for handling the success or failure of the operation
query - tags relevant for the subscription
start/end - validity time interval for the subscription
notHandler - handler for the reception of notifications of data objects matching the given subscription
7. Android implementation

Both Thyme-LS and Thyme-DCS were implemented in the ns-3
network simulator [18] to allow large-scale experiments (see Sec-
tion 9). Nevertheless, to be able to experiment with our proposed
solution in real world scenarios, even though in a small scale,
in this section we address the application of Thyme to networks
of Android mobile devices. Here, we focus on the Thyme-DCS
approach due to its range of applicability, since it copes with
mobility and churn concerns. We apply the Thyme-DCS approach
to real world networks of Android devices and use it in the
development of a photo sharing application.

7.1. Architecture

Fig. 6 depicts the multi-layer software stack that executes
at each node. We present this architecture from a top-down
perspective focusing on the challenges raised by implementing
Thyme in real world networks of mobile devices.

Thyme Interface. It offers the (asynchronous) operations pre-
sented in Section 3. The outcome of these operations must be
dealt with through the implementation of specific handlers (i.e.,
callbacks). As an illustration, Table 4 presents the signatures of
the insert and subscribe operations for our Java prototype.

Publish/subscribe. Separated in client and server counterparts,
this module manages the match between stored objects and sub-
scriptions, and emits the necessary notifications. The client side
manages insert and subscribe operation requests, as well as the
reception of notifications. In turn, the server counterpart manages
the matching (and storage) of data objects and subscriptions,
having into account that each data object/subscription features
a namespace identifier (see Section 7.2).
23
Storage. Also divided into client and server counterparts, this
module manages the storage of data objects and their metadata,
as well as of subscriptions. The internal Replication Manager
sub-module manages the active and passive replication mecha-
nisms (Section 6.2). In this implementation, passive replication
is built-in and cannot be disabled. However, active replication
is optional: its default can be set to either active or inactive,
and can be overridden in a per operation basis. For instance,
data stored by the Publish/Subscribe module (i.e., data objects
and subscriptions) always use active replication to ensure that
such information is replicated inside the responsible cell. On the
other hand, the dissemination of commercial advertisements may
not require persistent storing. The actual active replication model
may be injected in the Replication Manager, in order to support
different strategies such as cell-wide replication, independently
of the cell’s population, or maintain a certain number of replicas,
also independently of the cell’s population.

Localization. Geographic routing requires nodes to be able to
determine their own geographical position. For that purpose, we
are currently resorting to the globally available GPS information.
This option allowed the rapid prototyping of the Localization
service. However, there are other possible solutions [49].

Network communication. One of the fundamental differences be-
tween the ns-3 Thyme and our Android implementation is the
ad-hoc communication, as this mechanism is not available in the
targeted off-the-shelf Android devices. To overcome this limita-
tion, all network communication in our prototype makes use of
a communication library [62] developed in the context of the
Hyrax research project4 (i.e., the white components in Fig. 6). This
library supports one-hop and multi-hop networks by using one or
more wireless networking technologies. Currently, the following
are supported: Wi-Fi, Wi-Fi Direct and Bluetooth. Regarding the

4 http://hyrax.dcc.fc.up.pt

http://hyrax.dcc.fc.up.pt

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

A
a

p
a
n
t
h
s

7

i
s
a
f
a
a
F
S
g

t
i
T
b
s

s
c

PI, the library supports synchronous and asynchronous unicast
nd scoped broadcast messaging.
We adapted this communication library to support the GPSR

rotocol [61], and support cell-level routing. Messages may be
ddressed to either a node or a cell. In the latter case, a random
ode of the target cell is chosen to either route the message to
he next cell or to process the message itself, if the destination
as been reached. Cell-wide communication is achieved via the
coped broadcast functionality.

.2. Multiple namespaces

The ns-3 version of Thyme was designed with a single grid
n mind (Section 4.3), being the grid defined before the system
tarts. This grid works as a namespace or like a directory in
file system. However, this real world implementation allows

or multiple (overlapping or non-overlapping) grids/namespaces,
nd provides a namespace discovery mechanism. This feature
llows for a two-level naming hierarchy that was flat before.
or instance, in the context of the photo sharing application (see
ection 7.4), this feature enables the existence of multiple photo
alleries shared by different users.
To cope with this demand, an application may manage mul-

iple instances of Thyme, each bound to its own namespace. These
nstances present the previously described instance-agnostic
hyme interface, but embed an internal unique identifier that will
e used by all modules of the software stack, ensuring the clear
eparation between the data of the multiple Thyme instances.
The creation of a new namespace requires the configuration

of the geographical area to be covered by the associated Thyme
instance, and the name to use when advertising the instance
to the network. Currently, namespaces/grids have a rectangular
shape, and their configuration requires a reference point and
its length in all four cardinal directions. The dimension of each
cell is computed automatically and depends on the networking
technology in use. In the case of Bluetooth and Wi-Fi Direct, the
dimension is computed from the technology’s usual communica-
tion range. In the case of Wi-Fi, the size of the cell is set by a
platform configuration parameter.

7.3. Handling mobility

Device mobility impacts Thyme in several ways. First of all, it
is necessary to know the device location, in order to: (1) deliver
notifications; (2) send replies to previously issued requests; and
(3) track of the whereabouts of passive replicas.

Secondly, it is necessary to know in which cell a device is
parked so that device may contribute to the cell’s responsibilities,
namely storing data objects and subscriptions.

Mobility is detected by sensing the device’s accelerometer.
Subsequently, the node will switch to mobility mode as soon as
it leaves its cell, and will persist in such mode until it remains
stationary for a configurable time period. While it is moving, a
node will not work on behalf of any cell, but will process mes-
sages addressed to itself, such as notifications. To that end, as it
moves across cells, the node will have to update its subscriptions’
data with its new location (Section 6.4.3).

When the system locally detects that a node is no longer
moving, if the final cell is not the same as the origin, the node
discards all the (meta)data kept about the origin cell, updates
its location in the system (namely with respect to the passive
replicas it holds), and begins working on behalf on its new cell,
replicating data and answering requests.
 o

24
7.4. Shared photo gallery

A practical Thyme use case is a photo sharing application to
be used at social events. Thus, as a case study, we developed
the Shared Photo Gallery application that allows users to share
photos without requiring Internet access. The app can run on
any device with Android 5.0 (Lollipop) or higher, without having
root access, and works even in the absence of a communication
infrastructure (when using Bluetooth or Wi-Fi Direct).

Users publish (or insert) photos with at least one tag and sub-
scribe to the tags they are interested in, indicating a validity time
frame for each subscription. This time frame may be unbounded
in both ends, allowing for subscriptions to cover the event lifes-
pan. Whenever a published photo matches one of the active sub-
scriptions, a notification is sent with the photo’s thumbnail (and a
list of possible download locations). Upon reception of such noti-
fication, the user may choose to immediately start the download,
postpone it, or discard the notification. Whatever the action, the
user will be informed of its success or failure.

Fig. 7 depicts some of the application’s screens. In Fig. 7(a) it is
possible to identify four tabs: Private displays the private photos
from the device’s gallery, that can be published; Publications
displays the photos already published by the user; Downloads
shows the photos that were previously downloaded; Available
displays the photos whose download has been postponed.

Also, in this figure one can see the subscription and unsub-
scription buttons, represented by the bell symbols. The other fig-
ures (Figs. 7(b)–7(d)) illustrate the processes of, respectively, pub-
lishing a photo, issuing a subscription, and handling the reception
of a notification.

The application may interact with more than one gallery. Users
may thus search and connect to active galleries on neighboring
devices5 or create their own galleries. To navigate between gal-
leries the user has simply to access the menu in the upper right
corner and select the Switch gallery option, which will lead to a
list of the available galleries.

8. Analytical study

We now compare our approaches using a simple analytical
model to derive approximate formulas for communication costs
and operations complexity. In the following, we use the asymp-
totic costs of O(n) message transmissions for floods and O(

√
n)

for point-to-point routing, where n is the number of nodes in the
ystem [16]. However, since in Thyme-DCS we cluster nodes into
ells, point-to-point routing still costs O(

√
n) but, here, n becomes

the number of (populated) cells in the system.
As a baseline for comparison, we devise an additional ap-

proach, Thyme-ES, using the client/server model and based on
external, centralized storage. Storage is external in the sense that
it does not belong to the nodes forming the network, i.e., it be-
longs to a different (server) component, known a priori by every
node in the system. Objects, their metadata, and subscriptions
are stored in external storage, and every operation is sent to that
server to be processed (and replied back). Naturally, this server
component is a single point of failure in the system, but can
use any known techniques from the literature to address this
issue (e.g., failover, or state machine replication [63]).

8.1. Time complexity

Operations (average) time complexity is as shown in Table 5.
Delete and unsubscribe are the inverse operations of insert and

5 Access control and security is mandatory in this environment but falls
utside the scope of this article.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
O

o
t
i
A
p
I
i
e
f
a

8

b
o
t
i
L
s
o
r
s

8

s
o
S
n
n
c

Fig. 7. Shared Photo Gallery Android application.
able 5
perations time complexity.

ES LS DCS

Insert/Delete O(
√
n) O(1) O(

√
n)

Retrieve O(
√
n) O(

√
n) O(

√
n)

Subscribe/Unsubscribe O(
√
n) O(n) O(

√
n)

subscribe, respectively. Despite their messages carrying slightly
different information, in terms of complexity, they exhibit the
same behavior.

Since ES and DCS use point-to-point communication for every
peration, their complexities are the same. However, while in ES,
he majority of the work is executed by the external component,
n DCS, the work is spread among the cells, i.e., the system nodes.
lso, take into account that by clustering nodes into cells, the
oint-to-point routing has the potential to be more efficient.
n turn, LS trades linear (un)subscribe operations for constant
nserts and deletes. In all approaches, retrieve operations are
xecuted using point-to-point communication, by using the in-
ormation contained in the metadata received in the notifications
nd requesting the object directly to one of the available replicas.

.2. Space complexity

Regarding space complexity, ES exhibits an extreme behavior,
ecause the external component has to store every piece of data
f the system (i.e., objects, their metadata, and subscriptions). In
urn, LS sits in the middle of the spectrum, by storing objects only
n their owners’ storage, but fully replicating every subscription.
astly, DCS spreads both the storage of objects, metadata and
ubscriptions among its cells/nodes, through hashing. In terms
f storage, the LS and DCS approaches are not directly compa-
able. However, they both reside in the middle of the spectrum,
preading (different) parts of the system data among the nodes.

