
4Sensing - Decentralized Processing for
Participatory Sensing Data

Heitor Ferreira, Sérgio Duarte, and Nuno Preguiça
CITI / DI-FCT-UNL

Quinta da Torre, 2829-516 Caparica, Portugal
Telephone: (+351) 212948536

Fax: (+351) 212948541
Email: heitorfr@gmail.com, {smd, nmp}@di.fct.unl.pt

Abstract—Participatory Sensing is an emerging application
paradigm that leverages the growing ubiquity of sensor-capable
smartphones to allow communities carry out wide-area sensing
tasks, as a side-effect of people’s everyday lives and move-
ments. This paper proposes a decentralized infrastructure for
supporting Participatory Sensing applications. It describes an
architecture and a domain specific programming language for
modeling, prototyping and developing the distributed processing
of participatory sensing data with the goal of allowing faster and
easier development of these applications. Moreover, a case-study
application is also presented as the basis for an experimental
evaluation.

Index Terms - Participatory Sensing, decentralized process-
ing, data streaming, mobile computing.

I. INTRODUCTION

Participatory Sensing [2], [3] is a new application paradigm
that aims to turn personal mobile devices into advanced mobile
sensing networks. Thanks to the willingness of the users and
the inherent mobility of their daily routines, it is possible to
assemble detailed views and interpretations of the physical
world without the costs associated with the deployment of
dense, wide-area, sensing infrastructures. Examples of the
potential of this paradigm already exist, such as experiments
combining accelerometer and GPS data to monitor road con-
servation [5] and traffic congestion [10], [14]. The expected
outcome from this new movement is the creation of rich data
sets, a data commons, supporting new services, discourses and
interpretations.

The first wave of case-study applications already shows the
potential of this paradigm, but their relatively confined speci-
ficity also exposes their exploratory stage. In general, these
applications stand on top of adapted middleware architectures,
in many cases using centralized entities [5], [10], [14], or
limited distribution models. The more encompassing efforts at
platform support tend to originate from fixed sensor networks
backgrounds, with limited allowances for mobility [9], [12].
Centralized solutions raise several problems. On one hand,
there are the implications of having a centralized repository
hosting privacy sensitive information. On the other hand,
a centralized model has financial costs that can discourage
community-driven initiatives.

This paper focuses on the issue above and proposes a de-
centralized infrastructure for supporting participatory sensing

applications, whose goal is to ease the prototyping and devel-
opment of participatory sensing applications. The 4Sensing 1

system, includes a framework for modeling and carrying out
the processing of participatory sensing data in a decentralized,
fully distributed fashion.

The rest of the paper is organized as follows. Section II
presents a review of related work. Section III describes the
overall system model, including the proposed system architec-
ture, processing language and execution environment. A case-
study application and experimental results are presented and
discussed in Section IV. Section V concludes the paper with
our plans for future work and some final remarks.

II. RELATED WORK

The availability of mobile devices with several sensors,
such as smartphones, has lead to the creation of a large
number of personal sensing applications, such as applications
to record walks, routes, etc. These applications focus mostly
on archiving and personal monitoring, for instance for health
monitoring or fitness applications.

Some of these applications involve sharing among a specific
community group or social network. In public sensing, data is
open to the public at large. For example, in BikeNet [4], users
can record their bike rides in their mobile phones and share
this information with a community. The aggregation of this
information, executed in a single server, allows community
members to get information about the most popular bike
routes. In CenceMe [13], an application running in the users
smartphone infers the presence of individuals and shares this
information through social networking applications such as
Facebook and MySpace.

In [1], users collect information about the existence of
flowers in some given place using their GPS-equipped mobile
phones. This information is aggregated in a single server,
allowing the exploration of the bio-diversity of plants in
specific areas.

CarTel [10] focus on vehicle based sensing applications and
bases communication on opportunistic wireless connection.
The system has a centralized architecture, where applications

1This work was partially supported by FCT/MCTES, project
PTDC/EIA/76114/2006 and CITI.

