
Byzantium: Byzantine-Fault-Tolerant Database Replication Providing
Snapshot Isolation∗

Nuno Preguiça1 Rodrigo Rodrigues2 Cristóvão Honorato3 João Lourenço1
1 CITI/DI-FCT-Univ. Nova de Lisboa

2 Max Planck Institute for Software Systems (MPI-SWS)
3 INESC-ID and Instituto Superior Técnico

Abstract

Database systems are a key component behind many
of today’s computer systems. As a consequence, it is
crucial that database systems provide correct and contin-
uous service despite unpredictable circumstances, such
as software bugs or attacks. This paper presents the de-
sign of Byzantium, a Byzantine fault-tolerant database
replication middleware that provides snapshot isolation
(SI) semantics. SI is very popular because it allows in-
creased concurrency when compared to serializability,
while providing similar behavior for typical workloads.
Thus, Byzantium improves on existing proposals by al-
lowing increased concurrency and not relying on any
centralized component. Our middleware can be used
with off-the-shelf database systems and it is built on top
of an existing BFT library.

1 Introduction
Transaction processing database systems form a key
component of the infrastructure behind many of today’s
computer systems, such as e-commerce websites or cor-
porate information systems. As a consequence, it is cru-
cial that database systems provide correct and continu-
ous service despite unpredictable circumstances, which
may include hardware and software faults, or even at-
tacks against the database system.

Applications can increase their resilience against
faults and attacks through Byzantine-fault-tolerant
(BFT) replication. A service that uses BFT can toler-
ate arbitrary failures from a subset of its replicas. This
not only encompasses nodes that have been attacked and
became malicious, but also hardware errors, or software
bugs. In particular, a recent study [13] showed that the
majority of bugs reported in the bug logs of three com-
mercial database management systems would cause the
system to fail in a non-crash manner (i.e., by providing
incorrect answers, instead of failing silently). This sup-
ports the claim that BFT replication might be a more ad-
equate technique for replicating databases, when com-

∗This work was supported by FCT/MCTES, project
PTDC/EIA/74325/2006.

pared to traditional replication techniques that assume
replicas fail by crashing [2].

In this paper we propose the design of Byzantium,
a Byzantine-fault-tolerant database replication middle-
ware. Byzantium improves on existing BFT replication
for databases both because it has no centralized compo-
nents (of whose correctness the integrity of the system
depends) and by allowing increased concurrency, which
is essential to achieve good performance.

The main insight behind our approach is to aim
for weaker semantics than traditional BFT replication
approaches. While previous BFT database systems
tried to achieve strong semantics (such as linearizabil-
ity or 1-copy serializability [2]), Byzantium only ensures
snapshot isolation (SI), which is a weaker form of se-
mantics that is supported by most commercial databases
(e.g., Oracle, Microsoft SQL Server). Our design min-
imizes the number of operations that need to execute
the three-phase agreement protocol that BFT replica-
tion uses to totally order requests, and allows concurrent
transactions to execute speculatively in different repli-
cas, to increase concurrency.

1.1 Related Work

The vast majority of proposals for database replication
assume the crash failure model, where nodes fail by
stopping or omitting some steps (e.g., [2]). Some of
these works also focused on providing snapshot isolation
to improve concurrency [11, 10, 5]. Assuming replicas
fail by crashing simplifies the replication algorithms, but
does not allow the replicated system to tolerate many of
the faults caused by software bugs or malicious attacks.

There are few proposals for BFT database replication.
The schemes proposed by Garcia-Molina et al. [7] and
by Gashi et al. [8] do not allow transactions to execute
concurrently, which inherently limits the performance of
the system. We improve on these systems by showing
how ensuring weaker semantics (snaphost isolation) and
bypassing the BFT replication protocol whenever possi-
ble allows us to execute transactions concurrently.