.3. Communication costs

The communication cost structure for each approach is de-
cribed by several parameters. Let Di denote the total number
f stored objects; Dr denote the number of retrieved objects;
denote the total number of issued subscriptions; and Ds de-
ote the number of matching objects (i.e., the total number of
otifications). For DCS, c is the (average) number of nodes in a
ell.
25
We compare costs using approximations for both the total
number of sent messages in the network (taking into account
multi-hop routing), and the number of messages sent by a hot-
spot (i.e., the maximal number of messages sent by any par-
ticular node). In this comparison, we only address the insert,
retrieve, and subscribe operations, and the respective notifica-
tions. The delete and unsubscribe operations are analogous to
insert and subscribe, respectively. With this setup, the approxi-
mate communication costs (total and hot-spot) are as shown in
Table 6.

The formulas for ES are derived from the observation that
every operation is sent to the central component to be processed,
and a response is sent back to the requester. Thus, for every
operation, the communication cost (of a point-to-point message)
is multiplied by two. The exception are notifications that only
require a message sent in one direction (from the central compo-
nent to the subscriber). Naturally, the hot-spot is going to be the
central component, which has to process every received message
and reply accordingly. Hence, the hot-spot communication cost
is the sum of all the received messages (that have to be replied)
and the sent notifications.

For LS, the formulas are deduced from the facts that inserts are
local and do not require communication, while subscriptions are
flooded through the entire system (Section 5). Both the retrieve
operation and notifications follow the same logic as the previous
approach.

Lastly, the formulas for DCS are inferred taking into account
its cell-based GHT approach. The insert operation requires the
same steps as ES, two point-to-point messages (to the broker cell
and back to the requester). However, in each of these two steps
there is a scoped dissemination of the corresponding messages
in the local cells (i.e., the dissemination of the metadata in the
broker cell, and the dissemination of the data object in the data
owner’s cell; Section 6.2.1). Next, the retrieve operation requires
the same steps as the other two approaches (two point-to-point
messages), with an additional point-to-point message for setting
a new passive replica (Section 6.2) and the corresponding scoped
dissemination in the broker cell. The subscribe operation follows
the same logic as the insert. However, it only has one scoped
dissemination of the subscription in the broker cell. Notifications
follow the same logic as the previous approaches (sending a
point-to-point message directly to the notification receiver).

Here, we assume a simple scenario where inserted data objects
have only one tag, and subscriptions also have only one con-
junction key. In more elaborate scenarios, the (possibly variable)

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
O

g
p
l
f
n
D

o
h
c
f
I
s
o
a
o
c
o
s

D
E
a
s
i
s
p
d
i
t

h
t
l
o
e
o
t
r
t
t
u
f
c

n
F
d
o
a
T

able 6
perations communication costs.

ES LS DCS

Insert 2Di
√
n ∅ 2Di

√
n + 2Di · c

+ + +

Retrieve 2Dr
√
n 2Dr

√
n 3Dr

√
n + Dr · c

+ + +

Subscribe 2S
√
n S · n 2S

√
n + S · c

+ + +

Notification Ds
√
n Ds

√
n Ds

√
n

Hot-spot Di + Dr + S + Ds Dr + S + Ds Di + Dr + S + Ds

number of tags will have impact in the number of messages
required for some operations.

Now, we can conclude that the total message count in LS
rows faster (linearly with n) than in ES and DCS. Another im-
ortant conclusion is that, if Di ≫ S, then LS has significantly
ower message count than the other two approaches. This comes
rom the fact that LS insert (and delete) operations execute with
o communication. Naturally, if we invert that condition, ES and
CS will exhibit lower message counts than LS.
Once again, ES and DCS exhibit a similar behavior in terms

f overall communication costs. However, DCS presents slightly
igher costs in almost every operation, thus they have intrinsi-
ally different performance behaviors. These higher costs come
rom the replication mechanisms employed by DCS (Section 6.2).
n an insert operation, besides the normal request/reply mes-
ages, by applying active replication (Section 6.2.1), both the
bject data and metadata are (actively) replicated in the owner’s
nd responsible cells, respectively. In the retrieve operation, after
btaining the object data, the requester node passively repli-
ates that object, thus needs to update the replication list in the
bject metadata (Section 6.2.3). Regarding subscribe operations,
ubscriptions are also actively replicated in their responsible cells.
With these extra mechanisms, naturally many operations in

CS have a slightly higher communication cost. However, while
S has an external, central component acting as a server (that is
lso a single point of failure of the system) and storing all the
ystem’s data, DCS spreads that load among its cells/nodes. Thus,
n ES the hot-spot cost is the actual cost paid by the external
erver. On the other hand, the hot-spot cost in DCS is not actually
aid by a single node, because that cost is shared among the
ifferent cells (and among the nodes of each cell). Even if there
s only one cell, this work will be (randomly) balanced between
he nodes inside it.

We can also look at these costs as the amount of work a device
as to do on behalf of the system. Specific to the DCS approach,
he handling of messages related to the five operations grows
inearly with the number of such operations, and does not depend
n the number of nodes per cell. That is, n operations require
ach node on the cell responsible for the target tag to process
n average n messages: one node receives the initial message and
hen broadcasts it to its cell neighbors. The same happens on each
etrieve operation: a message is sent to the target cell to indicate
he existence of a new passive replica, and this information is
hen broadcasted within the cell. Regarding active replication, the
se of such mechanism implies one broadcast on the owner’s cell
or each operation. So, with active replication each node in such
ells processes on average one message per operation.
The only type of messages that depends on the number of

odes per cell is the ones concerning notifications. As depicted in
ig. 8, the more populated a cell is, the less work each node has to
o. These only require the intervention of one node per cell, the
ne checking the match between an object and a subscription,
nd sending the notification to the corresponding subscriber.

his work is also load balanced, because the object-subscription

26
Fig. 8. Average number of messages sent per node for 100 notifications
processing.

matching is not performed by the same node inside a cell. It
is distributed randomly among the cell nodes (during message
routing).

8.4. Discussion

If the number of inserted data objects is larger than the system
size and the number of subscriptions, Thyme-LS may be prefer-
able. However, this approach does not address data persistence
in case of node failure.

On the contrary, Thyme-DCS addresses data persistence
through replication. It should be preferable in cases when the
network is large compared to the number of stored objects, being
more worthwhile in densely populated scenarios.

9. Evaluation through simulation

Our experimental evaluation is divided in two parts: sim-
ulation and real world experiments. First, we use a network
simulator (ns-3 [18]) to experiment our proposal in large-scale
scenarios, and implemented our two approaches: Thyme-LS and
Thyme-DCS. Secondly, we implemented the Thyme-DCS approach
as an Android library, and developed a proof-of-concept photo
sharing application on top, allowing experiments in a small scale
scenario using real mobile devices.

This part of our evaluation focus on the simulation experi-
ments and seeks to answer the following questions:

1. Which are the trade-offs provided by each approach of
Thyme?

2. How does each approach deals with churn?
3. How do they react to node mobility?

Each data point reports the average of five randomly generated
network topologies, each independently run three times, making
a total of 15 runs per data point. As a baseline for comparison,
we used the centralized approach, Thyme-ES, described at the
beginning of Section 8.

The metrics used in this section to answer the previously
defined questions are: amount of generated traffic (in bytes and
in number of packets), and operations’ latency and success ratio.
All these metrics allow the comparative analysis of the behavior
of both Thyme approaches. Since we are addressing resource-
constrained mobile devices, the lower the generated traffic and
the operations’ latency the better, because this has direct impli-
cations in the devices’ battery usage. In the end, the best approach
is the one able to achieve the lowest latency and generated traffic
while producing high operations’ success ratios.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

9

a
a

a
C
e
c
s

p

o
p

w
w
e
s
d
2
5
p

v
n
s
i
s
t
e

w
m
o
a
i
n
i
b
a
b

9

i
m

9

o
h
t
s
W
o
d
E
w

l
p

.1. Implementation

We use ns-3.27 and nodes communicate through 802.11 Wi-Fi
d-hoc (using UDP). Both Thyme-ES and Thyme-LS use DSDV [50]
s their routing protocol.
In Thyme-DCS, when a cell becomes empty or populated,
state transfer needs to happen between cells (Section 6.6.2).
urrently, we do not implement such mechanism, thus, in our
xperiments, cell structure is static (i.e., populated and empty
ells will remain as such throughout the experiments). This poses
ome limitations regarding node mobility and churn in Thyme-
DCS: nodes may move freely inside a cell, but may only leave
a cell if it remains populated afterwards; and nodes may only
migrate to previously populated cells.

To recover from lost messages, all approaches employ a re-
transmission mechanism. After a configurable amount of time has
passed without receiving the expected replies, the operation is
retried. If a maximum number of retries is reached, the operation
fails with a timeout error code.

Our code implementation of Thyme is available at https://
bitbucket.org/hyrax-nova/thyme-ns3, jointly with the trace files
used in the simulation experiments.

9.2. Setup and methodology

Unless stated otherwise, all parameters were left with the
simulator’s default values. We used Wi-Fi 802.11g configured
with a constant rate manager and a data rate of 6 Mbps. The
RTS/CTS threshold was configured to 1500 bytes.

In order to mimic a realistic scenario, we emulate an applica-
tion similar to an online social network on top of Thyme (akin to
Twitter), e.g., that could be used by fans watching matches in fan
zones set up for the 2018 FIFA World Cup.

Trace files were generated with all the operations to be issued
during a simulation run. For that, we crawled tweets issued
during the 2016 UEFA European Championship final, between
Portugal and France6. Tweets were used as data objects, where:
the tweet id was used as the object identifier; the text was used
as the object data; the timestamp was used as the object insertion
time; and the hashtags were used as the object tags. The top-k
most active users were chosen, and every other operation was
generated from that, using exponential distributions configured
with different λ values (i.e., rates).

Subscriptions were generated taking into account the tags of
the inserted objects, and the top 60% of the most popular tags
were used for the subscriptions’ queries (for simplicity sake, each
subscription subscribed to one tag chosen at random). Subscrip-
tions were generated in two forms: time independent (tss = tse =

⊥); and in the future (tss = now and tse = ⊥). Time independent
subscriptions where generated with a probability of 60%. During
the first half of the game, subscriptions were generated with a
rate of three operations per user per hour, and reduced to one
per user per hour for the remainder of the event.

Delete and unsubscribe operations, which are expected to be
rare, were generated with a rate of 0.5 and 0.2 operations per user
per hour, respectively, only during the second half of the game.