!000111000 111666ttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn PPPaaarrraaalllllleeelll aaannnddd DDDiiissstttrrriiibbbuuuttteeeddd SSSyyysssttteeemmmsss

!555222!---999000999777///!000 $$$222666...000000 ©©© 222000!000 IIIEEEEEEEEE

DDDOOOIII !000...!!000999///IIICCCPPPAAADDDSSS...222000!000...222000

333000666

are hosted in a central server (the portal). Mobile nodes,
executing in vehicles, are used to collect the information need
by the running applications. Example applications include
hot spot detection, querying popular car routes between two
points, and monitoring of road surface conditions [5].

Our approach differs from these systems in a number of
ways, the most important being its decentralized architecture.
A decentralized solution helps scalability by spreading the load
and storage requirements by the participants in the system.
Lacking the need for having a powerful server infrastructure
also makes this approach more suitable for community-based
sensing, with the needed resources being contributed by the
community.

Some sensing systems present an architecture built entirely
in the mobile nodes and ad-hoc coordination to support appli-
cations (e.g. [16] and [11]). A limitation of this approach is
that mobile nodes have to spend computation, communication
and energy resources in coordination efforts, regarding node
and service discovery and context dissemination. This is
specially relevant given that communication can be expensive,
energy is a scarce resource and the middleware should have a
minimal impact on the primary phone functions.

Other systems, such as IrisNet [7] target a worlwide sensor
web consisting of common PCs connected to the internet and
equipped with sensors. In this system, nodes are hierarchically
organized, and data is stored and processed according to this
organization. Unlike IrisNet, 4Sensing supports the integration
of mobile sensor nodes.

In the Partisans architecture [6], this proxy role is assumed
by the mediators. A mediator is a fixed node, geographically
close to sensors, that provides a set of in-networks functions
over sensor data streams, such as enhancing data with veri-
fied context information, data validation, anonymization and
stream replication to serve multiple clients.

Other systems (e.g., [6], [9], [12]) have an architecture
similar to ours, based on the combination of fixed and mobile
nodes. For example, in SensorWeb [9], a set of fixed nodes
act as gateways for sensor network and proxies for mobile
devices. In this system, a coordinator node mediates and
coordinates the access of applications to the different gateways
and proxies. In Partisan [6], sensor nodes generate information
that is consumed by subscribers. Mediators perform limited in-
network processing of the data streams. Unlike these systems,
in 4Sensing, a network of nodes is used to process the
information in a decentralized way, thus allowing to more
evenly distributed the load among the participants in the
system.

III. SYSTEM MODEL

A. Architecture

4Sensing is a distributed system for running participatory
sensing applications consisting of a high number of mobile
nodes equipped with sensors, and a fixed support infrastruc-
ture. A mobile node can be any mobile computing platform,
typically a mobile phone, and is expected to have limited

resources, in particular in terms of computing power and bat-
tery life. Mobile nodes are connected to a fixed infrastructure,
composed by a set of nodes organized as an overlay network,
which supports the more resource intensive operations, such
as data processing, routing and storage. Fixed nodes can
be personal computers, virtual machines running in a utility
computing infrastructure, or servers hosted by independent
entities.

Applications are hosted in this hybrid environment, sup-
ported by the 4Sensing service middleware running in both
mobile and fixed nodes. On the fixed infrastructure, an appli-
cation context defines data acquisition, processing and storage
requirements, while on the mobile side, contexts support the
data acquisition tasks. Application clients - hosted on mobile
or fixed nodes - issue queries and receive result streams
through the service middleware, thus supporting the interaction
between user and service. Figure 1 provides an illustration of
the 4Sensing high-level architecture.

Routing Overlay

Mobile Node

Fixed Node

App 1 Ctx

App 1
Client

App 2 Ctx

Core Services

App 2
Client

Core Services

App 1 Ctx App 2 Ctx

Figure 1. 4Sensing high-level architecture

B. Data Model and Processing Language

1) Streams: Participatory sensing applications manage a
continuous flow of data resulting from sensing and data
processing activities. Generally, a stream is a sequence of
data tuples with a common structure and semantic, represented
as a set of named attributes. Regarding its origin, a data
acquisition stream is a tuple sequence produced by mobile
nodes according to the acquisition requirements expressed
by an application. This raw data has a spatial and temporal
nature - a timestamp records the time when the sensor reading
was sampled, while physical coordinates, or a spatial extent,
convey the location in space that the sample refers to. A
derived stream results from the application of a transformation
operation over a source stream.

