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Abstract 

In distributed systems it is ofien necessary to provide co- 
ordination among the niultiple concurrent processes. Quo- 
rum systems provide a decentralized approach to provide 
such coordination that is resilient to node and communi- 
cation link failures. Quorum systems are highly available 
and may be used to balance the load among the elements 
of the system. In this paper; we propose a modijication to 
the hierarchical grid quorum system that leads to a .rmaller 
quorum size, better availability and load. We also propose 
a new hierarchical quorum construction based on the orga- 
nization of elements in a triangular shape that presents bet- 
ter average quorum size, availability and load than other 
highly-available systems with almost optimal load. 

1. Introduction 

In a distributed system it  is often necessary to achieve 
coordination among multiple concurrent processes. In the 
past, numerous solutions have been proposed to this prob- 
lem (for example, see [2] for a survey on mutual exclusion 
algorithms). Quorum systems have been used as a basic 
tool to provide such coordination in different situations. For 
example, quorum systems have been used in data replica- 
tion protocols [6,7], location management algorithms [ 171, 
masking Byzantine failures [ 121, etc. 

A quorum system is defined over an universe of N dif- 
ferent processes (usually located on N different nodes) that 
can communicate by message exchange. A quorum system 
is a collection of subsets of processes that satisfy the inter- 
section property, i.e., every pair of subsets has a nonempty 
intersection. Each subset is called a quorum. 

The outline of a protocol based on a quorum system is 
the following. In order to enter a critical section to (execute 

'This work was partially supponed by FCT Foundation, project number 
33924199. 

some action, the user requests permission to a quorum OF 

processes. If all the processes give him the requested per- 
mission, the user has a lock and he may enter the critical 
section. After leaving the critical section the user should re.- 
lease his lock (from the permission-granting quorum). The 
intersection property guarantees that no two users will be 
granted permission to enter the critical section simultane- 
ously (as long as each process only grants permission to a 
user after the previous user has released his lock). Note 
that this simplified outline is prone to deadlocks and a mor!: 
elaborate algorithm must be devised (e.g. [6]). 

Quorum systems are attractive because they provide ii 

decentralized approach that tolerates failures, i.e., opera- 
tion is still possible even in the presence of server crashes 
and/or network partitions (as quantified by their availability 
[ 151). For example, several proposed quorum systems (e.g. 
[S, 16, 91) present very high availability that tends to 1 very 
quickly as more processes are added to the system. More- 
over, quorum systems are also interesting for very large- 
scale systems, because it is possible to make the size of 
quorums increase much slower than the system size. For 
example, in the grid protocol [3] the quorum size is approx- 
imately 2 f i  (e.g., in  a system' with 100 nodes the quorum 
size is 20). Therefore, i t  is possible to provide very high 
availability with a reasonable communication cost. Ad- 
ditionally, quorum systems can be used to execute load- 
balancing [ 181: as only a small fraction of servers receive 
each request, if the quorum selection strategy is properly 
chosen, each server will have to handle only a small frac- 
tion of requests. 

In [9] the authors have proposed a quorum system that 
presents asymptotically optimal availability (the availabil- 
ity tends to 1 as more elements are added to the system). 
This system is based on a hierarchical grid organization, 
and quorums are obtained recursively in the defined orga- 
nization. In this paper we propose a modification to the 
original system that decreases the average quorum size and 
improves availability. The load of the modified algorithm i.s 
also lower. 
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We also propose a new quorum system based on the hi- 
erarchical organization of elements in a triangular shape. 
This new algorithms presents constant quorum size that is 
smaller than the average quorum size in highly available 
systems with O ( l / f i )  load. The load of the system - 
&/fi is almost optimal and it  is better than that presented 
by previously proposed highly available quorum systems. 
The availability also proved to be better in our analysis. 

The remainder of this paper is organized as follows: sec- 
tion 2 discusses related work; section 3 presents basic def- 
initions and results already established about quorum sys- 
tems; in section 4 we propose a modification to the hierar- 
chical grid quorum system; in section 5 we present the new 
hierarchical triangle quorum system; in section 6 we ana- 
lyze the new construction and section 7 concludes the paper 
with some final remarks. 