We crawled a total of three hours, starting at 20:00 2016-
07-10. To make the simulation execution more lively (and to
reduce the simulation total time), we compressed the three hours
into ten minutes of simulated time. Since we use real tweets
for trace generation, the distribution of operations in a trace
file is irregular, with occasional spikes and void moments. Fig. 9
depicts an example of the distribution of operations in a trace file

6 Using the code in https://github.com/Jefferson-Henrique/GetOldTweets-
ython
27
Fig. 9. Distribution of operations over time in a trace.

ver time (for 100 users). The trace files used in this section are
ublicly available in our code repository7.
The simulation area has a rectangular shape, where nodes

ere places uniformly at random, to mimic many of the venues
e are targeting. For Thyme-DCS, cell size is 40x40 m, which
ntails a radio range of ±113 meters (roughly the range in our
imulated Wi-Fi setting). In all experiments, we had an average
ensity of two nodes per cell (in the following areas: 160 × 80 m,
40 × 120 m, 320 × 160 m, 400 × 200 m, 480 × 240 m, and
60 × 280 m, respectively, for each network size used in the
lots).
Proactive routing protocols, like DSDV, require time to con-

erge. Thus, in our simulations, the application running on the
odes only started after 30 seconds. Nodes randomly joined the
ystem in the next 30 seconds, and operations started being
ssued only after that. At the end of the simulation, nodes only
hutdown 60 seconds after operations stopped being issued. Thus,
he total simulation time was 720 seconds. All Thyme approaches
xecuted the same traces and used the same methodology.
Since notifications are not operations triggered by the users,

e use recall (i.e., how many relevant items are selected) as a
easure of success. However, we use the number of matching
bjects for a perfect execution of the trace, where operations
lways succeed and are executed instantly. Take into account that,
f some operation fails, most likely the number of actual achieved
otifications will not match the expected. For instance, if an
nsertion fails, all the subscriptions matching that object will not
e matched against it, and notifications are reported as lost. Thus,
chieving 100% recall is practically impossible for our comparison
aseline.

.3. Results

We now present the achieved results for three distinct scenar-
os, ranging from totally stable nodes to scenarios with faulty or
obile nodes.

.3.1. Static and stable nodes
In Fig. 10, we can observe the impact that each approach

f Thyme has on the lower layers of the network stack (and
elps answering question 1). Fig. 10(a) reports the total traffic
ransmitted by all nodes (at the physical layer—PHY), during the
imulation. ES and LS overlap and both exhibit quite an overhead.
ith 196 nodes, they report more than 2× the transmitted traffic
f DCS. Energy is a valuable resource when targeting mobile
evices. Thus, looking at these values in an energy perspective,
S and LS will spend twice the energy to do roughly the same
ork as DCS.
In turn, Figs. 10(b) and 10(c) depict values reported by the link

ayer—MAC. The former shows the total number of retransmitted
ackets, and the latter shows the total number of packets that

7 https://bitbucket.org/hyrax-nova/thyme-ns3/src/master/scripts/traces/files/

https://bitbucket.org/hyrax-nova/thyme-ns3
https://bitbucket.org/hyrax-nova/thyme-ns3
https://bitbucket.org/hyrax-nova/thyme-ns3
https://github.com/Jefferson-Henrique/GetOldTweets-python
https://github.com/Jefferson-Henrique/GetOldTweets-python
https://bitbucket.org/hyrax-nova/thyme-ns3/src/master/scripts/traces/files/

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

e
s
a
f
w
s
i
t
t
c
h

n
t
s
s
u
o
t
t
t

r
r
c
t
n
u
p
t
q
t
f
c
b
w
l
a

s
t
l

Fig. 10. Lower layers metrics (static scenario).
xceeded the maximum number of retransmission attempts. The
tandard IEEE 802.11 Wi-Fi MAC layer implements CSMA/CA and
per hop retransmission mechanism. Thus, in some way, these

igures depict the interference level observed in each approach
hile operating. Both ES and LS require many more retransmis-
ions than DCS to overcome the loss of messages that is inevitable
n a wireless communication medium. This can be explained by
he amount of traffic generated by those two approaches. Usually,
he more traffic is generated, the larger is the probability of
ollisions in the wireless medium, and thus more transmissions
ave to be retried (creating a snowball effect).
Next, Fig. 10(d) depicts the total traffic forwarded by all the

odes in the system (at the network layer—IP). In some sense,
his reports the amount of work nodes have to do on behalf of the
ystem. In this case, DCS forwards more traffic because its mes-
ages are forwarded through longer routes than ES and LS (that
se DSDV). This is even more exacerbated by some peculiarities
f the routing protocol used by DCS (Section 6.6.1). For instance,
he fact that some messages may need to loop around voids in
he network (Section 6.6.2), while DSDV computes shortest paths
o every node.

Fig. 10(e) shows the total amount of control information the
outing protocols transmit. Both ES and LS use DSDV, a proactive
outing protocol, whereas DCS uses a geographic routing proto-
ol (Section 6.6.1). While DSDV needs to exchange bulky routing
ables to compute the shortest paths to every other node in the
etwork, the geographic routing used by DCS routes messages
sing only local information (nodes only exchange very small
eriodic control beacons). However, messages may be routed
hrough longer routes in geographic routing. With 196 nodes, a
uarter of all the transmitted traffic of ES and LS was control
raffic (notice the logarithmic scale in the y axis). These two last
igures (Fig. 10(d) and 10(e)) show a clear trade-off. As more
ontrol traffic is exchanged, the routing protocols can achieve
etter routing paths and with that reduce the amount of for-
arded traffic. However, that control traffic can correspond to a

arge percentage of the total network traffic (increasing the total
mount of collisions).
Fig. 11 depicts application-level metrics, such as operations

uccess ratio and latency. Regarding operations success, we verify
hat DCS is above 99%, except for notifications that fluctuate a
ittle bit and have a success ratio as low as 95% (Fig. 11(c)). LS
28
also reports high success ratio (Fig. 11(b)). Since insert and delete
operations are executed locally, they always succeed. Subscribe
and unsubscribe operations have above 99% success. Only retrieve
operations and notifications have a very small reduction as the
system grows, having 96% and 95% success, respectively, with 196
nodes. For ES (Fig. 11(a)), we see a slight decrease in the success
ratio as the system grows, having as low as 78% success with 196
nodes. In every approach, notifications are a type of message that
does not employ an application-level retransmission mechanism,
thus they are more susceptible to interferences.

Regarding operations latency (Figs. 11(d)–11(f)), we can see
that for a small number of nodes all approaches behave similarly,
with ES having slightly higher latencies. As the number of nodes
increases, accompanied by increased interferences (Fig. 10(c)), we
verify that latencies also increase. This is caused by the need for
more retransmissions. However, notifications have lower latency
in LS, because the geographic routing of DCS cannot compete
with the shortest paths of DSDV. Thus, showing the advantage of
calculating shortest paths. On the other hand, retrieve operations
in DCS have a slightly lower latency, because DCS causes overall
less interferences and it employs a location-aware strategy when
retrieving data (Section 6.5). In ES, the decrease in success ratio
is accompanied by an increase in operation latency. This comes
from the fact that the majority of operation failures happen due
to timeout. Since operations have to be retried several times,
naturally latency increases. Overall, timeouts may indicate a con-
gested network, where operations consistently have to be retried
several times.

In summary, Fig. 10 shows that in DCS nodes transmit much
less traffic that in both LS and ES. This comes at the cost of
latency, when compared to LS, as shown in Fig. 11. The cen-
tralized approach has the worst behavior when the size of the
system grows, with a decreasing success ratio and latency much
higher that both DCS and LS. These observations come from the
fact that both ES and LS use DSDV as the underlying routing
protocol. This protocol computes shortest paths to every other
node in the network, and to maintain its routing tables up-to-
date that information is distributed between nodes by sending
full dumps infrequently and smaller incremental updates more
frequently, which still represent a large overhead with respect to
transmitted data. On the other hand, DCS uses GPSR as its routing
protocol, which uses only local information for routing. Thus,
they represent a design trade-off: the more control information
is transmitted, the better routing decisions can be made.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

9

c
l
a
d
s
i
l
T
a
a

P
b

Fig. 11. Application-level metrics (static scenario).
Fig. 12. Notification success ratio (crashing, 100 nodes).

.3.2. Static but failing nodes
In our target scenarios, mobile devices may experience poor

onnectivity and/or low battery, thus these devices may fail and
eave the network. As such, concerning churn, i.e., the ingress
nd egress of nodes in the system, we experiment with two
ifferent scenarios. We show the impact of nodes leaving the
ystem definitely, e.g., nodes crashing. Secondly, we show the
mpact of nodes with intermittent failures, thus entering and
eaving the system multiple times throughout the simulation.
hese scenarios allow to evaluate aspects regarding data avail-
bility and persistence in the presence of failures (and help us
nswer question 2).

ermanent failures. In this scenario, from the same trace files as
efore, we generated new ones where nodes are either publish-

ers or subscribers, and publishers choose a random instant (be-
tween 200 and 300 seconds of the simulation, i.e., around the
middle of the simulation) to leave the system abruptly.

In LS, insertions are executed locally, thus not requiring com-
munication. However, because only the object owner stores that
data, if that node fails, all the data it stores will disappear with
it. Fig. 12 shows exactly that. In LS, as more nodes with relevant
data fail and leave the system, the success ratio decreases because
the matching between subscriptions and objects is not detected.
Since DCS employs replication mechanisms (Section 6.2), even
when object owners leave the system, matching still occurs. ES
is not affected simply because all the system data is stored in
29
Fig. 13. Application metrics for LS (transient, 100 nodes).

external storage. As long as that server component does not fail,
even if nodes do, data will always be available.

Transient failures. In this scenario, using the same trace files as
in Section 9.3.1, randomly selected nodes alternate between
the on and off states, during 120 and 60 seconds respectively.
Nodes have a 75% probability of changing to the opposite state,
otherwise they stay in the same state for an equal period of time.