As an example, an application dealing with detecting con-
gested roads in an urban setting would process a raw stream
of GPS readings, obtained from in situ mobile nodes, and
produce a derived stream of average speeds values to feed a
hotspot detection logic component.

2) Virtual Tables: Similarly to the relational paradigm,
where a data set with a common schema is represented

333000777

by a relation, or table, in 4Sensing, participatory sensing
applications model data by defining virtual tables. A virtual
table specifies a derived stream in terms of one or more inputs
- either a set of data acquisition streams or another virtual
table - and a sequence of stream operators structured in a
processing pipeline. The term virtual is used here because
tables do not necessarily have associated storage - although
the same abstraction can be extended to support persistence
by storing and replaying a previous live stream. A query
expresses a spatial constraint over a virtual table - a bounding
box, for instance. The result of a query is a continuous tuple
stream produced by the target virtual table, resulting from the
application of the spatial restriction over its base stream.

In the above example, the derived average speeds stream
would be modeled as a virtual table, using GPS readings for
its acquisition input, and could be used by some monitoring
application instance (running on a mobile device) to issue a
query to monitor a limited area around its general location.

3) Stream Transformations: A stream transformation can
be modeled as a sequence of stream operators structured in
a processing pipeline. Data tuples flow in a pipeline, being
processed in sequence by each operator - transforming, aggre-
gating, filtering and classifying data. Following is a description
of the stream operators considered in the context of this work.

a) Processing and Filtering: The processor operator is
the main extension basis for the implementation of domain
specific processing, such as interpolation of sensor readings,
unit conversion and data mapping. Mapping classifies data
according to an uniform representation - e.g., a grid over the
geographical space or the buckets in a histogram - thus estab-
lishing relations between data in order to support aggregation
operations. Spatial mapping operations assign a spatial extent
to data tuples, such as a bounding box, or physical coordinates
representing the centroid of the extent.

In the given example, individual traffic speed samples
have little use, so the aggregation spatial granularity could
be controlled by the application via the use of a processor
operator to map raw GPS readings to actual roads or road
segments, in order to produce an aggregate speed value per
road or road segment.

b) Partitioning: The groupBy operator partitions data by
specific tuple attributes or an arbitrary partitioning condition,
producing independent data streams. Each independent stream
is processed by a sub-pipeline specified by the operator - for
simplicity, each sub-pipeline cannot include itself a groupBy
operator. Partitioning is used to group related data, for in-
stance by creating independent streams for data in particular
cells, according to an uniform grid introduced by a mapping
operator.

In the running example, partitioning would refer to a
groupBy operator devoted to the partition of incoming data
into separate substreams referring to the same road or road
segment, so that an aggregate average speed is generated
separately for each of them.

c) Stream decomposition: To aggregate data, continuous
streams have to be broken down into discrete tuple sequences.

A timeWindow divides the stream into possibly overlapping
time periods using a sliding window.

For instance, a timeWindow operator could be used to
generate aggregate speed averages taking into account data
received in the last 30 or 60 seconds, depending on the desired
level of temporal detail.

d) Aggregation: An aggregator operates over a finite
tuple sequence applying operations, such as maximum, min-
imum, count, sum and average, over one or more input at-
tributes of the input tuples. An aggregator can be used together
with mapping, partitioning and stream decomposition in order
to continuously produce independent aggregate values over the
spatial decomposition defined by the mapping operator.

In the road congestion example, the required aggregator
operators would be average and count. Respectively, they
would be used to produce the desired result of averaging the
individual speed samples and, also, to provide a measure of
significance of the result.

e) Classifier: A classifier is a specialized processor used
to generate inferences from aggregated data, such as detecting
an event. A classification tuple is forwarded whenever an
input aggregate is complete and satisfies an application defined
condition. An aggregate tuple is complete when it takes into
account all the information bounded by its spatial extent - see
section III-C.

Completing the example, a classifier operator would be used
to implement the road congestion detection logic according to
some model, for instance, taking into account the observed
average speeds in regards to expected values for each given
road and time of day, and using the number of available
samples to attach a confidence value to each detection.