2. Related work 

The first protocols using quorum systems use voting to 
define the quorums (e.g [ 5 ] )  - a quorum is any set of ele- 
ments with a combined number of votes larger than half of 
the total number of votes in the system. When all elements 
have 1 vote we have the majority system. The majority sys- 
tem presents the best possible availability when the individ- 
ual failure probability of each element (that is considered 
equal to all elements) is p < 0.5 [15], but it requires quo- 
rums of size ? = O(n) .  To reduce the size of the quo- 
rums, the hierarchical quorum system (HQS) [8] is based on 
a n-ary tree construction where elements are the leaves. A 
quorum is formed recursively from the root node, obtaining 
a quorum in a majority of sub-trees. The quorum size in this 
system is O(n0.63).  An alternative process that also uses a 
tree construction has been proposed in [ 13 - in this system 
the quorums have different sizes. These systems present 
good availability, but their load is worse than the best pos- 
sible (e.g. O(TX-'.~') for the HQS against O ( l / f i )  for the 
best load-balancing systems [ 141). 

An alternative method to reduce the size of quorums 
have been proposed in [I31 using finite projective planes 
- this method uses quorums of size fi. However, i t  is only 
known how to construct this system in a small number of 
situations. Alternative ways to easily produce quorums of 
size O(fi) have been proposed based on the organization 
of elements in grids [3] or triangles [ 1 I]. The availability 
of these systems is poor [ 151 - it asymptotically tends to 0 
as more elements are added to the system. An alternative 
triangle-based quorum system [ 1.51 does not present such 
bad availability. However the failure probability does not 
vanish as more elements are added (F, > p ; )  [15]. A sim- 
ilar analysis can be applied to the diamond-based quorum 
system proposed in [4]. 

In [9] the authors have used a hierarchical organization 
to propose a system that presents asymptotically good avail- 
ability (that tends to 1 as more elements are added) and al- 
most optimal load (2/&). In [ 141 the authors present sev- 
eral quorum systems that have near optimal load and high 
availability with O(fi) quorum sizes. In [I61 the authors 
present the CWlog quorum system that has small quorums 
(of size O(1gn)) and optimal availability and load among 
systems with such small quorum size. 

Recently, quorum systems have been used to mask 
Byzantine failures [ 121. As the proposed Byzantine quo- 
rum systems extend ideas already used in normal quorum 
systems, we believe that the ideas proposed in this paper 
can also be adapted and used in Byzantine quorum systems. 

3. Preliminaries 

In this section we present some basic definitions, termi- 
nology and results used later on (we follow closely [ 141). 

Definition 3.1 A quoritni system S = {SI, . . . , S,} is a 
collection of subsets S, C U of a jinite universe U that 
satisjies the intersection properv: P n R # 8, VP, R E S. 
The subsets Si E S are called quorums. A coterie is a 
quorum system S, such that there are no P, R E S ,  P c R. 

In the study of the quality of a quorum system it  is usual 
to use three metrics: the quorum size, the failure probability 
and the load of the system. The first one measures the num- 
ber of nodes that need to be contacted to form a quorum. 
The second one measures the probability that all quorums 
are unavailable, i.e., that the system is unusable. The third 
one measures the frequency of access of each element of the 
system, i.e., the percentage of requests it  has to process. 

In the study of system availability, we use a simple prob- 
abilistic model of the failures (as usual in quorum systems 
literature). We assume that the elements (processes) of the 
system only fail by crashing and that all the failures are 
transient. The crashes are independent and all processes 
have the same crash probability equal to p (we use q to de- 
note the survival probability). The failure probability of a 
quorum system (also called crash probability) is defined as 
follows. 

Definition 3.2 For every quorum S E S let ES be the event 
that S is hit, i.e., at least one element i E S has failed. The 
failure probabiliq of a quorum system S is the probability 
that all quorum are hit, i.e., F p ( S )  = P p ( n R E S E R ) .  

An alternative way to determine the failure probability 
of a quorum system is to use the transversals of S.  
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Proposition 3.1 ([15]) A set T is a size-i transversal of a 
quorum system S iflTl = i andfor every R E S ,  T f lR  # 8. 
Let a: be the nuniber of size-i transversal of S,  the failure 
probability of S is F,(S) = Cy=o afp iqnPi  

The next propositions establish the best possible failure 
probability that a quorum system can present (and which 
quorum systems present such values). 

Proposition 3.2 ([15]) When 0 5 p < i, the coterie that 
presents best failure probability is the majority quorum sys- 
tem. When < p 5 1, the coterie that presents bes,t failure 
probability is the singleton quorum system. 