With nodes entering and leaving the system frequently, re-
trieve and notification operations are the ones that can be more
affected, specially in the LS approach. Fig. 13 presents some appli-
cation metrics of the LS approach for these two operations. Since
DCS employs replication mechanisms, it is little affected by the
intermittent churn, with operation success ratio well above 90%,
and latencies consistently between 150–300 milliseconds. Due
to its central server component, ES is also little affected by the
intermittent churn, with operation success ratio above 80%, and
slightly higher latencies than DCS, between 400–600 millisec-
onds. LS, however, suffers from low success ratio in the retrieve
operation (Fig. 13(a)). Although some notifications are detected,
when a node tries to retrieve an object, as the amount of failing
nodes increases, the probability of the data owner being off
also increases. This is also accompanied by an increase in the
latency of notifications (Fig. 13(b)). In LS, the matching between

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

a
t
a
t
e
t
s
m
l
o
a
w

s
i
w
t
a
o
d
f

9

h
q
m
g
m
F
I
i
w
t
c
m

l
b
s
m
n
m

s
d
f
t

Fig. 14. Transient scenario, 100 nodes.

node’s stored objects and subscriptions that were issued when
he node was off have to wait for the node to switch state
nd join the system (Section 5). When joining, a node receives
he subscriptions issued by all the other nodes previous to it
ntering the system (from its neighbor nodes). Then, from all
he received subscriptions, the joining node finds those (new
ubscriptions) of which it was unaware and checks if it has
atching objects. Fig. 14(a) corroborates this. The maximum

atency for DCS and ES notifications stays stable as the percentage
f failing nodes increases. But, in LS, the maximum latency for
notification increases from approximately 25 to 100 seconds
hen the percentage of failing nodes increases from 5% to 40%.
Fig. 14(b) shows a byproduct of the retrieve operation low

uccess ratio. With no churn, DCS forwards more traffic because
ts insert and delete operations require communication. However,
ith this kind of intermittent churn, LS forwards much more
raffic than DCS. This is due to the fact that retrieve operations
re retried (and fail) several times. Also, this entering and leaving
f nodes from the network causes routing tables to become out of
ate, and thus need to exchange control information much more
requently.

.3.3. Mobile but stable nodes
In this scenario, we use the same trace files as in Section 9.3.1,

owever nodes are able to move. This scenario helps us answer
uestion 3. When moving, nodes use the random waypoint (RWP)
obility model, which interleaves pauses with movement. We ar-
ue that the plain RWP mobility model does not quite mimic the
ovement pattern people have in the kind of events we target.
or instance, in a music concert, people do not move constantly.
n fact, they do not move much during most of the time, except
n intermissions. To make it better resemble our target scenarios,
e made an adaptation: every time a node is about to move, it
osses a coin do decide whether to move or not. If not, the node
ontinues in a pause moment. In this scenario, 60% of nodes are
obile, and have a moving probability of 80%.
Fig. 15(a) shows a small caveat of DCS: increasing node speed

owers the notifications success ratio. We argue this happens
ecause every node inside a cell is supposed to have the same
tate and work collaboratively as one. But, the intra-cell com-
unication primitive is the unreliable one-hop broadcast. Thus,
odes inside a cell may not receive the same messages. Mobility
ay create even more entropy in the cell state.
Fig. 15(b) presents a byproduct of the location-aware retrieval

trategy used by DCS. While, ES and LS are required to retrieve
ata from a specific location, DCS might have different replicas
or retrieval at its disposal, and it can choose the one closer to
he requester (having the possibility of lowering latency).
30
Fig. 15. Mobile scenario, 100 nodes, pause 120 seconds.

10. Evaluation through real devices

This second part of our evaluation has the main goal of as-
sessing the functionality of our Thyme Android library and of
the proof-of-concept application. For this, we seek to answer the
following questions:

1. Does the implemented Android Thyme-DCS library behaves
as expected?

2. What is the behavior of our Android application in terms
of operations’ latency?

3. What about in terms of energy consumption?

Each data point reports the average of five independent runs.
The metrics used in this section to answer the previous ques-

tions are: operations’ latency and energy usage. These metrics
allow the analysis of each operation’s behavior in the context of
the Thyme-DCS approach implemented in real Android devices.
Once again, since we are addressing resource-constrained mobile
devices, the lower the operations’ latency and the energy usage
the better (having into account that these two metrics have a
correlation implication between them).

10.1. Implementation

Both the Thyme-DCS library and the Shared Photo Gallery ap-
plication were developed for devices with Android 5.0 (Lollipop)
or higher, with no root access required.

In our Java prototype, we also do not implement the state
transfer mechanism when cells become empty or populated (Sec-
tion 6.6.2). So, cells must remain populated or empty throughout
the experiment. Here, we also did not implement some opti-
mizations like NACKs (Section 6.6.4) and message destination
aggregation (Section 6.6.5).

Similarly to the ns-3 implementation, here operations also
employ a retransmission mechanism.

10.2. Setup and methodology

We conducted a series of experiments with different scenarios
trying to simulate some possible realistic use cases. In these uses
cases, we test all the features provided by the Thyme-DCS library
and used by the photo sharing application: devices inserted and
deleted photos, subscribed (and unsubscribed) to tags in the
past and future, received notifications, and retrieved available
photos. Each device had a randomly assigned role (publisher or
subscriber), and operations were executed in a closed loop. We
used a custom profiler to collect various metrics during these
experiments aiming to analyze several performance indicators,
such as latency and energy consumption.

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

T
D

i
a
g
d
p
b

m
t
w
i
w
n

1

r
d

1

t
b
p
d
w
d

w
s
t
i
s
a

1

a
l
c

able 7
evices specifications.

HTC Nexus 9 Motorola Nexus 6 LG Nexus 5X Motorola Moto G (2nd gen.)

CPU Dual-core 2.3 GHz Quad-core 2.7 GHz Hexa-core 4 × 1.4 GHz + 2 × 1.8 GHz Quad-core 1.2 GHz
RAM 2 GB 3 GB 2 GB 1 GB
Storage 16 GB 32 GB 16 GB 8 GB
Battery Li-Po 6700 mAh Li-Po 3220 mAh Li-Po 2700 mAh Li-Ion 2070 mAh
OS Android 7.1.1 Android 7.1.1 Android 7.1.1 Android 7.1.1
Wi-Fi 802.11 a/b/g/n/ac 802.11 a/b/g/n/ac 802.11a/b/g/n/ac 802.11b/g/n
Fig. 16. Operations latency.

Unless stated otherwise, experiments were conducted using
mages with 35 bytes in size. This allow us to measure the oper-
tions latency and overheads taking only into account the data
enerated by the system. Naturally, as the size of the inserted
ata grows, operations latency and system overheads also grow
roportionally (as we will show) with respect to the available
andwidth.
Experiments were conducted in a network of up to 32 Android

obile devices, connected to a Wi-Fi access point. The tests up
o 16 devices were performed exclusively with Nexus 9 devices,
hile the 32 devices testbed used every type of device referred

n Table 7. In all experiments, we used two cells and devices
ere divided equally between the two. We also used only one
amespace for all devices.

0.3. Results

We now present the achieved results for the collected met-
ics. The error bar depicted in the plots indicates the standard
eviation.

0.3.1. Functionality
With all the uses cases, we conducted experiments in order

o test all the operations and features of the Thyme Android li-
rary. After extensive testing, we verified that all operations were
erformed successfully, including those involving the retrieval of
ata inserted by devices that had left the system. The use cases
ith churn allowed us to test the operations in scenarios with
evice or communication failures.
In the end, throughout all the experiments, operations were al-

ays completed successfully, proving the data persistence in the
ystem. It should be noted that the retrieve operation’s success, in
he cases with churn, is guaranteed at the expense of an increase
n the operation latency, i.e., if a device that left the system is
elected or if the message is lost, the operation will be retried
fter a timeout.

0.3.2. Latency
Operations latency is an important measurement for assessing

n application’s usability. For that purpose, we measured the
atency of all five operations (during the execution of the use
ases) and present the average.
31
Fig. 17. Retrieve operation latency varying image size.

Fig. 16 depicts the latency of those operations, varying the
number of mobile devices in the network. The values represent
the time elapsed from the moment the action was triggered by
the user in the application interface, until the reception of the
operation’s success reply. In general, we can consider that all the
operations show acceptable response times (around 200 millisec-
onds on average). Insert is the operation that may take longer,
depending on the size of the thumbnail sent in the metadata,
which was kept particularly small (35 bytes) in our experiments.
The experiment confirms that increasing the number of nodes
also increases the network traffic, which in turn increases in-
terference, reduces the available bandwidth for each device, and
impacts the latency of the operation. Even so, all results are
kept under 300 milliseconds, which is perfectly acceptable for
an interactive application, with all the operations executed in
quasi-real-time and ensuring a good user experience.

Regarding the retrieve operation, the latency depends on the
size of the data item to be obtained, as shown in Fig. 17. An
image with 5MB in a network of 32 devices, takes about 6
seconds, which is acceptable considering that the operation runs
in the background and the user may keep on using this or other
application on the device.

In conclusion, the implementation of Thyme and the devel-
oped application meet our expectations, presenting good re-
sponse times, which guarantee a good interactive experience to
the user.

10.3.3. Energy consumption
When it concerns mobile devices, energy consumption is a

determining factor, since devices are battery-constrained. In or-
der to evaluate the energy consumption of our application, we
used the aforementioned use cases and measured the energy
consumption: (1) when issuing an operation; (2) when processing
an operation request; and (3) in the maintenance of the virtual
node, i.e., update the state after a new request is received for the
cell.

Battery consumption was measured exclusively on the Nexus 9
devices, to avoid variations in measurements that could occur
if different devices were used. The battery measurements were
done automatically via a module that uses the BatteryManager
class provided by the Android OS. After a first analysis of the
results, we concluded that the energy consumption values did

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

o

n
v
a

I
i
o
o
u
e
c
a
s
e
t
J
i
t
n
e
e
o
e

v
t

c
A

Fig. 18. Energy consumption when issuing an operation.

Fig. 19. Energy consumption when issuing an operation in a closed loop during
ne minute.

ot depend on the number of devices in the network, since we
erified a marginal variance. Thus, we present these results as an
verage, independent of the number of devices in the network.

ssuing a request. Fig. 18 presents the energy consumption when
ssuing each operation. From this plot, we can verify that every
peration uses very little energy. For instance, issuing an insert
peration consumes around 2 Joule. However, it is not easy to
nderstand the energy consumption in real terms for the av-
rage user. Thus, Fig. 19 displays a breakdown of the energy
onsumption of a device while executing a specific operation in
closed loop for one minute. This would represent a very intense
cenario, however it will be useful to test the worst case in
nergy consumption. Standby mobile phones, i.e., only connected
o the Wi-Fi router (without Internet access), consume around 61
oule. When running the application, the battery consumption
ncreases by 6 Joule to about 67 Joule; an increase caused by
he periodic sending of cell management messages to neighboring
odes. The energy consumed by the different operations is mostly
quivalent. On average, delete and (un)subscribe are the more
nergy friendly operations, consuming around 23 Joule, to a total
f 90 Joule. On the other end, with the insert operation the total
nergy consumption is about 103 Joule.
Putting things more into perspective, in the Nexus 9 de-

ices, 1% of battery corresponds to around 960 Joule. According to
he presented data, scenarios with continuous and intensive use of
the application for 10 minutes (publishing photos, receiving notifi-
cations and downloading available photos) consumes roughly 950
Joules, which represents about 1% of the device’s battery charge.
A value we claim is quite reasonable for such intensive use.

