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ABSTRACT
Conflict-free Replicated Data Types (CRDTs) are abstract data types
that support developers when designing and reasoning about dis-
tributed systems with eventual consistency guarantees. In their
core they solve the problem of how to deal with concurrent opera-
tions, in a way that is transparent for developers. However in the
real world, distributed systems also suffer from other relevant prob-
lems, including security and privacy issues and especially when
participants can be untrusted.

In this paper we present new privacy-preserving CRDT protocols
that can be used to help secure distributed cloud-backed applica-
tions, including NoSQL geo-replicated databases. Our proposals are
based on standard CRDTs, such as sets and counters, augmented
with cryptographic mechanisms that allow their operations to be
performed on encrypted data. We accompany our proposals with
formal security proofs and implement and integrate them in An-
tidoteDB, a geo-replicated NoSQL database that leverages CRDTs
for its operations. Experimental evaluations based on the Danish
Shared Medication Record dataset (FMK) exhibit the tradeoffs that
our different proposals make and show that they are ready to be
used in practical applications.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; • Se-
curity and privacy→ Cryptography.
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1 INTRODUCTION
A Conflict-Free Replicated Data Type [25] (CRDT) is a recent ab-
straction for distributed cloud-backed protocols that allows main-
taining multiple replicas of a data value with high availability and
low latency for local access. These protocols explore a tradeoff
where one forsakes strong consistency in exchange for a weaker,
but sufficient, notion of coherence between geographically dis-
tributed operations, called eventual consistency. Apple [10], Mi-
crosoft [17], Facebook [15], and Google [13] are some of the many
organizations that have used CRDTs in one or more of their prod-
ucts. Example systems built on top of CRDTs include geo-replicated
databases [22], collaborative text edition [12], and chat systems for
massive-multiplayer online video games [21].

Our work is the first to address the problem of creating privacy-
preserving CRDTs, while allowing servers to continue performing
the normal operation to maintain the CRDT state.

CRDT Concepts. A CRDT is a distributed protocol in which a set
of clients interacts with a set of replica server nodes to update and
query values stored under the form of complex data-structures,
including registers, sets, lists, maps, and counters. Server nodes
maintain the current value of the replica and additional meta in-
formation that is needed to provide the prescribed consistency
semantics. Server nodes may propagate full or aggregate infor-
mation about their internal states to other replicas, which leads
to a notion of eventual consistency: the idea is that, if local up-
dates cease to occur and enough propagation of replica states takes
place, the whole system will converge to the same observable data
value in all replicas. The rate at which replica propagation occurs
is application-specific.

CRDT Application. CRDTs can be used in different scenarios. In
this paper, we are particularly interested in their application to sup-
port cloud-backed geo-replicated NoSQL databases. An example
implementation available in the real-world is AntidoteDB [1]. This
type of technology is important, for instance, for medical hospi-
tals that need to store large volumes of patient health records in
the cloud in a highly-available and privacy-preserving way. In this
scenario, each cloud server stores an AntidoteDB replica for high-
availability, and clients (i.e., the medical doctors) connect to a cloud
of their choice and search/update health records of their patients.
Moreover, cloud servers are typically considered untrusted, follow-
ing an honest-but-curious model and hence justifying the need for
privacy, while medical doctors are usually considered trustworthy
and require, at most, access control mechanisms.
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Figure 1: High-level view of our system.
CRDT Security. As far as we know, this is the first attempt at
building secure CRDT protocols that can be leveraged by cloud-
backed applications. Intuitively, privacy-preserving CRDT opera-
tions could be realised through fully homomorphic encryption or
general secure multiparty computation. However, such solutions
would either be unpractical or require sharing secret data between
multiple nodes [9], which goes against the purpose of CRDTs in
the first place.

Our Contributions. The contributions presented are as follows:
• Secure CRDT Protocols: We propose new secure CRDT pro-
tocols for Registers, Sets, Counters, and Bounded Coun-
ters, which are some of the most popular CRDTs used in
distributed databases. Our proposals follow one of two ap-
proaches: (i) black-box constructions, which means that the
protocols overlay encryption over standard CRDT implemen-
tations, allowing their use without modification (examples of
this are the Register and Set CRDTs); and (ii) homomorphic
constructions, which means that for CRDTs not covered by
the previous approach, partially homomorphic encryption
schemes can also be used to naturally transform them into
secure ones with small overhead and leakage, and minimal
alterations to their plaintext implementation.
• Integration with AntidoteDB: Using our new secure CRDTs,
we implement a privacy-preserving version of AntidoteDB,
which is a NoSQL key-value store that leverages CRDTs
to perform its operations. By integrating our secure CRDT
constructions with AntidoteDB, its clients can have security
guarantees of the data stored in it.
• Experimental Evaluation: To experimentally access the effi-
ciency and scalability of our proposals, we leverage a bench-
mark based on the Danish Shared Medication Record (FMK)
and conduct experiments on our secure version of Antidot-
eDB, measuring the latency and throughput of operations
over the different CRDTs proposed. Results obtained show
that our proposals achieve practical performance and scal-
ability, with different CRDTs making different trade-offs
between efficiency and security.

2 TECHNICAL OVERVIEW
We start by presenting an overview of our system. In a CRDT pro-
tocol, clients interact with a group of servers nodes via update and

query operations, and servers propagate their states between them-
selves to ensure that the view of each node will eventually become
consistent with respect to all operations performed by the clients.
Our setting for CRDT security is focused on providing guarantees
to the clients against an untrusted network and servers. Ideally,
we want a layer of security between clients writing and reading
data, such that one can encrypt sensitive data before sending to the
untrusted network and have it be decrypted when it exits, while
seamlessly propagating and merging encoded states.

Figure 1 captures this scenario. First, we have a setup phase
where clients establish cryptographic material beforehand to use
in the security layer. This can be done with symmetric keys, by
having clients perform an a-priori key-exchange protocol; or with
asymmetric keys, i.e. by separating writer from readers, having a
private key shared by all writers to perform updates, and creating a
public key for readers to encode queries. Our execution model is ag-
nostic to this setup, as it can be defined by the chosen cryptographic
techniques.