HRDB [13] is a proposal for BFT replication of off-
the-shelf databases which uses a trusted node to coor-

dinate the replicas. The coordinator chooses which re-
quests to forward concurrently, in a way that maximizes
the amount of parallelism between concurrent requests.
HRDB provides good performance, but requires trust
in the coordinator, which can be problematic if repli-
cation is being used to tolerate attacks. Furthermore,
HRDB ensures 1-copy serializability, whereas our ap-
proach provides weaker (yet commonly used) semantics
to achieve higher concurrency and good performance.

1.2 Paper Outline
The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of the system. Section 3 de-
scribes its design. Section 4 discusses correctness. Sec-
tion 5 addresses some implementation issues, and Sec-
tion 6 concludes the paper.

2 Byzantium Overview

2.1 System model
Byzantium uses the PBFT state machine replication al-
gorithm [3] as one of its components, so we inherit the
system model and assumptions of this system. Thus, we
assume a Byzantine failure model where faulty nodes
(client or servers) may behave arbitrarily. We assume the
adversary can coordinate faulty nodes but cannot break
cryptographic techniques used. We assume at mostf

nodes are faulty out ofn = 3f + 1 replicas.
Our system guarantees safety properties in any asyn-

chronous distributed system where nodes are connected
by a network that may fail to deliver messages, corrupt
them, delay them arbitrarily, or deliver them out of or-
der. Liveness is only guaranteed during periods where
the delay to deliver a message does not grow indefinitely.

2.2 Database model
In a database, the state is modified by applying transac-
tions. A transaction is started by a BEGIN followed by
a sequence of read or write operations, and ends with a
COMMIT or ROLLBACK . When issuing a ROLLBACK ,
the transaction aborts and has no effect on the database.
When issuing a COMMIT , if the commit succeeds, the
effects of write operations are made permanent in the
database.

Different semantics (orisolation levels) have been de-
fined for database systems [1], allowing these systems to
provide improved performance when full serializability
is not a requirement. Byzantium provides thesnapshot
isolation (SI) level. In SI, a transaction logically exe-
cutes in a database snapshot. A transaction can commit
if it has no write-write conflict with any committed con-
current transaction. Otherwise, it must abort.

SI allows increased concurrency among transactions
when compared with serializability. For example, when

enforcing serializability, if a transaction writes some
data item, any concurrent transaction that reads the same
data item cannot execute (depending on whether the
database uses a pessimistic or optimistic concurrency
control mechanism, the second transaction will either
block until the first one commits or will have to abort due
to serializability problems at commit time). With SI, as
only write-write conflicts must be avoided, both transac-
tions can execute concurrently. This difference not only
allows increased concurrency for transactions accessing
the same data items, but it is also beneficial for read-only
transactions, since they can always execute without ever
needing to block or to abort.

The SI level is very popular, as many commer-
cial database systems implement it and it has been
shown that for many typical workloads (including the
most widely used database benchmarks, TPC-A, TPC-B,
TPC-C, and TPC-W), the execution under SI is equiva-
lent to strict serializability [4]. Additionally, is has been
shown how to transform a general application program
so that its execution under SI is equivalent to strict seri-
alizability [6].

2.3 System Architecture

Byzantium is built as a middleware system that provides
BFT replication for database systems. The system ar-
chitecture, depicted in Figure 1, is composed by a set of
n = 3f + 1 servers and a finite number of clients.

BFT
Client
Proxy

Client

Bizantium
Client
Proxy

3f+1
replicas

JDBC

BFT
Repl.
Proxy

Bizantium
Replica
Proxy

DB

BFT
Repl.
Proxy

Bizantium
Replica
Proxy

DB

BFT
Client
Proxy

Client

Bizantium
Client
Proxy

JDBC

Figure 1: System Architecture.

Each server is composed by the Byzantium replica
proxy, which is linked to the PBFT replica library [3],
and a database system. The database system maintains
a full copy of the database. The replica proxy is respon-
sible for controlling the execution of operations in the
database system. The replica proxy receives inputs from
both the PBFT replication library (in particular, it pro-
vides the library with anexecute upcall that is called
after client requests run through the PBFT protocol and
are ready to be executed at the replicas), and it also
receives messages directly from the Byzantium clients
(which are not serialized by the PBFT protocol).