From these results follows that, when p > 0.5, it is 
impossible to improve the availability introducing new el- 
ements in the singleton quorum system. Due to this reason, 
in this paper we restrict the failure probability analysis to 
the cases wherep 5 0.5. The load is also an important mea- 
sure because it  estimates the quality of the quorum system 
for performing load-balancing. For example, if the load is 
0.2 it means that the busiest process only receives 20% of all 
requests (if the optimal quorum selection strategy is used). 
Therefore, either the system is able to receive more requests 
or the processes are able to perform other unrelated tasks. 

Definition 3.3 Let S = { SI, . . . , S,} be a quorum system. 
w E [0,1]" is a strategy for S if i t  is a probability distribu- 
tion over the quorums Si E S, i.e., wi = 1. 

In other words, a strategy gives the probability that a 
quorum Sj will be picked when the system is accessed. A 
given strategy induces a probability that the element i is ac- 
cessed, which we call load on i. The system load is the load 
of the busiest element induced by the best possible strategy. 

Definition 3.4 Let w be a strategy for a quorum system S. 
For an element i E U ,  the load induced by w on i is 1, (i) = csj3i wj. The load induced by w on a quorum system S 
is C,(S) = maxiE,, 1, ( i ) .  The system load on a quorum 
system S is C(S) = min,{L,(S)} where the minirnum is 
taken over all strategies w. 

From the above definition, it is obvious that it is impor- 
tant to determine not only the load of a quorum system, but 
also the optimal strategy that induces that load (or at least, 
a nearly optimal one). Several results are known about the 
load of a quorum system, 

Proposition 3.3 ([14]) Let c ( S )  be the cardinality of the 
smallest quorum in S over an universe U of n elements. For 
every quorum system S, C(S) 2 % and C(S) 2: 1. 
Therefore it is immediate to establish that C(S) 2 d-. 

V Z  

4s) 

Figure 1. A 3-level hierarchical grid with 16 
processes (level 2, not depicted, contains a 
single logical object). A read-write quorum 
is illustrated relying on row-covers (vertical 
lines) and full-lines (horizontal lines). 

The previous results establish a lower bound on the load 
of any quorum system. Moreover, they also establish that 
this lower bound can only be reached in quorum systems 
with the smallest quorum size equal to fi. 

4. Hierarchical T-Grid 

In this section we will briefly present the hierarchical 
grid algorithm proposed in [SI and describe a small mod- 
ification that improves the original algorithm in respect t o  
failure probability, quorum size and load. We present some 
results that show this improvement. 

4.1. Hierarchical grid [9] 

A hierarchical grid (h-grid) organizes a number of pro- 
cesses into a multi-level hierarchy as follows. Processes are 
at level 0 of the hierarchy and logical objects are defined at 
higher levels. A logical object at level i ( i > 0) is defined 
by a grid of m, x n, objects at level i-I (figure 1 depicts a 
two-level h-grid with 16 processes - note that nothing pre- 
vents two logical objects, in the same or in a different level, 
from being defined by grids of different sizes). 

'The h-grid protocol has been proposed to manage repli- 
cated data. Three operations are defined: read, blind write 
and readlwrite. Concurrent reads are allowed and concur- 
rent blind writes are also allowed. However, concurrenl 
reads and blind writes are not possible. Exclusive access 
to data is provided by the read/write operation. To coor- 
dinate concurrent accesses to replicated data, the authors 
propose the creation of three types of quorums to manage 
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the respective operations: read quorums, write quorums and 
read/write quorums. 

A read quorum is formed, as follows, obtaining a row- 
cover in the logical object on the top of the hierarchy. A 
row-cover in a level i object is formed (recursively) obtain- 
ing a row-cover in  at least one object of every row of the 
corresponding level i-1 grid. A row-cover in a level 0 ob- 
ject is defined as the self-object. In the example of figure 1, 
the top-leftmost element of level 1 has formed a row-cover 
using the top-leftmost and bottom-rightmost elements of the 
corresponding level 0 grid. 

A write quorum is formed, as follows, obtaining a full- 
line in the logical object on the top of the hierarchy. A full- 
line in a level i object is formed (recursively) obtaining a 
full-line in all objects of at least one row of the correspond- 
ing level i-1 grid. A full-line in a level 0 object is defined 
as the self-object. In the example of figure 1, the bottom- 
leftmost element of level 1 has formed a full-line using the 
elements in  the top row of the corresponding level 0 grid. 