From then onwards, every update operation is preceded by an en-
cryption operation to ensure security (step 1). Given the encrypted
data, the server can then perform the CRDT update operation (step
2). This will be followed by (potentially multiple) propagations and
merges (step 3), which are processed over the encrypted data. This
is the core challenge of our constructions, as the chosen security
mechanism must also ensure that all computations in both update
and merge steps can be performed efficiently over encrypted data.
The nodes can then be queried for the encrypted state (step 4). Fi-
nally, the obtained result must be decrypted to retrieve the query
response (step 5).
Adversary Model. We assume adversaries will be honest-but-
curious. This is a standard adversarial model for cloud computing
and secure computation solutions [6], as it captures attack vectors
where the service provider is not expected to deviate from its service
level agreements but might still benefit from retrieving the stored
data; or when an external intruder briefly gains access to the system
and can access the database and execution logs. In particular, we
show our solutions to be secure in a setting where all server nodes
can reveal their internal executions. Given this setup, one cannot
prevent however an attacker with total control over the network
from delaying or shutting down the system (i.e., denial-of-service).
Our goal is instead to demonstrate that the attacker is unable to
extract any meaningful information from encrypted messages, or to
have the system deviate in any other way besides delaying updates.

3 DEFINITIONS AND SYNTAX
Before describing our proposals in detail, we start by providing
some definitions that will be common among all of our CRDTs.

A CRDT protocol is deployed over a network composed of n
server nodes, or replicas, statically defined at the beginning of the
protocol and identified by id1, . . . , idn . These nodes are accessible
to an arbitrary number of client nodes—the entities performing
read/write accesses to the data-type—which we model as two (dis-
tributed) entities. This allows for client nodes to share long-term
keys, and is sufficiently flexible to capture symmetric scenarios,
where both have the same keys, and asymmetric scenarios, where
readers and writers play different roles and thus have access to
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different cryptographic material. Secure CRDT protocols have the
following syntax:

• setupC() is the global client setup procedure, which produces
a set of cryptographic keys: prvq for queries and prvu for
updates (in some implementations, they may be equal).
• setupS(pub, id) is the server node setup procedure, which on
input the server node identifier id, outputs the initial state
st for that node.
• query(prvq , op; st) is an interactive protocol executed be-
tween a client node and a server node. On the client-side it
takes as input key prvq and a query operation op. On the
server-side, it takes a state st as input. There is no server-side
output. The client recovers output o.
• update(prvu , op,v; st) is an interactive protocol executed
between a client node and a server node. On the client-side
it takes as input key prvu , an operation op and a value v .
On the server side it takes as input state st. At the end of
the protocol the server gets an updated state st′ and the
client may recover output o, e.g., indicating the success of
the operation.
• prop(st, id) is a local server node operation that takes state
st and a target replica identifier id and produces update data
up to be sent over the network to the target replica.
• merge(up, st) is a local server node operation that takes an
initial state st and an update up and produces an updated
state st′.

Security. We formalize security in the Universal Composability
framework [8], but we simplify presentation of the execution model
as a consequence of focusing on a restricted class of adversaries, as
follows.

We consider an honest-but-curious adversary with adaptive cor-
ruptions: the attacker will attempt to break system confidentiality
by observing messages passed in the system and internal server
states, but it does not have full control over any of the entities of
the system (e.g., causing them to send arbitrary messages), nor does
it have full control over the communication channels, which we
assume to be authenticated.

To guarantee confidentiality and correctness are preserved for
any possible scheduling of CRDT operations we allow the adver-
sary to control the sequence of operations, namely the interactions
between server nodes and the points at which clients provide inputs
and receive outputs from the system at different server nodes. This
essentially means that we adopt an asynchronous execution model
and allow the attacker to control the message scheduling.

For simplicity, we restrict the adversary’s scheduling capabilities
when it comes to the query and update subprotocols, and assume
that they are atomic in the execution model; the attacker receives
an execution trace t whenever one of them is run between a client
and a server, containing the messages exchanged between the par-
ticipants. However, all our results for concrete protocols hold in
the more general execution model where the attacker could also
arbitrary schedule the intermediate messages of query and update.

Figure 2 shows the simplified execution model for our UC secu-
rity definition. As usual, we consider an environmentZ that will
collaborate with adversaryA to distinguish the real world from an

Game RealΠ,Z,A (n):

T ← ϵ ; For i, j ∈ [n] : pi, j ← [ ]
(prvq , prvu , pub)←$ Π.setupC()
For id ∈ [n] : stid ← Π.setupS(pub, id, n)
b←$ ZA,write,read(pub, n)

Oracle prop(i, j):
p←$ Π.prop(sti , j)
pi, j ← pi, j | | [p]
Return p

Oraclemerge(i, j):
p ← head pi, j
sti ←$ Π.merge(sti , p)
pi, j ← tail pi, j

Oracle write(id, op, v):
⟨o | stid ⟩t ←$ Π.update⟨prvu , op, v | stid ⟩
T ← T ∥t
Return o

Oracle read(id, op):
⟨o | ·⟩t ←$ Π.query⟨prvq , op | stid ⟩
T ← T ∥t
Return o

Oracle corrupt(id):
Return stid

Oracle trace( ):
Return T

Game IdealF,Z,S (n):

F.setupS()
pub←$ S .setup(n)
b←$ ZS,write,read(pub, n)

Oracle write(id, op, v):
o ← F.write(id, op, v)
Return o

Oracle read(id, op)):
o ← F.read(id, op)
Return o

Figure 2: Real and Ideal security games. In the real world
(left), A has access to oracles corrupt, trace, prop and merge.
In the ideal world (right), S has access to the adversarial in-
terface of F .

ideal world where it interacts with a simulator S. In both worlds,
Z can call oracles write and read to trigger client actions on the
CRDT. In the real world these actions map to client updates and
client queries to a CRDT replica.

Furthermore, in the real world, environmentZ can control the
sequence of prop and merge operations between server nodes via
adversaryA. Rather than requiring protocols to explicitly rely on a
hybrid authenticated channel functionality, and sincewe are dealing
with honest-but-curious adversaries, we simplify the execution
model by exposing two oracles to A that directly map to these
operations and impose that values output by the propagate oracle
are delivered to merge in the correct order.