The database system used in each server can be differ-

1 f u n c t i o n db be g in () : t r xHa nd le
2 u id = g e n e r a t e new u id
3 c o o r d r e p l i c a = s e l e c t random r e p l i c a
4 opsAndHRes =new l i s t
5 BFT exec (<BEGIN, uid , c o o r d r e p l i c a >)
6 t r xHa nd le = new t r xHa nd le (uid , c o o r d r e p l i c a ,
7 opsAndHRes)
8 re turn t r xHa nd le
9 end f u n c t i o n

10

11 f u n c t i o n db op (t rxHand le , op) : r e s u l t
12 r e s u l t = r e p l i c a e x e c (t r xHa nd le . c o o r dr e p l i c a ,
13 <t r xHa nd le . uid , op>)
14 t r xHa nd le . opsAndHRes . add (<op ,H(r e s u l t)>)
15 re turn r e s u l t
16 end f u n c t i o n
17

18 f u n c t i o n db commit (t r xHa nd le)
19 r e s u l t = BFT exec (<COMMIT, t r xHa nd le . uid ,
20 t r xHa nd le . opsAndHRes>)
21 i f (r e s == t r u e)
22 re turn
23 e l s e
24 throw B yz a n t i ne E xe c u t i onE xc e p t i o n
25 e n d i f
26 end f u n c t i o n

Figure 2: Byzantium client proxy code.

ent, to ensure a lower degree of fault correlation, in par-
ticular if these faults are caused by software bugs [12,
13]. The only requirement is that they all must imple-
ment thesnapshot isolationsemantics and support save-
points1, which is common in most database systems.

Users applications run in client nodes and access our
system using a standard database interface (in this case,
the JDBC interface). Thus, applications that access con-
ventional database systems using a JDBC interface can
use Byzantium with no modification. The JDBC driver
we built is responsible for implementing the client side
of the Byzantium protocol (and thus we refer to it as the
Byzantium client proxy). Some parts of the client side
protocol consist of invoking operations that run through
the PBFT replication protocol, and therefore this proxy
is linked with the client side of the PBFT replication li-
brary.

In our design, PBFT is used as a black box. This en-
ables us to easily switch this replication library with a
different one, provided both offer the same guarantees
(i.e., state machine replication with linearizable seman-
tics) and have a similar programming interface.

3 System Design

3.1 System operation
In this section, we describe the process of executing a
transaction. We start by assuming that clients are not
Byzantine and address this problem in the next section.
The code executed by the client proxy is presented in
Figure 2 and the code executed by the replica proxy is

1A savepoint allows the programmer to declare a point in a trans-
action to which it can later rollback.

1 u p c a l l FOR BFT exec (<BEGIN, uid , c o o r d r e p l i c a >)
2 DB t rx ha nd le = db . be g in ()
3 openTrxs . pu t (uid ,<DB trx hand le , c o o r d r e p l i c a>)
4 end u p c a l l
5

6 u p c a l l f o r BFT exec (<COMMIT, uid , cltOpsAndHRes>)
7 : boo le a n
8 <DB trx hand le , c o o r d r e p l i c a> = openTrxs . ge t (u i d)
9 openTrxs . remove (u id)

10 i f (c o o r d r e p l i c a != THIS REPLICA)
11 execOK = e x e ca n d v e r i f y (DB t rx hand le ,
12 cltOpsAndHRes)
13 i f (NOT execOK)
14 DB t rx ha nd le . r o l l b a c k ()
15 re turn f a l s e
16 e n d i f
17 e n d i f
18 i f (v e r i f y S I P r o p e r t i e s (DBt rx ha nd le))
19 DB t rx ha nd le . commit ()
20 re turn t r u e
21 e l s e
22 DB t rx ha nd le . r o l l b a c k ()
23 re turn f a l s e
24 e n d i f
25 end u p c a l l
26

27 u p c a l l f o r r e p l i c a e x e c (<uid , op>) : r e s u l t
28 <DB trx hand le , c o o r d r e p l i c a> = openTrxs . ge t (u i d)
29 re turn DB t rx ha nd le . exec (op)
30 end u p c a l l

Figure 3: Byzantium replica proxy code.

presented in Figure 3. We omitted some details (such as
error and exception handling) from the code listing for
simplicity.