A read-write quorum in a h-grid is formed through the 
union of a read and a write quorum. To guarantee the cor- 
rectness of the defined operations, i t  is necessary to show 
that any pair of read and write quorums intersect (as a read- 
write quorum contains both a read and a write quorum, it  
will necessarily intersect any other read, write or read/write 
quorum). The read and the write quorums are obtained re- 
spectively by a row-cover and a full line. As the row-cover 
and the full-line are initially defined in the same logical ob- 
ject, it is obvious (from definitions) that in the next level a 
common object is used to obtain both the row-cover and the 
full-line. Using the same argument recursively, i t  is obvi- 
ous that a common level 0 object integrates both sets (for a 
formal proof see [9]). 

4.2. Hierarchical T-grid 

The h-grid protocol (previously described) may be used 
to provide mutual exclusion using the read-write operation 
(and the correspondent read-write quorums - called simply 
as quorums where no confusion may arise). However, if 
mutual exclusion is the only operation necessary, the orig- 
inal algorithm imposes the integration of unnecessary ele- 
ments in each quorum. From the informal correctness proof 
it  is obvious that any two read-write quorums have an inter- 
section of, at least, two elements - the read quorum of each 
read-write quorum intersects the write quorum of the other 
read-write quorum. 

The hierarchical T-grid algorithm (h-T-grid) that we pro- 
pose in this section removes unnecessary elements using an 
idea already proposed for the grid quorum system - a grid 
quorum can be obtained through the intersection of a full- 
line and one element from each row below the full line, thus 

removing the need to integrate a full row cover as proposed 
in [3].  It is easy to see that this new grid algorithm is correct 
because, for every pair of quorums, the partial row-cover of 
the quorum based on the higher full-line necessarily con- 
tains an element in the full-line used by the other quorum. 

To define the h-T-grid quorum we start defining the 
global position of every level 0 object. In a hierarchical grid 
with every logical object defined as grids with the same di- 
mensions, the global position is easily obtained organizing 
all level 0 objects in a large grid concatenating all grids of 
level 0 objects (as depicted in the level 0 of figure 1 )  - the 
global position of an element is its position in the grid (be- 
ing (1,  l )  the position of the top-leftmost element). When 
grid dimensions are different it is necessary to guarantee 
that level 0 global positions reflect the relative positions of 
all parent logical objects. 

Definition 4.1 The global position of a level 0 object, obj, 
in a hierarchical grid with i levels is deJned as a pair 
 x xi-^, xi-2,. . . ,201, [yi- l  yi-2,. . . ,yo]) where ( Z O ]  yo) 
is the position of obj in the level 0 grid where it is con- 
tained and (xn, yn), 0 < n < i - 1, is the position of the nth 
parent of obj in the level n grid of logical objects where it 
is contained. 

Definition 4.2 An object with global position 
( [xf-”_, . . . , x,”], [ y k  . . . , y t ] )  is above an object 
with global position ([xfp1, . . . ,z{], [YE,, . . . , yf]) Ifs 
3 0 < j < i - 1 : 2 ~ > 2 ~ A ( V n > j , x ~ = 2 ~ ) .  A 
level 0 object A’ is a topmost object in a set S of level 
0 objects iff there is no object Y E S : YaboveX (note 
that there may exist several topmost objects in a given set, 
but for any two topmost elements TI Tl of a given set, 
VP, PaboveT1 <=> PaboveT2). 

A partial row-cover in respect to a given set S of level 
0 objects is formed removing from a row-cover all objects 
that are above a topmost object of S.  A hierarchical T-grid 
quorum is formed by the union of a full-line (defined as in 
the hierarchical grid) and a partial row-cover in respect to 
that full-line (both obtained from the logical object on the 
top of the hierarchy). 

To prove the correctness of the h-T-grid quorums we 
must prove that a row-cover in respect to a given full-line 
has a non-empty intersection with any other full-line whose 
elements are not above a topmost object in the first full-line. 

Theorem 4.1 Given a full-line L, any partial row-cover in 
respect to L has a non-empty intersection with any other 
full-line M that has no element above any topniost ele- 
ment of L, i.e., for  every topmost element of L, Q ,  V P  E 
MI T(PaboveQ). 
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Proof: Let's assume that that the partial row-cover has an 
empty intersection with the full-line M .  We know that any 
full row-cover has a non-empty intersection with any full- 
line [9]. As a partial row-cover in respect to a set L is 
obtained from a row-cover removing all elements above a 
topmost of L,  the intersection elements must be in the set 
of removed elements. However, we also know that the full- 
line M has no element above any topmost element of L thus 
leading to a contradiction. Therefore the partial row-cover 
should have a non-empty intersection with M .  