The fundamental difference between real and ideal world is that
the real world will be executing and displaying the protocol Π on
the different nodes, while the ideal world will be displaying the
interface F of read and write. F is a functionality that captures
the idealized behavior of a CRDT, globally maintaining a log of
all operations, and responding to requests accordingly. Messages
exchanged in the network will instead be emulated by a simulator
S, with restricted access to F . S is also responsible for presenting
a consistent replica state upon corrupt. The concrete security goal
is to show that the distribution of output bit b produced by Z is
essentially the same in both worlds. A more formal description
of the ideal functionality and security model can be found in our
companion technical report [3].

The intuition behind this security definition is that, for any
secure CRDT protocol, a real world adversary cannot influence
the system beyond refusing to transmit state transitions (denial-of-
service), and gains no information other than what is concretely
specified by our leakage functions. This is because the real world
trace can be simulated without access to non-leaked internal values
of F , by a simulator that can only control the schedule of server
node interactions.

Definition 3.1. Let n ∈ N. Let F be an ideal functionality, and
let Π be the corresponding CRDT protocol. We say that Π realises F
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if there exists a simulator S such that, for any environmentZ and
adversary A,

RealΠ,Z,A (n) ≈ IdealF,Z,A,S(n)

4 SECURE CRDT PROTOCOLS
We now present several CRDT proposals that can help build se-
cure distributed databases. These designs can be seen as natural
instantiations of CRDT solutions with a security layer ensuring
confidentiality of stored data. The client will perform an encryption
to protect sensitive information in update operations, and a decryp-
tion to successfully query the CRDT state. Replica-side states must
merge efficiently, even when storing encrypted data. The chosen
CRDTs are core to the two main approaches for the development
of CRDTs: CRDTs that manage data collections; and CRDTs that
enable intrinsically commutative operations. In turn, these allow
us to support all CRDTs made available in AntidoteDB.

Intuitively, the differences between proposals are dependent on
the underlying functionality provided by the CRDT. For instance,
registers perform no server-side computation over the stored val-
ues, so we can rely on a standard encryption scheme seamlessly.
On the other hand, counters assume that the servers can perform
arithmetic over the stored value, suggesting the value of using en-
cryption schemes with homomorphic properties. This highlights
the natural correlation between CRDT functionality and the neces-
sary properties of the underlying security mechanism.

4.1 Register CRDT
A register CRDT is a standard data structure holding a single value.
Update operation replaces the register value, and query returns it.
This is often a fundamental building block to more complex data
structures, such as multi-value maps.

Register CRDTs are very simple data types, in which merge
operations compare and maintain only the most recent version of
the register. This means we have no computational requirements
over the values maintained, and thus can rely on their encoded
versions without disrupting their behavior. Concretely, when a
client wants to update the register, it encrypts the value before
sending to the server. When the client wants to read the register,
it requests its encoding from the server and decrypts it to retrieve
the plaintext value. Since no computations must be done on the
register value, the CRDT runs seamlessly over encoded values.

Our protocol is described in Figure 3 and is as follows. We rely
on a black-box standard register CRDT Πreg, with operations for
setupS, update, query, prop and merge, and on a standard encryp-
tion scheme Θ. The client generates and maintains symmetric key
key. update calls Θ.Enc to instead store the ciphertext in Πreg.
query retrieves the ciphertext from Πreg and calls Θ.Dec to obtain
the original value.

Security. We argue that if Πreg is a correct CRDT, and Θ is a
IND-CPA encryption scheme (meaning that it provides indistin-
guishability under chosen plaintext attacks), then the protocol in
Figure 3 is a secure CRDT according to Definition 3.1 with baseline
leakage, i.e., it only reveals how many operations were carried out
and the size of inputs and outputs.

The proof is done in three hops. Hop 1 relies on the correctness
of Πreg to rely on an idealized structure for storing and present-
ing encrypted values; Hop 2 instead uses plaintext values in the

query(key, op; st):
Client:
Send query() to Server
Server:
cph←$ Πreg .query(op; st)
Send cph to Client
Client:
r ← Θ.Dec(key, cph)
Return r

update(key, op, v ; st):
Client:
cph←$ Θ.Enc(key, v)
Send update(cph) to Server
Server:
st← Πreg .update(op, cph; st)
Return st

setupC():

key←$ Θ.Gen(1λ )
Return key

setupS(id, N ):
st← Πreg .setupS(id, N )
Return st

prop(st, id):
Return Πreg .prop(st, id)

merge(up, st):
Return Πreg .merge(up, st)

Figure 3: Protocol of secure register from standard encryp-
tion scheme Θ and standard Register CRDT Πreg.
idealized structure; and Hop 3 replaces all encrypted operations
with dummy ciphertexts, which can be done given the IND-CPA
property of Θ. A full proof of security can be found in our technical
report [3].

Discussion. The cryptographic overhead of this security layer,
considering widely available hardware acceleration of modern pro-
cessors, is as minimal as one can expect to achieve: we require one
key generation step at the start of the protocol, one encryption on
update and one decryption on query.

We stress that this is only possible given that operations for
managing replica states do not rely on computations over the ac-
tual encrypted state. This suggests the potential of having highly
scalable secure CRDT solutions when the protocol for ensuring con-
sistency only relies on non-sensitive metadata (e.g., timestamps).

We can also further reduce the leakage of this CRDT by having
the client pad updates to the maximum length of the register value,
which is free if we are storing fixed length values.

4.2 Set CRDT
Set CRDTs present a slightly more complex problem, as internal op-
erations require the servers to compute over stored values. Standard
set CRDTs merge values by having the servers perform compar-
isons to maintain only unique elements. This suggests the need
for equality comparison, a functionality for which cryptography
presents multiple solutions. As such, our security layer will encrypt
set values upon update, decrypt values when queries are performed,
and replace (if necessary) server-side comparisons with equivalent
operations on encrypted data.