The use of these operators, in the context of the road
congestion example scenario, is also illustrated in Figure 2.
The figure actually shows the example stream processing
pipeline decomposed in its two stages: one devoted to the
processing of data obtained locally (data sourcing) and the
other dealing with the processing of data obtained from
remote nodes (global aggregation). This is intimately related
to distributed processing and is explained in the next section.

The actual pipeline programming is performed using a
domain specific language, whose specification is given in
Figure 3. The implementation prototype uses Groovy [8] 2 and
takes advantage of its dynamic dispatching/invocation features
and support for closures for embeding additional application
code into virtual table definitions. An example of the use of
this DSL language is given in Section sec:evaluation.

C. Distribution Strategy
A stream transformation pipeline can be broken down into

two stages, or roles - data sourcing and global aggregation,
as shown in Figure 4. Data sourcing refers to the process
through which each node produces partial state tuples from the
continuous sensor input received from mobile devices, while
global aggregation refers to the production of an aggregate

2Groovy is an object-oriented, dynamic programming language that runs
on top of the Java Virtual Machine.

333000888

Segment
Mapping 1 2 3

Average

Average

AggregateSpeed

processor timeWindow

aggregator

aggregator

groupBy(segmentId)

segment-1

segment-n

GPSReading

AggregateSpeed

Data-source

Global Aggregation

1 2 3

Average

Average

AggregateSpeed

timeWindow

aggregator

aggregator

groupBy(segmentId)

segment-1

segment-n

Figure 2. Example of the use of operators within the two node processing
pipeline stages

base-virtual-table-definition ::=
[sensorInput ’(’ <sensor-definition-name >’)’]+
dataSource {<pipeline-definition >}

[globalAggregation { <pipeline-definition >}]*

derived-virtual-table-definition ::=
tableInput ’(’ <virtual-table-name>’)’

[globalAggregation { <pipeline-definition >}]+

pipeline-definition ::= [
(process (<processor> | <closure>)) |
(classify <closure>) |
(groupBy ’(’ (<attribute-list> | <closure>) ’)’ { <pipeline-definition>}) |
(timeWindow ’(’ size: <integer>, slide: <float>’)’) |
(aggregate ’(’ <class>’) <closure>)

]+

attribute-list ::=
’[’ [<string>]+ ’]’

Figure 3. 4Sensing DSL specification

result by merging the partial states from several nodes. One
key aspect of 4Sensing is that processing of these stream
transformation operations is performed in a fully distributed
way, using a strategy called QTree, as explained next.

In QTree, each fixed node is assigned a set of physical
space coordinates (given by a latitude and longitude). Data
partitioning is based on subdivision (or splitting) of geographic
space into quadrants that hold at least a minimum number
of nodes (the minimum occupancy). Each node belongs si-
multaneously to all the quadrants that contain it, down to the
smallest - called its maximum division quadrant. Mobile nodes
upload sensor readings to an acquisition node whose physical
coordinates lie in the same maximum division quadrant (M1
and M2 in figure 5). Areas with low node density can result
in data dispersion across the entire node base; to reduce query
scope, QTree assumes a minimum division level - meaning that
geographic space is fully divided at this level i.e., all partitions
have minimum occupancy.

A
cq

ui
si

tio
n

 S
er

vi
ce

s

Data source pipelines

Global aggregation pipelines

Network Services

Query Services

to app client

Stream
OperatorIn

pu
t

Fo
rw
ar
d

Stream
OperatorIn

pu
t

Fo
rw
ar
d

Stream
OperatorIn

pu
t

Fo
rw
ar
d

In
pu
t

Ro
ut
in
g

Figure 4. The data flow within a 4Sensing fixed infrastructured node, showing
the two stream transformation stages: data sourcing and global aggregation

1) Query Distribution: To reach all relevant data, a query
has to be distributed to all nodes within its search area, defined
as the union of quadrants, at the minimum division level, that
completely cover the query area. This is illustrated in figure
5, where the shadowed quadrant represents the search area for
query Q.