Processing a request. Since we are talking about a collaborative
and distributed system, nodes also work on behalf of each other,
i.e., on behalf of the system. Naturally, processing an operation
request requires a node to do some computations, and thus,
spend some battery. Fig. 20 displays the energy costs involved
in processing each type of operation. Looking at this plot, we

can observe that energy consumption is similar among all the o

32
Fig. 20. Energy consumption when processing an operation request.

Fig. 21. Energy consumption in the cell maintenance.

operations. On average, processing an operation request spends
around 1.5 Joule. We argue such a low value is acceptable, even
more so since work inside a cell is balanced among all the nodes
in the cell. Even in a worst case scenario, by processing requests
in a closed loop during 10 minutes, a node will spend, on average,
about 830 Joule, which represents a consumption of less than 1%
of a Nexus 9 total battery charge.

Cell maintenance. The Thyme-DCS routing layer is based on a
GHT (Section 6.6). In turn, the GHT is based on the notion of
virtual nodes or cells (comprised by physical nodes). Thus, phys-
ical nodes inside a cell work on behalf of their cell (e.g., through
active replication; Section 6.2.1). As such, the maintenance of
a cell requires some computations and an increase in energy
consumption of the mobile devices. When a node processes an
operation request, all its cell neighbors will have to update their
state accordingly. Fig. 21 shows the energy consumption of a
node during the cell maintenance required for each operation.
From this plot, we can verify that the energy consumption for
cell maintenance is comparable to the cost of processing the
operation request (presenting only a negligible decrease). This
comes from that fact that when processing the specific request,
these nodes do not have to send further messages (i.e., they
only process the one they received). Similarly to the rationale
followed before, a node processing the cell maintenance requests
continuously during 10 minutes, on average would spend less
than 800 Joules, which would mean an expenditure of 0.8% of the
Nexus 9 total battery charge.

Total energy cost. Since mobile devices can be simultaneously
issuing operations and processing operation requests, and still
have to participate in their cells’ maintenance, we have to account
for these three energy components. Following the same worst
case scenario (issuing and processing operations for 10 minutes
in a closed loop), and summing these three components, we get

950 + 830 + 800 = 2580 Joule

orresponding to around 2.7% of the Nexus 9 total battery charge.
value we argue is quite acceptable for such an intensive use
f the application. Thus, to deplete 50% of the device’s battery

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

c
o
f
l

1

c
i
f
s
n
s
n
a
c
f
c
c
l

f
n
T

d

a
p
t
t

f
p
q
a
a
t

harge, a client would need to keep this intensive use continu-
usly for more than three hours. In a moderate usage scenario and
or a device with a complete battery charge, we estimate a battery
ife of well over six hours.

1. Discussion

Thyme-ES presents a baseline. It has an external, centralized
omponent where all the system’s data is stored. Being a central-
zed server, it presents itself as a bottleneck and a single point of
ailure. Thus, this approach assumes it never fails, otherwise the
ervice will become completely unavailable. If that assumption is
ot an issue, then Thyme-ES can be an option, but only for small
cenarios. As our experiments show, increasing the number of
odes in this approach leads to an increase in operation latency
nd a decrease in operation success ratio, resulting from the
entral component being a bottleneck and all nodes compete
or its resources. Note that in our experiments, the centralized
omponent resided close to the client nodes. If that was not the
ase and it was located in the cloud, we would see much higher
atencies.

Due to its flooding approach, Thyme-LS causes far more inter-
erences than Thyme-DCS. This is exacerbated by the number of
odes in the system (Section 9.3.1). Churn is also a problem for
hyme-LS, because insertions are executed locally and there is no

replication mechanism (Section 9.3.2). Thus, if a node fails, all the
data it stored will become unavailable, representing some kind
of partial failure because only that node’s data is unavailable. Its
flooding approach means that as the number of nodes increases,
so does the amount of traffic and interferences. In summary,
Thyme-LS is more suitable for smaller scenarios with no strong
ata availability requirements.
In turn, Thyme-DCS leverages geographic routing to employ

replication, and location-aware data retrieval (Section 9.3.2).
However, one-hop broadcast is unreliable by nature, thus the
assumption that every node inside a cell has the same state needs
to be relaxed (Section 9.3.3). Nonetheless, its cluster-based GHT
deals well with the increase number of nodes in the system. So,
Thyme-DCS is more suitable for larger scenarios with moderate
mobility patterns and data availability requirements.

Regarding the real world experiments and our proof-of-
concept Android application, results show adequate response
times for interactive usage and low battery consumption. Yet,
the work each node has to do on behalf of the system grows
linearly with the amount of work delegated on the cell where
they reside. This load can be reduced by using partial replication
techniques, for instance, when the cell’s population surpasses a
given threshold. However, even with the use of full replication
in cells, our experiments show that the application can be used
during short and medium duration events with no risk of rapidly
discharging the devices’ battery.

In sum, these three approaches have very different charac-
teristics. Which one is appropriate for a specific setting will
depend on the conditions of the environment and the nature of
the workload. Thus, we stress that Thyme-DCS is not always the
pproach of choice, but rather that under some conditions it is
referable. In fact, the perfect case is a system that embodies all of
hese approaches, and application developers can choose which
o use according to the task at hand.

Overall, this time-aware reactive storage concept makes a
undamental overhead shift. Instead of requiring users to ex-
licitly search for the available data, it allows users to register
ueries (with defined time boundaries), which are then notified
s new relevant data is stored in the system—providing a re-
ctive interaction model. As a consequence, the overhead from
he stakeholders that actually benefit more from this approach –
33
users requesting data – is reduced (compared with the explicit
search approach), and is moved to the stakeholders that do not
benefit directly from it – users that have the data and can provide
it. This can work as an argument against this approach. However,
we reckon that users usually do not mind sharing their resources
just for a greater good (e.g., P2P file sharing), specially if they can
also benefit from what the systems have to offer. Also, note that
when a node obtains a data object, it becomes a new source for
that same object (i.e., a passive replica). Thus, it also goes from
one side to the other. That is, it goes to side of the stakeholders
that contribute to the system (like a seeder in a P2P file sharing
application).

Other compelling reasons are also the volunteer computing [64,
65] and the crowdsourcing [66,67] hypes. Volunteer computing
uses computing resources (e.g., processing power, storage, etc.)
donated by the general public to do distributed scientific com-
puting. Systems like BOINC [68] have been proved and tested
throughout the years, being used by numerous scientific projects,
e.g., SETI@home [69]. Results have also shown the general public
massively adheres to this kind of initiatives and is willing to share
their computing resources for a ‘‘greater good’’ [69]. Crowdsourc-
ing is a type of participative online activity in which an entity
proposes to a group of individuals the voluntary undertaking of a
task entailing mutual benefit [70]. This idea has been extensively
used as a cost-effective way of harnessing the collective power
of multiple individuals. Inclusively, it even changed the way of
working of various sectors of the world’s economy [66]. With
all these aspects in mind, it makes sense to crowdsource the
computing and storage power of a collection of nearby mobile
devices to support a new generation of applications. Furthermore,
people have shown to be receptive to the idea of harnessing the
individual resources in order to make sense of the old motto
‘‘unity is strength’’.

12. Conclusion

In this article, we present the concept of time-aware reactive
storage, that fuses the P/S paradigm with the storage substrate,
and allows queries within a specific time scope. The insert opera-
tion of the storage substrate is merged with the publish operation
of the P/S system, enabling applications to be notified as relevant
data is generated and stored. Subscriptions allow propositional
logic formulas as queries, and have a time frame defining when
they are active. We also describe Thyme, a novel time-aware
reactive storage system for pervasive edge computing environ-
ments. We detail two different approaches to Thyme: Thyme-LS
follows a lightweight unstructured approach using local storage
and query flooding, while Thyme-DCS employs a DCS approach
using a storage substrate built over a GHT for wireless networks.
In addition, we describe our implementation of the Thyme-DCS
approach as an Android library and its use to develop a proof-of-
concept photo sharing application. The innovative characteristics
of Thyme offer a novel way for sharing and accessing data that has
been previously stored, or is being generated in quasi-real-time,
in a network of mobile devices.

The three parts of our evaluation are complementary to each
other, showing different facets of our approaches. Overall, the
evaluation shows that Thyme allows the notification and retrieval
of relevant data with low overhead and latency. However, all
the presented approaches display different behaviors and each
may be best suited for scenarios with specific characteristics.
In general, we show that the developed approaches exhibit a
good performance and low energy consumption in the target
environments (and under various conditions).

This work can be seen has a first step towards a data storage
and dissemination system for a wide-area setting, like a campus

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36

o
i
d
h
N
W
m
r
o
m
t
c
m
p
h
o
c
a
o

C

t
v
t
t

r a music festival. In this scenario, data will still be stored
n the devices, and communication will mostly be device-to-
evice to offload it from the network infrastructure. There are
owever several open issues, of which we highlight the following.
on-contiguous spaces, such as the ones composed of multiple
i-Fi access points: more sophisticated hashing functions and/or
aybe the use of cloudlets may allow to cope with such envi-

onments. Rapidly state-changing cells: cells may be populated
r not, being this state managed by the GHT. However, with high
obility, this state may change rapidly, leading to overheads due

o the need of transferring data between devices, and ultimately
ausing some of this data to be lost, if there is no time to
ake the necessary backups. A hierarchical cell organization, or a
artial replication approach may be possible directions. We also
ighlight as future work the integration of this approach with
pportunistic infrastructure support [71], privacy and security
oncerns in this type of environments (mainly access control
nd trust), and tackling the issues raised by handling large data
bjects.

RediT authorship contribution statement

João A. Silva: Conceptualization, Software, Validation, Inves-
igation, Data curation, Writing - original draft, Writing - re-
iew & editing, Visualization. Filipe Cerqueira: Conceptualiza-
ion, Software, Validation, Investigation, Data curation, Visualiza-
ion. Hervé Paulino: Conceptualization, Software, Data curation,
Writing - original draft, Writing - review & editing, Supervi-
sion, Funding acquisition. João M. Lourenço: Conceptualization,
Writing - original draft, Writing - review & editing, Supervision,
Funding acquisition. João Leitão: Conceptualization, Writing -
review & editing, Funding acquisition. Nuno Preguiça: Concep-
tualization, Writing - review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by Fundação para a Ciência
e a Tecnologia (FCT-MCTES) through project DeDuCe (PTDC/CCI-
COM/32166/2017), NOVA LINCS UIDB/04516/2020, and grant
SFRH/BD/99486/2014; and by the European Union through project
LightKone (grant agreement n◦ 732505).