Concretely, we denote CRDT set to be a data structure enabling
update operations for adding (add,v) and removing (rem,v) ele-
ments to the set. This can then be queried using (cont,v), which
checks if v is in the set; and get, which retrieves the full set.

To demonstrate a feasible implementation, we instantiate our
comparison-enabling security layer with a deterministic encryption
scheme. This allows us to rely on any set CRDT in a black-box
manner, as our encoded value comparison is seamless. Observe
that this is for simplicity in presentation and not restrictive, as we
can freely choose other implementations that enable comparisons,
such as searchable encryption [4]. This extension entails replacing
instances of comparisonwithin the CRDTwith the respective secure
operations.

Our protocol is described in Figure 4, and is very similar to
the previous one. We rely on a black-box protocol of set CRDT
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query(key, op; st):
If op = (cont, v):
Client:
cph←$ Ω.Enc(key, v)
Send query(cph) to Server
Server:
r ← Πset .query(cont, cph; st)
Send r to Client

Else:
Client:
Send query() to Server
Server:
cph← Πset .query(op; st)
Send cph to Client
r ← Ω.Dec(key, cph)

Return r

update(key, op, v ; st):
Client:
cph←$ Ω.Enc(key, v)
Send update(cph) to Server
Server:
st← Πset .update(op, cph; st)
Return st

setupC():

key←$ Ω.Gen(1λ )
Return key

setupS(id, N ):
st← Πset .setupS(id, N )
Return st

prop(st, id):
Return Πset .prop(st, id)

merge(up, st):
Return Πset .merge(up, st)

Figure 4: Protocol of secure set from deterministic encryp-
tion scheme Ω and standard Set CRDT Πset.

Πset, with operations for update, query, prop and merge, and on
a deterministic encryption scheme Ω. The client generates and
maintains a symmetric key. update calls Ω.Enc to instead store the
ciphertext in Πreg. query either performs a contains operation, with
inputs op = cont and v , or retrieves the ciphertext from Πreg and
calls Ω.Dec to obtain the set’s full state.

Security. We argue that if Πset is a correct CRDT, and Ω is a
deterministic encryption scheme, then the protocol in Figure 3 is
a secure CRDT according to Definition 3.1 with baseline leakage
plus leakage of duplicate input values, allowing for the adversary to
know when a repeated value is processed in the update and query
operations.

The security reasoning is very similar to the one of the register:
confidentiality is ensured by the encryption scheme (with leakage
of duplicates), and correctness comes from the underlying CRDT.
A relevant nuance in the proof is that now replacing encryptions
with dummy values must be done accounting for duplicates. A full
proof can be found in our companion technical report [3].

Discussion. Similarly to the register, the cryptographic overhead
imposed in terms of performance is minimal. Again, this is only
possible with the assumption that operations do not rely on any
computation over the encrypted values other than equality compar-
ison. Albeit not being able to directly retrieve the plaintext values,
the leakage implies that rogue replicas have full knowledge of when
an element that already exists in the set is added, and of the re-
sults of all cont queries. It is possible to reduce this leakage to
standard indistinguishability security, however to achieve that we
must exclude all behaviors that require this equality comparison
– which has communication and computation tolls – or have an
implementation that relies on techniques for homomorphic equality
comparison – which cannot be done black-box, and will naturally
be less efficient than standard equality comparisons.

4.3 Counter CRDT
A counter CRDT is a numerical data structure that can be either
incremented or decremented by an arbitrary amount, at any server
on the network. The implementation of these data structures usually

involves maintaining two counters per replica, one for increments
and another for decrements. Update operations increment to the
respective replica counter. These are compared upon merge and
added upon query, to obtain the observed value.

For this secure CRDT protocol, we propose a transformation that
removes the need for comparing counter values upon merge. This
consists in the inclusion of a per-replica Lamport clock, stored in
plaintext since it is not sensitive data, to establish partial ordering
of events1. This allows us to restrict the necessary computations
on the encrypted counter to additions, which can be done over en-
crypted values if we instantiate our security layer with an additively
homomorphic scheme.

Compared to the previous black-box proposals, this protocol
requires some changes to the underlying CRDT. To argue that the
resulting CRDT does not deviate from the correct behavior of a
counter, we specify the concurrency semantics of our counter. Let
O denote the set of all update operations seen by the queried replica,
and i integer values:∑

{inc(i) | inc(i) ∈ O} −
∑
{dec(i) | dec(i) ∈ O}

These concurrency semantics can be instantiated in our functional-
ity syntax by defining correctctr(L) as:
• Get the last identifier idq and last operation in L. If that is
(·, read, ·, ·) return the baseline leakage ϵ (no feedback on
update).
• Construct setsC[id] as projections of (c,write, id, op,v) in L
for all id ∈ N .
• Sequentially, for every (·, set, idi , idj , c) ∈ L, copy all entries
(write, idk , op,v, c

′) in C[idi ] to C[idj ] such that c ′ < c , re-
move duplicates.
• Sum every (·,write, id, inc,v) ∈ C[idq ], subtract the sum of
all (·,write, id, dec,v) ∈ C[idq ] and produce it as output.

Here, correctctr is simply reconstructing and computing on the
local view of the replica at the time of the operation: i. collect all
update operations seen by each replica; ii. complete the view with
merges taken from previous snapshots; iii. sum all operations to
produce the result. In the appendix section, we will demonstrate
correctness of the counter CRDT based on this correctctr(L), which
we assume to adequately capture the concurrency semantics of
counters specified in [20].

Concretely, our protocol is an adaptation of the state-based CRDT
counter (Specification 7) in [24], generalised to allow for arbitrary
increments and decrements. Our only functional tweak is in the
behavior of merge, where we use a per-replica operation count
to establish freshness in updating the counter. Afterwards, given
that all replica-side operations on the counter are additions, we
can again overlay security using an additively homomorphic en-
cryption scheme ∆, encrypting inputs, decrypting outputs, and
allowing replicas to perform additions. Our protocol is detailed in
Figure 5, whereCp andCn respectively store the positive and nega-
tive increments observed in each replica, as well as the counter for
each increment (e.g., Cp [id].cph represents the encrypted positive
increment of replica id, while Cp [id].ts represents its counter).