Lemma 4.1 Any two hierarchical T-grid quorunis inter- 
sect. 

Proof: Let the first quorum be obtained as the full-line L 
and a partial row-cover relative to L,  and the second quorum 
as the full-line hl and a partial row-cover relative to M. 
Let's assume (without loss of generality) that the full-line 
M has no element above any topmost element of L. From 
theorem 4.1 it  is known that the partial row-cover relative to 
L intersects the full-line M. Therefore, any two hierarchical 
T-grid quorums have a non-empty intersection. 

It is interesting to note that any h-T-grid quorum still in- 
tersects with any full row-cover. Therefore it  is still possible 
to manage replicated data using the read quorum defined in 
the h-grid and the quorum defined in the h-T-grid to manage 
the read and the exclusive write operations, respectively (if 
only these operations are necessary). 

4.3. Analysis 

Failure probability: In [9] the authors have already 
proved that the availability of the h-grid quorum system in- 
creases asymptotically as more levels are added to it (for all 
p < p* < 0.5, with the actual value ofp'  dependent on the 
dimensions of the sub-grids). It is obvious that the avail- 
ability of the h-T-grid quorum system can not be worse than 
that of the h-grid. Therefore, it also increases asymptoti- 
cally (and failure probability decreases, Fp (h-T-grid) 4 0). 

To analyze the improvement of the h-T-grid over the tra- 
ditional h-grid, we have determined the failure probability 
of several systems with different number of nodes. In table 
1 we present the results obtained for systems with 9, 16 and 
25 nodes organized in square grids (logical grids have size 
2 x 2 whenever it  is possible). From the results obtained it is 
possible to observe that in these configurations, the h-T-grid 
quorum system improves the failure probability in approx- 
imately 7.5% - 10%. An interesting observation was that 
the improvement of the h-T-grid quorum system is much 
bigger when the number of lines is larger than the num- 
ber of columns - for example, for a system with 24 nodes 

organized in a grid of 4 columns and 6 lines, the failure 
probability of the h-T-grid system is less than 1/3 of the 
corresponding h-grid system and it  is even better than the 
failure probability of the square grid with 25 nodes (with- 
out incurring in bigger quorum sizes). Moreover, if was 
possible to observe that although the h-T-grid presents an 
even bigger improvement from the results obtained in the 
h-grid, organizing the elements in a 3 x 8 grid leads to a 
worse failure probability than using the 4 x 6 grid. For sys- 
tems with approximately 9 and 16 elements, similar results 
have been obtained. These results seem to indicate that the 
h-T-.grid quorum system presents the best failure probabil- 
ity results with slightly rectangular grids (with more lines 
than columns) and that these results are much better than 
those presented by the best h-grid with similar number of 
elements. 

Load and quorum size: In the h-grid quorum system, 
all quorums have the same size approximately equal to 
2di- I.. Using the results of proposition 3.3 we can obtain 
that L(h-grid) 2 2/&. As all quorums have the same size, 
i t  is obviolis that each request induces in every element of 
the system a load approximately equal to 2 6 / 7 2  = 2/&. 
If i t  is possible to determine a strategy that induces the same 
load in every element, L(h-grid) M 2/f i .  A simple strat- 
egy that achieves that property is to randomly select in each 
level the elements that are used to form the h-grid quorum, 
thus imposing equal responsibility to all elements. 

In the h-T-grid quorum system the quorum size is vari- 
able - ,./E 5 ]quorum1 5 2 6  - 1. The load induced in an 
element is the sum of the load induced when the element is 
part of a full-line and when the element is part of a partial 
row-cover. In the h-T-grid, the elements in the higher rows 
will be part of partial row-cover less frequently than those in 
the lower rows. Therefore, to distribute uniformly the load 
by all elements it is necessary to select more frequently quo- 
rums based on higher rows. Therefore, using such strategy, 
the average size of the selected quorums will be bigger that 
fi+Z&i-I 

begreaterthan fi'ifl-l M A. 
The optimal strategy to minimize the load is to form quo- 

rums based on full-lines with all elements in the same line 
(and partial row-covers randomly selected). Then it  is easy 
to calculate the probability that should be used to select each 
row as the base for a quorum - for example, for a square grid 
with 16 elements we would get an average quorum size of 
5.8 elements and a load of 36.5% (against 5.5 and 34.375% 
from the. lower bounds estimated before). However, this 
strategy does not use all quorums defined in the system. A 
simple modification to this strategy that uses all quorums is 
the following: when selecting the fragments that compose 
a full-line based on a given line, introduce a (small) proba- 
bility to use elements from a lower line. Using such a strat- 

--_ M z f i  and consequently the load induced will 
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egy, we have obtained worse results, as expected - for the 
same square grid, the average quorum size was 5.9 and the 
load 41%. In real situations, the strategy to be used should 
be adapted taking into consideration the elements that are 
failed (as it  should also be done in h-grid). 