N1

A

N2
B

Q

M1

M2

Figure 5. QTree spatial partitioning with a minimum occupancy of 2 nodes
and minimum division level of 2

A query is disseminated by recursively subdividing the
search area until all nodes are reached, building a distribution
tree in the process as depicted in figure 5. Initially, the
root node divides the world into four quadrants, finds their
interceptions with the search area and forwards the query to
a randomly selected peer in each interception. Target nodes
repeat the same procedure; for quadrants that do not have
minimum occupancy, the node assumes the aggregation role

333000999

and forwards the query to all peers in the area - these nodes
become the tree leaves, acting as data sources. QTree provides
an inherent balancing mechanism, given that a different node
is chosen each time the aggregation tree is built and, the wider
the aggregation area, the larger the set of candidate nodes.

2) Query Processing: Aggregation is performed using the
reverse path of the query dissemination tree. An important
aspect of QTree, that allows the reduction of computation and
communication costs, is that aggregate tuples are complete at
the tree level where the assigned quadrant completely encloses
its spatial extent - i.e., upper tree levels will not hold additional
data regarding that extent - and can be forwarded to the query
root without further processing. In figure 5, extents A and B
are complete at the nodes N1 and N2 respectively. Another
relevant characteristic in QTree is that although nodes closer
to the root cover wider areas, they only aggregate data for
spatial extents that are not completely enclosed at lower levels
of the aggregation tree.

3) Network Dynamism: Node failures in an aggregation tree
impact query results, the severity of this impact depending on
how close to the root the failure occurs. Failure requires re-
building the tree for the affected quadrant, possibly after merg-
ing imposed by the minimum node occupancy requirement.
When a node joins the network during query execution it can
be incorporated into the aggregation tree after any necessary
subdivision of space and consequent tree restructuring.

IV. EVALUATION

The system presented in the previous sections has been
evaluated with two goals in mind. Firstly, to obtain a initial
assessment of the expressivity of the proposed programming
language abstractions and, secondly, to evaluate in quantitative
terms the performance of the distribution strategy that has
been adopted. To this end, we modeled and implemented a
case-study application, in a simulation setting, focused to-
wards realtime participatory sensing data processing. Namely,
this application, called SpeedSense, continuously monitors
the current traffic status in an urban setting to allow client
applications to access the current traffic speed per road and
information about congested roads. For this purpose, simulated
users collect real-time data while driving, using GPS equipped
mobile devices. While, at this point, this case-study does
not intend to be a realistic implementation of road traffic
estimation, the scenario involved is a paradigmatic one for
Participatory Sensing and is featured in some of the most
referenced works in the area [10], [14].

A. Case study - SpeedSense

SpeedSense infers the current average speed, and congestion
detections in a given area, based on GPS data sampled by
in-transit vehicles at periodic intervals. For this purpose,
two virtual tables have been designed: TrafficSpeed, which
supports querying for average speed per road segment, while
the other, TraficHotspots, allows for querying for congestion
detections.

For the road network (and traffic) model, SpeedSense re-
quires a map representation of the application’s geographic
area of coverage. The Open Street Map (OSM) [15] vectorial
representation of the road network is used for that purpose.
This map data is used to map geographic coordinates to road
segments, to determine the spatial extent of segments and their
associated road type. The network model used in the evaluation
divides roads, as needed, into segments with a maximum of
1 km and uses separate segments for each driving direction.
Each road is assigned an expected (uncongested) driving
speed according to its type: highway, primary to tertiary and
residential.

1) TrafficSpeed Virtual Table: This table derives directly
from the GPSReading sensors input and produces an output
stream of AggregateSpeed tuples that convey a segment,
sample count, and total and average speed. Average speed is
computed using a time-window to break down the continuous
acquisition stream into finite time intervals (cf. Definition 1).
Specifically, the data sourcing pipeline stage handles local
aggregation of raw GPS input data, by mapping incoming
samples to road segment using the process operator (for
simplification, raw GPS readings reference the segment iden-
tifier); a timeWindow accumulates data samples for the given
time period, then groupBy partitions the resulting data into
independent substreams for each segment. For each of these,
aggregate accumulates data samples for the given time period
to compute the intermediate sum and count results that are
used to produce the actual (moving) average speed for that
segment as an AggregateSpeed tuple.