1Considering our assumption that adversaries have full control over the network and
scheduling of operations, this approach reveals no additional information.

10



ICDCN ’21, January 5–8, 2021, Nara, Japan Manuel Barbosa, Bernardo Ferreira, João Marques, Bernardo Portela, and Nuno Preguiça

query(sk; st):
Client:
Send query() to Server
Server:
(Cp , Cn, ·, N , pk) ← st
cph1←$ ∆.Enc(pk, 0)
cph2←$ ∆.Enc(pk, 0)
For id ∈ N :
cph1 ← ∆.Add(cph1, (Cp [id].cph))
cph2 ← ∆.Add(cph2, (Cn [id].cph))
Send (cph1, cph2) to Client
Client:
r1 ← ∆.Dec(sk, cph1)
r2 ← ∆.Dec(sk, cph2)
Return r1 − r2

update(sk, op, v ; st):
Client:
cph←$ ∆.Enc(sk, v)
Send update(cph, op) to Server
Server:
(Cp , Cn, id, N , pk) ← st
If op = inc: i ← p
Else: i ← n
Ci [id].cph← ∆.Add(cph, Ci [id].cph)
Ci [id].ts← Ci [id].ts + 1
st← (Cp , Cn, id, N , pk)
Return st

setupC():
(pk, sk)←$ ∆.Gen()
Return (sk, pk)

setupS(pk, id, N ):
cph←$ ∆.Enc(pk, 0)
For k ∈ N :
Cp [k ] ← (cph, 0)
Cn [k ] ← (cph, 0)
st← (Cp , Cn, id, N , pk)
Return st

prop(st, id):
(Cp , Cn, ·, ·, ·) ← st
Return (Cp , Cn )

merge(up, st):
(Cp , Cn, id, N , pk) ← st
(C′p , C

′
n ) ← up

For id ∈ N :
If (C′p [id].ts) > (Cp [id].ts):
Cp [id] ← C′p [id]
If (C′n [id].ts) > (Cn [id].ts):
Cn [id] ← C′n [id]

Return (Cp , Cn, id, N , pk)

Figure 5: Secure Counter CRDT from additively homomor-
phic scheme ∆.

Security. We argue that, if ∆ is an IND-CPA additively homomor-
phic encryption scheme, then the protocol described in Figure 5 is
a secure CRDT according to Definition 3.1 with operation leakage,
i.e., it reveals if the client is performing an increment, decrement,
or query. A full proof can be found in our technical report [3].

Discussion. Our design explicitly reveals the operation being per-
formed, for the replica to know which structure will receive the
addition. Observe that we can reduce this leakage by having all
write operations produce two ciphertexts, one for increments and
one for decrements, where the client will simply encrypt 0 as the
operation not being performed. However, this will require addi-
tional client-side computation (encryption), as well as larger update
messages (both the ciphertexts must be sent).

4.4 Bounded Counter
As an extension to the counter CRDT, Shapiro et. al. [23] suggest
the value in enforcing numeric invariants over these distributed
datatypes (e.g., x ≥ K ) for enforcing application correctness. CRDT
counters enforcing such invariants are often designed following
concepts from the escrow transactional model [18], where the dif-
ference between the actual value of the counter and its upper or
lower bound is seen as a cumulative set of rights that enables said
operations. For example, a counter of value N with lower bound 0
can be seen as having N rights, which are consumed as the counter
is decremented, and created as the counter is incremented. These
CRDT counters are known as Bounded Counters, and can perform:
• value(), which returns the counter value.
• inc(v), which increments v to the value.
• dec(v), which decrements v to the value.
• rights(), which returns the local rights of the replica.
• tran(v, id), which transfers v rights from the target replica
to replica id.

All of these operations can fail, if the consequence of applying it
breaks the underlying invariant; e.g., if a replica has 3 rights to a
counter and is requested to transfer 5 to any other replica.

A natural implementation of the bounded counter is structurally
similar to the counter, as the CRDT has to keep track of how many
rights each replica has and how many it has sent/received. As such,
on top of using comparisons and additions, it also has the server
check the invariant. We can reduce the need for comparisons by
instead using per-replica Lamport clocks (similarly to the previ-
ous protocol), which leaves additions and invariant checks. The
concurrency semantics for the bounded counter are similar to the
previous counter, with an additional step for verifying the invariant.
We omit these for brevity.

Now observe that merges will never break the invariant, as each
individual replica never adds (or subtracts) more than what it has
the rights to. This means that all operations in which the invariant
must be checked involve interaction with the client, allowing these
to be off-loaded to the client. Given these transformations, the only
remaining computations on encrypted values are additions, and
again we can use an additively homomorphic encryption scheme.

Our transformation is similar to that of the counter. We build on
the protocol of [2] and perform two main functional changes: (i)we
use per-replica operation counters to establish freshness of updates
(same as before), and (ii) upon updates, we delegate to the client the
verification of the invariant. After this verification, the client sends
an encryption of either the operation value (in case of success),
or of a neutral element to the operation (in case of failure). This
allows replica-side processing of both successful and unsuccessful
operations without disclosing the result of invariant validation. The
techniques for adapting the protocol follow a very similar approach
as the secure counter, with an added step of straightforward client-
side invariant verification. A full description of the protocol can be
found in Figure 6.

Security. We argue that if ∆ is an IND-CPA additively homomor-
phic encryption scheme, our protocol is a secure bounded CRDT
counter according to Definition 3.1 with additional leakage of the
operation, and target replica for right transition. The security rea-
soning is similar to the one of the counter, but we need an additional
hop to show that concurrent validations ensure that the invariant is
never broken. A full proof can be found in our technical report [3].

Discussion.We can also reduce the leakage of both operations, but
at a much steeper cost than the previous design. Hiding queries
duplicates the size of replica-client messages, as the replica must
now prepare and send 4 ciphertexts (two for value queries, and
two for rights). Hiding updates is possible via the same strategy
as before, but if we do not want to reveal the replica receiving
the rights, the client must now prepare N + 1 encryptions instead
of 1, encrypting the neutral value for parts of the state that must
remain unchanged. The benefit is that we can now perform the
same update operation on the replica-side without knowing if what
occurred was an increment, decrement, or right transfer, and if the
latter, to which replica the rights were transferred to.