References

[1] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016—2021, Tech. Rep., Cisco, 2017.

[2] Cisco, Cisco Annual Internet Report (2018—2023), Tech. Rep., Cisco, 2020.
[3] Cisco, The Zettabyte Era: Trends and Analysis, Tech. Rep., Cisco, 2017.
[4] B. Manoj, A.H. Baker, Communication challenges in emergency response,

Commun. ACM 50 (3) (2007) 51–53, http://dx.doi.org/10.1145/1226736.
1226765, URL http://doi.acm.org/10.1145/1226736.1226765.

[5] DARPA, Creating a secure, private internet and cloud at the tactical edge,
2013, https://www.darpa.mil/news-events/2013-08-21, (Accessed: 10 May
2018).

[6] J. Erman, K. Ramakrishnan, Understanding the super-sized traffic of the
super bowl, in: Proceedings of the 2013 Internet Measurement Conference,
IMC ’13, ACM, New York, NY, USA, 2013, pp. 353–360, http://dx.doi.org/10.
1145/2504730.2504770, URL http://doi.acm.org/10.1145/2504730.2504770.

[7] Y. Yan, N.H. Tran, F.S. Bao, Gossiping along the path: A direction-biased
routing scheme for wireless ad hoc networks, in: Proceedings of the 2015
IEEE Global Communications Conference, GLOBECOM ’15, IEEE, 2015, pp.
1–6, http://dx.doi.org/10.1109/GLOCOM.2014.7417867.
34
[8] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A.
Iamnitchi, M. Barcellos, P. Felber, E. Riviere, Edge-centric computing: Vision
and challenges, SIGCOMM Comput. Commun. Rev. 45 (5) (2015) 37–
42, http://dx.doi.org/10.1145/2831347.2831354, URL http://doi.acm.org/10.
1145/2831347.2831354.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet of Things J. 3 (5) (2016) 637–646, http://dx.doi.org/10.1109/
JIOT.2016.2579198.

[10] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, M. Satyanarayanan,
Quantifying the impact of edge computing on mobile applications, in: Pro-
ceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys
’16, ACM, New York, NY, USA, 2016, pp. 5:1–5:8, http://dx.doi.org/10.1145/
2967360.2967369, URL http://doi.acm.org/10.1145/2967360.2967369.

[11] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, M. Satyanarayanan,
The impact of mobile multimedia applications on data center consolida-
tion, in: Proceedings of the 2013 IEEE International Conference on Cloud
Engineering, IC2E ’13, IEEE Computer Society, Washington, DC, USA, 2013,
pp. 166–176, http://dx.doi.org/10.1109/IC2E.2013.17.

[12] U. Drolia, N.D. Mickulicz, R. Gandhi, P. Narasimhan, Krowd: A key-value
store for crowded venues, in: Proceedings of the 10th International
Workshop on Mobility in the Evolving Internet Architecture, MobiArch ’15,
ACM, 2015, pp. 20–25, http://dx.doi.org/10.1145/2795381.2795388.

[13] J. Luo, J.-P. Hubaux, P.T. Eugster, PAN: Providing reliable storage in mobile
ad hoc networks with probabilistic quorum systems, in: Proceedings of
the 4th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc ’03, ACM, New York, NY, USA, 2003, pp. 1–12,
http://dx.doi.org/10.1145/778415.778417, URL http://doi.acm.org/10.1145/
778415.778417.

[14] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, X. Li, Content centric peer data
sharing in pervasive edge computing environments, in: K. Lee, L. Liu (Eds.),
Proceedings of the 37th IEEE International Conference on Distributed
Computing Systems, ICDCS ’17, IEEE Computer Society, 2017, pp. 287–297,
http://dx.doi.org/10.1109/ICDCS.2017.26.

[15] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many
faces of publish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131,
http://dx.doi.org/10.1145/857076.857078, URL http://doi.acm.org/10.1145/
857076.857078.

[16] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker,
GHT: A geographic hash table for data-centric storage, in: Proceedings
of the 1st ACM International Workshop on Wireless Sensor Networks
and Applications, WSNA ’02, ACM, New York, NY, USA, 2002, pp. 78–87,
http://dx.doi.org/10.1145/570738.570750, URL http://doi.acm.org/10.1145/
570738.570750.

[17] F. Araújo, L.s. Rodrigues, J. Kaiser, C. Liu, C. Mitidieri, CHR: A distributed
hash table for wireless ad hoc networks, in: Proceedings of the Fourth
International Workshop on Distributed Event-Based Systems (DEBS), ICD-
CSW ’05, IEEE Computer Society, Washington, DC, USA, 2005, pp. 407–413,
http://dx.doi.org/10.1109/ICDCSW.2005.48.

[18] G.F. Riley, T.R. Henderson, The ns-3 network simulator, in: K. Wehrle, M.
Güneş, J. Gross (Eds.), Modeling and Tools for Network Simulation, Springer
Berlin Heidelberg, 2010, pp. 15–34, http://dx.doi.org/10.1007/978-3-642-
12331-3_2.

[19] G.P. Picco, A.L. Murphy, G.-C. Roman, LIME: Linda meets mobility, in:
Proceedings of the 21st International Conference on Software Engineering,
ICSE ’99, ACM, New York, NY, USA, 1999, pp. 368–377, http://dx.doi.org/
10.1145/302405.302659, URL http://doi.acm.org/10.1145/302405.302659.

[20] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing
applications: The TOTA approach, ACM Trans. Softw. Eng. Methodol. 18 (4)
(2009) 15:1–15:56, http://dx.doi.org/10.1145/1538942.1538945, URL http:
//doi.acm.org/10.1145/1538942.1538945.

[21] J.A. Silva, H. Paulino, J.M. Lourenço, J. Leitão, N.M. Preguiça, Time-aware
reactive storage in wireless edge environments, in: Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, MobiQuitous ’19, ACM, 2019, pp.
238–247, http://dx.doi.org/10.1145/3360774.3360828.

[22] F. Cerqueira, J.A. Silva, J.M. Lourenço, H. Paulino, Towards a persistent
publish/subscribe system for networks of mobile devices, in: Proceedings
of the 2nd Workshop on Middleware for Edge Clouds & Cloudlets, MECC
’17, ACM, New York, NY, USA, 2017, pp. 2:1–2:6, http://dx.doi.org/10.1145/
3152360.3152362, URL http://doi.acm.org/10.1145/3152360.3152362.

[23] M. Cilia, L. Fiege, C. Haul, A. Zeidler, A.P. Buchmann, Looking into the
past: Enhancing mobile publish/subscribe middleware, in: Proceedings of
the International Workshop on Distributed Event-Based Systems, DEBS ’03,
ACM, New York, NY, USA, 2003, pp. 1–8, http://dx.doi.org/10.1145/966618.
966631, URL http://doi.acm.org/10.1145/966618.966631.

[24] L. Vargas, J. Bacon, K. Moody, Integrating databases with publish/subscribe,
in: Proceedings of the Fourth International Workshop on Distributed
Event-Based Systems (DEBS), ICDCSW ’05, IEEE Computer Society, Wash-
ington, DC, USA, 2005, pp. 392–397, http://dx.doi.org/10.1109/ICDCSW.

2005.79.

http://refhub.elsevier.com/S0167-739X(20)33070-3/sb1
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb1
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb1
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb2
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb3
http://dx.doi.org/10.1145/1226736.1226765
http://dx.doi.org/10.1145/1226736.1226765
http://dx.doi.org/10.1145/1226736.1226765
http://doi.acm.org/10.1145/1226736.1226765
https://www.darpa.mil/news-events/2013-08-21
http://dx.doi.org/10.1145/2504730.2504770
http://dx.doi.org/10.1145/2504730.2504770
http://dx.doi.org/10.1145/2504730.2504770
http://doi.acm.org/10.1145/2504730.2504770
http://dx.doi.org/10.1109/GLOCOM.2014.7417867
http://dx.doi.org/10.1145/2831347.2831354
http://doi.acm.org/10.1145/2831347.2831354
http://doi.acm.org/10.1145/2831347.2831354
http://doi.acm.org/10.1145/2831347.2831354
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1145/2967360.2967369
http://dx.doi.org/10.1145/2967360.2967369
http://dx.doi.org/10.1145/2967360.2967369
http://doi.acm.org/10.1145/2967360.2967369
http://dx.doi.org/10.1109/IC2E.2013.17
http://dx.doi.org/10.1145/2795381.2795388
http://dx.doi.org/10.1145/778415.778417
http://doi.acm.org/10.1145/778415.778417
http://doi.acm.org/10.1145/778415.778417
http://doi.acm.org/10.1145/778415.778417
http://dx.doi.org/10.1109/ICDCS.2017.26
http://dx.doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://dx.doi.org/10.1145/570738.570750
http://doi.acm.org/10.1145/570738.570750
http://doi.acm.org/10.1145/570738.570750
http://doi.acm.org/10.1145/570738.570750
http://dx.doi.org/10.1109/ICDCSW.2005.48
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1145/302405.302659
http://dx.doi.org/10.1145/302405.302659
http://dx.doi.org/10.1145/302405.302659
http://doi.acm.org/10.1145/302405.302659
http://dx.doi.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://doi.acm.org/10.1145/1538942.1538945
http://dx.doi.org/10.1145/3360774.3360828
http://dx.doi.org/10.1145/3152360.3152362
http://dx.doi.org/10.1145/3152360.3152362
http://dx.doi.org/10.1145/3152360.3152362
http://doi.acm.org/10.1145/3152360.3152362
http://dx.doi.org/10.1145/966618.966631
http://dx.doi.org/10.1145/966618.966631
http://dx.doi.org/10.1145/966618.966631
http://doi.acm.org/10.1145/966618.966631
http://dx.doi.org/10.1109/ICDCSW.2005.79
http://dx.doi.org/10.1109/ICDCSW.2005.79
http://dx.doi.org/10.1109/ICDCSW.2005.79

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36
[25] J. Kreps, N. Narkhede, J. Rao, et al., Kafka: A distributed messaging system
for log processing, in: Proceedings of the Networking Meets Databases
Workshop, NetDB ’11, 2011, pp. 1–7.

[26] G. Mühl, Large-Scale Content Based Publish, Subscribe Systems (Ph.D.
thesis), Germany, 2002, URL http://elib.tu-darmstadt.de/diss/000274.