The global aggregation stage receives AggregateSpeed val-
ues from descendent peers and produces the overall average
speeds by merging the partial records. A timeWindow and op-
erator groupBy are again used to accumulate data and partition
the stream. For each of the resulting partitions (or substreams)
aggregate is once more used for summing and counting all
partial contributions and produce the actual AggregateSpeed
value at this peer.

2) TrafficHotspots Virtual Table: This table outputs a
stream of Hotspot tuples representing real-time detections of
congested road segments. It is based on a simple model that
compares the current average speed of a segment against a
congestion threshold, given as a fraction of the maximum
speed for that particular road, obtained from the road network
model. It also takes into account the number of samples used
to compute the average speed of the segment to provide a
measure of the confidence or reliability in a detection result.
Refer to Definition 2 for the actual specification of this table,
where it can be seen that it derives from the TrafficSpeed
table and, essentially, extends its global aggregation stage
with the hotspot detection classifier. This classifier operator
receives an AggregateSpeeds stream and produces a Hotspot
tuple whenever the computed average is complete, reliable and
below the congestion threshold.

333!000

Definition 1 TrafficSpeed virtual table specification
sensorInput(GPSReading)
dataSource {

process{ GPSReading r ->
r.derive(MappedSpeed, [boundingBox: model.getExtent(r.segmentId)])

}
timeWindow(size:15, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { MappedSpeed m ->
sum(m, ’speed’, ’sumSpeed’)
count(m, ’count’)

}
}

}
globalAggregation {

timeWindow(size:10, slide:10)
groupBy([’segmentId’]){

aggregate(AggregateSpeed) { AggregateSpeed a ->
avg(a, ’sumSpeed’, ’count’, ’avgSpeed’)

}
}

}

Definition 2 TrafficHotspots virtual table specification
tableInput(”TrafficSpeed”)
globalAggregation {

classify(AggregateSpeed) { AggregateSpeed a ->
if(a.count > COUNT THRESHOLD &&

a.avgSpeed <= SPEED THRESHOLD * model.maxSpeed(a.segmentId)) {
cf = min(1, a.count/COUNT THRESHOLD*0.5)
a.derive(Hotspot, [confidence: cf])

}
}

}

B. Evaluation
The SpeedSense evaluation was performed in a custom

simulation environment of a fixed and mobile node infrastruc-
ture. Fixed nodes are distributed randomly across the urban
space with a minimum inter-node distance of 250 meters. A
one-hop overlay network connecting the fixed infrastructure
is simulated through a shared common peer database that
provides a consistent view of the network membership. The
network is static i.e., membership is determined on startup and
there are no node entries or exits during execution, or node
failures. Mobile nodes interact with a fixed-node homebase
counterpart directly, resulting in the delivery of raw GPS
data with no latency. Communication between fixed nodes
experiences latency and jitter. Each mobile node simulates
a vehicle, according to a traffic model, and reports its GPS
reading every 5 seconds as it follows the assigned path. A
common clock is used to timestamp readings; thus, any effects
of clock desincronization are not considered.

Traffic is modeled by emulating a fleet of vehicles driving
through random routes. The maximum speed for a given
segment is the same value used for congestion detection and
depends on the road type. An average speed, for each road

Definition 3 Q1 and Q2 query specification
def q1 = new Query(”TrafficHotspots”).area(

minLat: 38.7379878, minLon: -9.1821318,
maxLat: 38.758213, maxLon: -9.145832)

def q2 = new Query(”TrafficHotspots”).area(
minLat: 38.727875, minLon: -9.2002818,

maxLat: 38.7683250, maxLon: -9.1276818)

Mobile node (congested)

Fixed node

Mobile node (normal)

Figure 6. Snapshot of the traffic simulation showing congested mobile nodes
in red

segment at a given time, is determined by its current car
density and used to generate the random speed individually
for each vehicle, according to a normal distribution. In the
experiments performed, congestion occurs in segments with
a density of at least 5 vehicles. Vehicle paths are determined
by choosing a random start position and sequence of road
intersections. In order to induce traffic confluence, higher
probability is given to highways and primary roads; a new
path is computed whenever a vehicle reaches its destination.
Figure 6 shows a rendering of the traffic simulation.