The approach taken to maximize concurrency and im-
prove performance is to restrict the use of the PBFT pro-
tocol to only the operations that need to be totally or-
dered among each other. Other operations can execute
speculatively in a single replica (that may be faulty and
provide incorrect replies) and we delay validating these
replies until commit time.

The application program starts a transaction by exe-
cuting a BEGIN operation (function dbbegin, Figure 2,
line 1). The client starts by generating a unique iden-
tifier for the transaction and selecting a replica respon-
sible to speculatively execute the transaction – we call
this the coordinator replica for the transaction or simply
coordinator. Then, the client issues the corresponding
BFT operation to execute in all replicas (by calling the
BFT exec(< BEGIN, ... >) method from the PBFT
library, which triggers the corresponding upcall at all
replicas, depicted in Figure 3, line 1). At each replica,
a database transaction is started. Given the properties of
the PBFT system, and as both BEGIN and COMMIT op-
erations execute serially as PBFT operations, this guar-
antees that the transaction is started in the same (equiva-
lent) snapshot of the database in every correct replica.

After executing BEGIN, an application can execute a
sequence of read and write operations (function dbop,
Figure 2, line 11). Each of these operations executes
only in the coordinator of the transaction (by calling

replica exec, which triggers the corresponding upcall at
the coordinator replica, depicted in Figure 3, line 27).
The client proxy stores a list of the operations and cor-
responding results (or a secure hash of the result, if it is
smaller).

The transaction is concluded by executing a COM-
MIT operation (function dbcommit, Figure 2, line 18).
The client simply issues the corresponding BFT opera-
tion that includes the list of operations of the transaction
and their results. At each replica, the system verifies if
the transaction execution is valid before committing it
(by way of theBFT exec(< COMMIT, ... >) upcall,
Figure 3, line 6).

To validate a transaction prior to commit, the follow-
ing steps are executed. All replicas other than the pri-
mary have to execute the transaction operations and ver-
ify that the returned results match the results previously
obtained in the coordinator. Given that the transaction
executes in the same snapshot in every replica (as ex-
plained in the BEGIN operation), if the coordinator was
correct, all other correct replicas should obtain the same
results. If the coordinator was faulty, the results obtained
by the replicas will not match those sent by the client. In
this case, correct replicas will abort the transaction and
the client throws an exception signaling Byzantine be-
havior. In Section 5, we discuss some database issues
related with this step.

Additionally, all replicas including the coordinator,
need to verify if the SI properties hold for the commit-
ting transaction. This verification is the same that is
executed in non-byzantine database replication systems
(e.g. [5]) and can be performed by comparing the write
set of the committing transaction with the write sets of
transactions that have previously committed after the be-
ginning of the committing transaction. As this process is
deterministic, every correct replica will consequently ei-
ther commit or abort the transaction.

A transaction can also end with a ROLLBACK opera-
tion. A straightforward solution is to simply abort trans-
action execution in all replicas. We discuss the prob-
lems of this approach and propose an alternative in Sec-
tion 3.4.

3.2 Tolerating Byzantine clients
The system needs to handle Byzantine clients that might
try to cause the replicated system to deviate from the in-
tended semantics. Note that we are not trying to prevent
a malicious client from using the database interface to
write incorrect data or delete entries from the database.
Such attacks can be limited by enforcing security/access
control policies and maintaining additional replicas that
can be used for data recovery [9].

As we explained, PBFT is used by the client to exe-
cute operations that must be totally ordered among each

other. Since PBFT already addresses the problem of
Byzantine client behavior in each individual operation,
our system only needs to address the validity of the op-
erations that are issued to the database engines running
in the replicas.

First, replicas need to check if they are receiving a
valid sequence of operations from each client. Most
checks are simple, such as verifying if a BEGIN is always
followed by a COMMIT /ROLLBACK and if the unique
identifiers that are sent are valid.