5 INTEGRATIONWITH ANTIDOTEDB
We implemented a prototype version of our secure CRDT protocols,
integrating them in AntidoteDB [1], a replicated NoSQL database
that uses CRDTs as the data model. AntidoteDB’s core is imple-
mented in Erlang, while there are clients in multiple programming
languages. As such, we adapted both an Erlang and Python clients
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query(M, sk, op; st):
Client:
Send query(op) to Server
Server:
(R, Tr , U , Tu , id, N , pk) ← st
If op = value:
cph1←$ Ω.Enc(pk, 0)
cph2←$ Ω.Enc(pk, 0)
For id′ ∈ N :
cph1 ← Ω.Add(cph1, R[id

′][id′])
cph2 ← Ω.Add(cph2, U [id

′]

Else:
cph1 ← R[id][id]
cph2 ← U [id])
For id′ ∈ N :
cph1 ← Ω.Add(cph1, R[id

′][id])
cph2 ← Ω.Add(cph2, R[id][id

′])

Send (cph1, cph2) to Client
Client:
r1 ← Ω.Dec(sk, cph1)
r2 ← Ω.Dec(sk, cph2)
If op = value: r = M + r1 − r2
Else: r = r1 − r2
Return r

setupC():
(pk, sk)←$ Ω.Gen()
Return (M, sk, pk)

setupS(pk, id, N ):
cph←$ Ω.Enc(pk, 0)
For k ∈ N :
For j ∈ N :
R[k ][j] ← cph; Tr [k ][j] ← 0
U [k ] ← cph; Tu [k ] ← 0
st← (R, Tr , U , Tu , id, N , pk)

prop(st, id):
(R, Tr , U , Tu , ·, ·, ·) ← st
Return (R, Tr , U , Tu )

update(M, pk, sk, op, id′, v ; st):
Client:
valid = T
Send update() to Server
Server:
(R, Tr , U , Tu , id, N , pk) ← st
c1 ← R[id][id]; c2 ← U [id]
For id∗ ∈ N :
cph1 ← Ω.Add(c1, R[id∗][id])
cph2 ← Ω.Add(c2, R[id][id∗])
Send (cph1, cph2) to Client
Client:
r1 ← Ω.Dec(sk, cph1)
r2 ← Ω.Dec(sk, cph2)
If op , inc ∧ (!inv(r1 − r2 + v)):
cph←$ Ω.Enc(pk, 0)
valid = F
Else: cph←$ Ω.Enc(pk, v)
Send (id′, cph) to Server
Server:
If op = inc:
R[id][id] ← Ω.Add(cph, R[id][id])
If op = dec:
U [id] ← Ω.Add(cph, U [id])
If op = tran:
R[id][id′] ← Ω.Add(cph, R[id][id′])
st← (R, Tr , U , Tu , id, N , pk)
Return (valid; st)

merge(up, st):
(R, Tr , U , Tu , id, N , pk) ← st
(R′, T ′r , U

′, T ′u ) ← up
For id1 ∈ N :
For id2 ∈ N :
If T ′r [id1][id2] > Tr [id1][id2]:
R[id1][id2] ← R′[id1][id2]
Tr [id1][id2] ← T ′r [id1][id2]

If T ′u [id1] > Tu [id1]:
U [id1] ← (U ′[id1]
Tu [id1] ← T ′u [id1]

Return (R, Tr , U , Tu , id, N , pk)

Figure 6: Bounded Counter from additively homomorphic
scheme Ω.
to integrate our secure CRDT operations, and modified the Erlang
core only when strictly necessary.

Concretely, for AntidoteDB’s Register and Set CRDTs opera-
tions, we extended the client to encrypt/decrypt data before storage.
Given that server-side operations are seamless over encrypted data,
no adaptation of the server-side Erlang core is necessary. For the
Counter and Bounded Counter CRDTs, it is necessary to modify
both clients, to ensure consistency of arithmetic over encoded data.
For the bounded counter, we further leveraged AntidoteDB’s trans-
actions to implement its logic, ensuring that the client maintains a
consistent view of the state between operations, and that no local
concurrent operation that can compromise invariant verification.

Regarding cryptographic computations, we used AES-OFB with
random IVs and a 128 bit key for standard encryption operations
on the Register, AES-OFB with fixed IVs (to ensure determinism)
and 128 bit key for the Set, and the Paillier cryptosystem with a
2048 bit key for both counters.

6 EXPERIMENTAL EVALUATION
This experimental evaluation section aims to assess the perfor-
mance and scalability overhead of our secure CRDT protocols,
when compared to their non-secure versions. We performed two
sets of experiments, micro-benchmarks that measure the latency
and throughput of the operations of the different CRDTs designed,
and macro-benchmarks that show how our secure version of An-
tidoteDB behaves with a realistic benchmark and in comparison
with its original plaintext version.
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Figure 7: Throughput/latency for the plaintext and secure
versions of the Register CRDT.

Our experiments were performed in a cluster with seven ma-
chines, where two acted as servers and the others executed multiple
clients in parallel. The server machines had an AMD EPYC 7281
16-core 2.1GHz CPU and 128GB of RAM each. Amongst the client
machines, three had the same CPU and RAM of the server, while
the other two had two Intel Xeon E5-2620 v2 6-core 2.1GHz CPU
each and 64GB of RAM. With this setup we were able to saturate
the servers with 128 clients in parallel. Communication between
machines was done through a one gigabit network.

6.1 Micro Experiments
To demonstrate the performance and scalability of our different
secure CRDTs, we ran a micro-benchmark with our Python client,
where clients execute operations in a closed loop for 2 minutes. For
each CRDT, we ran multiple experiments, increasing the number
of clients until the servers were saturated (from 8 to 128 clients).
The size of data objects stored in maps and register was 2500 bytes.
Results are presented in the form of latency × throughput plots,
where the x-axis represents the throughput of the servers (i.e., the
number of operations per second performed by the servers) and the
y-axis exhibits the average latency, as observed by the clients. The
successive dots in a line correspond to the results of experiments
with an increasing number of clients.
Register CRDT. Figure 7 compares AntidoteDB’s plaintext Reg-
ister CRDT and our secure version with a workload consisting of
50% reads and 50% writes. The results show that the two versions
exhibit a similar behaviour, although the secure version has an
overall higher latency and lower throughput. While the servers
are not saturated, the latency of the plaintext and secure CRDT is
similar, with around 7-8 milliseconds per operation respectively.