Simulations have been run for two different node densities;
in a low density scenario, the Lisbon urban area is served by
50 fixed nodes, while in the high density scenario, 500 nodes
are used. In both cases, the mobile infrastructure comprises
500 mobile nodes.

Two queries were tested for each node density, Q1 and Q2,
covering respectively 6.25% and 25% of the overall simulation
area (cf. Definition 3). Both were placed on a high mobile node
density area. The set of metrics captured was averaged over
10 runs, corresponding to different fixed node placements.

1) Workload Distribution: One of the purposes of the ex-
perimental evaluation was to determine how the effort required
to evaluate a query is spread among the fixed nodes. For

333!!

that, workload is measured as the number of data acquisition
and aggregation events occurring and processed at each fixed
node. Specifically, the former pertains to the number of GPS
sensor readings received and processed by the acquiring node,
while the latter refers to the number of inputs handled by
the global aggregation stage and corresponds to the updates
received for each segment aggregated by that node. To derive
a total workload at each node, the two are added with equal
weights.

The experimental results obtained for Q1 and Q2, in both
low and high density node scenarios, are presented in Figures
7 to 12.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

500

1000

1500

2000

2500

3000

3500

Q1 500 Nodes
Q2 500 Nodes

Most Loaded Nodes

P
ro

ce
ss

ed
 T

up
le

s

Figure 7. Total workload for queries Q1 and Q2, in high density scenario,
covering 6.25% and 25% of the target area, respectively

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1000

2000

3000

4000

5000

6000

7000

Q1 50 Nodes
Q1 500 Nodes

Most Loaded Nodes

P
ro

ce
ss

ed
 T

up
le

s

Figure 8. Total workload for query Q1 in low and high density scenarios

QTree balances load more effectively in the high node
density scenario, where the most loaded node handles 7.4%
and 3.1% of the total work, respectively for Q1 and Q2. In this
setting, the additional work introduced by Q2 is distributed
among participating nodes and does not affect significantly
the maximum workload. Lower node density affects QTree
negatively - in this case, the most loaded node handles
19.2% (Q1) and 12.5% (Q2) of total work, and Q2 results
in a significant increase of the maximum workload (57.7%),
relative to Q1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1000

2000

3000

4000

5000

6000

7000

Aquisition
Aggregation
Total

Most Loaded Nodes

P
ro

ce
ss

ed
 T

up
le

s

Figure 9. Workload decomposition for Q1 in low density scenario

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

500

1000

1500

2000

2500

3000

3500

Aquisition
Aggregation
Total

Most Loaded Nodes

P
ro

ce
ss

ed
 T

up
le

s

Figure 10. Workload decomposition for Q1 in high density scenario

2) Query Success and Latency: Query success is given by
the percentage of accurate detections, including false neg-
atives, where a false negative occurs when no detection is
received within 120 seconds of occurrence. Detection latency
times the lag between the occurrence of a segment congestion
and the arrival of the respective detection at the query root.
Transient congestions (lasting less than 20 seconds) were not
considered for the evaluation. The results are only indicative,
as the traffic patterns produced by the traffic model are highly
dynamic compared to real world conditions, with several short
lived congestions occurring during query evaluation. Figure
11, which plots query success versus detection latency for both
queries, shows a success rate in excess of 90% within the 120
second allowed window. Moreover, it shows that detections
take longer on average in the high node density scenario,
which can be explained by the difference in the aggregation
tree depth that is needed in that case.

3) Communication Load: Cost measurements were also
made regarding the number of messages exchanged during the
execution of a query, providing an indication of the expected
performance in terms of network usage. This communication
load includes data messages and binding events. The former
accounts for tuples exchanged between peers, relative to

333!222

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80

90

100

50 Nodes
500 Nodes

Latency (seconds)

D
et

ec
tio

ns
 (%

)

Figure 11. Query success and latency for low and high density scenarios

Q1 50 Q2 50 Q1 500 Q2 500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Binding
Data

M
es

sa
ge

s

Figure 12. Messages exchanged for Q1 and Q2, in low and high density
scenarios

query data (incomplete aggregations that are forwarded up the
aggregation tree) and query results (complete aggregations that
are forwarded to the query root. While the latter capture the
additional overhead associated with uploading the data from
mobiles to a fixed node.