There is one additional aspect that could be exploited
by a Byzantine client: the client first executes operations
in the coordinator and later propagates the complete se-
quence of operations (and results) to all replicas. At
this moment, the coordinator does not execute the op-
erations, as it has already executed them. A Byzantine
client could exploit this behavior by sending a sequence
of operations during theCOMMIT PBFT requests that
is different from the sequence of operations that were
previously issued to the coordinator, leading to diver-
gent database states at the coordinator and the remaining
replicas.

To address this problem, while avoiding a new round
of message among replicas, we have decided to proceed
with transaction commitment using the latest sequence
of operations submitted by the client.

The code executed by the replica proxy for supporting
Byzantine clients is presented in Figure 4. To be able to
compare if the sequence of operations submitted initially
is the same that is submitted at commit time, the coor-
dinator also logs the operations and their results as they
are executed (line 42). At commit time, if the received
list differs from the log, the coordinator discards exe-
cuted operations in the current transaction and executes
operations in the received list, as any other replica.

For discarding the executed operations in the cur-
rent transaction, we rely on a widely available database
mechanism,savepoints, that enables rolling back all op-
erations executed inside a running transaction after the
savepoint is established. When the BEGIN operation ex-
ecutes, a savepoint is created in the initial database snap-
shot (line 3). Later, when it is necessary to discard ex-
ecuted operations but still use the same database snap-
shot, the transaction is rolled back to the savepoint pre-
viously created (line 17). This ensures that all replicas,
including the coordinator, execute the same sequence of
operations in the same database snapshot, guaranteeing
a correct behavior of our system.

3.3 Tolerating a faulty coordinator
A faulty coordinator can return erroneous results or fail
to return any results to the clients. The first situation
is addressed by verifying, at commit time, the correct-
ness of results returned to all replicas, as explained pre-

1 u p c a l l FOR BFT exec (<BEGIN, uid , c o o r d r e p l i c a >)
2 DB t rx ha nd le = db . be g in ()
3 DB t rx ha nd le . s e t S a v e p o i n t (’ i n i t ’)
4 opsAndHRes =new l i s t
5 openTrxs . pu t (uid ,<DB trx hand le , c o o r d r e p l i c a ,
6 opsAndHRes>)
7 end u p c a l l
8

9 u p c a l l f o r BFT exec (<COMMIT, uid , cltOpsAndHRes>)
10 : boo le a n
11 <DB trx hand le , c o o r d r e p l i c a , opsAndHRes> =
12 openTrxs . ge t (u i d)
13 openTrxs . remove (u id)
14 hasToExec = c o o r dr e p l i c a != THIS REPLICA
15 i f (c o o r d r e p l i c a == THISREPLICA)
16 i f (d i f f e r e n t l i s t (cltOpsAndHRes , opsAndHRes))
17 DB t rx ha nd le . r o l l b a c k T o S a v e p o i n t (’ i n i t ’)
18 hasToExec = t r u e
19 e n d i f
20 e n d i f
21 i f (hasToExec)
22 execOK = e x e ca n d v e r i f y (DB t rx hand le ,
23 cltOpsAndHRes)
24 i f (NOT execOK)
25 DB t rx ha nd le . r o l l b a c k ()
26 re turn f a l s e
27 e n d i f
28 e n d i f
29 i f (v e r i f y S I P r o p e r t i e s (DBt rx ha nd le))
30 DB t rx ha nd le . commit ()
31 re turn t r u e
32 e l s e
33 DB t rx ha nd le . r o l l b a c k ()
34 re turn f a l s e
35 e n d i f
36 end u p c a l l
37

38 u p c a l l f o r r e p l i c a e x e c (<uid , op>) : r e s u l t
39 <DB trx hand le , c o o r d r e p l i c a , opsAndHRes> =
40 openTrxs . ge t (u i d)
41 r e s u l t = DB t rx ha nd le . exec (op)
42 opsAndHRes . add(<op ,H(r e s)>)
43 re turn r e s u l t
44 end u p c a l l

Figure 4: Byzantium replica proxy code, supporting
Byzantine clients.

viously. This guarantees that correct replicas will only
commit transactions for which the coordinator has re-
turned correct results for every operation.