The servers start becoming saturated close to 2200 ops/s for the
secure CRDT and 2500 ops/s for the plaintext version. This can be
explained by the cryptographic expansion of the data in the secure
version, which entails a larger amount of data processed and stored
by the server. The small difference between the two suggests that
very little overhead is imposed, considering the secure version.
Set CRDT. Figure 8 shows the results for the secure set CRDT.
For these results we used a 50% gets, 35% inserts, and 15% deletes
benchmark. Again, results are very similar given the small adapta-
tions necessary for the secure version. Indeed, at some points the
secure set outperforms the plain version. This is justifiable due to
small variations at the saturation point of AntidoteDB’s servers,
and suggests the minimal overhead of the security layer.
Counter CRDT. Figure 9 shows the results obtained for the plain-
text and secure counters. For these tests we used 33% reads, 33%
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Figure 8: Throughput/latency for the plaintext and secure
versions of the Set CRDT.
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Figure 9: Throughput/latency for the plaintext and secure
versions of the Counter CRDT.
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Figure 10: Throughput/latency for the plaintext and secure
versions of the Bounded Counter CRDT.

increments, and 33% decrements. Naturally, the counter entails a
higher performance overhead than its Register and Set counterparts.
This is a consequence of relying on cryptographic schemes enabling
server-side arithmetic over encoded data, which are fundamentally
richer in functionality than the previous examples. Results for the
secure CRDT start at 127 ops/s and 57ms of latency, however la-
tency quickly increases without any growth in throughput. The
reason for this is that the server gets saturated quickly as it has to
perform operations over encoded data (we note that for registers
and sets, the servers only store the ciphered data, never executing
operations other than comparison over that data). The plaintext
version goes from 1250 to 3000 ops/s always with very small latency
(from 6 to 33 ms).
Bounded Counter CRDT. Figure 10 shows the results for the
plaintext and secure bounded counter. Results are very similar to
the ones of the secure counter, despite the additional step for invari-
ant preservation. Results for the secure bounded counter start with
100 ops/s and 50ms latency, then they reach a throughput cap at
220 ops/s, at which point latency starts to increase at a very steep
rate. The plaintext bounded counter scales well up to 1700 ops/s.

Discussion. Our experimental results support a natural and im-
portant trade-off for designing secure CRDT solutions: the cost of
security is proportional to the requirements imposed to the cryp-
tographic scheme. For Register and Set CRDTs, we were able to
rely on standard cryptographic techniques, as little interaction was
necessary with the encrypted data. On the other hand, if we re-
quire server-side computations over stored data, then richer crypto-
graphic techniques are necessary, which impose different overheads
in scalability.

Comparing client/server overheads, there are several aspects
that should be noted. For registers and sets, clients do all crypto-
graphic operations and the only overhead for servers come from
the cryptographic expansion of stored data. Thus, the throughput
achieved by systems storing encrypted data and plaintext data is
similar, with only a small decrease of throughput on the former.
For counters and bounded counters, the server has to execute oper-
ations over encrypted data (specifically, modular multiplications
of large numbers, instead of normal additions), which imposes a
non-negligible overhead. This has direct impact in the maximum
throughput that a system with encrypted data can achieve.

6.2 Macro Experiments
To demonstrate the performance and scalability of our secure CRDTs
when supporting real-world applications, we performed additional
experiments with FMKe [27], a medical benchmark based on the
Danish National Joint Medicine Card and specifically designed for
NoSQL databases. FMKe populates AntidoteDB with over one mil-
lion patients records, five thousand prescriptions, ten thousand
medical staff, three hundred pharmacies and fifty healthcare fa-
cilities, being that the majority of the operations are carried over
register and set CRDTs. FMKe includes different update and get
operations over these records, including create-prescription, get-
prescription-medication, among others. As such, this will rely on
our CRDT implementations for secure register and secure set. To
conduct these experiments we used our Erlang client, as FMKe was
developed in Erlang, and the same experimental test-bench that was
used in the micro-benchmarks, measuring latency and throughput
with increasing number of clients. The benchmark was executed
for 600 seconds, and unless stated otherwise, results presented next
represent average values.
Throughput. Figure 11 shows how AntidoteDB throughput be-
haves as we increase the number of clients, comparing both our
secure AntidoteDB and its original plaintext version.

On one hand, results obtained reveal that throughput increases
steadily up to 32 clients in both secure and plaintext versions, de-
creasing as we add more clients. This suggests a breaking point
at which the server saturates (around 32 clients), as adding more
clients actually has a negative impact on the number of operations
processed per second. On the other hand, results also show that
the security overhead imposed by our CRDTs is minimal (around
350 ops/s) and that it increases/decreases in a similar trend as the
plaintext version, suggesting that adding security mechanisms does
not impose additional restrictions on system scalability.
Latency. To further understand the practicality of relying on secure
CRDTs in the development of real-world systems, we now increase
the granularity of our analysis to operation latency. Results are
presented in Table 1.
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Figure 11: Throughput for the plaintext and secure versions
of AntidoteDB when processing the FMKe benchmark.

All get operations exhibit similar behavior, consisting in simple
retrieval of values from the database, with further value decryption
in the secure version. We can observe that adding security requires
an overhead of 1.62ms to 4.28ms over its plaintext counterpart,
corresponding to an average latency increase of 24% to 51%. In
contrast, Update Prescription and Update Prescription Medication
are write operations and require the storage (and encryption in the
secure version) of values in the database. This also shows a low
impact of roughly 2.7ms when compared to the plaintext version,
corresponding to an average latency increase of roughly 20%. Create
prescription is the most computationally intensive operation of the
group, as it requires multiple reads and writes from the dataset
to construct the prescription data structure, which in its secure
instantiation also require multiple calls to the cryptographic library.
Here we can observe an average latency increase of roughly 12.7ms,
corresponding to a 46% increase. A thorough description of each
operation and associated pseudo-code can be found in [27].