In all cases, the number of messages sent by individual
nodes is limited at 1 message per pipeline stage every 10
seconds by the use of the timeWindow operator, thus the
exchanged messages reflect the number of nodes involved in
query processing. It was observed, as shown in Figure 12, that
executing the same query in different node density settings has
a large impact on message traffic. Going from the low to the
high setting results in an increase in the number of messages
of about 200% for Q1 and 280% for Q2. The impact of the
query area on message traffic is also high, in both low and
high density settings - resulting in an increase of 95% for
low density and around 140% for high density - for a 300%
increase of the query area.

V. FINAL REMARKS

4Sensing abstracts application developers from the com-
plexity inherent to a distributed infrastructure, such as the
actual location of relevant data and the balancing of processing

work, and supports common processing and aggregation tasks
though a library of out-of-the-box components. Applications
can share data through virtual tables, thus promoting the
development of application mashups, while keeping control
over the granularity of published data. Although the QTree
distribution strategy is affected by the unbalanced distribution
of sensed data, specially for lower node densities, the strength
of the strategy resides in the ability to limit the propagation
of partial state by leveraging

Directions for future research include the exploration of
efficient delivery of query results to the mobile node base,
and the optimized processing of multiple overlapping queries;
finally we would like to investigate the aspects related to data
persistence and historical queries.

REFERENCES

[1] W. Bloomin. http://whatsbloomin.com, June 2010.
[2] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,

H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of
people-centric sensing. Internet Computing, IEEE, 12(4):12–21, 2008.

[3] D. Cuff, M. Hansen, and J. Kang. Urban sensing: out of the woods.
Commun. ACM, 51(3):24–33, 2008.

[4] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell. The bikenet mobile sensing system for cyclist
experience mapping. In SenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems, pages 87–101, New
York, NY, USA, 2007. ACM.

[5] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-
ishnan. The Pothole Patrol: Using a Mobile Sensor Network for Road
Surface Monitoring. In The Sixth Annual International conference on
Mobile Systems, Applications and Services (MobiSys 2008), Brecken-
ridge, U.S.A., June 2008.

[6] A. P. et al. Network system challenges in selective sharing and
verification for personal, social, and urban-scale sensing applications.
In Proc. 5th Workshop Hot Topics in Networks (HotNets-V), 2006.

[7] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. Irisnet: an
architecture for a worldwide sensor web. Pervasive Computing, IEEE,
2(4):22–33, Oct.-Dec. 2003.

[8] Groovy. http://groovy.codehaus.org, April 2010.
[9] W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An

infrastructure for shared sensing. Multimedia, IEEE, 14(4):8–13, Oct.-
Dec. 2007.

[10] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. K. Miu,
E. Shih, H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile
Sensor Computing System. In 4th ACM SenSys, Boulder, CO, November
2006.

[11] N. Kotilainen, M. Weber, M. Vapa, and J. Vuori. Mobile chedar ” a peer-
to-peer middleware for mobile devices. In PERCOMW ’05: Proceedings
of the Third IEEE International Conference on Pervasive Computing
and Communications Workshops, pages 86–90, Washington, DC, USA,
2005. IEEE Computer Society.

[12] Y. J. L. Marie Kim, Jun Wook Lee and J.-C. Ryou. Cosmos: A
middleware for integrated data processing over heterogeneous sensor
networks. ETRI Journal, 30(5), October 2008.

[13] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B.
Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social
networks: the design, implementation and evaluation of the cenceme
application. In SenSys ’08: Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 337–350, New York, NY,
USA, 2008. ACM.

[14] Mohan, Prashanth and Padmanabhan, Venkata and Ramjee, Ramachan-
dran . Nericell: Rich Monitoring of Road and Traffic Conditions using
Mobile Smartphones. In Proceedings of ACM SenSys 2008, November
2008.

[15] OpenStreeMap. http://www.openstreetmap.org/, April 2010.
[16] O. Riva and C. Borcea. The urbanet revolution: Sensor power to the

people! Pervasive Computing, IEEE, 6(2):41–49, April-June 2007.

333!333