5. Hierarchical Triangle 

In the hierarchical triangle quorum system (h-triang) the 
processes are organized in a triangle shape with i rows 
where the i th row has i elements. This triangle is hierar- 
chically organized in levels using the following recursive 
procedure. In the level m, a triangle composed of j rows 
is divided in two sub-triangles of level m+l and a sub-grid. 
The sub-triangle 1 is composed by the top L j / 2 ]  rows of 
the level m triangle. The sub-grid is composed by the first 
L j / 2 ]  elements of rows Lj/2J + 1 to j .  The sub-triangle 2 is 
composed by the remaining elements of the original level n7 
triangle (forming a triangle with j - Lj/2J rows). Triangles 
with a single line are not divided. In figure 2 we present the 
example of the logical division of a triangle with 5 rows. 
The original triangle that includes all the elements of the 
system defines a level 0 triangle. 

With this organization, a h-triang quorum is formed 
obtaining a quorum in the triangle of level 0. A quorum in 
the triangle of level nz is defined as follows: 

If the triangle has a single line, the quorum is com- 
posed by the element in the line. 

If the triangle has more than one line, a quorum can be 
obtained by the following three methods. Let TI and 
l'l be the sub-triangles 1 and 2 of level nz+l and G be 
the sub-grid (all defined as explained before). 

1. If A is a quorum in TI and B is a quorum in T . ,  
,4 U B is a quorum in the triangle of level ni. 

2. If -4 is a quorum in TI and B is a row-cover in G 
(as defined in the h-grid - see section 4. l ) ,  ..I U B 
is a quorum in the triangle of level n7. 

3. If A'is a quorum in l'2 and B is a full-line in G 
(as defined in the h-grid - see section 4.1 ), -4 U B 
is a quorum in the triangle of level ni. 

To proof the correctness of the h-triang quorum system 
it  is necessary to prove that any two quorums intersect. 

Theorem 5.1 Any two qiiorunis de$ned in the hierarchicul 
triangle qiioriini system intersect. 

Proof (By induction on the number of lines) For a triangle 
with a single line, there is only one quorum that contains 
the element in  the line. For a triangle of level m with j > 1 
rows, several cases must be considered: 

sub-triangle 1 k p& ub-triangle 2 

0000 
loplo 0 o\ 

sub-grid 

Figure 2. A triangle with 5 rows (1 5 processes) 
divided in two sub-triangles and a sub-grid 
(as defined in the hierarchical triangle quo- 
rum system). 

Two quorums defined using the same method ob- 
viously include quorums defined in the same sub- 
triangle of level ni+l with i < j rows. By hypothesis, 
these quorums intersect. 

A quorum defined using method 1 and a quorum de- 
fined using methods 2 or 3 include a quorums defined 
in the same sub-triangle of level ni+l with i < j rows. 
By hypothesis, these quorums intersect. 

A quorum defined using method 2 and a quorum de- 
fined using method 3 intersect in the sub-grid, because 
a full-line and a row-cover defined in a h-grid intersect 
P I .  

Therefore, any two quorums defined in the hierarchical tri- 
angle quorum system intersect. m 

The availability of the proposed construction increases 
asymptotically as more levels are added to the system. Due 
to space limitations we will just sketch the proof. Analyz- 
ing the analytical function for the availability of a triangle 
it  is easy to conclude that the availability increases i f  the 
availability of the sub-elements also increase. In [9] it  has 
been proven that both the probability of getting a hierarchi- 
cal row-cover and a hierarchical full-line increase asymp- 
totically as more levels are added to the system. Using this 
information, it  is easy to prove, by induction on the levels, 
that the availability of the h-triang also increase asymptoti- 
cally. 