Table 1 also presents values corresponding to percentiles 95 and
99. The increased latency (in both versions) in comparison to aver-
age values is due to the amount of data accessed by operations - for
instance, the amount of data returned by the Get Patient operation
depends on how many prescriptions the patient has. This means
that the values shown are not outliers but a natural consequence of
how FMKe data is distributed. Moreover, the differences between
plaintext and secure versions of the system are reduced when con-
sidering these percentiles. This is observable in all operations, with
get operations being reduced to 9%-30% increases in P95 and 6%-
9% in P99; write operations to roughly 7% in P95 and 6% in P99,
and create prescription having an increase of roughly 11% in both
P95 and P99. These results demonstrate that security mechanisms
do not provoke additional outliers and thus are not expected to
produce unexpected system delays.
Stability. Another important issue regarding the overhead of se-
curity mechanisms is related to system stability. Specifically, we
are interested in understanding the performance of our security
mechanisms as our system develops. Figure 12 presents the av-
erage latency variation for Create Prescription, Get Patient and
Update Prescription operations. Similar values were observed in
other operations for respective get and update processes, which
we omit for succinctness. In both plain and secure system modes,
latency variation is relatively small. We can also highlight that
neither version has any noticeable deterioration as the benchmark
progresses, suggesting that using cryptography to enhance secu-
rity is not imposing an increasing overhead on the system. This
close margin between plaintext and secure version of operations

Average P95 P99

Get Patient Plain 8.22 61.10 67.00
Secure 10.25 66.81 70.80

Get Pharmacy Presc. Plain 8.21 61.63 67.03
Secure 12.29 69.22 73.37

Get Prescription Plain 6.94 48.17 65.61
Secure 8.72 63.84 69.72

Get Presc. Medication Plain 7.01 59.24 66.03
Secure 8.63 65.35 69.99

Get Processed Presc. Plain 8.21 61.50 67.00
Secure 12.44 69.30 73.21

Get Staff Presc. Plain 8.16 61.33 66.98
Secure 10.49 67.16 71.32

Update Prescription Plain 13.65 67.45 71.98
Secure 16.39 72.50 76.47

Update Presc. Med. Plain 13.46 67.23 71.98
Secure 16.30 72.59 76.51

Create Prescription Plain 27.43 75.75 79.55
Secure 40.14 84.20 89.81

Table 1: Operation latency, considering average and per-
centiles 95 and 99. Values are in milliseconds.
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Figure 12: Average latency variation for the FMKe bench-
mark. Elapsed time is in seconds, Latency is inmilliseconds.

is clearly observable in Get Patient, with baseline small latency
values, and to a lesser extent in Update Prescription, where the
variation in measurements sometimes presents the processing of
requests in the secure system as having lower latency than those
of the plaintext system.
Discussion. Our macro experiments present the feasibility of our
design for developing privacy-critical applications relying on se-
cure CRDTs. The latency overhead can be directly mapped to the
cost of the underlying cryptographic operations, as exemplified in
the micro experiments, which is a standard overhead for enhancing
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real-world systems with confidentiality guarantees. Furthermore,
we have shown that, when applied to a benchmark emulating a real-
world application, the cryptographic overhead on throughput and
latency is similar to the cost of enforcing standard security guar-
antees in key-value databases: encrypting and decrypting values
when writing and reading from the database, respectively. These ex-
periments also suggest that security measures impose no additional
impact on the system, as the benchmark maintained consistent
performance values throughout its lifecycle in both settings.

7 RELATEDWORK
CRDTs were originally designed for decentralized distributed sys-
tems without any security concerns [25]. In this work we propose
the first formal security treatment of CRDTs, nonetheless a few pre-
vious works have studied how to protect distributed applications
that leverage CRDTs for synchronization. Snapdoc [14] studied
how to offer collaborative document edition with authenticated
snapshots and history-privacy, where a new participant joining
a document being edited can have authentication guarantees re-
garding the consistency of the document while simultaneously
preserving the privacy of the document’s edition history. Snapdoc
uses CRDTs to ensure concurrent edits can be merged, however
it is not a central component in their security proposal. Shoker
et al. [26], in a work in progress report, presents an approach that
complements our work, focused in detecting and tolerating mali-
cious participants in CRDT-based systems, by allowing replicas to
perform operations normally and then running a Byzantine fault
tolerance algorithm in the background.

CRDT security is also related with outsourcing of computations
and multiparty computation [16], in the sense that clients are col-
laboratively performing a computation over a shared database state.
Cachin et al. [7] proposed Authenticated Data Types (ADTs) for
authenticated data outsourcing and computation. However their
setting is restricted to a single client performing operations and
single server holding the data.

Secure data storage has also been achieved through techniques
other than CRDTs. However such systems typically require synchro-
nization to detect adversarial behaviour. DepSky [5] uses Byzantine
fault tolerance to ensure that replicas converge, and traditional
encryption to preserve data privacy, however it does not support
data computation. CryptDB [19] leverages some of the techniques
we also explore in this work, including deterministic encryption
and partially homomorphic encryption, however it only considers
a single server. SPORC [11] supports secure group collaboration
and data storage, however it only supports multiple servers in a
shared-nothing architecture, where servers are independent.

8 CONCLUSION
To the best of our knowledge, this work presents the first set of
cryptographically validated protocols for secure CRDT solutions.
Our results show that one can instrument correct CRDT protocols
with a layer of security mechanisms to achieve secure CRDT so-
lutions, provided that this encoding does not break the functional
part of the CRDT necessary for operations such as state merging.

Experimental validation suggests the performance overhead for
secure CRDT solutions is proportional to the underlying security
mechanism. When considering a benchmark for real-world CRDT
applications we can observe that the security cost is relatively low,

with an average latency increase of 37.5% and 20% for get and put
operations, and a throughput reduction of 5%. These results suggest
the feasibility of considering secure CRDT solutions for applications
managing sensitive data.
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