If the coordinator fails to reply to an operation, the
client selects a new coordinator to replace the previ-
ous one and starts by re-executing all previously exe-
cuted operations of the transaction in the new coordina-
tor. If the obtained results do not match, the client aborts
the transaction by executing a ROLLBACK operation and
throws an exception signaling Byzantine behavior. If the
results match, the client proceeds by executing the new
operation.

At commit time, a replica that believes to be the coor-
dinator of a transaction still verifies that the sequence of
operations sent by the client is the same that the replica
has executed. Thus, if a coordinator that was replaced
is active, it will find out that additional operations have
been executed. As explained in the previous section,
it will then discard operations executed in the current
transaction and it will execute the list of received oper-

ations, as any other replica. This ensures a correct be-
havior of our system, as all replicas, including replaced
coordinators, execute the same sequence of operations
in the same database snapshot.

3.4 Handling aborted transactions
When a transaction ends with a ROLLBACK operation, a
possible approach is to simply abort the transaction in all
replicas without verifying if previously returned results
were correct (e.g., this solution is adopted in [13]). In
our system, this could be easily implemented by execut-
ing a BFT operation that aborts the transaction in each
replica.

This approach does not lead to any inconsistency in
the replicas as the database state is not modified. How-
ever, in case of a faulty coordinator, the application
might have observed an erroneous database state during
the course of the transaction, which might have led to the
spurious decision of aborting the transaction. For exam-
ple, consider a transaction trying to reserve a seat in a
given flight with available seats. When the transaction
queries the database for seat availability, a faulty coordi-
nator might incorrectly return that no seats are available.
As a consequence, the application program may decide
to end the transaction with a ROLLBACK operation. If
no verification of the results that were returned was per-
formed, the client operation would have made a decision
to rollback based on an incorrect database state.

To detect this, we decided to include an option to force
the system to verify the correctness of the returned re-
sults also when a transaction ends with a ROLLBACK

operation. When this option is selected, the execution of
a rollback becomes similar to the execution of a commit
(with the obvious difference that it is not necessary to
check for write-write conflicts and that the transaction
always aborts). If the verification fails, the ROLLBACK

operation raises an exception.

4 Correctness
In this section we present a correctness argument for the
design of Byzantium. We leave a formal correctness
proof as future work.

Safety Our safety condition requires that transactions
that are committed on the replicated database observe SI
semantics.

Our correctness argument relies on the guarantees
provided by the PBFT algorithm [3], namely that the
PBFT replicated service is equivalent to a single, correct
server that executes each operation sequentially. Since
both the BEGIN and the COMMIT operations run as
PBFT requests, this implies that every correct replica
will observe the same state (in terms of which trans-
actions have committed so far) both when they begin a

transaction and when they try to commit it. Furthermore,
they decide on whether a transaction should commit or
abort based on the sequence of values that clients ob-
served (the same sequence is transmitted to all correct
replicas as an argument to the PBFT request), and ac-
cording to the SI semantics of their own local databases
(whose state, as mentioned, is identical and reflects all
transactions that have previously committed in the sys-
tem). This implies that a correct replica will only allow a
transaction to commit if it observed SI semantics (from
the standpoint of this common database state) and there-
fore the outcome of the PBFT commit operation is also
conforming to this semantics.

Liveness Under the same assumptions as PBFT, we
guarantee that the BEGIN, COMMIT , and ABORT opera-
tions are eventually executed. Furthermore, operations
that do not go through the PBFT protocol are simple
RPCs which are live under the same set of assumptions.
This guarantees the system makes progress.

5 Implementation
Deterministic behavior in database systems Our de-
sign requires deterministic behavior of operations, but
some database operations are not deterministic (e.g., se-
lect). However, it is possible to force a deterministic
behavior using some standard techniques (e.g., as used
in [12, 13]).