Strategy that minimizes load: To minimize the load 
it  is necessary to devise a strategy that induces an uniform 
load in all elements. To this end, it  is necessary to take into 
consideration, in each triangle, the number of elements that 
compose the sub-triangles and the sub-grid and the num- 
ber of elements necessary for the quorum in each one. A 
simple strategy that balances the load using all quorums is 
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obtained selecting, at each level of the triangle, the different 
methods to form a quorum with probability w1, w2, and w3 
respectively, obtained solving the following equations (let 
c1, ca, c3 be the number of elements in the sub-triangle I ,  2 
and in the sub-grid; 91, q 2  be the number of elements nec- 
essary to form a quorum in the sub-triangle 1 and 2;  and 
q31, qsr be the number of elements necessary to obtain a 
full-line and a row-cover in the sub-grid). 

In the grids, full-lines (row-covers) are selected ran- 
domly, at each level, with probability proportional to the 
number of represented level 0 lines (columns). It is possible 
to verify, for a given system configuration, that this !strategy 
uses each element with equal probability, thus inducing the 
best possible load. 

Introducing new elements: The hierarchical nature of 
the h-triang construction makes it  easy to introduce new 
elements in the structure improving the failure probability 
(without the need to introduce a new full-line). For exam- 
ple, it is possible to improve the availability of a level m 
triangle, replacing: 

0 A sub-triangle with n lines by one with n + 1 Nines, in 
. ~ - - - -  particular, .~ . asub-triangle with 1 element by one with 3 

elements (2 lines). 

0 Replacing a sub-grid with 1 element by a sub-grid with 
2 elements ( 1  line and 2 columns). 

0 Replacing a sub-grid with n x n elements by a sub-grid 
with (n + 1) x (n  + 1) elements. 

As the availability of the level m triangle increases, i t  can 
be easily proved that the availability of the system also in- 
creases. 

6. Analysis 

In this section, we analyze the availability, quorum size 
and load presented by the proposed hierarchical triangle 
quorum system. We compare it to other quorum system 
constructions previously proposed in literature. 

Failure probability: Due to the complication of deter- 
mining the exact analytical expressions for the failure prob- 
ability of quorum systems based on paths in graphs - Paths 
[ 141 and Y [IO]  -, our analysis is based on the enumeration 
of all possible configurations in systems with (almost) equal 
number of elements (thus, using the results of proposition 
3.1). In table 2 and 3 we present the failure probability for 

different quorum systems with approximately 15 and 28 el- 
ements respectively (the results for the Y quorum system 
have been obtained in [IO]). From the results presented it i s  
possible to observe that the majority quorum system [5] and 
the hierarchical quorum system (HQS) [8] exhibit the lower 
failure probability. However, the size of the quorums used 
in these systems, O ( n )  and O(n0.63) respectively, is larger 
than the others. 

From the systems that present O ( 6 )  quorum sizes - h- 
T-grid, Paths (presented as the best construction proposed in 
[ 14]), Y and h-triang -, the last two exhibit the best results,. 
It is worth to note that these two system organize the nodes 
in a triangle shape, while the other two use grid-based con- 
figurations. The CWlog system [ 161 uses quorums of vari- 
able sizes, some of which are smaller (O(1gn)) than those 
used in the other systems. Nevertheless, this system also 
presents good failure probability for the analyzed number 
of nodes (and a failure probability that tends to 0 as more 
elements are added). 

From the results obtained, it seems important to note thai 
all systems present a very low failure probability even with 
a small number of nodes - e.g. in the h-triang with 15 el- 
ements, the failure probability is less than 0.07% when the 
individual failure probability of elements is 10%. In the 
studied configurations, the h-triang presents the best results. 

Load and Quorum Size: As i t  has already been men- 
tioned, the systems that present best availability - majorit:y 
and HQS - use quorums larger than the others. From proPo,- 
sition 3.3, i t  follows that the load in these systems will also 
be larger than the load in system with O ( f i )  quorum sizes;. 
In CWlog, although the smallest quorum has size O(lg n)  <: 
O( fi), the biggest has size O(n /  lg n)  > O(fi). The av- 
erage size of the used quorums depends on the strategy used 
- for example, using the strategy proposed in [ 161 as a good 
tradeoff between quorum size and load, for a system with 
14 (resp. 29) elements we have obtained an average quo- 
rum size of 4 (5.25) and a load of 55.5% (43.7%). From 
proposition 3.3 it follows than the small quorums lead to a 
load - 0(1/ lgn) - worse than the best possible - O(l/&).  