[27] A.R. Khakpour, I. Demeure, Chapar: A persistent overlay event system for
MANETs, Mob. Netw. Appl. 15 (6) (2010) 866–875, http://dx.doi.org/10.
1007/s11036-010-0238-6.

[28] T.H. Clausen, P. Jacquet, Optimized link state routing protocol (OLSR), RFC
3626 (2003) 1–75, http://dx.doi.org/10.17487/RFC3626.

[29] J.A. Silva, R. Monteiro, H. Paulino, J.M. Lourenço, Ephemeral data storage
for networks of hand-held devices, in: Proceedings of the 2016 IEEE
International Symposium on Parallel and Distributed Processing with
Applications, ISPA ’16, IEEE, 2016, pp. 1106–1113, http://dx.doi.org/10.
1109/TrustCom.2016.0182.

[30] K. Thilakarathna, H. Petander, J. Mestre, A. Seneviratne, Mobitribe: Cost
efficient distributed user generated content sharing on smartphones, IEEE
Trans. Mobile Comput. 13 (9) (2014) 2058–2070.

[31] R.K. Panta, R. Jana, F. Cheng, Y.F.R. Chen, V.A. Vaishampayan, Phoenix:
Storage using an autonomous mobile infrastructure, IEEE Trans. Parallel
Distrib. Syst. 24 (9) (2013) 1863–1873, http://dx.doi.org/10.1109/TPDS.
2013.84.

[32] I. Lombera, L.E. Moser, P.M. Melliar-Smith, Y.-T. Chuang, Mobile ad-
hoc search and retrieval in the iTrust over Wi-Fi Direct network, in:
Proceedings of the 9th International Conference on Wireless and Mobile
Communications, 2013, pp. 251–258.

[33] G. Xylomenos, C.N. Ververidis, V.A. Siris, N. Fotiou, C. Tsilopoulos, X.
Vasilakos, K.V. Katsaros, G.C. Polyzos, A survey of information-centric net-
working research, IEEE Commun. Surv. Tutorials 16 (2) (2014) 1024–1049,
http://dx.doi.org/10.1109/SURV.2013.070813.00063.

[34] M. Demmer, B. Du, E. Brewer, Tierstore: A distributed filesystem for
challenged networks in developing regions, in: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, FAST ’08, USENIX
Association, Berkeley, CA, USA, 2008, pp. 3:1–3:14, URL http://dl.acm.org/
citation.cfm?id=1364813.1364816.

[35] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel, M.H.
Lim, E. Upton, Haggle: Seamless networking for mobile applications, in:
Proceedings of the 9th International Conference on Ubiquitous Computing,
UbiComp ’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 391–408, URL
http://dl.acm.org/citation.cfm?id=1771592.1771615.

[36] N.P. Palma, V. Mancuso, M.A. Marsan, Infrastructureless pervasive informa-
tion sharing with COTS devices and software, in: 19th IEEE International
Symposium on ‘‘a World of Wireless, Mobile and Multimedia Networks’’,
WoWMoM ’18, IEEE Computer Society, 2018, pp. 1–9, http://dx.doi.org/10.
1109/WoWMoM.2018.8449733.

[37] D. Gelernter, Generative communication in linda, ACM Trans. Program.
Lang. Syst. 7 (1) (1985) 80–112, http://dx.doi.org/10.1145/2363.2433, URL
http://doi.acm.org/10.1145/2363.2433.

[38] A. Omicini, F. Zambonelli, Tuple centres for the coordination of inter-
net agents, in: Proceedings of the 1999 ACM Symposium on Applied
Computing, SAC ’99, ACM, New York, NY, USA, 1999, pp. 183–190,
http://dx.doi.org/10.1145/298151.298231, URL http://doi.acm.org/10.1145/
298151.298231.

[39] LiveQoS, Superbeam, 2017, https://superbe.am/, (Accessed: 13 August
2020).

[40] Anmobi Inc., Xender, 2014, http://www.xender.com/, (Accessed: 13 August
2020).

[41] Open Garden Inc., Firechat, 2017, https://www.opengarden.com/firechat.
html, (Accessed: 27 April 2018).

[42] Briar Project, Briar, 2017, https://briarproject.org/, (Accessed: 27 September
2020).

[43] goTenna Inc., Gotenna mesh, 2017, https://www.gotenna.com/, (Accessed:
05 October 2020).

[44] B. Oki, M. Pfluegl, A. Siegel, D. Skeen, The information bus: An architecture
for extensible distributed systems, SIGOPS Oper. Syst. Rev. 27 (5) (1993)
58–68, http://dx.doi.org/10.1145/173668.168624, URL http://doi.acm.org/
10.1145/173668.168624.

[45] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D. Chandra, Matching
events in a content-based subscription system, in: Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’99, ACM, New York, NY, USA, 1999, pp. 53–61, http://dx.doi.org/10.
1145/301308.301326, URL http://doi.acm.org/10.1145/301308.301326.

[46] K. Seada, C. Perkins, Social Networks: the Killer App for Wireless Ad Hoc
Networks? Tech. Rep., Nokia Research Centre, 2006.

[47] Yinzcam Inc., Yinzcam, 2019, http://www.yinzcam.com/, (Accessed: 13

August 2020).

35
[48] A. Teófilo, D. Remédios, J.M. Lourenço, H. Paulino, GOCRGO and GOGO: two
minimal communication topologies for wifi-direct multi-group networking,
in: Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, MobiQuitous
’17, ACM, 2017, pp. 232–241, http://dx.doi.org/10.1145/3144457.3144481.

[49] A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: Zero-effort
crowdsourcing for indoor localization, in: Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, Mobicom
’12, ACM, New York, NY, USA, 2012, pp. 293–304, http://dx.doi.org/10.
1145/2348543.2348580, URL http://doi.acm.org/10.1145/2348543.2348580.

[50] C.E. Perkins, P. Bhagwat, Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers, in: Proceedings of the
Conference on Communications Architectures, Protocols and Applica-
tions, SIGCOMM ’94, ACM, New York, NY, USA, 1994, pp. 234–244,
http://dx.doi.org/10.1145/190314.190336, URL http://doi.acm.org/10.1145/
190314.190336.

[51] J. Leitão, L. Rodrigues, Overnesia: A resilient overlay network for virtual
super-peers, in: Proceedings of the 2014 IEEE 33rd International Sympo-
sium on Reliable Distributed Systems, SRDS ’14, IEEE Computer Society,
Washington, DC, USA, 2014, pp. 281–290, http://dx.doi.org/10.1109/SRDS.
2014.40.

[52] J.H. Saltzer, D.P. Reed, D.D. Clark, End-to-end arguments in system design,
ACM Trans. Comput. Syst. 2 (4) (1984) 277–288, http://dx.doi.org/10.1145/
357401.357402, URL http://doi.acm.org/10.1145/357401.357402.

[53] G. Banavar, T.D. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom,
D.C. Sturman, An efficient multicast protocol for content-based publish-
subscribe systems, in: Proceedings of the 19th International Conference on
Distributed Computing Systems, ICDCS ’99, IEEE Computer Society, 1999,
pp. 262–272, http://dx.doi.org/10.1109/ICDCS.1999.776528.

[54] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and evaluation of a wide-
area event notification service, ACM Trans. Comput. Syst. 19 (3) (2001)
332–383, http://dx.doi.org/10.1145/380749.380767.

[55] M. Castro, P. Druschel, A. Kermarrec, A.I.T. Rowstron, Scribe: a large-scale
and decentralized application-level multicast infrastructure, IEEE J. Sel.
Areas Commun. 20 (8) (2002) 1489–1499, http://dx.doi.org/10.1109/JSAC.
2002.803069.

[56] P.R. Pietzuch, J. Bacon, Hermes: A distributed event-based middleware
architecture, in: Proceedings of the 22nd International Conference on
Distributed Computing Systems, Workshops ICDCSW ’02, IEEE Com-
puter Society, 2002, pp. 611–618, http://dx.doi.org/10.1109/ICDCSW.2002.
1030837.

[57] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, sec-
ond ed., Cambridge University Press, 2002, http://dx.doi.org/10.1017/
CBO9780511809088.

[58] T. Zahn, J. Schiller, MADPastry: A DHT substrate for practicably sized
MANETs, in: Proceedings of the 5th Workshop on Applications and Services
in Wireless Networks, ASWN ’05, 2005.

[59] J. Paiva, J. Leitão, L.E.T. Rodrigues, Rollerchain: A DHT for efficient replica-
tion, in: Proceedings of the 12th IEEE International Symposium on Network
Computing and Applications, NCA ’13, IEEE Computer Society, 2013, pp.
17–24, http://dx.doi.org/10.1109/NCA.2013.29.

[60] K. Seada, A. Helmy, Rendezvous regions: a scalable architecture for service
location and data-centric storage in large-scale wireless networks, in:
Proceedings of the 18th International Parallel and Distributed Processing
Symposium, IPDPS ’04, IEEE Computer Society, 2004, http://dx.doi.org/10.
1109/IPDPS.2004.1303252.

[61] B. Karp, H.T. Kung, GPSR: Greedy perimeter stateless routing for wireless
networks, in: Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, MobiCom ’00, ACM, New York,
NY, USA, 2000, pp. 243–254, http://dx.doi.org/10.1145/345910.345953, URL
http://doi.acm.org/10.1145/345910.345953.

[62] J.a. Rodrigues, E.R.B. Marques, L.M.B. Lopes, F. Silva, Towards a middleware
for mobile edge-cloud applications, in: Proceedings of the 2nd Workshop
on Middleware for Edge Clouds & Cloudlets, MECC ’17, ACM, New York, NY,
USA, 2017, pp. 1:1–1:6, http://dx.doi.org/10.1145/3152360.3152361, URL
http://doi.acm.org/10.1145/3152360.3152361.

[63] A.N. Bessani, J. Sousa, E.A.P. Alchieri, State machine replication for the
masses with BFT-SMART, in: Proceedings of the 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN ’14,
IEEE Computer Society, 2014, pp. 355–362, http://dx.doi.org/10.1109/DSN.
2014.43.

[64] L.F.G. Sarmenta, Bayanihan: Web-based volunteer computing using java, in:
Proceedings of the Second International Conference on Worldwide Com-
puting and Its Applications, WWCA ’98, Springer-Verlag, London, UK, UK,
1998, pp. 444–461, URL http://dl.acm.org/citation.cfm?id=645966.674584.

[65] D.P. Anderson, G. Fedak, The computational and storage potential of volun-
teer computing, in: Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid, CCGRID ’06, IEEE Computer Society,
Washington, DC, USA, 2006, pp. 73–80, http://dx.doi.org/10.1109/CCGRID.