Database locking issues When trying to commit a
transaction in a replica, the transaction operations must
be executed concurrently with other ongoing transac-
tions (for which the replica is the primary replica). For
database systems that use an optimistic concurrency
control approach, this imposes no problems. However,
for database systems that rely on locks, this can cause
problems because executing a write operation requires
obtaining a lock on the row that is being modified. How-
ever, some ongoing transaction could have already ob-
tained the lock on that row for another write operation.

This problem is similar to the problem experienced
by non-Byzantine replication systems that use snapshot
isolation semantics and similar techniques can be used
to address it (e.g., [5]) – either using write-sets or using
widely available database operations for testing block-
ing behavior (select ... for update nowait). An ongoing
transaction that would block the execution of the com-
mitment process can then be aborted (this transaction
would have to abort anyway due to a write-write con-
flict with the committing transaction).

6 Conclusion
This paper presented the design of Byzantium, a proto-
col for BFT database replication that provides SI seman-
tics. Byzantium improves on the few examples of BFT

databases by allowing for concurrent transaction pro-
cessing, which is essential for performance, by not de-
pending on any centralized components, on whose cor-
rectness the entire system relies, and using weaker se-
mantics that allow greater concurrency. Byzantium takes
advantage of the weaker SI semantics to avoid running
every database operation through the expensive PBFT
protocol, yet it serializes enough operations with respect
to each other to guarantee this semantics.

We are currently completing our prototype and start-
ing the evaluation of the system. In the future, we also
intend to evaluate the overhead imposed by the use of
a BFT replication algorithm as a black box, when com-
pared with the use of a custom algorithm. We believe
this aspect is rather important, as it will help us under-
stand how useful BFT libraries can be for building com-
plex services that tolerate Byzantine faults.

References
[1] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,

and Patrick O’Neil. A critique of ansi sql isolation levels.In Proceedings
of the 1995 ACM SIGMOD international conference on Management of
data, pages 1–10. ACM Press, 1995.

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency control and recovery in database systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1987.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In Proceedings of the third symposium on Operating systems design and
implementation, pages 173–186. USENIX Association, 1999.

[4] Sameh Elnikety, Steven Dropsho, and Fernando Pedone. Tashkent: unit-
ing durability with transaction ordering for high-performance scalable
database replication. InProceedings of the 1st ACM EuroSys European
Conference on Computer Systems 2006, pages 117–130. ACM Press, 2006.

[5] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone.Database repli-
cation using generalized snapshot isolation. InProceedings of the 24th
IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages 73–
84. IEEE Computer Society, 2005.

[6] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and
Dennis Shasha. Making snapshot isolation serializable.ACM Trans.
Database Syst., 30(2):492–528, 2005.

[7] Hector Garcia-Molina, Frank M. Pittelli, and Susan B. Davidson. Applica-
tions of byzantine agreement in database systems.ACM Trans. Database
Syst., 11(1):27–47, 1986.

[8] Ilir Gashi, Peter T. Popov, Vladimir Stankovic, and Lorenzo Strigini. On
designing dependable services with diverse off-the-shelfsql servers. In
Rogério de Lemos, Cristina Gacek, and Alexander B. Romanovsky, edi-
tors, WADS, volume 3069 ofLecture Notes in Computer Science, pages
191–214. Springer, 2003.

[9] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Trans.
Comput. Syst., 23(1):51–76, 2005.

[10] Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Ricardo Jimenez-
Peris. Middleware based data replication providing snapshot isolation. In
Proceedings of the 2005 ACM SIGMOD international conference on Man-
agement of data, pages 419–430. ACM Press, 2005.

[11] Christian Plattner and Gustavo Alonso. Ganymed: scalable replication
for transactional web applications. InProceedings of the 5th ACM/I-
FIP/USENIX international conference on Middleware, pages 155–174.
Springer-Verlag New York, Inc., 2004.

[12] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov.Base: using ab-
straction to improve fault tolerance. InProceedings of the eighteenth ACM
symposium on Operating systems principles, pages 15–28. ACM Press,
2001.

[13] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Sam Madden. Tol-
erating byzantine faults in transaction processing systems using commit
barrier scheduling. InSOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 59–72, New York, NY,
USA, 2007. ACM Press.