All the other analyzed systems present O(fi) quorum 
size and O ( l / f i )  load. Besides the already analyzed h- 
T-grid, all the other constructions have minimum quorurn 
sizes =: 6. However, the h-triang is the only one where 
all quorums defined in the system have the same size. In 
the other two - Paths and Y -, quorums are obtained through 
paths in graphs, thus leading to a possible larger quorum 
size - for example, in system Y the authors indicate an av- 
erage quorum size of M 8.1 in a system with 28 elements 
[ I O ]  (against 7 in the h-triang). This larger average size im- 
poses not only an increase in the number of messages nec- 
essary to obtain a quorum, but also a larger load - using a 
strategy that uniformly distributes the load with the above 
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p 
0.1 

3x3 (9 nodes) 4x4 ( 16 nodes) 5x5 (25 nodes) 4x6 (24 nodes) 
h-grid 1 h-T-grid h-grid 1 h-T-grid h-grid I h-T-grid h-grid 1 h-T-grid 

0.016893 I 0.015213 0.005799 I 0.005361 0.001753 I 0.001621 0.001949 I 0.000611 

I’ 

10.5 11 0.716797 I 0.667969 1 1  0.746628 I 0.706604 1 1  0.751019 1 0.708871 1 1  0.725377 1 0.598435 1 

L 

0.2 0.109235 0.098585 0.0693 1 8 0.063866 0.039439 0.036300 0.034 16 1 0.01 6690 
0.3 0.286224 0.259783 0.243795 0.225066 0.191581 0,176290 0.167172 0.104402 

Table 1. Failure probability in the hierarchical grid and hierarchical T-grid quorum systems. 

p 
0.1 
0.2 
0.3 
0.5 

Majority (15) HQS (15) CWlog (14) h-T-grid (16) Paths (13) Y (15) h-triang (IS) 
0.000034 0.0002 10 0.001 639 0.01 52 13 0.00735 1 0.000745 0.000677 
0.004240 0.009567 0.021787 0.098585 0.063493 0.01 7603 0.016577 
0.05001 3 0.070946 0.0999 15 0.259783 0.206296 0.093599 0.0907 12 
0.500000 0.500000 0.500000 0.667969 0.662598 0.500000 0.500000 

Table 2. Failure probability in quorum systems with approximately 15 nodes. 

Num. nodes 

= 15 min. 
load 

z 28 min. 
load 

z 100 min. 

max. 

max. 

max. 

Table 3. Failure probability in quorum systems with approximately 28 nodes. 

Majority HQS CWlog h-T-grid Paths Y h-triang 
8 6 6 7 6 5 
8 6 3 4 5 5 5 

33.3% 40% 55.5% 4 l%(L  36.3%)) 2 39.2% 3 4 6 %  33.3% 
14 8 I O  9 1 1  7 
14 8 4 5 7 7 7 

51% 29.6% 43.7% 347c(> 29.7%) 2 28.2% 28.9% 2.5% 
51 z 19 ,25 19 14 
51 % 19 5 10 15 14 14 

Table 4. Minimum and maximum quorum sizes and load. 

Table 5. Properties of quorum system constructions. 
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average quorum size in a system with 28 elements, the load 
of the system Y is 28.9% (against 25% in the h-triang). In 
table 4 we present the quorum sizes for systems with ap- 
proximately 15,28 and 100 elements. In table 5 we present 
the approximate asymptotic values of the minimum quorum 
size and load for the different systems. From the presented 
values it is possible to observe that the h-triang presents the 
best load (the strategy that induces such load is presented 
in the previous section). Moreover, from the systetns that 
present O ( l / f i )  load it is the only one that has a fixed 
quorum size and presents the lower average quorum size. 

7. Summary 

In this paper, we have proposed a small modification to 
the hierarchical grid quorum system that reduces the size of 
the quorums used and improves the availability and load. 
From our analysis the failure probability can be further in- 
creased in the modified construction using slightly rectan- 
gular grids instead of square grids (the same situation does 
not occur in the original construction). 

We have also proposed a new quorum system based on 
a hierarchical organization using a triangle shape. This new 
construction presents better availability and load than the 
grid-based constructions. The quorum size is constant and 
it  is smaller than the average quorum size in those systems. 
The load is almost optimai (&/fi), and it is the best from 
the analyzed systems that present high availability (the sys- 
tem proposed in [ 131 has optimal load - l / f i  - but poor 
asymptotic availability). It has a quorum size smaller than 
the average of the quorum size in the studied systems with 
O ( l / f i )  load and the availability is also the best for the 
analyzed number of elements in these systems. 
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