2006.101.

http://refhub.elsevier.com/S0167-739X(20)33070-3/sb25
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb25
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb25
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb25
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb25
http://elib.tu-darmstadt.de/diss/000274
http://dx.doi.org/10.1007/s11036-010-0238-6
http://dx.doi.org/10.1007/s11036-010-0238-6
http://dx.doi.org/10.1007/s11036-010-0238-6
http://dx.doi.org/10.17487/RFC3626
http://dx.doi.org/10.1109/TrustCom.2016.0182
http://dx.doi.org/10.1109/TrustCom.2016.0182
http://dx.doi.org/10.1109/TrustCom.2016.0182
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb30
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb30
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb30
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb30
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb30
http://dx.doi.org/10.1109/TPDS.2013.84
http://dx.doi.org/10.1109/TPDS.2013.84
http://dx.doi.org/10.1109/TPDS.2013.84
http://dx.doi.org/10.1109/SURV.2013.070813.00063
http://dl.acm.org/citation.cfm?id=1364813.1364816
http://dl.acm.org/citation.cfm?id=1364813.1364816
http://dl.acm.org/citation.cfm?id=1364813.1364816
http://dl.acm.org/citation.cfm?id=1771592.1771615
http://dx.doi.org/10.1109/WoWMoM.2018.8449733
http://dx.doi.org/10.1109/WoWMoM.2018.8449733
http://dx.doi.org/10.1109/WoWMoM.2018.8449733
http://dx.doi.org/10.1145/2363.2433
http://doi.acm.org/10.1145/2363.2433
http://dx.doi.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
http://doi.acm.org/10.1145/298151.298231
https://superbe.am/
http://www.xender.com/
https://www.opengarden.com/firechat.html
https://www.opengarden.com/firechat.html
https://www.opengarden.com/firechat.html
https://briarproject.org/
https://www.gotenna.com/
http://dx.doi.org/10.1145/173668.168624
http://doi.acm.org/10.1145/173668.168624
http://doi.acm.org/10.1145/173668.168624
http://doi.acm.org/10.1145/173668.168624
http://dx.doi.org/10.1145/301308.301326
http://dx.doi.org/10.1145/301308.301326
http://dx.doi.org/10.1145/301308.301326
http://doi.acm.org/10.1145/301308.301326
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb46
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb46
http://refhub.elsevier.com/S0167-739X(20)33070-3/sb46
http://www.yinzcam.com/
http://dx.doi.org/10.1145/3144457.3144481
http://dx.doi.org/10.1145/2348543.2348580
http://dx.doi.org/10.1145/2348543.2348580
http://dx.doi.org/10.1145/2348543.2348580
http://doi.acm.org/10.1145/2348543.2348580
http://dx.doi.org/10.1145/190314.190336
http://doi.acm.org/10.1145/190314.190336
http://doi.acm.org/10.1145/190314.190336
http://doi.acm.org/10.1145/190314.190336
http://dx.doi.org/10.1109/SRDS.2014.40
http://dx.doi.org/10.1109/SRDS.2014.40
http://dx.doi.org/10.1109/SRDS.2014.40
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
http://dx.doi.org/10.1109/ICDCS.1999.776528
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1109/JSAC.2002.803069
http://dx.doi.org/10.1109/JSAC.2002.803069
http://dx.doi.org/10.1109/JSAC.2002.803069
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1017/CBO9780511809088
http://dx.doi.org/10.1017/CBO9780511809088
http://dx.doi.org/10.1017/CBO9780511809088
http://dx.doi.org/10.1109/NCA.2013.29
http://dx.doi.org/10.1109/IPDPS.2004.1303252
http://dx.doi.org/10.1109/IPDPS.2004.1303252
http://dx.doi.org/10.1109/IPDPS.2004.1303252
http://dx.doi.org/10.1145/345910.345953
http://doi.acm.org/10.1145/345910.345953
http://dx.doi.org/10.1145/3152360.3152361
http://doi.acm.org/10.1145/3152360.3152361
http://dx.doi.org/10.1109/DSN.2014.43
http://dx.doi.org/10.1109/DSN.2014.43
http://dx.doi.org/10.1109/DSN.2014.43
http://dl.acm.org/citation.cfm?id=645966.674584
http://dx.doi.org/10.1109/CCGRID.2006.101
http://dx.doi.org/10.1109/CCGRID.2006.101
http://dx.doi.org/10.1109/CCGRID.2006.101

J.A. Silva, F. Cerqueira, H. Paulino et al. Future Generation Computer Systems 118 (2021) 14–36
[66] J. Howe, The rise of crowdsourcing, Wired Mag. 14 (6) (2006) 1–4.
[67] A. Doan, R. Ramakrishnan, A.Y. Halevy, Crowdsourcing systems on the

world-wide web, Commun. ACM 54 (4) (2011) 86–96, http://dx.doi.org/10.
1145/1924421.1924442, URL http://doi.acm.org/10.1145/1924421.1924442.

[68] D.P. Anderson, BOINC: A system for public-resource computing and stor-
age, in: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, GRID ’04, IEEE Computer Society, Washington, DC, USA, 2004,
pp. 4–10, http://dx.doi.org/10.1109/GRID.2004.14.

[69] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer, SETI@Home:
An experiment in public-resource computing, Commun. ACM 45 (11)
(2002) 56–61, http://dx.doi.org/10.1145/581571.581573, URL http://doi.
acm.org/10.1145/581571.581573.

[70] E. Estellés-Arolas, F.G. Ladrón-De-Guevara, Towards an integrated crowd-
sourcing definition, J. Inf. Sci. 38 (2) (2012) 189–200, http://dx.doi.org/10.
1177/0165551512437638.

[71] J.A. Silva, J. Leitão, N. Preguiça, J.M. Lourenço, H. Paulino, Towards the
opportunistic combination of mobile ad-hoc networks with infrastructure
access, in: Proceedings of the 1st Workshop on Middleware for Edge
Clouds & Cloudlets, MECC ’16, ACM, New York, NY, USA, 2016, pp.
3:1–3:6, http://dx.doi.org/10.1145/3017116.3022873, URL http://doi.acm.
org/10.1145/3017116.3022873.

João A. Silva received his B.Sc. and M.Sc. degrees in
computer engineering from the NOVA School of Science
and Technology, NOVA University Lisbon (FCT/UNL), in
2011 and 2013, respectively. He is currently working
towards his Ph.D. degree at FCT/UNL, and is a stu-
dent researcher at the NOVA Laboratory for Computer
Science and Informatics (NOVA LINCS). His research
interests include edge computing, and data storage and
dissemination, with special emphasis on mobile and
wireless environments.

Filipe Cerqueira received his M.Sc. degree in com-
puter engineering from the NOVA School of Science
and Technology, NOVA University Lisbon (FCT/UNL), in
2017. He is currently working as a Software Engineer at
Axians. His research interests include publish/subscribe
systems and data persistence in mobile environments.
36
Hervé Paulino, Ph.D., is an Associate Professor at the
Computer Science Department of the NOVA University
Lisbon, and a member of the NOVA LINCS research
center. He received his Ph.D. in computer science from
the NOVA University Lisbon in 2006, in the area of
mobile agent computing. Currently, his research inter-
ests center on availability in large-scale systems (with
particular focus on edge systems) and on the parallel
programming of heterogeneous systems.

João M. Lourenço is an Associate Professor at the
Computer Science Department of the NOVA School of
Science and Technology of NOVA University Lisbon,
and a founding member of the NOVA Laboratory for
Computer Science and Informatics (NOVA LINCS). He
received his Ph.D. from the NOVA University Lisbon
in 2004, with a thesis on debugging of distributed
programs. Currently his primary research interests in-
clude in-memory data management for parallel and
large-scale computing systems, testing and debugging
of concurrent programs, and edge/fog computing.

João Leitão is an Assistant Professor at the Computer
Science Department of the NOVA School of Science
and Technology of NOVA University Lisbon (FCT/UNL),
and a member of the NOVA LINCS research center. He
received his Ph.D. in information systems and com-
puter engineering from the Instituto Superior Técnico
(IST/UL), in 2012. His research interests are focused
on the design of fault-tolerant and efficient large-scale
systems, with particular interest in geo-distributed,
cloud computing, and peer-to-peer systems. He is a
member of the ACM and IEEE.

Nuno Preguiça is an Associate Professor with Habilita-
tion at the Computer Science Department of the NOVA
School of Science and Technology of NOVA University
Lisbon (FCT/UNL), and leads the Computer Systems
group at the NOVA Laboratory for Computer Science
and Informatics (NOVA LINCS). The broad aim of his
research is to allow efficient and correct data sharing
among geo-distributed users. He has participated in a
number of national and EU projects. He co-invented
CRDTs and received a Google Research Award in 2009
for his work on solutions for cloud data management.

http://refhub.elsevier.com/S0167-739X(20)33070-3/sb66
http://dx.doi.org/10.1145/1924421.1924442
http://dx.doi.org/10.1145/1924421.1924442
http://dx.doi.org/10.1145/1924421.1924442
http://doi.acm.org/10.1145/1924421.1924442
http://dx.doi.org/10.1109/GRID.2004.14
http://dx.doi.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1145/3017116.3022873
http://doi.acm.org/10.1145/3017116.3022873
http://doi.acm.org/10.1145/3017116.3022873
http://doi.acm.org/10.1145/3017116.3022873

	It's about : On the design and implementation of a time-aware reactive storage system for pervasive edge computing environments
	Introduction
	Related work
	Publish/subscribe
	Data storage and dissemination
	Tuple spaces
	Others

	Time-aware reactive storage
	Inserting data
	Deleting data
	Querying data
	Retrieving data

	System overview
	Use cases
	System model
	Architecture

	An unstructured approach: -LS
	A structured approach: -DCS
	Inserting data
	Replication
	Active replication
	Passive replication
	Replication list

	Deleting data
	Querying data
	Divide and conquer
	Notifications
	Moving subscribers
	Unsubscribing

	Retrieving data
	Storage substrate & routing layer
	Routing
	Dynamic cell structure
	Mobility awareness
	Negative acknowledgments
	Message destination aggregation

	Joining the system

	Android implementation
	Architecture
	Multiple namespaces
	Handling mobility
	Shared photo gallery

	Analytical study
	Time complexity
	Space complexity
	Communication costs
	Discussion

	Evaluation through simulation
	Implementation
	Setup and methodology
	Results
	Static and stable nodes
	Static but failing nodes
	Mobile but stable nodes

	Evaluation through real devices
	Implementation
	Setup and methodology
	Results
	Functionality
	Latency
	Energy consumption

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

